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β-Amyloid aggregates in the brain play critical roles in Alzheimer’s disease, a chronic 

neurodegenerative condition. Amyloid-associated metal ions, particularly zinc and copper ions, 

have been implicated in disease pathogenesis. Despite the importance of such ions, the binding 

sites on the β-amyloid peptide remain poorly understood. Due to the conformational flexibility of 

the peptide, conventional techniques such as X-ray crystallography are not able to determine the 

important nonperiodic structures of this system. This work addresses these structural resolution 
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issues of this non-crystalline biomolecule, as well as its interactions with metal ions via scanning 

tunneling microscopy (STM), spectroscopic imaging, and image segmentation tools. 

Our findings reveal critical interactions of an initially disordered region of β-amyloid 

(Aβ1-16) with copper and zinc ions. Based on our analyses of the STM images, we elucidate and 

outline similarities and differences between Cu2+ and Zn2+ interactions with Aβ1-16 with 

sub-molecular resolution. We show that both metal ions participate in inter-strand Aβ1-16 binding 

by coordinating with the two histidine residues at positions 13 and 14 (His13 and His14) on 

adjacent strands and not intra-strand binding, as it had been hypothesized previously.  

We found that the non-periodic binding of both types of metal ions results in more 

ordered peptide assemblies, but pristine β-sheets are formed only in the presence of copper. 

These results indicate that the bound copper has strong, long-range stabilizing effects on the 

assembly, whereas zinc ions are associated with local destabilizing effects. We also identified 

several amino acids within the peptide, which are more strongly influenced by metal ion binding, 

suggesting possible targets for pharmacological intervention. 

Finally, we address the interactions of the remaining β-amyloid fragment, containing the 

last 26 residues of the full length β-amyloid peptide (p3 or Aβ17-42), with copper ions. Because it 

is generated in the non-amyloidogenic pathway, Aβ17-42 has been considered a non-pathogenic 

peptide, and, until now, its function and its role remain undetermined. Recent reports suggest that 

the segment may be involved in Alzheimer’s disease and Down syndrome. However, the 

production of Aβ17-42 as well as its dependence and involvement in metal ion misbalance have 

not been well studied. Thus, herein, we address structural changes in Aβ17-42 due to its interaction 

with Cu2+ ions. Our results based on techniques such as cyclic voltammetry indicate interaction 

between Cu2+ ions and Aβ17-42; furthermore, results based on surface-enhanced Raman 
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spectroscopy, atomic force microscopy, and scanning tunneling microscopy suggest that the 

interaction between Cu2+ ions and Aβ17-42 ultimately leads to changes in Aβ17-42 secondary 

structure, shifting it from less to more β-sheet content, and its aggregation state, shifting it from a 

less aggregated to a more aggregated state.   
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CHAPTER 1 

β-Amyloid and Scanning Tunneling Microscopy as the Ultimate Tool to Study Its Structure 

and Metal Ion Binding Sit
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1.1 Introduction: Importance of Studying Biomolecular Structures 

X-ray powder diffraction (XRD) is an analytical technique developed in 1912 by Max 

von Laue.1,2 The technique is used in structural identification and characterization of molecules 

biomolecular assemblies, and solids. Development of XRD led to advances in organic/inorganic 

chemistry and structural biology. Today, advantages of XRD include high resolution, versatile 

software packages (intensity extraction and space group determination, crystal structure solution, 

crystal structure refinement from powder data and etc.), and a vast library of molecules available 

for identification and characterization of unknown materials.2,3 In order to employ XRD, it is 

vital to crystallize the molecule of interest. The crystals are exposed to an X-ray beam, which 

creates a diffraction pattern in scattering through the solid. From the diffraction pattern, the 

positions of atoms in the crystals are deduced by software and accordingly, structures of 

molecules are reconstructed or refined.2-4 

Since 1912, various organic and biological molecules and macromolecules have been 

discovered. The interest in studying different types of structures of organic and biological 

molecules stems from their structure-function relationships. Particularly, a biological molecule 

with a specific sequence has a specific structure, which often corresponds to a specific function. 

Thus, by studying the structure-function relationships, we can compare molecules/biomolecules 

that have similar sequences and similar structures and thus, differentiate between pathogenic and 

nonpathogenic biomolecules.5-7 

A significant disadvantage of XRD is its inability to elucidate the structures of 

amorphous molecules and materials, i.e., molecules that cannot be crystallized.3,8 Thus, some 

biological molecules impose a challenge in structural biology owing to their non-crystalline 

properties.3 Often, proteins have disordered structures; however, it is theorized that each 
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disordered structure is unique in its disorder, and thus, it is a type of structure that carries a 

specific function.5-7  

Proteins that are known to be difficult or impossible to crystallize include transmembrane 

and membrane proteins, proteins with post-translational modifications (PTM), intrinsically 

disordered proteins (IDP), and proteins with intrinsically disordered regions.6,9,10 Some proteins 

with intrinsically disordered regions are known to be involved in deteriorating diseases in 

humans. Examples of these proteins include, but are not limited to, α-fetoprotein, p53, and, 

BRCA-1, which are involved in cancer; hirudin and thrombin, which are involved in 

cardiovascular diseases; α-synuclein, which is involved in synucleinopathies; tau and β-amyloid 

(Aβ), which are involved in Alzheimer’s disease; prion protein, which is involved in prion 

diseases; and amylin and islet amyloid polypeptide, which are involved in type II diabetes.11 

 

1.2 Conventional Techniques Used to Decipher Biomolecular Structures  

Apart from XRD, other conventional techniques used in studying secondary structures of 

biomolecules and their interactions with ligands are solid-state nuclear magnetic resonance 

(ssNMR) and cryo-electron microscopy (cryo-EM).3,8 Although non-crystallinity remains an 

issue in XRD and cryo-EM techniques, these structural characterization techniques have had 

tremendous recent advances in studying structures of non-crystalline biomolecules. For example, 

in 2006, Nelson et al. resolved the first atomic structure of amyloid-like fibrils using XRD. 

These fibrils were made up of a seven-residue peptide segment from Sup35 – a prion protein.12 

In 2017, Gremer et al. were the first to identify and to report the fibril structure of Aβ containing 

42 residues using cryo-EM.13 Thus, in the recent years, we have learned important structural 

information about amyloidogenic and Aβ peptides and their organization in fibrils. However, 
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structural information about Aβ in oligomeric form – the form considered to be neurotoxic14,15 – 

is still missing. 

 

1.3 Importance of Studying β-Amyloid and Theories Regarding Amyloid Toxicity  

Alzheimer’s disease (AD) is a deteriorating neurodegenerative disorder characterized by 

dementia and memory loss. Anyone who is around the age of 65 is at the risk of AD.16,17 

Although the disease progression ultimately leads to death, currently, no treatment is available 

for AD. Two neuropathological characteristics of AD brains are diseased neurons and 

plaques.18,19 Diseased neurons are made up of paired helical filaments of hyperphosphorylated 

tau (τ) protein. The aggregates of hyperphosphorylated τ are called tangles. Plaques are made up 

of Aβ peptide aggregated into fibrils.20,21 Since the discovery of neurofibrillary tangles and 

plaques, there were two main hypotheses regarding AD: Aβ hypothesis and τ hypothesis. The 

two hypotheses differ in opinion about the possible cause of neurodegeneration, and therefore, 

the two hypotheses have two different fundamental research approaches regarding AD and 

neurodegeneration. However, recently, the two hypotheses have started to merge and neuronal 

loss is considered to be a result of both Aβ and τ dysregulation.22  

 

1.3.1 Tau Hypothesis 

The tau hypothesis advocates that the cause of AD is dysregulation of cytosolic τ protein. 

Normal τ is bound to microtubules, and its identified functions include assembly and 

stabilization of microtubules and regulation of motor-driven axonal transport.22,23 However, to 

date, not all functions and roles of τ have been determined. Dysregulation of τ is hypothesized to 

be due to various mutations and interaction with Zn2+ ions that lead to its 
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hyperphosphorylation.23,24 Hyperphosphorylated τ disassembles from microtubules. Ultimately, 

it causes microtubules to lose their function. Additionally, hyperphosphorylated τ protein 

sequesters normal τ and causes it to aggregate. This process ultimately results in neurofibrillary 

tangles, which consist of hyperphosphorylated τ, different types of microtubule-associated 

proteins, and ubiquitin.22-24  

 

1.3.2 Amyloid Hypothesis  

The amyloid hypothesis advocates that the cause of dementia is miscleavage of the 

amyloid precursor protein (APP), which results in a flexible, sticky, and aggregation-prone 

peptide known as β-amyloid. The amyloid precursor protein is a transmembrane protein;25,26 its 

amyloidogenic and non-amyloidogenic pathways have similarities as well as striking differences.  

As illustrated in Figure 1.1, the similarity between the two pathways is that the 

transmembrane part of APP – C-terminus of Aβ – is cleaved by γ-secretase (between amino 

acids 39 and 42 of Aβ). The difference between the two pathways is that the soluble, 

extracellular part of APP in the amyloidogenic pathway is cleaved by β-secretase at position 672 

(right before Glu1 in Aβ). This cleavage results in Aβ1-42 and its homologs. In the 

non-amyloidogenic pathway, APP is cleaved by α-secretase at position 688 (between amino 

acids 16 and 17 of Aβ).27,28 The end product of the α-secretase cleavage is a peptide that is 16 

amino acids shorter than the peptide produced in the amyloidogenic pathway – Aβ17-42, as well 

known as p3. It is hypothesized that the amyloidogenic pathway becomes the predominant 

pathway of APP cleavage owing to various mutations.25,26  
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1.4 b-Amyloid Facts 

β-Amyloid is ~4 kDa in size, and it varies in length from 38 to 43 amino acids.29 The two 

most common Aβ isoforms are 40 amino acids (Aβ1-40) and 42 amino acids (Aβ1-42) in length. 

The isoform with 42 amino acids received significant attention due to its aggregation that 

proceeds more rapidly than other isoforms, as well as, owing to findings that showed that 

naturally occurring plaques in AD are predominantly composed of Aβ1-42.30-33  

Essentially, Aβ can be divided into two parts. The first part is an extracellular domain 

located in the vicinity of the N-terminus (Figure 1.1). The extracellular domain is hydrophilic 

and intrinsically disordered. In oligomeric form, specifically, the first 15 amino acids at the 

N-terminus of Aβ have a high propensity for disordered secondary structure.34-36 We know that 

disordered structure of Aβ is unstable; it disintegrates with time and disappears entirely from Aβ 

fibrils. The extracellular domain also has a central hydrophobic core spanning from Leu17 to 

Ala21.37,38  

The second part of Aβ is a transmembrane domain (Figure 1.1). It encompasses the rest 

of amino acids, and it is located in the vicinity of the C-terminus. The boundary between the 

extracellular and the transmembrane domain is not clearly established, but it is reported to be in 

the vicinity of amino acids 19 to 28.27,28,39,40 

The transmembrane domain is more straightforward than its counterpart. It is a 

hydrophobic region with a high propensity to form β-sheet structures.38,41,42 It is predominantly 

composed of hydrophobic amino acids, and it is known as the hydrophobic core of Aβ, with a 

highly hydrophobic region that spans from Gly32 to Ala42.29,38 It is believed that a second metal 

ion-binding site could be located in the vicinity of the C-terminus.43,44 Nevertheless, its 

involvement in metal ion binding is not known. Additionally, it is believed that the 
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transmembrane domain plays a significant role in cell oxidative damage due to Met35 and its 

ability to undergo redox cycling.45-47  

 

1.4.1 b-Sheet Characteristics of β-Amyloid Peptides  

The structure of β-Amyloid and amyloidogenic peptides was studied by electron 

microscopy (EM) and XRD.12,13 Based on the results, it is widely accepted that amyloidogenic 

strands organize into cross-β-sheet motifs (Figure 1.2).52 We also know that in fibrils, vertically 

stacked strands are in the β-strand conformation. These β-strands are in parallel arrangements 

with a β-strand spacing (interstrand spacing) of ~4.7 Å.12,48-52 In fibrils, strands run perpendicular 

to the fiber x-axis, whereas sheets continue their growth towards z-axis. The distance between 

sheets in the z-axis direction is 6-11 Å (Figure 1.2), whereas the total filament diameter is 60-

120 Å.51,52 

Predominant forces that hold Aβ fibril structures together are hydrogen bonding, 

hydrophobic interactions, and van der Waals interactions.53,54 Specifically, N-terminus is 

stabilized by hydrophobic and electrostatic interactions, whereas C-terminus is stabilized by 

hydrophobic and van der Waals interactions.55 

 

1.5 Probable Causes of β-Amyloid Toxicity 

In search of possible neurodegenerative treatments, probable causes of Aβ toxicity have 

been extensively investigated. Attention has shifted from Aβ fibrils to Aβ oligomers. Now, it is 

established that Aβ oligomers are pathogenic species with neuronal toxicity.14,15 On the basis of 

mice/rat studies, the size of Aβ oligomers was determined to be ~56 kDa.56-58 It is hypothesized 

that the size and toxicity of Aβ oligomers are inversely related.57 Furthermore, toxicity depends 
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on the structure and conformation of the oligomer, yet the structures and conformations of the 

toxic oligomers remain to be determined. 

In addition to the Aβ toxic-oligomer theory, other possible causes of Aβ toxicity that 

emerged are summarized in Figure 1.3. Amongst the most hypothesized reasons are interactions 

of Aβ with transition metal ions, involvement of Aβ in oxidative stress, dysregulation of Aβ due 

to its familial mutations, interaction and aggregation of Aβ with cholesterol molecules, and 

toxicity of Aβ due to its various post-translational modifications.29,40,59-63  

 

1.5.1 Toxicity of b-Amyloid Due to Interaction with Metal Ions 

Although numerous theories exist regarding Aβ toxicity, the following two theories are 

interconnected: the theory of Aβ toxicity due to Aβ interaction with metal ions and the theory of 

Aβ toxicity due to reactive oxygen species (ROS) production.64,65 During early research on Aβ 

interactions with metal ions, two points were established – first, Aβ, in the vicinity of the 

N-terminus, has a binding site for transition metal ions such as Cu2+, Zn2+, and Fe2+;66-69 second, 

transition metal ions speed up the aggregation process of Aβ, the result of which is Aβ fibrils.70 

In the case of metal ion interactions with Aβ, it is hypothesized that metal ions act as a seeding 

factor for Aβ aggregation.71 Hence, in this pathway, owing to the bound metal ions, Aβ 

misbalances the metal ion distributions in the brain.65,72 In addition, the other detrimental 

outcome of the interaction of Aβ with transition metal ions is believed to be ROS production, 

which will be covered below.  

Interestingly, rat Aβ (Aβrat), which has Gly1, Phe5, and Arg13 instead of Asp1, Arg5, and 

His13 found in human Aβ (Figure 1.3), possesses properties very different from those of human 

Aβ. Unlike human Aβ, Aβrat does not have a strong affinity to metal ions nor a high rate of 
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aggregation in the presence of metal ions, and it has lower rates of ROS production than human 

Aβ.70 After extensive research, it has been concluded that Aβrat is less toxic and thus, 

non-life-threatening.73-75 

Even though considerable information is available today about Aβ and Aβ properties, we 

do not yet have a definite conclusion on which residues are involved in metal ion binding and 

thus which residues contribute to the aggregation of Aβ. One of the multiple reasons for slow 

research progress is the mechanical and conformational flexibility of Aβ.34,36,76-78 Aβ is a 

polymorphic peptide, and various extrinsic factors influence its state of aggregation.79 The 

extrinsic factors include, but are not limited to, concentration of peptides, presence of external 

molecules, pH, net charge, temperature, pressure, and agitation.80,81 Another reason for slow 

research progress is the non-crystallinity of Aβ and thus, instrumental limitations, i.e., 

conventional techniques such as XRD and cryo-EM may not be used to investigate structural 

aspects of Aβ, especially when Aβ is in oligomeric form.  

 

1.5.2 Relationship between Metal Ions and β-Amyloid: In Vitro and in Vivo Results 

In 2014, Johnson et al. collected high-resolution positron emission tomography (PET) 

images of brains corresponding to people with and without AD.82 The goal of the study was to 

compare and to contrast clinically healthy brains with the brains of people diagnosed with AD. 

Based on the results of the study, healthy brains had little to no presence of Aβ and τ deposits, 

whereas the brains of people diagnosed with AD showed an abundance of both Aβ and τ.  

Bush et al., in 1998, performed a comprehensive in vitro study, which showed that Aβ 

aggregation depends on the presence, concentration, and type of metal ions in solution.83 

Subsequently, other groups confirmed their findings.84 The relationship between metal ion 
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concentration and Aβ aggregation has also been studied in vivo. However, until now, the in vivo 

results are more controversial than the in vitro results, as the former are highly dependent on the 

studied tissue and the technique used by researchers. The general trend observed is that during 

AD, the concentration of metal ions in neuropil and gray matter tissues increases. Specifically, 

the normal/healthy concentrations of Cu2+, Zn2+, and Fe2+ in neuropil and gray matter tissues are 

∼79 μM, ∼150 μM and ∼340 μM, respectively, whereas in diseased tissues, the concentrations 

of these ions increase to ∼400 µM, ∼1000 µM, and ∼1000 µM, respectively.85-88  

 

1.5.3 β-Amyloid Toxicity Due to Production of Reactive Oxygen Species  

Increased aggregation rate of Aβ upon its interaction with metal ions increases its 

toxicity. Toxicity of Aβ increases due to increased production of redox species. Redox species 

lead to oxidative stress, whereas oxidative stress is detrimental for healthy cell function.  

 

1.5.4 β-Amyloid and Its Interactions with Zinc, Copper, and Iron 

Zinc is an essential element with catalytic, structural, and regulatory functions in our 

bodies. Amongst its various roles are cellular signal transduction and modulation of synaptic 

neurotransmission. Zinc dysregulation is hypothesized to be involved in neurodegeneration. In 

case of AD and its interaction with Aβ, findings suggest that Zn2+ and Cu2+ have shared residues 

that participate in Aβ binding site.87,89 Involvement of Zn2+ in neurodegeneration is different than 

that of Cu2+ or Fe2+; it was not found to be directly involved in ROS production, but it is thought 

to be an agent that initiates amyloid deposition.90 
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The outcome of Aβ interaction with copper (Aβ-Cu) and iron (Aβ-Fe) is the production 

of ROS (Figure 1.4).62 Reactive oxygen species are known to be detrimental to healthy brain 

activity owing to DNA damage, mitochondrial damage, and protein oxidation.89,91  

In 1999, Bush et al. showed that during Aβ-Cu and Aβ-Fe interaction, both metal ions 

undergo cycling between oxidized (Cu2+, Fe3+) and reduced (Cu+, Fe2+) states.92 Upon metal ion 

reduction, molecular oxygen is reduced to H2O2. The latter is directly involved in generation of 

ROS (in the form of •OH and −OH; Figure 1.4).62,93-95 

It is hypothesized that in the process of redox cycling, Aβ could itself act as an electron 

donor, upon which it becomes Aβ radical (Aβ•). The Aβ radical is thought to extract protons 

from surroundings such as DNA, lipids, and proteins, which act as reducing agents. At the end of 

the redox process, Aβ• gets returned to its normal state, i.e., Aβ, whereas Cu+ and Fe2+ reduce to 

a more stable state—Cu2+ and Fe3+ (Figure 1.4).62 The process of metal ion redox cycling and Aβ 

radicalization could occur several times, which ultimately leads to brain tissue damage.62,96,97 

Residues believed to be involved in ROS production during Aβ-Cu interaction are Asp1, 

His6, His13, His14, Tyr10, Phe20, and Met35; and residues involved in Aβ-Fe interaction are 

Asp1, Glu3, His6, His13, and His14. Of the listed residues, Met35 in Aβ-Cu interaction received 

considerable attention. This residue is strongly correlated with the oxidative and neurotoxic 

properties of Aβ. Recent findings suggest that removal of this residue changed the properties of 

the peptide to non-oxidative and non-neurotoxic.98-100 

Apart from Aβ interaction with metal ions, the toxicity is also attributed to Aβ 

interference with synaptic receptors. The interaction is noted to be via direct binding of Aβ to 

receptors or indirect interaction such as membrane association that results in modification of 

various receptor properties.23  
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1.6 Structural Characterization of β-Amyloid: Techniques and Recent Advances  

This section discusses current advances and techniques used in the characterization of Aβ 

structure. Past research focused on overcoming the challenges of structural characterization of 

Aβ and amyloid-like peptides. Although research on Aβ has a long history, structural reports on 

amyloid fibrils started to emerge only recently. There is only slow progress towards structural 

characterization of amyloid-like peptides and Aβ because hydrophilic segments of these peptides 

have high mechanical, structural, and conformational flexibility.34-36,77,78 This flexibility 

ultimately leads to the non-crystallinity of amyloid-like peptides and Aβ, and thus, the inability 

of techniques such as XRD to be employed to investigate the structure of these peptides.  

In addition to non-crystallinity, the other challenge in determining structures of amyloids 

is the amyloidogenic property of having several different conformations. Before organizing into 

fibrils, amyloids nucleate and progress in their structure from monomers to dimers, trimers, and 

so on. The process creates versatile structural intermediates. The structures of those 

intermediates are affected by internal factors such as length and mutations, and external factors 

such as time of incubation, pH, and presence of metal ions.81,101 Owing to this structural 

flexibility, amyloids are classified as polymorphic peptides.76,79,102,103 

The structural dependence of amyloids on intrinsic properties and external factors make 

amyloids highly complicated systems. For example, based on conditions of sample preparation 

(external conditions), two different research groups would end up examining two different 

amyloid structures.  

Techniques employed by structural biochemists to determine amyloid structure are 

ssNMR, mass-per-length exchange measurements, magnetic angle spinning (MAS) NMR, and 
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cryo-EM.13,34,104,105 These techniques rely on scanning through the fibril structure of an amyloid, 

and their outcome is a visualization of the Aβ peptidyl arrangement in fibrils.  

 

1.6.1 Results of Amyloid-β Structural Research  

Reik-Loher, Griffin, and their co-workers examined the structural organization of Aβ1-42 

fibrils via ssNMR and mass-per-length exchange measurements, and MAS NMR, 

respectively.34,104 Their findings indicate that Aβ, in the region of residues 15-42, folds twice 

onto itself into an S-like shape (Figure 1.5a,b). Furthermore, residues 1-14 linearly extend and 

are adjacent to the C-terminus of another amyloid unit. The N-terminus is partially ordered and 

in a β-strand conformation. However, the study by Reik-Loher and co-workers is less clear than 

the study by Griffin and co-workers on the N-terminus arrangement of Aβ1-42; nevertheless, both 

studies agree that in a fiber, two amyloid units contact through Met35, Leu17, and Gln15 

residues. 

Another structural characterization study of Aβ1-40 involved single deletion at Glu22 

(known as the Osaka mutant). The study reported Aβ fibril organization different from that 

reported by Reik-Loher, Griffin, and their co-workers. In the study by Schütz et al., the Osaka 

mutant was reported to organize in the vicinity of N-terminus into an inverted L structure with a 

bend at Tyr10 (Figure 1.5b,c).105 Furthermore, the Osaka mutant was reported to fold onto itself 

into an S-like shape between amino acid residues 20 and 40.  

The most recently reported Aβ structure was by Gremer et al.13 Using cryo-EM, Gremer 

et al. examined the structure of fibrillar Aβ1-42 (Figure 1.5e). Once again, the reported structural 

organization of fibrillar Aβ1-42 was different from that in previous reports. The structure 
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visualized using cryo-EM showed that Aβ1-42 has an LS-shape topology while dimers from both 

sides of the reported structure make contact at Lys28 and Lys1.  

Based on the above studies, the consensus that the C-terminus of fibrillar Aβ is in an 

S-like shape, where the size of the S-shape, length of the N-terminus, and dimeric contacts 

depend strongly on the external conditions and intrinsic properties of Aβ such as sample 

preparation, Aβ length, and the mutations present.  

 

1.7 Scanning Tunneling Microscopy as the Ultimate Tool To Study Structures of 

Intrinsically Disordered Biomolecules 

Failure of conventional techniques to determine the structure of disordered biomolecules 

opened up doors to search for nonconventional techniques that would be able to do so. Scanning 

tunneling microscopy (STM) is a characterization method used by researchers to study atoms, 

molecules, and biomolecules.106-112 By using STM, we can learn about atoms – their structure 

and surface arrangement;107 inorganic and organic molecules – their structures, surface 

arrangements, and surface defects;111 and small and large biomolecules – their structures and 

co-assembly with host molecules of various origins (guest/host interaction).106,108-110,112 

 

1.7.1 Working Principles of Scanning Tunneling Microscopy  

Scanning tunneling microscopy is a surface characterization technique. The working 

principle behind STM is mapping and processing the changes in tunneling current (created 

between a sample and an atomically sharp tip) into an image. One of the main requirements of 

STM is a conducting substrate.113 Common conducting substrates include, but are not limited to, 

gold and highly oriented pyrolytic graphite (HOPG).114 After choosing a substrate, a monolayer 
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of molecules of interest is deposited on top of the substrate. The process is followed by scanning 

the substrate with an ultra-sharp (atomically sharp) tip.  

During scanning, the tip is brought into close proximity with the surface. The distance 

between the tip and the sample is usually 5-10 Å.115 Subsequently, a voltage bias is applied. This 

bias voltage results in a tunneling current between the sample and the tip that depends strongly 

on the tip-sample separation. Changes in the tunneling current, which occur owing to sample 

topography, height, and/or sample/molecular surface arrangement are mapped and processed by 

a computer. The result is STM image with a lateral resolution of <1 Å and a depth of resolution 

< 0.1 Å.115,116  

In addition to high image resolution, the versatility of the technique is another advantage 

of STM, i.e., depending on the goals of the researchers, it can be operated under different 

conditions such as ultrahigh vacuum, in ambient/air, under liquids/chemicals/water, and in 

gases.117-120 Another advantage is that the three-dimensional profile of the scanned surface 

allows examination of sample characteristics such as sample surface roughness, sample/surface 

defects, and size/structure of scanned molecules on the surface.121 However, one of the 

disadvantages of STM is its speed. Scanning tunneling microscopy takes a long time to acquire a 

high-resolution image.122-124 Finally, disadvantages regarding sample preparation and scanning 

include requirements of a clean sample/substrate surface (preferably a monolayer of deposited 

molecules of interest), an ultra-sharp scanning tip (atomically sharp/single-atom tip), and good 

vibrational control during operation. 
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1.7.2 Scanning Tunneling Microscopy and Biomolecules with Metal Centers  

As mentioned above, the disadvantages of STM do not include biomolecular 

crystallizability, flexibility, and/or hydrophilicity. Thus, the technique is suitable for studying 

biomolecular structures that cannot be otherwise accessed by conventional techniques such as 

XRD.  

In addition to studying structures of non-crystalline biomolecules with STM, it is possible 

to utilize the technique to study biomolecules with metal ion centers (metal ion-binding sites). In 

2005, Chi et al. demonstrated an extensive potential of STM by studying azurin – a 

copper-binding electron transfer protein.125 In the study, they showed that it is possible to not 

only study large biological molecules via STM but also to use the technique in order to identify 

proteins with a metal center.  

Coordination of Aβ1-42 with transition metal ions has long been debated in the scientific 

community.126,127 Owing to the flexibility and non-crystallinity of Aβ, conventional techniques 

cannot access a metal ion-binding site. In this dissertation, STM is a primary characterization 

technique used to elucidate Aβ structure, its interactions with metal ions (specifically Cu2+ and 

Zn2+), its metal ion-binding sites, and its residues participating in metal ion binding. 

 

1.8 Dissertation Overview 

This dissertation is organized as follows: Chapter 1 discusses the importance and current 

challenges in studying non-crystalline biomolecules, theories behind Aβ toxicity and current 

state of the art and advances in Aβ research, and finally, an alternative and non-conventional 

technique – scanning tunneling microscopy – and why we used it to access the structures and 

binding sites of Aβ. Chapter 2 presents investigations into and related results for copper 



 17 

ion-binding sites in Aβ. Chapter 3 compares and contrasts the effects of copper and zinc ions on 

Aβ structure and its β-sheet self-assembly. Chapter 4 details structural changes in Aβ occurring 

in the vicinity of C-terminus upon its interaction with copper ions. Future prospects of this work 

are summarized in Chapter 5. 

Chapter 2 has been reformatted from the following manuscript: 
 
Yugay, D.; Goronzy, D.P.; Kawakami, L.M.; Claridge, S.A.; Song, T.B.; Yan, Z.; Xie Y.H.; 
Gilles, J.; Yang, Y.; Weiss, P.S. Copper Ion Binding Site in β-Amyloid Peptide. Nano Lett. 2016, 
16, 6282–6289 
 
Chapter 3 has been reformatted from a manuscript in preparation: 
 
Yugay, D.; Goronzy, D.P.; Gilles, J.; Rouvier, T.; Weiss, P.S. Metal-Ion-Induced Structural 
Rearrangements of β-Amyloid Peptides. In preparation 2019. 
 
Chapter 4 has been reformatted from a manuscript in preparation: 
 
Yugay, D.; Xu, X.; Yang, Q.; Weiss, P.S. Copper Ion Interactions with the C-terminus of the 
β-Amyloid Peptide. In preparation 2019.  
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Figure 1.1. Amyloidogenic and non-amyloidogenic pathways of amyloid precursor protein 

(APP). In the amyloidogenic pathway (top of the diagram) APP is cleaved by β-secretase at 

position 672 (right before Glu1 in Aβ) and by γ-secretase (between amino acids 39 and 43 of 

Aβ). γ-Secretase is non-specific and thus, cleaves Aβ anywhere between amino acids 39 and 43. 

Asterisks (❋) next to γ-secretase indicate Aβ segments which are not found in abundant quantity 

in Aβ plaques and thus, those segments are considered to be less toxic than the cut at the position 

42. In the non-amyloidogenic pathway (bottom of the diagram), APP is cleaved by α-secretase at 

position 688 (between amino acids 16 and 17 of Aβ) and similarly to amyloidogenic pathways 

later it is cleaved by γ-secretase (between amino acids 39 and 43 of Aβ). The end product of the 

α-secretase cleavage is a peptide that is 16 amino acids shorter than the peptide produced in the 

amyloidogenic pathway – Aβ17-42, as well known as P3. 
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Figure 1.2. (a) Transmission electron micrograph image of amyloid fibrils. (b) The schematic 

diagram of the amyloidogenic β-strands which are in parallel arrangement with the β-strand 

spacing (interstrand spacing) of ~4.7 Å. In fibrils, strands run perpendicular to the fiber x-axis, 

whereas sheets continue their growth towards z-axis. The distance between sheets in the z-axis 

direction is 6-11 Å, whereas the total filament diameter is 60-120 Å. Adapted from ref. 52. 

Copyright 2010, Structure.  
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Figure 1.3. β-Amyloid sequence illustrating possible amino acid residues that could be involved 

in Aβ toxicity. Amongst the most hypothesized reasons of Aβ toxicity that have emerged are 

interactions of Aβ with transition metal ions, involvement of Aβ in oxidative stress, 

dysregulation of Aβ due to its familial mutations, interaction and aggregation of Aβ with 

cholesterol molecules, and toxicity of Aβ due to its various post-translational modifications. 
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Figure 1.4. Diagram illustrating Aβ interaction with copper (Aβ-Cu) and iron (Aβ-Fe) and 

production of ROS. It is hypothesized that in the process of redox cycling, Aβ acts as an electron 

donor, upon which it becomes Aβ radical (Aβ•). The Aβ radical is thought to extract protons 

from surroundings such as DNA, lipids, and proteins, which act as reducing agents. As a 

consequence of proton extraction, hydroxy-2-nonenal (HNE) and carbonyls that are detrimental 

for healthy brain activity are generated. Afterwards, Aβ• gets returned to its normal state, i.e., 

Aβ. Furthermore, during Aβ-Cu and Aβ-Fe interaction, both metal ions undergo cycling between 

oxidized (Cu2+, Fe3+) and reduced (Cu+, Fe2+) states. Upon metal ion reduction, molecular 

oxygen (O2) is reduced to peroxide (H2O2). The latter is directly involved in generation of ROS 

(in the form of •OH and −OH). Reactive oxygen species are detrimental for healthy brain activity 

due to DNA and mitochondrial damage, lipid peroxidation, and protein aggregation. Adapted 

from ref. 62. Copyright 2007, Biochimica et Biophysica Acta. 
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Figure 1.5. Various discovered Aβ arrangements in fibrils. (a,b) Structural organization of Aβ1-42 

fibrils via ssNMR examined by Griffin and co-workers.104 Findings indicate that Aβ, in the 

region of residues 15-42, folds twice onto itself into an S-like shape. Furthermore, residues 1-14 

linearly extend and are adjacent to the C-terminus of another amyloid unit (not shown). (b) In a 

fiber two amyloid units contact through Met35 (M35) (residue in yellow color), Leu17 (L17), 

and Gln15 (Q15) (residues in the dashed ovals). (c,d) Structural characterization of Aβ1-40 

involving single deletion at Glu22 (known as the Osaka mutant). In this study Schütz et al., 
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reported that the Osaka mutant organizes in the vicinity of N-terminus into an inverted L 

structure with a bend at Tyr10 (pink circle). Furthermore, the Osaka mutant was reported to fold 

onto itself into an S-like shape between amino acid residues 20 and 40 (pink shaded 

rectangles).105 (e) Gremer et al. visualized structure of Aβ1-42 using cryo-EM.13 In the study he 

showed that Aβ1-42 has an LS-shape topology (lower dimer) while dimers from both sides of the 

reported structure make contact at Lys28 (upper dimer) and Asp1 (lower dimer). Adapted from 

refs: 13. Copyright 2017, Science; 104. Copyright 2016, Journal of the American Chemical 

Society; 105. Angewandte Chemie International Edition.   



 24 

1.9 References  

1. Eckert, M. Max Von Laue and the Discovery of X-Ray Diffraction in 1912. Ann Phys-
Berlin 2012, 524, A83–A85. 
 
2. Dutrow, B. L.; Clark, C. M. X-Ray Powder Diffraction (XRD). 
https://serc.carleton.edu/research_education/geochemsheets/techniques/XRD.html (July 26, 
2019).  
 
3. Creative Biostructure. Comparison of Crystallography, NMR and EM. 
https://www.creative-biostructure.com/comparison-of-crystallography-nmr-and-em_6.htm (July 
26, 2019).  
 
4. Wang, H. W.; Wang, J. W. How Cryo-Electron Microscopy and X-Ray Crystallography 
Complement Each Other. Protein Sci 2017, 26, 32–39. 
 
5. Babu, M. M. The Contribution of Intrinsically Disordered Regions to Protein Function, 
Cellular Complexity, and Human Disease. Biochem Soc T 2016, 44, 1185–1200. 
 
6. van der Lee, R.; Buljan, M.; Lang, B.; Weatheritt, R. J.; Daughdrill, G. W.; Dunker, A. 
K.; Fuxreiter, M.; Gough, J.; Gsponer, J.; Jones, D. T.; Kim, P. M.; Kriwacki, R. W.; Oldfield, C. 
J.; Pappu, R. V.; Tompa, P.; Uversky, V. N.; Wright, P. E.; Babu, M. M. Classification of 
Intrinsically Disordered Regions and Proteins. Chem Rev 2014, 114, 6589–6631. 
 
7. Wright, P. E.; Dyson, H. J. Intrinsically Unstructured Proteins: Re-Assessing the Protein 
Structure-Function Paradigm. J Mol Biol 1999, 293, 321–331. 
 
8. PDB-101. Methods for Determining Atomic Structures. 
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/methods-for-determining-
structure (July 26, 2019).  
 
9. Deller, M. C.; Kong, L.; Rupp, B. Protein Stability: A Crystallographer's Perspective. 
Acta Crystallogr F Struct Biol Commun 2016, 72, 72–95. 
 
10. Sowadski, J. M. Introduction: Crystallization of Membrane Proteins – in Need of a New 
Focus? J Bioenerg Biomembr 1996, 28, 3–5. 
 
11. Uversky, V. N.; Oldfield, C. J.; Dunker, A. K. Intrinsically Disordered Proteins in Human 
Diseases: Introducing the D2 Concept. Annu Rev Biophys 2008, 37, 215–246. 
 
12. Nelson, R.; Sawaya, M. R.; Balbirnie, M.; Madsen, A. O.; Riekel, C.; Grothe, R.; 
Eisenberg, D. Structure of the Cross-β Spine of Amyloid-Like Fibrils. Nature 2005, 435, 773–
778. 
 



 25 

13. Gremer, L.; Scholzel, D.; Schenk, C.; Reinartz, E.; Labahn, J.; Ravelli, R. B. G.; Tusche, 
M.; Lopez-Iglesias, C.; Hoyer, W.; Heise, H.; Willbold, D.; Schroder, G. F. Fibril Structure of 
Amyloid-β(1-42) by Cryo-Electron Microscopy. Science 2017, 358, 116–119. 
 
14. Lublin, A. L.; Gandy, S. Amyloid-β Oligomers: Possible Roles as Key Neurotoxins in 
Alzheimer's Disease. Mt Sinai J Med 2010, 77, 43–49. 
 
15. Rauk, A. Why Is the Amyloid Beta Peptide of Alzheimer's Disease Neurotoxic? Dalton T 
2008, 1273–1282. 
 
16. Jahn, H. Memory Loss in Alzheimer's Disease. Dialogues Clin Neurosci 2013, 15, 445–
454. 
 
17. Kumar, A.; Tsao, J. W., Alzheimer Disease. In Statpearls, Treasure Island (FL), 2019. 
 
18. Perl, D. P. Neuropathology of Alzheimer's Disease. Mt Sinai J Med 2010, 77, 32–42. 
 
19. Serrano-Pozo, A.; Frosch, M. P.; Masliah, E.; Hyman, B. T. Neuropathological 
Alterations in Alzheimer Disease. CSH Perspect Med 2011, 1. 
 
20. Bloom, G. S. Amyloid-β and Tau: The Trigger and Bullet in Alzheimer Disease 
Pathogenesis. JAMA Neurol 2014, 71, 505–508. 
 
21. Goedert, M.; Spillantini, M. G. A Century of Alzheimer's Disease. Science 2006, 314, 
777–781. 
 
22. Ittner, L. M.; Gotz, J. Amyloid‑β and Tau — a Toxic Pas de Deux in Alzheimer’s 
Disease. Nat Rev Neurosci 2011, 12, 65–72. 
 
23. Ghosh, R.; Alajbegovic, A.; Gomes, A. V. NSAIDs and Cardiovascular Diseases: Role of 
Reactive Oxygen Species. Oxid Med Cell Longev 2015, 2015, 536962. 
 
24. Mudher, A.; Lovestone, S. Alzheimer's Disease-Do Tauists and Baptists Finally Shake 
Hands? Trends Neurosci 2002, 25, 22–26. 
 
25. MacLeod, R.; Hillert, E. K.; Cameron, R. T.; Baillie, G. S. The Role and Therapeutic 
Targeting of α-, β- and γ-Secretase in Alzheimer's Disease. Future Sci OA 2015, 1, FSO11. 
 
26. Muller, U. C.; Deller, T.; Korte, M. Not Just Amyloid: Physiological Functions of the 
Amyloid Precursor Protein Family. Nat Rev Neurosci 2017, 18, 281–298. 
 
27. Hayne, D. J.; Lim, S.; Donnelly, P. S. Metal Complexes Designed to Bind to Amyloid-β 
for the Diagnosis and Treatment of Alzheimer's Disease. Chem Soc Rev 2014, 43, 6701–6715. 
 



 26 

28. Suh, Y. H.; Checler, F. Amyloid Precursor Protein, Presenilins, and α-Synuclein: 
Molecular Pathogenesis and Pharmacological Applications in Alzheimer's Disease. Pharmacol 
Rev 2002, 54, 469–525. 
 
29. Enache, T. A.; Chiorcea-Paquim, A. M.; Oliveira-Brett, A. M. Amyloid-β Peptides 
Time-Dependent Structural Modifications: AFM and Voltammetric Characterization. Anal Chim 
Acta 2016, 926, 36–47. 
 
30. Attems, J.; Lintner, F.; Jellinger, K. A. Amyloid β Peptide 1–42 Highly Correlates with 
Capillary Cerebral Amyloid Angiopathy and Alzheimer Disease Pathology. Acta Neuropathol 
2004, 107, 479–480. 
 
31. Finder, V. H.; Vodopivec, I.; Nitsch, R. M.; Glockshuber, R. The Recombinant 
Amyloid-β Peptide Aβ1–42 Aggregates Faster and Is More Neurotoxic than Synthetic Aβ1–42.  
J Mol Biol 2010, 396, 9–18. 
 
32. Roher, A. E.; Lowenson, J. D.; Clarke, S.; Woods, A. S.; Cotter, R. J.; Gowing, E.; Ball, 
M. J. β-Amyloid-(1-42) Is a Major Component of Cerebrovascular Amyloid Deposits: 
Implications for the Pathology of Alzheimer-Disease. P Natl Acad Sci USA 1993, 90, 10836–
10840. 
 
33. Tiiman, A.; Krishtal, J.; Palumaa, P.; Tougu, V. In Vitro Fibrillization of Alzheimer's 
Amyloid-β Peptide (1-42). AIP Adv 2015, 5. 
 
34. Luhrs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Doeli, H.; Schubert, D.; 
Riek, R. 3D Structure of Alzheimer's Amyloid-β(1-42) Fibrils. P Natl Acad Sci USA 2005, 102, 
17342–17347. 
 
35. Miller, Y.; Ma, B. Y.; Nussinov, R. Zinc Ions Promote Alzheimer Aβ Aggregation via 
Population Shift of Polymorphic States. P Natl Acad Sci USA 2010, 107, 9490–9495. 
 
36. Yu, X.; Zheng, J. Polymorphic Structures of Alzheimer's β-Amyloid Globulomers. PLoS 
ONE 2011, 6. 
 
37. Boopathi, S.; Kolandaivel, P. Role of Zinc and Copper Metal Ions in Amyloid β-Peptides 
Aβ1-40 and Aβ1-42 Aggregation. RSC Adv 2014, 4, 38951–38965. 
 
38. Serpell, L. C. Alzheimer's Amyloid Fibrils: Structure and Assembly. Biochim Biophys 
Acta 2000, 1502, 16–30. 
 
39. Funamoto, S.; Morishima-Kawashima, M.; Tanimura, Y.; Hirotani, N.; Saido, T. C.; 
Ihara, Y. Truncated Carboxyl-Terminal Fragments of β-Amyloid Precursor Protein Are 
Processed to Amyloid β-Proteins 40 and 42. Biochemistry 2004, 43, 13532–13540. 
 
40. Lovestone, S.; McLoughlin, D. M. Protein Aggregates and Dementia: Is There a 
Common Toxicity? J Neurol Neurosur Psychiatry 2002, 72, 152–161. 



 27 

41. Cheon, M.; Hall, C. K.; Chang, I. Structural Conversion of Aβ17-42 Peptides from 
Disordered Oligomers to U-Shape Protofilaments via Multiple Kinetic Pathways. PLoS Comput 
Biol 2015, 11, e1004258. 
 
42. Streltsov, V. A.; Varghese, J. N.; Masters, C. L.; Nuttall, S. D. Crystal Structure of the 
Amyloid-β P3 Fragment Provides a Model for Oligomer Formation in Alzheimer's Disease.  
J Neurosci 2011, 31, 1419–1426. 
 
43. Danielsson, J.; Pierattelli, R.; Banci, L.; Graslund, A. High-Resolution NMR Studies of 
the Zinc-Binding Site of the Alzheimer's Amyloid β-Peptide. FEBS Journal 2007, 274, 46–59. 
 
44. Jun, S.; Gillespie, J. R.; Shin, B. K.; Saxena, S. The Second Cu(II)-Binding Site in a 
Proton-Rich Environment Interferes with the Aggregation of Amylold-β(1-40) into Amyloid 
Fibrils. Biochemistry 2009, 48, 10724–10732. 
 
45. Butterfield, D. A. Amyloid β-Peptide (1-42)-Induced Oxidative Stress and Neurotoxicity: 
Implications for Neurodegeneration in Alzheimer's Disease Brain. A Review. Free Radical Res 
2002, 36, 1307–1313. 
 
46. Hou, L. M.; Kang, I.; Marchant, R. E.; Zagorski, M. G. Methionine 35 Oxidation 
Reduces Fibril Assembly of the Amyloid Aβ-(1-42) Peptide of Alzheimer's Disease. J Biol Chem 
2002, 277, 40173–40176. 
 
47. Parthasarathy, S.; Yoo, B.; McElheny, D.; Tay, W.; Ishii, Y. Capturing a Reactive State 
of Amyloid Aggregates. J Biol Chem 2014, 289, 9998–10010. 
 
48. Rambaran, R. N.; Serpell, L. C. Amyloid Fibrils: Abnormal Protein Assembly. Prion 
2008, 2, 112–117. 
 
49. Riek, R. The Three-Dimensional Structures of Amyloids. Cold Spring Harb Perspect 
Biol 2017, 9, a023572. 
 
50. Stroud, J. C.; Liu, C.; Teng, P. K.; Eisenberg, D. Toxic Fibrillar Oligomers of Amyloid-β 
Have Cross-β Structure. P Natl Acad Sci 2012, 109, 7717–7722. 
 
51. Al-Halifa, S.; Babych, M.; Zottig, X.; Archambault, D.; Bourgault, S. Amyloid 
Self-Assembling Peptides: Potential Applications in Nanovaccine Engineering and Biosensing. 
Peptide Sci 2019, 111. 
 
52. Greenwald, J.; Riek, R. Biology of Amyloid: Structure, Function, and Regulation. 
Structure 2010, 18, 1244–1260. 
 
53. Cheng, P. N.; Pham, J. D.; Nowick, J. S. The Supramolecular Chemistry of β-Sheets. 
J Am Chem Soc 2013, 135, 5477–5492. 
 



 28 

54. Tsemekhman, K.; Goldschmidt, L.; Eisenberg, D.; Baker, D. Cooperative Hydrogen 
Bonding in Amyloid Formation. Protein Sci 2007, 16, 761–764. 
 
55. Zheng, J.; Jang, H.; Ma, B.; Tsai, C. J.; Nussinov, R. Modeling the Alzheimer Aβ17-42 
Fibril Architecture: Tight Intermolecular Sheet-Sheet Association and Intramolecular Hydrated 
Cavities. Biophys J 2007, 93, 3046–3057. 
 
56. Lee, S. J.; Nam, E.; Lee, H. J.; Savelieff, M. G.; Lim, M. H. Towards an Understanding 
of Amyloid-β Oligomers: Characterization, Toxicity Mechanisms, and Inhibitors. Chem Soc Rev 
2017, 46, 310–323. 
 
57. Sengupta, U.; Nilson, A. N.; Kayed, R. The Role of Amyloid-β Oligomers in Toxicity, 
Propagation, and Immunotherapy. EBioMedicine 2016, 6, 42–49. 
 
58. Viola, K. L.; Klein, W. L. Amyloid β Oligomers in Alzheimer's Disease Pathogenesis, 
Treatment, and Diagnosis. Acta Neuropathol 2015, 129, 183–206. 
 
59. Arioz, C.; Wittung-Stafshede, P. Folding of Copper Proteins: Role of the Metal? Q Rev 
Biophys 2018, 51. 
 
60. Kumar-Singh, S. Hereditary and Sporadic Forms of Aβ-Cerebrovascular Amyloidosis 
and Relevant Transgenic Mouse Models. Int J Mol Sci 2009, 10, 1872–1895. 
 
61. Kummer, M. P.; Heneka, M. T. Truncated and Modified Amyloid-β Species. Alzheimers 
Res Ther 2014, 6, 28. 
 
62. Smith, D. G.; Cappai, R.; Barnham, K. J. The Redox Chemistry of the Alzheimer's 
Disease Amyloid β Peptide. Biochim Biophys Acta 2007, 1768, 1976–1990. 
 
63. Nelson, T. J. Alzheimer's Disease and Cholesterol. 
https://www.randombio.com/alzheimers.html (July 27, 2019).  
 
64. Pedersen, J. T.; Chen, S. W.; Borg, C. B.; Ness, S.; Bahl, J. M.; Heegaard, N. H.; 
Dobson, C. M.; Hemmingsen, L.; Cremades, N.; Teilum, K. Amyloid-β and Alpha α-Synuclein 
Decrease the Level of Metal-Catalyzed Reactive Oxygen Species by Radical Scavenging and 
Redox Silencing. J Am Chem Soc 2016, 138, 3966–3969. 
 
65. Plascencia-Villa, G.; Ponce, A.; Collingwood, J. F.; Arellano-Jimenez, M. J.; Zhu, X. W.; 
Rogers, J. T.; Betancourt, I.; Jose-Yacaman, M.; Perry, G. High-Resolution Analytical Imaging 
and Electron Holography of Magnetite Particles in Amyloid Cores of Alzheimer's Disease. 
Sci Rep-UK 2016, 6. 
 
66. Boopathi, S.; Kolandaivel, P. Fe2+ Binding on Amyloid β-Peptide Promotes Aggregation. 
Proteins 2016, 84, 1257–1274. 
 



 29 

67. Bousejra-ElGarah, F.; Bijani, C.; Coppel, Y.; Faller, P.; Hureau, C. Iron(II) Binding to 
Amyloid-β, the Alzheimer's Peptide. Inorg Chem 2011, 50, 9024–9030. 
 
68. Ma, Q. F.; Hu, J.; Wu, W. H.; Liu, H. D.; Du, J. T.; Fu, Y.; Wu, Y. W.; Lei, P.; Zhao, Y. 
F.; Li, Y. M. Characterization of Copper Binding to the Peptide Amyloid-β(1-16) Associated 
with Alzheimer's Disease. Biopolymers 2006, 83, 20–31. 
 
69. Zirah, S.; Kozin, S. A.; Mazur, A. K.; Blond, A.; Cheminant, M.; Segalas-Milazzo, I.; 
Debey, P.; Rebuffat, S. Structural Changes of Region 1-16 of the Alzheimer Disease Amyloid 
β-Peptide upon Zinc Binding and in Vitro Aging. J Biol Chem 2006, 281, 2151–2161. 
 
70. Atwood, C. S.; Moir, R. D.; Huang, X. D.; Scarpa, R. C.; Bacarra, N. M. E.; Romano, D. 
M.; Hartshorn, M. K.; Tanzi, R. E.; Bush, A. I. Dramatic Aggregation of Alzheimer Aβ by 
Cu(II) Is Induced by Conditions Representing Physiological Acidosis. J Biol Chem 1998, 273, 
12817–12826. 
 
71. Derreumaux, P. Alzheimer's Disease Insights into Low Molecular Weight and Cytotoxic 
Aggregates from in Vitro and Computer Experiments Molecular Basis of Amyloid-β Protein 
Aggregation and Fibril Formation Preface. Molec Med Medicin 2013, 7, XVII–XIX. 
 
72. Gamez, P.; Caballero, A. B. Copper in Alzheimer's Disease: Implications in Amyloid 
Aggregation and Neurotoxicity. AIP Adv 2015, 5. 
 
73. Shivers, B. D.; Hilbich, C.; Multhaup, G.; Salbaum, M.; Beyreuther, K.; Seeburg, P. H. 
Alzheimer's Disease Amyloidogenic Glycoprotein: Expression Pattern in Rat Brain Suggests a 
Role in Cell Contact. EMBO J 1988, 7, 1365–1370. 
 
74. Ueno, H.; Yamaguchi, T.; Fukunaga, S.; Okada, Y.; Yano, Y.; Hoshino, M.; Matsuzaki, 
K. Comparison between the Aggregation of Human and Rodent Amyloid β-Proteins in GM1 
Ganglioside Clusters. Biochemistry 2014, 53, 7523–7530. 
 
75. Syme, C. D.; Nadal, R. C.; Rigby, S. E. J.; Viles, J. H. Copper Binding to the Amyloid-β 
(Aβ) Peptide Associated with Alzheimer's Disease. Folding, Coordination Geometry, pH 
Dependence, Stoichiometry, and Affinity of Aβ-(1-28): Insights from a Range of 
Complementary Spectroscopic Techniques. J Biol Chem 2004, 279, 18169–18177. 
 
76. Miller, Y.; Ma, B.; Nussinov, R. Polymorphism in Alzheimer Aβ Amyloid Organization 
Reflects Conformational Selection in a Rugged Energy Landscape. Chem Rev 2010, 110, 4820–
4838. 
 
77. Rasmussen, J.; Mahler, J.; Beschorner, N.; Kaeser, S. A.; Hasler, L. M.; Baumann, F.; 
Nystrom, S.; Portelius, E.; Blennow, K.; Lashley, T.; Fox, N. C.; Sepulveda-Falla, D.; Glatzel, 
M.; Oblak, A. L.; Ghetti, B.; Nilsson, K. P. R.; Hammarstrom, P.; Staufenbiel, M.; Walker, L. 
C.; Jucker, M. Amyloid Polymorphisms Constitute Distinct Clouds of Conformational Variants 
in Different Etiological Subtypes of Alzheimer's Disease. P Natl Acad Sci USA 2017, 114, 
13018–13023. 



 30 

78. Sachse, C.; Grigorieff, N.; Fandrich, M. Nanoscale Flexibility Parameters of Alzheimer 
Amyloid Fibrils Determined by Electron Cryo-Microscopy. Angew Chem Int Edit 2010, 49, 
1321–1323. 
 
79. Berhanu, W. M.; Alred, E. J.; Bernhardt, N. A.; Hansmann, U. H. E. All-Atom 
Simulation of Amyloid Aggregates. Phys. Procedia 2015, 68, 61–68. 
 
80. Meisl, G.; Yang, X. T.; Frohm, B.; Knowles, T. P. J.; Linse, S. Quantitative Analysis of 
Intrinsic and Extrinsic Factors in the Aggregation Mechanism of Alzheimer-Associated 
Aβ-Peptide. Sci Rep-UK 2016, 6. 
 
81. Zapadka, K. L.; Becher, F. J.; dos Santos, A. L. G.; Jackson, S. E. Factors Affecting the 
Physical Stability (Aggregation) of Peptide Therapeutics. Interface Focus 2017, 7, 20170030. 
 
82. Sperling, R.; Mormino, E.; Johnson, K. The Evolution of Preclinical Alzheimer's 
Disease: Implications for Prevention Trials. Neuron 2014, 84, 608–622. 
 
83. Atwood, C. S.; Moir, R. D.; Huang, X. D.; Scarpa, R. C.; Bacarra, N. M. E.; Romano, D. 
M.; Hartshorn, M. K.; Tanzi, R. E.; Bush, A. I. Dramatic Aggregation of Alzheimer Aβ by 
Cu(II) Is Induced by Conditions Representing Physiological Acidosis. J Biol Chem 1998, 273, 
12817–12826. 
 
84. Klug, G. M. J. A.; Losic, D.; Subasinghe, S. S.; Aguilar, M. I.; Martin, L. L.; Small, D. 
H. β-Amyloid Protein Oligomers Induced by Metal Ions and Acid pH Are Distinct from Those 
Generated by Slow Spontaneous Ageing at Neutral pH. Eur J Biochem 2003, 270, 4282–4293. 
 
85. Gerber, H.; Wu, F.; Dimitrov, M.; Garcia Osuna, G. M.; Fraering, P. C. Zinc and Copper 
Differentially Modulate Amyloid Precursor Protein Processing by γ-Secretase and Amyloid-β 
Peptide Production. J Biol Chem 2017, 292, 3751–3767. 
 
86. Lovell, M. A.; Robertson, J. D.; Teesdale, W. J.; Campbell, J. L.; Markesbery, W. R. 
Copper, Iron and Zinc in Alzheimer's Disease Senile Plaques. J Neurol Sci 1998, 158, 47–52. 
 
87. Rana, M.; Sharma, A. K. Cu and Zn Interactions with Aβ Peptides: Consequence of 
Coordination on Aggregation and Formation of Neurotoxic Soluble Aβ Oligomers. Metallomics 
2019, 11, 64–84. 
 
88. Roberts, B. R.; Ryan, T. M.; Bush, A. I.; Masters, C. L.; Duce, J. A. The Role of 
Metallobiology and Amyloid-β Peptides in Alzheimer's Disease. J Neurochem 2012, 120 
Suppl 1, 149–166. 
 
89. Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. 
Oxidative Stress and the Amyloid β Peptide in Alzheimer's Disease. Redox Biol 2018, 14, 450–
464. 
 



 31 

90. Yuan, Y.; Niu, F. L.; Liu, Y.; Lu, N. Zinc and Its Effects on Oxidative Stress in 
Alzheimer's Disease. Neurol Sci 2014, 35, 923–928. 
 
91. Huang, W. J.; Zhang, X.; Chen, W. W. Role of Oxidative Stress in Alzheimer's Disease. 
Biomed Rep 2016, 4, 519–522. 
 
92. Huang, X. D.; Atwood, C. S.; Hartshorn, M. A.; Multhaup, G.; Goldstein, L. E.; Scarpa, 
R. C.; Cuajungco, M. P.; Gray, D. N.; Lim, J.; Moir, R. D.; Tanzi, R. E.; Bush, A. I. The Aβ 
Peptide of Alzheimer's Disease Directly Produces Hydrogen Peroxide through Metal Ion 
Reduction. Biochemistry 1999, 38, 7609–7616. 
 
93. Das, T. K.; Wati, M. R.; Fatima-Shad, K. Oxidative Stress Gated by Fenton and Haber 
Weiss Reactions and Its Association with Alzheimer's Disease. Arch Neurosci 2015, 2. 
 
94. Tabner, B. J.; Mayes, J.; Allsop, D. Hypothesis: Soluble Aβ Oligomers in Association 
with Redox-Active Metal Ions Are the Optimal Generators of Reactive Oxygen Species in 
Alzheimer's Disease. Int J Alzheimers Dis 2010, 2011, 546380. 
 
95. Uranga, R. M.; Salvador, G. A. Unraveling the Burden of Iron in Neurodegeneration: 
Intersections with Amyloid β Peptide Pathology. Oxid Med Cell Longev 2018, 2850341. 
 
96. Curtain, C. C.; Ali, F.; Volitakis, I.; Cherny, R. A.; Norton, R. S.; Beyreuther, K.; 
Barrow, C. J.; Masters, C. L.; Bush, A. I.; Barnham, K. J. Alzheimer's Disease Amyloid-β Binds 
Copper and Zinc to Generate an Allosterically Ordered Membrane-Penetrating Structure 
Containing Superoxide Dismutase-Like Subunits. J Biol Chem 2001, 276, 20466–20473. 
 
97. Farooqui, A. A. Neurochemical Aspects of Alzheimer's Disease: Risk Factors, 
Pathogenesis, Biomarkers, and Potential Treatment Strategies. Neurochemical Aspects of 
Alzheimer's Disease: Risk Factors, Pathogenesis, Biomarkers, and Potential Treatment 
Strategies 2017, 1–394. 
 
98. Butterfield, D. A.; Sultana, R. Methionine-35 of Aβ(1-42): Importance for Oxidative 
Stress in Alzheimer Disease. J Amino Acids 2011, 2011, 198430. 
 
99. Chauhan, V.; Chauhan, A. Oxidative Stress in Alzheimer's Disease. Pathophysiology 
2006, 13, 195–208. 
 
100. Hou, L.; Shao, H.; Zhang, Y.; Li, H.; Menon, N. K.; Neuhaus, E. B.; Brewer, J. M.; 
Byeon, I. J.; Ray, D. G.; Vitek, M. P.; Iwashita, T.; Makula, R. A.; Przybyla, A. B.; Zagorski, M. 
G. Solution NMR Studies of the Aβ(1-40) and Aβ(1-42) Peptides Establish That the Met35 
Oxidation State Affects the Mechanism of Amyloid Formation. J Am Chem Soc 2004, 126, 
1992–2005. 
 
101. Meisl, G.; Yang, X.; Frohm, B.; Knowles, T. P.; Linse, S. Quantitative Analysis of 
Intrinsic and Extrinsic Factors in the Aggregation Mechanism of Alzheimer-Associated 
Aβ-Peptide. Sci Rep 2016, 6, 18728. 



 32 

 
102. Fandrich, M.; Nystrom, S.; Nilsson, K. P. R.; Bockmann, A.; LeVine, H., 3ed; 
Hammarstrom, P. Amyloid Fibril Polymorphism: A Challenge for Molecular Imaging and 
Therapy. J Intern Med 2018, 283, 218–237. 
 
103. Yates, E. A.; Legleiter, J. Preparation Protocols of Aβ(1-40) Promote the Formation of 
Polymorphic Aggregates and Altered Interactions with Lipid Bilayers. Biochemistry 2014, 53, 
7038–7050. 
 
104. Colvin, M. T.; Silvers, R.; Ni, Q. Z.; Can, T. V.; Sergeyev, I.; Rosay, M.; Donovan, K. J.; 
Michael, B.; Wall, J.; Linse, S.; Griffin, R. G. Atomic Resolution Structure of Monomorphic 
Aβ(42) Amyloid Fibrils. J Am Chem Soc 2016, 138, 9663–9674. 
 
105. Schutz, A. K.; Vagt, T.; Huber, M.; Ovchinnikova, O. Y.; Cadalbert, R.; Wall, J.; 
Guntert, P.; Bockmann, A.; Glockshuber, R.; Meier, B. H. Atomic-Resolution Three-
Dimensional Structure of Amyloid β Fibrils Bearing the Osaka Mutation. Angew Chem Int Edit 
2015, 54, 331–335. 
 
106. Claridge, S. A.; Thomas, J. C.; Silverman, M. A.; Schwartz, J. J.; Yang, Y. L.; Wang, C.; 
Weiss, P. S. Differentiating Amino Acid Residues and Side Chain Orientations in Peptides Using 
Scanning Tunneling Microscopy. J Am Chem Soc 2013, 135, 18528–18535. 
 
107. Crommie, M. F.; Lutz, C. P.; Eigler, D. M. Confinement of Electrons to Quantum Corrals 
on a Metal-Surface. Science 1993, 262, 218–220. 
 
108. Niu, L.; Ma, X. J.; Liu, L.; Mao, X. B.; Wu, D. X.; Yang, Y. L.; Zeng, Q. D.; Wang, C. 
Molecularly Tuned Peptide Assemblies at the Liquid-Solid Interface Studied by Scanning 
Tunneling Microscopy. Phys Chem Chem Phys 2010, 12, 11683–11687. 
 
109. Tanaka, H.; Kawai, T. Partial Sequencing of a Single DNA Molecule with a Scanning 
Tunnelling Microscope. Nat Nanotechnol 2009, 4, 518–522. 
 
110. Wang, J. H.; Zhang, L.; Hu, C.; Liu, Q. S.; Hou, Y. B.; Zhang, X.; Lu, Q. Y. 
Sub-Molecular Features of Single Proteins in Solution Resolved with Scanning Tunneling 
Microscopy. Nano Res 2016, 9, 2551–2560. 
 
111. Weiss, P. S. Functional Molecules and Assemblies in Controlled Environments: 
Formation and Measurements. Acc Chem Res 2008, 41, 1772–1781. 
 
112. Yugay, D.; Goronzy, D. P.; Kawakami, L. M.; Claridge, S. K.; Song, T. B.; Yan, Z. B.; 
Xie, Y. H.; Gilles, J.; Yang, Y.; Weiss, P. S. Copper Ion Binding Site in β-Amyloid Peptide. 
Nano Lett 2016, 16, 6282–6289. 
 
113. Hornyak, G. L.; Peschel, S.; Sawitowski, T.; Schmid, G. TEM, STM and AFM as Tools 
to Study Clusters and Colloids. Micron 1998, 29, 183–190. 
 



 33 

114. Bayburt, T.; Carlson, J.; Godfrey, B.; Shank-Retzlaff, M.; Sligar, S. G., Chapter 12 - 
Structure, Behavior, and Manipulation of Nanoscale Biological Assemblies. In Handbook of 
Nanostructured Materials and Nanotechnology, Nalwa, H. S., Ed. Academic Press: 2000; Vol. 5, 
pp 637–710. 
 
115. Frenken, J.; Groot, I., Chapter 1 - Live Observations of Catalysts Using High-Pressure 
Scanning Probe Microscopy. In Operando Research in Heterogeneous Catalysis, Frenken, J.; 
Groot, I., Eds. Springer International Publishing Switzerland: 2017; pp 1–30. 
 
116. Nasrollahzadeh, M.; Atarod, M.; Sajjadi, M.; Sajadi, S. M.; Issaabadi, Z., Chapter 6 - 
Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and 
Applications. In Interface Science and Technology, Nasrollahzadeh, M.; Sajadi, S. M.; Sajjadi, 
M.; Issaabadi, Z.; Monireh Atarod, Eds. Elsevier: 2019; Vol. 28, pp 199–322. 
 
117. Han, P.; Mantooth, B. A.; Sykes, E. C. H.; Donhauser, Z. J.; Weiss, P. S. Benzene on Au 
{111} at 4 K: Monolayer Growth and Tip-Induced Molecular Cascades. J Am Chem Soc 2004, 
126, 10787–10793. 
 
118. Kumar, A. S.; Ye, T.; Takami, T.; Yu, B. C.; Flatt, A. K.; Tour, J. M.; Weiss, P. S. 
Reversible Photo-Switching of Single Azobenzene Molecules in Controlled Nanoscale 
Environments. Nano Lett 2008, 8, 1644–1648. 
 
119. Preuss, P. A Close Look: Exploring the Mystery of the Surface. 
https://www2.lbl.gov/Science-Articles/Archive/STM-under-pressure.html (July 30, 2019).  
 
120. Stout, K. J.; Blunt, L., Part II - Instruments and Measurement Techniques of Three-
Dimensional Surface Topography. In Three Dimensional Surface Topography, Stout, K. J.; 
Blunt, L., Eds. Butterworth-Heinemann: 2000; pp 19–94. 
 
121. Guo, H.; Zhang, J., 11 - Scanning Probe Microscopy (SPM) of Epitaxial Oxide Thin 
Films. In In Woodhead Publishing Series in Electronic and Optical Materials, Epitaxial Growth 
of Complex Metal Oxides, Koster, G.; Huijben, M.; Rijnders, G., Eds. Woodhead Publishing: 
2015; pp 295–328. 
 
122. Hansma, P. K.; Tersoff, J. Scanning Tunneling Microscopy. J Appl Phys 1987, 61, R1–
R23. 
 
123. MicroscopeMaster. The Scanning Tunneling Microscope (STM). 
https://www.microscopemaster.com/scanning-tunneling-microscope.html (July 30, 2019).  
 
124. Yee, S. Design of a Scanning Tunneling Microscope. Undergraduate Honors Thesis The 
Ohio State University, 2017. 
 
125. Chi, Q. J.; Farver, O.; Ulstrup, J. Long-Range Protein Electron Transfer Observed at the 
Single-Molecule Level: In Situ Mapping of Redox-Gated Tunneling Resonance. P Natl Acad Sci 
USA 2005, 102, 16203–16208. 



 34 

 
126. Miller, Y.; Ma, B. Y.; Nussinov, R. Metal Binding Sites in Amyloid Oligomers: 
Complexes and Mechanisms. Coordin Chem Rev 2012, 256, 2245–2252. 
 
127. Barrio, M. d.; Borghesani, V.; Hureau, C.; Faller, P., Chapter 14 - Metal-Binding to 
Amyloid-β Peptide: Coordination, Aggregation, and Reactive Oxygen Species Production. In 
Biometals in Neurodegenerative Diseases: Mechanisms and Therapeutics, White, A. R.; 
Aschner, M.; Costa, L. G.; Bush, A. I., Eds. Academic Press: 2017; pp 265–281. 
 
  



 35 

CHAPTER 2 

Copper Ion Binding Site in β-Amyloid Peptide 



 36 

2.1 Introduction 

Alzheimer’s disease (AD) is a worldwide health problem and the third most financially 

costly disease in the U.S. and Europe.1 The dominant symptom of AD is anterograde amnesia 

and 60−80% of dementing illness is caused by AD.2 A hallmark of AD is the aggregation of 

β-amyloid peptides (Aβ). Nevertheless, the body of knowledge around the disease pathogenesis 

is limited, the etiology remains poorly understood, and no curative interventions are available. It 

has been shown that people with AD exhibit abnormally high concentrations of transition metal 

ions (Cu2+ and Zn2+) in Aβ aggregates and synaptic areas of the brain.3,4 Fu et al. studied copper 

regulatory genes, in the study he and coworkers showed that there is a correlation between age 

and copper production while Singh et al. based on mouse studies showed that abnormal copper 

levels influence Aβ production and neuroinflammation.5,6 Nonetheless, the significance of Aβ 

interaction with metal ions for the disease process remains largely unexplored, and there remains 

no cure for AD. Understanding the structure(s) of Aβ peptides, their interactions with transition 

metals, and more precise definitions of the metal-peptide binding sites promise improved insight 

into AD and may open new avenues for treatment. 

Aβ oligomers are considered to be neurotoxic through a variety of mechanisms, that is, 

interactions with cell membranes and the production of reactive oxygen species.7−9 The pathway 

of Aβ neurotoxicity remains unknown and is the subject of active research. In prior work, Aβ has 

been shown to bind Cu2+ ions in 1:1 stoichiometric ratios in the vicinity of the N-terminus.10 A 

second low-affinity binding site has also been suggested due to the binding of Cu2+ to Aβ in 1:2 

stoichiometric ratios in the vicinity of the C-terminus.10,11 The structure and the binding site of 

Aβ oligomers in the presence of metal ions have been extensively studied using nuclear magnetic 

resonance,14 X-ray absorption spectroscopy,12,15 Fourier transform infrared spectroscopy,13 
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electron paramagnetic resonance,16 and atomic force microscopy.17,18 However, there is a paucity 

of experimental data with sub-molecular resolution because identifying exact amino acid 

involvement in metal ion binding is challenging due to the high mechanical and conformational 

flexibility of Aβ as well as the dramatic changes in conformation of the peptide based on metal 

ion valence.5,19,20 

Previously, we have demonstrated the ability to resolve sub-molecular structures of 

biological molecules and to differentiate between side chains of individual amino acids and their 

orientations using scanning tunneling microscopy (STM) and related spectroscopic imaging 

methods.21 In this study, we report structural elucidation of the first 16 amino acids (1−16) of the 

full length Aβ and its structural variation in the presence (Aβ1−16-Cu2+) and the absence (Aβ1−16) 

of Cu2+ ions via STM, surface-enhanced Raman spectroscopy (SERS), and circular dichroism 

(CD). We chose Cu2+ for this study due to its biological significance in AD.13,22 Although Aβ1−16 

has been reported as a disordered region of Aβ and therefore is often omitted from computational 

studies,23−27 our findings indicate that upon co-deposition of Cu2+ and Aβ1−16 on highly oriented 

pyrolytic graphite (HOPG), it laminates into structured β-sheet domains. We targeted this 

segment because preliminary data on Aβ1−42 indicated binding of Cu2+ in this region.10,13,18 

Previous reports on the binding site of Cu2+ in this portion of the peptide are conflicting. Li and 

co-workers, based primarily on nuclear magnetic resonance (NMR) measurements, report the 

involvement of residues His6, His13, His 14, and Tyr10 in binding in Aβ1−16, whereas Viles and 

co-workers, using a combination of NMR measurements and electron paramagnetic resonance 

(EPR) measurements, found that His13 is crucial for binding in Aβ1−28 and there are indications 

of the involvement of His6 and His14, but not Tyr10.28,29 Furthermore, these reports rely on 

conventional ensemble (i.e., averaging) measurements (NMR and EPR), whereas STM can 
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provide definitive real-space images of non-crystalline, nonperiodic, and even dilute structures.30 

These results could significantly enhance our understanding of the biology of Aβ peptides in vivo 

and their morphological changes due to interactions with the synaptic cell membrane.31−33 Most 

importantly, on the basis of the STM image analysis of the length and position of the protruding 

features, we determine and elucidate the specific interactions and binding of Cu2+ with Aβ1−16. 

Here, we show that Cu2+ ions participate in interstrand Aβ1−16 binding by coordinating with the 

two histidine residues at positions 13 and 14 (His13 and His14) on adjacent strands, and not 

intrastrand binding as had been hypothesized previously.16,19,20 

 

2.2 Circular Dichroism 

We used circular dichroism (CD) to determine whether Cu2+ ion binding onto Aβ1−16 

occurs readily in solution. In Figure 2.1, two bands (negative band at 197 nm and positive band 

at 222 nm) indicate that the polyproline type II (PPII) helix secondary structure conformation 

appears in the CD spectra of Aβ1−16 at pH 7.4. The PPII helix structure is commonly found in 

many proteins in unfolded states.34,35 The addition of Cu2+ to the solution decreased the CD 

spectra intensity in both bands. This indicates that Cu2+ weakens the PPII helical conformation 

and induces a partial β-sheet conformation in the peptide.36,37 Because of its hydrophilicity, 

Aβ1−16 is able to form hydrogen bonds with surrounding water molecules, which stabilizes the 

structure of the PPII helix.34,38 A decrease in the number of water molecules around the PPII 

helix backbone causes the peptide to change its conformation from a PPII helix to a β-sheet.39 

Hence, the presence of Cu2+ around Aβ1−16 may not only alter the Aβ1−16 structure by binding but 

also cause the peptide to undergo a conformational change from a helix to a β-sheet by 

displacing water molecules around the peptide backbone.40−43 The latter process is reported to be 
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highly entropically favorable.39,40 Though CD data alone do not enable making definitive 

structural assignments, they do indicate that structural changes occur upon binding Cu2+. 

 

2.3 Surface-Enhanced Raman Spectroscopy 

The challenge of many infrared spectroscopy (IR) techniques when used to study 

biomolecular conformation on surfaces is their limited ability to investigate the structures of 

biomolecules at low concentrations.44 An additional challenge for peptides and proteins is that 

the amide bands, which are responsible for the secondary structure, are located in the same 

region as the strong absorption band of water.45 The infrared spectroscopy dependence on 

concentration imposes a significant barrier to studying amyloid peptides because they exhibit 

structural polymorphism, which is greatly influenced by concentration.42,46 To overcome the 

above-mentioned challenges of IR techniques, and to stay consistent with Aβ1−16 concentrations 

used throughout the scanning probe microscopy experiments, surface-enhanced Raman 

spectroscopy (SERS)47 was employed to study conformational changes of Aβ1−16 in the presence 

and absence of Cu2+. Furthermore, to increase the intensity of the SERS signal, specialized 

platforms that exhibit large electromagnetic enhancements (∼1014) have been used, as shown in 

Figure 2.2a.48−50 Surface-enhanced Raman spectra for Aβ1−16 and Aβ1−16-Cu2+ are shown in 

Table 2.1 and Figure 2.2b. Changes in the secondary structure of Aβ1−16 upon addition of Cu2+ 

ions were assessed based on displacement and intensity of the amide bands and the C−H bending 

vibrations of the peptide. The Amide I band (1610−1700 cm−1)51,52 was not resolved by SERS 

due to overlap with the strong G band ∼1585 cm−1,53,54 which comes from the graphene coating 

of the substrate surface (Figure 2.2). Because of its weak Raman activity there is little 

information available about the Amide II band,55−58 yet a few reports mention that its location at 
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∼1529 cm−1 is associated with a β-sheet structure.59,60 The Amide III band (1200−1340 cm−1) 

showed a strong signal at ∼1249 cm−1, indicative of Aβ1−16 forming either a hydrated β-sheet61 or 

a PPII type helical structure62−64 on the surface. The band at 1449 cm−1, present in the Aβ1−16 

sample and absent in the Aβ1−16-Cu2+ sample, belongs to the C−H bending mode vibration of the 

peptide.65−68 Increased C−H vibrations in Aβ1−16 indicate the lack of intermolecular hydrogen 

bonding within the peptide; together with increased amide band intensities, it demonstrates that 

Aβ1−16 on the surface is more disordered than Aβ1−16-Cu2+. 

 

2.4 Scanning Tunneling Microscopy 

Aβ1−16 is typically a disordered and hydrophilic portion of an extracellular domain of 

Aβ.23,24,26,68 Because it is a disordered region it has often been omitted from computational 

studies.23−27 However, we show here that upon Aβ1−16 deposition on HOPG, individual peptide 

chains laminate into structured β-sheet domains (Figure 2.3). Previous reports indicate that Aβ 

has a parallel β-sheet arrangement with amino acids spacings of 0.325 nm.31,69 For our image 

analysis, we assumed the same parallel β-sheet arrangement for Aβ1−16. The average scanned 

length of Aβ1−16 is 5.2 ± 0.4 nm; this value is consistent with the ideal Aβ1−16 length of 4.9 nm. In 

addition, we noticed that Aβ1−16 has higher structural polymorphism, with the strands’ length 

being less uniform, than that of Aβ1−16-Cu2+ (Figure 2.4). These STM studies relied on the 

deposition from solution of Aβ1−16 raising the question of whether there are surface-induced 

structural changes. Previously, our group has shown that the peptide-surface interactions are 

relatively small in comparison to the peptide−peptide interactions within the assembly.21 

Furthermore, the transition from the hydrophilic regime to the hydrophobic HOPG surface may 

mimic the interaction of Aβ1−16 with the cellular membrane in physiological conditions. Based on 
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our measurements, Aβ1−16 and Aβ1−16-Cu2+ vary significantly from one another in terms of their 

interstrand separations (Figure 2.5b). Free Aβ1−16 peptides have an interstrand separation of 5.8 ± 

0.4 Å; this value differs greatly from the interstrand separation in Aβ1−16-Cu2+, which is 4.6 ± 0.3 

Å. The latter is in a good agreement with Aβ (Figure 2.6a) and earlier reported literature values 

for β-sheet separation, which is 4.5−5 Å.21,69−74 A large interstrand separation value for Aβ1−16, 

together with CD and SERS results, indicates that peptides in that system lack intermolecular 

hydrogen bonding and are either in a PPII helical configuration or are intrinsically disordered. 

Intrinsically disordered β-sheets have been identified and previously reported for amyloidogenic 

peptides.75−77 However, to our knowledge, there are no structural reports of the interstrand 

separation for either PPII helices or intrinsically disordered β-sheets. Thus, we cannot determine 

which structural state the free Aβ1−16 peptides have when deposited on HOPG; all structural 

characterizations in this study indicate that Aβ1−16-Cu2+ peptides are in a β-sheet arrangement. 

This arrangement of Aβ1−16-Cu2+ is apparently triggered by copper ion binding between adjacent 

Aβ1−16 strands. Intercalation of copper ions between strands would cause neighboring β-strands 

to come into closer contact due to His+−Cu2+ interactions, which are based on the repulsive 

electrostatic and attractive cation-π interactions between Cu2+ and imidazole rings.78,79 

Topographic examination of the Aβ1−16-Cu2+ lamellae displayed almost evenly arranged 

protruding features from both sides of β -sheet boundaries, with one side being more uniform 

than the other. Such features were present only in Aβ1−16-Cu2+ and were absent in Aβ1−16 

(without Cu2+) (Figures 2.7 and 2.8; many areas of four independently prepared samples of each 

were measured; for each distance, the average, standard deviation, and number of measurements 

used are reported). Both the total lengths of the strands and the distances of the protruding 

features from both β-sheet boundaries have been measured (Figure 2.9). The measured distance 
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of the nonperiodic, site-specific protruding features from the boundary was 0.9 ± 0.1 nm, which 

corresponds to the protruding features being two to three amino acids away from the β-sheet 

boundary (Figure 2.5c,d). The only possible amino acids in the strand, which are two to three 

amino acids away from the ends of the peptide and can participate in Cu2+ binding, are His13 and 

His14 residues. Adjacent positions of His13 and His14 amino acids in the Aβ1−16 strand make 

them unique in the sequence because only they can participate in binding copper between the 

strands. Therefore, based on STM image analysis of the protruding features, our results support 

the conclusion that Cu2+ ions bind to His13 and His14 residues forming a histidine brace 

between two strands. We did not observe nonsite specific protruding features, suggesting that 

there are no other Cu2+ ions bound on the surface. The measured distance of the more uniform 

protruding features from the boundary was 1.0 ± 0.1 nm, which corresponds to the protruding 

features being three amino acids residues away from the β-sheet boundary. Phenylalanine at the 

fourth position (Phe4) in the strand is three amino acids away from the beginning of the Aβ1−16 

strand. We infer that π stacking between the Phe4 ring and graphite leads it to protrude evenly 

throughout the whole β -sheet domain. Several previous computational and experimental studies 

have suggested that neighboring His residues in amyloid peptides or amyloid-like proteins 

participate in interstrand metal ion binding.80−86 However, this type of metal ion interaction with 

Aβ has never previously been observed directly. In this study, based on the length and the 

position of protruding features of copper ions within Aβ1−16 peptides, we show that copper ions 

participate in interstrand Aβ1−16 binding by coordinating with two His residues from adjacent 

stands. In conclusion, metal ions are enriched in the β-amyloid aggregates typically found in 

patients with Alzheimer’ s dementia, yet their functional role is largely unexplored. Here, we 

have identified the primary binding site of Cu2+ ions to Aβ1−16 and have clarified how such Cu2+ 
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ions facilitate interstrand binding, implicating metal ions as critical stabilizers of pathogenic 

β-amyloid assemblies. Circular dichroism provided key insights into how Cu2+ ions interact with 

the Aβ1−16 peptide in solution; inducing a conformational change from a disordered type II helix 

secondary structure to a secondary structure with β-sheet character. Based on strong C−H 

bending vibrations and higher PPII helical character in Aβ1−16, SERS demonstrated that Aβ1−16 

peptides on the surface are less densely packed and more disordered than Aβ1−16-Cu2+. Finally, 

scanning tunneling microscopy enabled us to deduce the structural changes of Aβ1−16 upon 

copper binding. In summary, Aβ1−16 has a higher structural polymorphism than Aβ1−16-Cu2+, as 

indicated by the range in Aβ1−16 strand lengths. When compared to Aβ1−16-Cu2+, strands in Aβ1−16 

are less uniform in the length, suggesting that they sometimes fold in upon themselves. Large 

interstrand separation in Aβ1−16 indicate that such peptides lack hydrogen bonding between 

adjacent strands. Thus, on a surface, Aβ1−16 laminates into either intrinsically disordered β-sheets 

or into a PPII-type helix. In contrast, our data provide strong evidence that Aβ1−16-Cu2+ has a 

smaller interstrand separation and laminates into β-sheets on a surface. We conclude that the 

interaction of the Aβ1−16 peptide with the Cu2+ ions is the driving force for this more ordered 

formation. Lastly, we observed features as apparent protrusions in STM images at the ends of the 

β-sheet boundaries in Aβ1−16-Cu2+ but not in Aβ1−16. These features are localized 2−3 amino 

acids away from the β -sheet boundaries, pointing to His13 and His14 as critical binding 

partners. The only possible amino acids that could participate in copper ion binding that are 2−3 

amino acids away from the β-sheet boundary are His13 and His14. These data support the 

assignment that His13 and His14 represent primary binding sites for the copper ions, creating an 

interstrand histidine brace. β-Amyloid has been implicated as a primary pathogenic factor in 

Alzheimer’s disease and the current work links metal ions, specifically copper, to the formation 
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and structure of the β-amyloid aggregates that are the signature of this disease. Understanding 

the structural features of β-amyloid and how it interacts and coassembles with other elements can 

open the door to studies of β-amyloid aggregates in the tissue environment and the identification 

of “drugable” targets that ultimately shape the deposition of neurotoxic peptides. Further, 

blocking metal ion binding could be utilized to destabilize the indigestible β-amyloid clusters in 

neurodegeneration. (NB¾As noted above, there may also be Cu2+ binding sites near the 

C-terminus of Aβ1−42.) This report establishes the capability of scanning tunneling microscopy as 

a methodology to determine structural characteristics and critical interaction sites in biologically 

relevant systems where traditional techniques that average or extract only periodic portions of 

structures have been unsuccessful.12,21,30,31,72,87,88 
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2.5 Materials and Methods 

2.5.1 Scanning Probe Microscopy and Surface-Enhanced Raman Spectroscopy Sample 

Preparation 

Solutions were prepared in a glass vial with a final total volume of 400 μL for both samples 

(Aβ1−16 and Aβ1−16-Cu2+). Aβ1−16 molarity was kept constant between samples: 2.5 ´ 10−7 M. In 

the Aβ1−16-Cu2+ samples, the final Cu2+ concentration was 2.5 ´ 10−5 M. The Aβ1−16 solution 

mixture was prepared by mixing 20 μL of phosphate-buffered saline at pH 7.4, 200 μL 

acetonitrile (Sigma-Aldrich Fluka Analytical, St. Louis, MO, purity >99.9%), 179 μL double-

distilled water, and 1 μL of Aβ1−16 (American Peptide Company, Inc., Sunnyvale, CA, 95.4% 

purity). Before depositing Aβ1−16 solution onto HOPG (SPI supplies, size: 10 mm ´ 10 mm ´ 

2 mm) the surface of HOPG was cleaved with scotch tape to clean the surface and to eliminate 

any preexisting flakes. Aβ1−16 solution was deposited onto HOPG for 1 min and blown off using 

nitrogen gas. The Aβ1−16-Cu2+ solution mixture was prepared by mixing 20 μL phosphate-

buffered saline at pH 7.4, 10 μL Cu2+ (Sigma-Aldrich Fluka Analytical, Copper Standard for ICP 

1001 ± 2 mg/L), 200 μL acetonitrile, 169 μL double-distilled water, and 1 μL Aβ1−16 solution.  

 

2.5.2 Scanning Tunneling Microscopy Measurements 

For STM measurements, a mechanically cut Pt−Ir (80%−20%) (Goodfellow Corp., Oakdale, PA) 

wire was used as the STM tip. The STM observations were carried out on a Pico SPM 

microscope head (Molecular Imaging, now Agilent, Santa Clara, CA) controlled by a low 

noisecontroller (RHK Model R9, RHK Technology, Troy, MI) under ambient conditions.  
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2.5.3 Atomic Force Microscopy Measurements 

All AFM measurements were performed under ambient conditions at the California 

NanoSystems Institute (NanoPico Characterization laboratory) using a Bruker High-Speed 

MultiMode 8 with ScanAsyst-HR instrument in peak force tapping mode with Bruker Nanoprobe 

(Model MPP-21100-10, Part RFESP, and nominal force constant 3 N/m).  

 

2.5.4 Scanning Tunneling Microscopy and Atomic Force Microscopy Image Processing 

Both STM and AFM images were processed by GWYDDION88 (free scanning probe microscopy 

data analysis software). Scratch artifacts were removed from STM images by using MATLAB 

(Mathworks, Natick, MA) unstripping code (see Appendix A1).  

 

2.5.5 Surface-Enhanced Raman Spectroscopy Measurements 

Substrates were prepared as described previously.48 Briefly, fabrication involved bottom-up 

templating technology where spin coating and hitting polystyrene (PS) film created PS spheres 

on Si/SiO2. Polystyrene spheres were used as mask for further gold nanopyramids fabrication. 

Final gold nanopyramids were approximately 200 nm ´ 200 nm in size. Graphene was 

transferred on gold nanopyramids substrates as a final step by chemical vapor deposition. A 

Renishaw inVia Raman system (Renishaw, IL) operating under ambient conditions was 

employed for Raman analysis. A 632.8 nm He−Ne laser was used as the Raman excitation 

source to match the resonant wavelength of the substrate. Laser power and beam diameter were 

∼5 mW and ∼1 μm, respectively. Spectra were acquired by mapping the substrate surface. Each 

measurement was a convolution of 20 sweeps in the wavelength range of interest with a set 

integration time of 1 s.  



 47 

2.5.6 Circular Dichroism Sample Preparation 

Solutions were prepared in a glass vial with final total volume of 300 μL for both samples 

(Aβ1−16 and Aβ1−16-Cu2+). Aβ1−16 molarity kept constant between samples: 7.5 ´ 10−5 M. In 

Aβ1−16-Cu2+ samples, the final Cu2+ concentration was 2.5 ´ 10−5 M. The Aβ1−16 solution mixture 

was prepared by mixing 15 μL of phosphate-buffered saline at pH 7.4, 52.5 μL acetonitrile, 

7.5 μL double-distilled water, and 225 μL Aβ1−16 solution. The Aβ1−16-Cu2+ solution mixture was 

prepared by mixing 15 μL of phosphate-buffered saline at pH 7.4, 7.5 μL of Cu2+ solution, 

52.5 μL acetonitrile, and 225 μL Aβ1−16 solution.  

 

2.5.7 Circular Dichroism Measurements 

Circular dichroism (CD) spectra of Aβ1−16 and Aβ1−16-Cu2+ in the wavelength region from 250 to 

190 nm were measured at room temperature using a JASCO (Easton, MD) J-715 Circular 

Dichrosim Spectrophotometer and cell with 1 mm path length. The spectra were recorded with a 

step resolution of 0.2 nm, scan speed 20 nm/min, bandwidth of 1 nm, sensitivity of 50 mdeg 

ellipticity, and response 4 s with ten spectra collected and averaged per sample.  

 

2.5.8 Surface-Enhanced Raman Spectroscopy and Circular Dichroism Spectral Analyses 

Both SERS and CD spectral analyses, peak assignments, and plotting were carried out using 

OriginPro software and Microsoft Office Excel. 
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Figure 2.1. Circular dichroism spectrum of Aβ1-16 at pH 7.4 with the negative band at 197 nm 

and the positive band at 222 nm. Aβ1-16-Cu2+ (blue) and Aβ1-16 (red). 
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Figure 2.2. Substrate arrangement and results of the surface-enhanced Raman spectroscopy 

experiments. (a) (Top) Photograph of the substrate used in SERS experiments. (Bottom) 

Schematic of the substrate and its components: (I) silicon wafer, (II) gold film with gold 

pyramids, (III) graphene, (IV) deposited Aβ1–16 peptides. (b) SERS spectrum of Aβ1–16-Cu2+ 

(blue) and Aβ1–16 (red). The black dashed box (∼1449 cm–1) indicates the C–H bending mode 

that signifies Aβ1–16 peptides lack structural homogeneity in comparison to Aβ1–16-Cu2+. 
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Figure 2.3. Atomic force microscopy images of Aβ1-16 at pH 7.4 deposited on HOPG, 500 nm × 

500 nm (a) Aβ1-16-Cu2+ (b) Aβ1-16. Protrusions indicate Aβ1-16 aggregates. Measurements were 

done to test if we continuously produced laminated monolayers of Aβ1-16 and Aβ1-16-Cu2+ over 

large surface areas. 

  

a. b.
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Figure 2.4. Distributions of the strand lengthss for Aβ1-16 (red) and Aβ1-16-Cu2+ (blue) with bin 

numbers 7 and 8, and mean 4.76 nm and 5.1 nm, respectively. Sample size: 50. 

  

0

5

10

15

20

25

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Fr
eq

ue
nc

y

Strand Length Distribution (nm)



 52 

 
 
Figure 2.5. (a) Aβ1–16 sequence with the highlighted Phe4 and His13/His14 amino acids. Ideal 

distance from β-sheet boundary to Phe4 is 0.975 nm (purple arrow), to His13 is 0.975 nm (blue 

arrow), and to His14 is 0.65 nm (blue arrow). (b) Average interstrand separation bar graph for 

Aβ1–16 vs Aβ1–16-Cu2+. Interstrand separation for Aβ1–16 is 5.8 ± 0.4 Å, and Aβ1–16-Cu2+ is 4.6 ± 

0.3 Å (from n = 42 and 120 measurements, respectively). (c) Scanning tunneling microscopy 

image of Aβ1–16-Cu2+. The regular protruding features in the purple box indicate the positions of 

the Phe4, whereas irregular protruding features in the blue box indicate the positions of 

His13/His14 binding Cu2+ in the peptide β-sheet assembly. Imaging conditions: Vsample = 0.55 V, 

Itunnel = 10 pA. (d) Average distance between amino acids with the corresponding number of 

amino acids to the specified distance. Phe4 (purple) distance, 1.0 ± 0.1 nm; number of amino 

acids, 3.1 ± 0.4; His13/His14 (blue) distance, 0.9 ± 0.1 nm; number of amino acids, 2.7 ± 0.4; 

and ideal distance vs number of amino acids (black) (from n = 92 and 145 measurements, 

respectively). 
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Figure 2.6. (a) Average β-sheet inter-strand separation values for Aβ1-16, Aβ1-16-Cu2+, and full 

length Aβ (Aβ1-42): 5.8 ± 0.4 Å, 4.6 ± 0.25 Å, and 4.7 ± 0.3 Å, respectively. Aβ1-42 inter-strand 

separation was previously reported elsewhere;89 thus, the measurements on Aβ were performed 

and compared against Aβ1-16 and Aβ1-16-Cu2+ to verify if the large inter-strand separation for 

Aβ1-16 was not due to the instrumental error. (b) (I) Average strand length vs number of amino 

acids for Aβ1-16-Cu2+: 5.09 ± 0.33 nm and 15.67 ± 1.01 amino acids, respectively. (II) Average 

length from protruding features to β-sheet boundary vs number of amino acids: 0.85 ± 0.11 nm 

vs 2.6 ± 0.36 amino acids, respectively. 
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Figure 2.7. Scanning tunneling microscopy images of (a,b) Aβ1–16-Cu2+ and (c,d) Aβ1–16. 

Imaging conditions: (a,b) 10 nm × 10 nm, Vsample = 0.55 V, Itunnel = 10 pA; (c) 10 nm × 10 nm, 

Vsample = 0.25 V, Itunnel = 17 pA; (d) 10 nm × 10 nm, Vsample = 0.30 V, Itunnel = 14 pA. 
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Figure 2.8. Scanning tunneling microscope images of Aβ1-16-Cu2+. Scanning parameters: size: 

10 nm ×10 nm, Vsample=0.55 V, Itunnel=10 pA. Images demonstrate a consistent protrusion pattern 

in the vicinity of the β-sheet boundary. 
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Figure 2.9. Schematic of the structure determined for Aβ1-16-Cu2+. Cu2+ interstrand binding to 

His13 and His14 forms a brace between strands (blue dashed box). In this schematic, we depict 

copper coordinated with water. It is also possible that copper coordinates with the substrate 

surface; our data do not distinguish which scenario is more likely. Regular protrusions on STM 

micrographs that we attribute to be Phe4 are illustrated as a purple dashed box. 
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Raman shift (cm−1)  assignment reference 
1585 Graphene G band  53, 54 
1529 Amide II band  55−60 
1449 C−H bending mode  65−68 
1328 Graphene D band  53, 54 
1250 Amide III band  61−64 

 
Table 2.1. Vibrational peak positions and corresponding band assignments for the 

surface-enhanced Raman spectroscopy spectra recorded. 
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3.1 Introduction 

Alzheimer’s disease (AD) is the most common cause of dementia, constituting 60-80% of 

all dementia cases.1,2 In addition, AD is the third most costly disease in the US after cancer and 

heart disease.3 This global health problem will only be exacerbated as the population continues 

to age. It is estimated that there were 4.7 million cases of AD in the US in 2010; this number is 

projected to increase to 13.8 million by 2050.4 The scientific community has yet to understand 

the etiology and pathogenesis of AD, but one of the hallmarks of the disease is the accumulation 

in the brain of senile plaques, which are primarily composed of fibrillar β-Amyloid (Aβ) 

peptides.5,6 The fibrillar structure of a full-length Aβ, which consists of 42 amino acids, has been 

reported.7 Yet, despite substantial research over the past several years, there is still scarce 

information about the structural, physical, chemical, and biological properties of natively 

disordered and soluble precursors to insoluble Aβ fibrils, which are known as Aβ oligomers. 

Characteristic features of fibril intermediates include high solubility and high structural 

polymorphism;8-10 as such, Aβ oligomers have versatile structural and mechanical properties. 

Information about the secondary structure and metal ion (M2+) binding sites of oligomeric Aβ 

peptides remains limited and poorly understood. It is known that the secondary structure and thus 

the metal ion binding site can be highly dependent on the type of metal ion ligand.11,12 In 

addition, it is established that M2+ binding site is in the vicinity of the N-terminus of the full 

length Aβ,11,12 and that there are strong correlations between Aβ fibrillar deposits in AD brains 

and elevated concentrations of M2+, specifically Zn2+ and Cu2+, around senile plaques.13-15 The 

interactions of Aβ with M2+ are not only detrimental due to Aβ plaque accumulation but also 

contribute to generation of reactive oxygen species, which ultimately lead to neuronal death.16,17 



 67 

For these reasons, we are interested in understanding the interactions of the Aβ oligomer with 

Zn2+ and Cu2+ ions.  

Previously, scanning tunneling microscopy (STM) has been employed to probe 

biomolecular structures18,19 and the effect of Cu2+ within the first 16 amino acids (1-16) of the 

full length Aβ (Aβ1-16).20 Using this method we elucidated a copper binding site within the 

peptide fragment and demonstrated that the non-fibrillar, natively disordered Aβ1-16 assembles 

into β-sheet oligomers upon coordination with Cu2+. These results only fueled our interest in 

understanding the structural characteristics of the β-sheets formed and the interactions that drive 

the transformations from disordered to ordered structures. 

The ideal interstrand distance of a β-sheet secondary structure is 4.5−5.0 Å.18,21-26 Our 

previously reported interstrand distance of Aβ1-16 coordinated with Cu2+ as measured by STM 

was 4.6 ± 0.3 Å,20 which is consistent with other reported values for amyloidogenic peptides as 

measured via X-ray diffraction (XRD),22,25 solid-state nuclear magnetic resonance (ssNMR),21,23 

and STM.18,24,26 However, in the case of XRD and ssNMR, these reports only provide average 

values across the entire assembly and even in STM studies, where real space measurements were 

made, these results do not fully take into account the variations in structural behavior along the 

lengths of the peptide strands. Thus, important information about precise structure of the 

Aβ1-16-Cu2+ complixies formed and other amyloidogenic peptides with β-sheet secondary 

structures are undetermined. Specifically, how the interactions of individual amino acids with 

other residues or other components, such as metals ions, drive the assembly of long-range 

ordered structures requires further study. Critical structural aspects that need to be addressed are 

the extent of conformational variations of pseudo β-sheets and identification of regions with 

higher and lower propensities for β-sheet formation.  
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Herein, we experimentally establish and elucidate interstrand binding of Zn2+ ions to 

Aβ1-16, which to our knowledge has not previously been reported. We quantitatively address 

changes in the backbones of assemblies of Aβ1-16 with either interstrand binding of Zn2+ or Cu2+ 

ions (Figures 3.1 and 3.2). These measurements enable us to observe similarities and differences 

between oligomers of Aβ1-16 coordinated with Cu2+ vs. Zn2+ ions. Furthermore, we address 

structural variations between different types of Aβ1-16 peptides within the assemblies, which were 

classified based on their proximity to the bound M2+. 

These Aβ1-16 peptide strands within the β-sheet were categorized into three types of 

interactions with the metal ion (M2+) binding site: direct interaction, adjacent, or distantly 

affiliated (Scheme 3.1). Scanning tunneling micrographs were analyzed with novel image 

segmentation tools that enabled us to measure interstrand distance continuously along the length 

of the peptide to understand the influence of metal ion binding on each amino acid residue. 

 

3.2 Results and Discussion 

In this study, we imaged the Ab1-16 system in either the presence of Zn2+ or Cu2+ ions 

(Figure 3.1). In the analyses of these images, we discretized the peptide β-sheet into three types 

of areas (Scheme 3.1). The first type is pairs of strands with a metal ion in between and 

interacting with both strands, i.e., the ion forming a histidine bridge with the His13 and His14 of 

the respective strands (Ab1-16-M2+). The second group is composed of pairs of strands that are 

adjacent to the previous type, where one strand is interacting with a metal ion but the second 

strand is not (M2+-Adj). The last group is composed of pairs of strands that do not fall in either of 

the previous categories; as such, they are still affiliated with the metal ion but lack direct 

interactions (M2+-Aff). For each of these three groups, we measured the interstrand distances 
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continuously along the length of pair, determining interstrand separations for each amino acid 

residue. Both metal ions create distinct and local effects on a secondary structure of Aβ1-16 

(Figure 3.3). Interstrand distances of specific amino acids changes based on the distance of the 

residue to the M2+ binding site and between the different Aβ1-16 categories. Self-assembly of 

Aβ1-16 peptides in the presence of metal ions (M2+-Global) appears dictated by the behavior of 

strands in the Aβ1-16-M2+ and M2+-Adj categories. If we examine the interstrand distance 

globally, as an average of Ab1-16-M2+, M2+-Adj, and M2+-Aff interstrand distances, we see that 

Zn2+-Global is larger than in Cu2+-Global: 5.2 ± 0.03 Å and 4.8 ± 0.01 Å, respectively (Table 

3.2). The difference between the Zn2+-Global and Cu2+-Global becomes significant and apparent 

towards N-termini located away from M2+ binding site (Figure 3.3d, Tables 3.2 and 3.3). The 

difference globally in interstrand distance between Zn2+ and Cu2+ is consistent with the 

differences of Ab1-16-M2+ and M2+-Adj, but we do not observe similar behavior in M2+-Aff. In 

M2+-Aff strands, there is a high degree of variability in the interstrand distances and structural 

behavior for both Zn2+ and Cu2+, with no apparent distinction in structure based on the metal ion 

present in the system (Figure 3.3c). This result further supports the conclusion that the global 

behavior is driven by the behavior of Ab1-16-M2+ and M2+-Adj in the system.  

The binding of a metal ion to Aβ1-16 results in a significant decrease in the interstrand 

distance. In Aβ1-16-M2+ strands, the backbone deformation increases the most after residue 11, 

reaching its maximum deformation at the position of the histidine residues, His13 and His14 

(Figure 3.3a,b). When the average interstrand distance of amino acids in the vicinity of the 

C-terminus (from residue 12 to residue 16) is compared to the average interstrand distance of 

amino acids in the vicinity of the N-terminus (first 11 residues) we observe that the interstrand 

distance decreases by 11% in Aβ1-16-Zn2+ and 7% in Aβ1-16-Cu2+ peptide categories (Table 3.4). 
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In contrast, in M2+-Adj strands, metal ion binding to the Aβ1-16-M2+ strands create local 

regions of increased interstrand distance, which is adjacent to metal ion binding site (Figure 

3.3a,b). Due to only indirect interactions with metal ions, a β-sheet structure of M2+-Adj is less 

ordered (higher variability of interstrand distances per residue and per strand pair). Interstrand 

separation between β-strands greater than the 5.0 Å, which is observed in M2+-Adj in the vicinity 

of the C-terminus, signifies broken hydrogen bonding between parallel β-strands and thus further 

supports higher flexibility observed in M2+-Adj strands.27-29  

Comparing the effects of Zn2+ vs. Cu2+ ions on Aβ1-16, we see that Cu2+ leads to more 

peptide-peptide interactions and thus, more ordered β-sheet structure. The average interstrand 

distances of Aβ1-16-Cu2+, Cu2+-Adj, and Cu2+-Aff along the first 11 residues from N-terminus are 

all within the region for ideal β-sheet separation (4.8 ± 0.03 Å, 4.8 ± 0.02 Å, and 5.0 ± 0.05 Å, 

respectively) (Table 3.4). The interstrand distance is slightly larger in Cu2+-Aff and in particular, 

it increases in the region of aspartate, serine, and glycine at positions seven (Asp7), eight (Ser8), 

and nine (Gly9), respectively (Figure 3.3c). It is generally recognized that amino acids such as 

Asp and Gly are flexible, unstable, and thus, have low β-sheet forming propensity;30-34 hence, it 

could explain the slightly larger interstrand distance in that region. The average interstrand 

distances of Aβ1-16-Zn2+, Zn2+-Adj, and Zn2+-Aff along the first 11 residues are all above the 

ideal β-sheet region (5.2 ± 0.02 Å, 5.3 ± 0.03 Å, and 5.1 ± 0.01 Å, respectively) (Table 3.4). The 

absence of the pristine β-sheet arrangement suggests irregular H-bonding between the strands 

(hence, all categories along the first 11 residues deviate from the ideal β-sheet region).35-37 

Within the strands, residue-residue alignment is more irregular in Zn2+-Adj than in Aβ1-16-Zn2+ or 

Zn2+-Aff, and it increases towards the N-terminus of peptides. Yet, in Aβ1-16-Zn2+, some residues 

show higher β-sheet character. Overall Zn2+ ions, compared to Cu2+ ions, facilitate less ordered 
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β-sheet alignment of Aβ1-16, however comparing both of these system to intrinsically disordered 

Aβ1-16 free of metal ions, all categories of Aβ1-16 in the presence of metal ions show greater β-

sheet character.20 Furthermore, Aβ1-16-M2+ peptide strands, compared to M2+-Adj, and M2+-Aff, 

self-assemble into the most compact lamellar structures (Figure 3.3a-c).  

We expect the binding of both Zn2+ and Cu2+ metal ions to be in inter-strand fashion with 

His13 and His14 bridging neighboring strands and our findings, as shown in Figures 3.1 and 3.3, 

support this premise. Therefore, the smallest interstrand distance between the two adjacent Aβ1-16 

strands with the bound Zn2+ and Cu2+ has to be either at His13, His14, or between the two 

residues. The observed results show that the smallest interstrand distance changes based on 

participating metal ion, for Aβ1-16-Zn2+ is at His13, while for Aβ1-16-Cu2+ is at His14 (Figure 

3.3a,b). This difference indicates that the two metal ions have distinct effects on the Aβ1-16 

backbone in the vicinity of C-terminus upon binding to His13 and His14 from adjacent strands. 

Binding modes of Zn2+ and Cu2+ onto Aβ have been previously studied and reported and those 

findings suggest that Cu2+ is more rigid than Zn2+ in its binding geometry,38 where the preferred 

coordination number of Zn2+ in Aβ is four39,40 and of Cu2+ is three.41 Herein, we report how both 

metal ions affect Aβ1-16-M2+ when they are coordinated with Aβ1-16 in a geometrically similar 

manner. In order to study the effects and to understand the reasons behind a shift in one amino 

acid between Aβ1-16-Zn2+ and Aβ1-16-Cu2+, we examined the distance between the M2+ binding 

site and the C-termini of Aβ1-16-M2+.  

The standard inter-residue spacing in parallel β-sheets is 3.25 Å.26,42-45 Assuming that our 

previous findings20 hold true for both metal ions and that both metal ions bind to Aβ1-16-M2+ 

between His13 and His14. Then, in an idealized situation the predicted total length (P) from metal 
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ion binding site to C-terminus (M2+-Cterm) in case of Zn2+ and Cu2+ should be identical (and 

equivalent to 8.12 Å, Figure 3a). 

The ideal inter-residue spacing assumes a linear/geometrically perfect β-strand. It 

excludes local deformations that might be present in β-strands due to metal ion interactions. 

Thus, the measured (M) length of M2+-CtermM, which is free of local deformations and 

perturbations/distortions due to M2+ binding between Aβ1-16 strands is expected to be similar to 

the predicted ideal length. Yet, the measured lengths of Zn2+-CtermM and Cu2+-CtermM are 

significantly different, 9.52 ± 0.3 Å and 8.14 ± 0.2 Å, respectively.  

When we compare Cu2+-CtermM and Cu2+-CtermP, we observe that both lengths are similar, 

and thus we conclude that Cu2+ ions have greater stabilizing effects on the C-terminus of 

Aβ1-16-Cu2+ strands. However, when the analogous comparison is made for Zn2+ ions, we 

observe that Zn2+-CtermM is longer than Zn2+-CtermP by 1.4 Å. The difference between measured 

and predicted lengths of Zn2+-Cterm signify that, in contrast to Cu2+ ions, Zn2+ ions create a 

strong, local effect on the Zn2+-Cterm and distort the C-terminus of Aβ1-16-Zn2+.  

Perhaps due to destabilizing effects of Zn2+ on the C-terminus of Aβ1-16-M2+, we 

additionally see a greater fractional change in interstrand distance between N and C-terminus 

when the participating metal ion is Zn2+ rather than Cu2+ (11% vs. 7%, respectively; as discussed 

above). 

In Figure 3.4c, we further analyze the effects of both metal ions on the different 

categories and segments of Aβ1-16. These segments are based on whether the residues are away 

from the binding site and mostly homogenous in structure or in the vicinity of the binding site 

and distorted by the metal ion binding. In this manner, we observe the effects of metal ions on 

the backbone and inter-residue separation of Aβ1-16 and find that these factors are highly distance 



 73 

and metal ion dependent. Based on the inter-residue separation of M2+-Aff, and the first 13 

residues of M2+-Adj and Aβ1-16-M2+ (Figure 3.4c; Panels 1-3), we see that all these categories 

and segments show slightly smaller than predicted inter-residue separations. The inter-residue 

separation in these cases does not vary based on category or segment. However, in M2+-Adj, in 

the vicinity of the binding site (residues 14-16), we observe the destabilization of inter-residue 

separation (Figure 3.4c, Panel 4). It is likely that vacancies created upon M2+ binding in 

Aβ1-16-M2+ strands results in the entropic increase of M2+-Adj strands around residues 14 to 

16.46,47 This change results in the readjustment of residue-residue interaction, which ultimately 

contributes to destabilization of inter-residue separation around that region. Finally, the 

destabilization of inter-residue separation due to M2+ can also be observed in Figure 3.4c, Panel 

5. We see that inter-residue separation in residues 14 to 16 of Aβ1-16-Zn2+ is significantly larger 

(p=0.0117) than Aβ1-16-Cu2+, 3.81 ± 0.1 Å and 3.26 ± 0.1 Å, respectively.  

From here, we see that Cu2+ ions upon binding to Aβ have strong stabilizing effects on 

the Aβ1-16-M2+ strands. The result of this stabilization is ideal inter-residue separation, small 

variability in interstrand distance between the N and C-terminus of participating residues, and, as 

shown in Figure 3.5a,c, long-range effects of Cu2+ on Aβ1-16-Cu2+.  

In regard to the Zn2+ ions, we see that Zn2+ ions, similarly to Cu2+ ions, have strong 

effects on the assembly of Aβ1-16, but contrary to Cu2+ ions their effect is destabilizing on the 

peptidyl arrangement. This difference is seen in the larger than ideal inter-residue separations as 

well as the large change in interstrand distance between the N and C-termini of participating 

residues. Additionally, by comparing the frequencies of different types of interstrand 

arrangements, we see that the Zn2+ effect on Aβ1-16-Zn2+ is local, i.e., short range (Figure 3.5a,b). 
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To access the predominant structural and relative stability of Aβ1-16 peptides upon their 

interactions with metal ions, we compared Aβ1-16 categories and their corresponding frequencies 

of residues in those categories (Figure 3.5). The predominant structural change of Aβ1-16 upon 

Zn2+ and Cu2+ binding is that the peptides assemble towards small (≤4.4 Å) interstrand distances. 

Both Aβ1-16-Zn2+ and Aβ1-16-Cu2+ show that His13 and His14 undergo significant structural 

changes upon metal ion binding. These distances are significantly smaller than in the other two 

Aβ1-16 categories – M2+-Adj and M2+-Aff. 

A comparison of the structural changes of individual residues between Aβ1-16 categories 

shows long- and short-range effects of Zn2+ and Cu2+ on the Aβ1-16 sequence. In Aβ1-16-Cu2+, the 

residues with significant small interstrand distance to Cu2+-Aff are glutamic acid at the position 

three (Glu3) and histidine at position six (His6). Both residues are charged amino acids that are 

located in the vicinity of the N-terminus. The change of interstrand distance in the vicinity of the 

N-terminus upon Cu2+ binding in the vicinity of C-terminus signifies long-range effects of Cu2+ 

ions on Aβ1-16 structure. In juxtaposition, we observe that the long-range effects in Aβ1-16-M2+ 

are less prevalent upon Zn2+ binding. In Aβ1-16-Zn2+, the only residue in the vicinity of the 

N-terminus that deviates from pristine towards a significantly small interstrand distance is 

aspartic acid at position seven (Asp7) (vs. two residues in Aβ1-16-Cu2+). In addition, Asp7 is closer 

to the metal ion binding site than Glu3 and His6. Since Asp7 is a charged residue, we again see 

relative instability of charged amino acids in Aβ1-16 peptide.33,34,48  

Residues with changes in interstrand distance in the vicinity of the C-terminus show the 

short-range effects on the Aβ1-16 structure. In Aβ1-16-Zn2+ the glutamine as position 15 (Gln15) 

appears effected and in Aβ1-16-Cu2+ Gln15 and the lysine at position 16 (Lys16) appears 

significantly influenced by metal ion binding. Residues proximate to the metal ion binding site 
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are expected to arrange into small (≤4.4 Å) interstrand distances in Aβ1-16-M2+ with significant 

differences from M2+-Aff. However, not all residues proximate to the metal ion binding site 

undergo significant changes in interstrand distances. For example, valine at position 12 (Val12), 

even though adjacent to the metal ion binding site, lacks significant structural change upon metal 

ions binding to His13 and His14 (Figure 3.2 and Table 3.4).  

It appears that significant changes in interstrand distances towards smaller (≤4.4 Å) 

configurations in Aβ1-16-M2+ residues increase if: 1) the residues are directly involved in the 

metal ion binding site, 2) the residues are positively/negatively charged, or 3) the residues are 

polar and adjacent to the metal ion binding site. The enhanced fibrillogenesis due to charged and 

polar amino acids has also been described by Lopez de la Paz et al.49,50 Although it is known that 

fibrillogenesis is sequence specific, the mechanism of the nucleating process of similarly charged 

residues during β-sheet lamination is not established.  

 

3.3 Conclusions and Prospects 

In recent years, many research groups have used computational and mathematical 

modeling as well as experimental methods to establish that M2+ ions intercalate between 

amyloidogenic peptide strands via coordination with His residues in an interstrand fashion. 20,51 

In 2016, by employing STM, our group experimentally elucidated the position of Cu2+ within 

Aβ1-16. This report is consistent with and extends our previous findings and expands the 

capabilities of STM coupled with mathematical modeling techniques as a useful tool to study 

secondary structures and interactions of biological systems with host molecules that cannot be 

accessed otherwise. Herein, by employing STM we imaged self-assembled Aβ1-16 peptides while 

employing mathematical modeling to measure and to reconstruct precise interstrand 
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measurements of three structural categories of Aβ1-16 oligomers intercalated with Zn2+ and Cu2+. 

To our knowledge, the structural versatility of a single amyloidogenic system comprised of 

individual structural subcategories that we identified in lamellar assemblies of Aβ has not 

previously been accessed and addressed.  

Though ligand kinetics were not part of this study, based on Aβ1-16 self-assembly with 

M2+, which resulted in different interstrand distances and inter-residue separations for Zn2+ and 

Cu2+, we conclude that Aβ1-16 Cu2+ interactions are stronger than Zn2+. The binding strength 

influences Aβ1-16 structure. From Aβ1-16-M2+ intercalated with Zn2+ and Cu2+ ions, we observed 

that peptides intercalated with Zn2+ have higher structural variability. We also showed that Cu2+ 

ions induce pristine β-sheet alignment within the N-terminus, yet they distort that alignment at 

the C-terminus (by creating smaller than ideal interstrand distances in the vicinity of the 

C-terminus). Finally, we learned that Zn2+ ions cause β-sheet character to dissipate as distance 

from the M2+ binding site increases. We showed that the global behavior of Aβ1-16 systems 

intercalated with M2+ is dictated by the participating metal ions. Additionally, we determined the 

structural differences that Zn2+ and Cu2+ create in the backbone of Aβ1-16-M2+ on the single 

residue level. From our analyses of inter-residue separations and different types of residue 

frequencies, we showed that Zn2+ and Cu2+ have opposite effects onto Aβ1-16 backbone. The 

distortion of the C-terminus is due to strong and local effects of Zn2+ on the Aβ1-16 peptides, 

whereas Cu2+ stabilizes peptidyl interactions creating strong and long-range effects on Aβ1-16.  

We mapped Zn2+– and Cu2+– induced structural rearrangements in Aβ1-16 via STM and 

image segmentation. However, outlined differences are thus far only in regards to the first 16 

amino acids of the full length β-Amyloid peptide. In the next step, it will be necessary to 

investigate the structural arrangements of the full-length β-Amyloid and its interactions with 
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metal ions while the peptide is in its oligomeric form; ultimately, this study will lead to 

understanding and explanation of residues that are involved in the formation of reactive oxygen 

species – the product of metal ion and β-Amyloid interaction that is hypothesized to be 

detrimental to healthy brain activity. 
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3.4 Materials and Methods 

3.4.1 Scanning Tunneling Microscopy Sample Preparation  

Solutions were prepared in a glass vial with a final total volume of 400 μL for both samples 

(Aβ1−16-Zn2+ and Aβ1−16-Cu2+). Aβ1−16 molarity was kept constant between samples:  

2.5 × 10−7 M. In the Aβ1−16-Cu2+ and Aβ1−16-Zn2+ samples, the final Cu2+ and Zn2+ concentrations 

were 2.5 × 10−5 M and 7.5 × 10−5 M, respectively. The Aβ1−16-Zn2+ solution mixture was 

prepared by mixing 20 μL of phosphate-buffered saline at pH 7.4, 30 μL of Zn2+ (Sigma-Aldrich 

Fluka Analytical, Zinc Standard for ICP 1000 ± 2 mg/L), 200 μL of acetonitrile (Sigma-Aldrich 

Fluka Analytical, St. Louis, MO, purity >99.9%), 149 μL of double-distilled water, and 1 μL of 

Aβ1−16 (American Peptide Company, Inc., Sunnyvale, CA, 95.4% purity). Before depositing 

Aβ1−16-Zn2+ solution onto HOPG (SPI supplies, size: 10 mm × 10 mm × 2 mm) the surface of 

HOPG was cleaved with scotch tape to clean the surface and to eliminate any preexisting flakes. 

Both, Aβ1−16-Zn2+ and Aβ1−16-Cu2+, solutions were deposited onto HOPG for a 1 min and blown 

off using nitrogen gas. The Aβ1−16-Cu2+ solution mixture was prepared by mixing 20 μL of 

phosphate-buffered saline at pH 7.4, 10 μL of Cu2+ (Sigma-Aldrich Fluka Analytical, Copper 

Standard for ICP 1001 ± 2 mg/L), 200 μL of acetonitrile, 169 μL of double-distilled water, and 

1 μL of Aβ1−16 solution. 

 

3.4.2 Scanning Tunneling Microscopy Measurements  

For STM measurements, a mechanically cut Pt−Ir (80%− 20%) (Goodfellow Corp., Oakdale, 

PA) wire was used as the STM tip. The STM observations were carried out on a Pico SPM 

microscope head (Molecular Imaging, now Agilent, Santa Clara, CA) controlled by a low-noise 

controller (RHK Model R9, RHK Technology, Troy, MI) under ambient conditions. 
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3.4.3 Scanning Tunneling Microscopy Image Processing  

Scanning tunneling microscopy images were processed by STM software (RHK Model R9, RHK 

Technology, Troy, MI) and by GWYDDION53 (free scanning probe microscopy data analysis 

software). Aβ1−16-Cu2+ and Aβ1−16-Zn2+ peptide strands distance measurements were carried out 

using MATLAB (Mathworks, Natick, MA) software_distance_peptide MATLAB code.  

 

3.4.4 Scanning Tunneling Microscopy Image Analysis 

Results of software_distance_peptide MATLAB code for peptide strand distance measurements, 

Aβ1−16-Cu2+ and Aβ1−16-Zn2+, peptide strand distance data analyses were carried out using 

Microsoft Office Excel.  
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Figure 3.1. Scanning tunneling micrographs of assemblies of the 1-16 amino acid fragment of 

β-Amyloid (Ab1-16) coordinated with (a) Zn2+ metal ions and (b) Cu2+ metal ions. Blue circles 

highlight the non-periodic, high-intensity protrusions indicative of bound metal ions. Blue 

arrows highlight the boundaries of the Ab1-16 strands. The average interstrand distance of the 

assemblies was 5.17 ± 0.03 Å in the presence of Zn2+ and 4.82 ± 0.01 Å in the presence of Cu2+, 

indicating that metal ion binding induces β-sheet formation in the case of Cu2+, but not in the 

case of Zn2+.  
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Figure 3.2. Scanning tunneling micrographs of assemblies of the 1-16 amino acid fragment of 

β-Amyloid (Ab1-16) coordinated with (a) Zn2+ metal ions and (b) Cu2+ metal ions. Blue circles 

highlight the non-periodic, high-intensity protrusions indicative of bound metal ions. Blue 

arrows highlight the boundaries of the Ab1-16 strands.  
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Scheme 3.1. Schematic of the study design. To analyze structural changes in Ab1-16 due to 

interactions with Zn2+ and Cu2+ ions (M2+), the lamellar arrangement of the peptides was 

categorized into three distinct groups. The first group (Ab1-16-M2+, shaded box on the left) 

consists of strands with bound metal ions in an interstrand arrangement. The histidines at 

position 13 (His13) and 14 (His14) (yellow) are the residues with a propensity to bind metal ions 

(M2+) with an interstrand bridge. The second group (M2+-Adj, dashed box in the middle) consists 

of pairs of strands with one strand in direct contact with M2+ and the second strand in an adjacent 

location, but not directly bound. The third group (M2+-Aff, clear box on the right) consists of 

strands that are affiliated but lack direct contact with M2+ and placed a minimum of one strand 

away from Ab1-16-M2+.  
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Figure 3.3. Effects of metal ions on interstrand distance in each category of Aβ1-16 (Scheme 3.1) 

as measured via scanning tunneling microscopy. Ab1-16-M2+ (square-solid line) and M2+-Adj 

(square-dashed line) are compared for (a) Cu2+ and (b) Zn2+. The distinguishing feature of 

M2+-Adj and Ab1-16-M2+ is the marginal fluctuation in interstrand distance between Asp1 and 

Val12 followed by the pronounced increase (M2+-Adj) and decrease (Ab1-16-M2+) in interstrand 

separations after Val12. This observation is consistent with Zn2+ and Cu2+ binding to Aβ1-16 in 

interstrand fashion at the His13 and His14 positions. The ideal interstrand distance of β-sheet 

secondary structure is 4.5−5.0 Å (purple region).18,21-24,26,52 Interstrand distance measurements 
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were collected from at least three independent experiments. Error bars represent standard error 

(S.E.); Tukey’s HSD test was used in conjunction with one-way Anova to determine 

significance. Significance in Ab1-16-M2+ between specific amino acids and His13 (13) and His14 

(14) are indicated (Table 3.1). Results are shown as *, p < 0.05; **, p < 0.01; and ***, p < 0.001. 

(c) Interstrand distances of Ab1-16 affiliated with Zn2+ (triangle-blue line) and Cu2+ (triangle-red 

line). Due to the absence of direct interaction with metal ions these peptides lack structural 

homogeneity. (d) Aβ1-16 intercalated with Zn2+ (circle-blue line) and Cu2+ (circle-red line) metal 

ions. Global interstrand distance as average of Ab1-16-M2+, M2+-Adj, and M2+-Aff interstrand 

distances. Previous studies found that the interstrand distance of Aβ1-16 without the presence of 

metal ions is 5.8 ± 0.4 Å (brown region).20 
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Table 3.1. Tukey’s HSD test was used to determine statistical significance of interstrand 

distances between amino acid pairs of Ab1-16-Zn2+ and Ab1-16-Cu2+. In Ab1-16-Zn2+ – Asp1, Glu3, 

Phe4, Arg5, His6, Ser8, Gly9, Tyr10, Glu11 are significantly different to His13 and His14; while in 

Ab1-16-Cu2+ – Asp1, Ala2, Phe4, Arg5, Asp7, Ser8, Gly9, Tyr10, Glu11, Val12 are significantly 

Aβ1-16-Zn
2+

Asp1 Ala2 Glu3 Phe4 Arg5 His6 Asp7 Ser8 Gly9 Tyr10 Glu11 Val12 His13 His14 Gln15 Lys16
Mean	(Å) 5.2 5.1 5.1 5.2 5.3 5.2 5.1 5.2 5.3 5.1 5.1 4.9 4.3 4.4 4.7 4.8
N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
df 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
SS 0.2607 0.0533 0.0385 0.1977 0.0921 0.0670 0.0975 0.0014 0.1956 0.2053 0.1384 0.0055 0.1667 0.1730 0.1462 0.5208
SSB 4.0241 dfb 15 MSB 0.2683 0.822
SSW 2.3598 dfw 32 MSW 0.0737 0.965
k 16 Gbl	Mean 5.0 F p	<	0.05

Absolute	Differences	of	the	Means
Asp1 Ala2 Glu3 Phe4 Arg5 His6 Asp7 Ser8 Gly9 Tyr10 Glu11 Val12 His13 His14 Gln15 Lys16

Asp1 0 0.102 0.059 0.023 0.138 0.018 0.117 0.001 0.084 0.080 0.055 0.285 0.902 0.730 0.511 0.391
Ala2 0.043 0.125 0.240 0.084 0.015 0.101 0.186 0.022 0.047 0.183 0.800 0.628 0.409 0.289
Glu3 0.082 0.197 0.041 0.058 0.057 0.143 0.021 0.004 0.226 0.843 0.671 0.453 0.332
Phe4 0.115 0.041 0.140 0.025 0.061 0.103 0.078 0.308 0.925 0.753 0.534 0.414
Arg5 0.157 0.255 0.140 0.054 0.218 0.194 0.423 1.040 0.868 0.650 0.530
His6 0.099 0.017 0.103 0.062 0.037 0.267 0.884 0.712 0.493 0.373
Asp7 0.116 0.201 0.037 0.062 0.168 0.785 0.613 0.394 0.274
Ser8 0.086 0.079 0.054 0.283 0.900 0.729 0.510 0.390
Gly9 0.164 0.140 0.369 0.986 0.815 0.596 0.476
Tyr10 0.025 0.205 0.822 0.650 0.431 0.311
Glu11 0.230 0.847 0.675 0.456 0.336
Val12 0.617 0.445 0.226 0.106
His13 0.172 0.391 0.511
His14 0.219 0.339
Gln15 0.120
Lys16 0

HSD	for	0.05	=	5.244	→
HSD	for	0.01	=	6.155	→

Aβ1-16-Cu
2+

Asp1 Ala2 Glu3 Phe4 Arg5 His6 Asp7 Ser8 Gly9 Tyr10 Glu11 Val12 His13 His14 Gln15 Lys16
Mean	(Å) 4.9 4.7 4.7 4.7 4.7 4.6 4.7 4.7 4.8 4.9 4.9 4.7 4.4 4.0 4.2 4.7
N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
df 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
SS 0.2284 0.1187 0.0333 0.1150 0.0611 0.0857 0.2358 0.1646 0.0950 0.0994 0.2129 0.5504 0.3355 0.1098 0.1708 0.5024
SSB 3.2231 dfb 15 MSB 0.2149 0.651
SSW 3.1187 dfw 48 MSW 0.0650 0.755
k 16 Gbl	Mean 4.6 F p	<	0.05

Absolute	Differences	of	the	Means
Asp1 Ala2 Glu3 Phe4 Arg5 His6 Asp7 Ser8 Gly9 Tyr10 Glu11 Val12 His13 His14 Gln15 Lys16

Asp1 0 0.121 0.206 0.151 0.158 0.227 0.143 0.157 0.027 0.008 0.008 0.181 0.473 0.824 0.634 0.207
Ala2 0.085 0.030 0.037 0.105 0.022 0.036 0.094 0.113 0.113 0.060 0.351 0.703 0.513 0.085
Glu3 0.054 0.047 0.021 0.063 0.049 0.179 0.198 0.198 0.025 0.267 0.619 0.428 0.001
Phe4 0.007 0.075 0.009 0.006 0.124 0.143 0.143 0.030 0.321 0.673 0.482 0.055
Arg5 0.068 0.016 0.001 0.131 0.150 0.150 0.023 0.314 0.666 0.476 0.048
His6 0.084 0.069 0.200 0.218 0.218 0.045 0.246 0.598 0.407 0.020
Asp7 0.014 0.116 0.135 0.135 0.038 0.330 0.682 0.491 0.064
Ser8 0.130 0.149 0.149 0.024 0.315 0.667 0.477 0.049
Gly9 0.019 0.019 0.154 0.445 0.797 0.607 0.179
Tyr10 0.000 0.173 0.464 0.816 0.626 0.198
Glu11 0.173 0.464 0.816 0.626 0.198
Val12 0.291 0.643 0.453 0.025
His13 0.352 0.161 0.266
His14 0.190 0.618
Gln15 0.427
Lys16 0

HSD	for	0.05	=	5.109	→
HSD	for	0.01	=	5.926	→
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different to His14. Underlined values represent confidence interval of 0.01, red values represent 

confidence intervals of 0.05.   
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Table 3.2. Statistical results (Mean, standard deviation, S.D., of the mean, and standard error, 

S.E., of the mean) of interstrand distance measurements per each amino acid for all studied 

Ab1-16 categories.   

Amino	Acids Mean	(Å) S.D. S.E. Mean	(Å) S.D. S.E. Mean	(Å) S.D. S.E. Mean	(Å) S.D. S.E.

Asp1 5.2 0.36 0.21 5.4 0.40 0.23 5.0 0.47 0.27 5.3 0.34 0.20
Ala2 5.1 0.16 0.09 5.5 0.36 0.21 5.1 0.38 0.22 5.2 0.29 0.17
Glu3 5.1 0.14 0.08 5.4 0.21 0.12 5.1 0.29 0.17 5.3 0.23 0.13
Phe4 5.2 0.31 0.18 5.4 0.11 0.06 5.2 0.05 0.03 5.3 0.14 0.08
Arg5 5.3 0.21 0.12 5.3 0.11 0.06 5.3 0.21 0.12 5.3 0.12 0.07
His6 5.2 0.18 0.11 5.2 0.34 0.20 5.2 0.32 0.18 5.2 0.21 0.12
Asp7 5.1 0.22 0.13 5.3 0.18 0.11 5.2 0.28 0.16 5.2 0.22 0.13
Ser8 5.2 0.03 0.02 5.4 0.05 0.03 5.2 0.42 0.24 5.3 0.07 0.04
Gly9 5.3 0.31 0.18 5.3 0.16 0.09 5.2 0.51 0.30 5.2 0.26 0.15
Tyr10 5.1 0.32 0.18 5.2 0.19 0.11 5.1 0.34 0.20 5.1 0.30 0.17
Glu11 5.1 0.26 0.15 5.2 0.07 0.04 5.0 0.47 0.27 5.2 0.23 0.13
Val12 4.9 0.05 0.03 5.1 0.10 0.06 5.3 0.54 0.31 5.2 0.24 0.14
His13 4.3 0.29 0.17 5.4 0.23 0.13 5.4 0.60 0.35 5.1 0.28 0.16
His14 4.4 0.29 0.17 5.4 0.23 0.13 5.3 0.36 0.21 5.0 0.24 0.14
Gln15 4.7 0.27 0.16 5.1 0.52 0.30 5.3 0.29 0.17 5.0 0.29 0.17
Lys16 4.8 0.51 0.29 4.9 0.43 0.25 5.4 0.21 0.12 5.0 0.31 0.18
Mean 5.0 0.30 0.07 5.3 0.14 0.03 5.2 0.12 0.03 5.2 0.10 0.03

Asp1 4.9 0.28 0.14 4.7 0.30 0.15 4.8 0.29 0.17 4.8 0.21 0.10
Ala2 4.7 0.20 0.10 4.7 0.14 0.07 4.7 0.33 0.19 4.8 0.16 0.08
Glu3 4.7 0.11 0.05 4.8 0.09 0.05 4.8 0.25 0.15 4.8 0.14 0.07
Phe4 4.7 0.20 0.10 4.7 0.10 0.05 5.0 0.37 0.21 4.8 0.15 0.08
Arg5 4.7 0.14 0.07 4.8 0.13 0.07 4.9 0.32 0.19 4.8 0.15 0.07
His6 4.6 0.17 0.08 4.9 0.25 0.12 4.9 0.24 0.14 4.8 0.19 0.10
Asp7 4.7 0.28 0.14 4.8 0.26 0.13 5.2 0.30 0.18 4.8 0.23 0.11
Ser8 4.7 0.23 0.12 4.8 0.25 0.12 5.2 0.31 0.18 4.9 0.23 0.11
Gly9 4.8 0.18 0.09 4.8 0.34 0.17 5.1 0.41 0.23 4.9 0.24 0.12
Tyr10 4.9 0.18 0.09 4.8 0.38 0.19 5.0 0.31 0.18 4.9 0.25 0.13
Glu11 4.9 0.27 0.13 4.8 0.37 0.18 4.9 0.18 0.11 4.9 0.27 0.13
Val12 4.7 0.43 0.21 4.9 0.24 0.12 4.9 0.19 0.11 4.9 0.31 0.15
His13 4.4 0.33 0.17 5.0 0.32 0.16 5.0 0.14 0.08 4.8 0.30 0.15
His14 4.0 0.19 0.10 5.2 0.29 0.14 5.0 0.27 0.16 4.8 0.23 0.11
Gln15 4.2 0.24 0.12 5.0 0.15 0.08 4.8 0.11 0.06 4.7 0.12 0.06
Lys16 4.7 0.41 0.20 4.9 0.45 0.23 5.0 0.14 0.08 4.8 0.21 0.10
Mean 4.6 0.23 0.06 4.9 0.14 0.03 5.0 0.14 0.04 4.8 0.06 0.01

Aβ 1-16-Zn
2+ Zn 2+-Adj Zn 2+-Aff Zn 2+-Global

Aβ 1-16 -Cu
2+ Cu 2+-Adj Cu 2+-Aff Cu 2+-Global
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Table 3.3. Comparison of interstrand distance measurements of different Ab1-16 categories per 

each amino acid pair via one-way Anova; amino acids with significant difference are outlined in 

red. Measurements were collected from at least three independent sets of experiments. Results 

are shown as *, p < 0.05; **, p < 0.01; and ***, p < 0.001.  

Amino	Acids

Asp1 0.1058 ns 0.6317 ns 0.4652 ns 0.4652 ns 0.2477 ns 0.0345 *
Ala2 0.0438 * 0.3100 ns 0.1770 ns 0.1770 ns 0.0663 ns 0.0154 *
Glu3 0.0148 * 0.2012 ns 0.1300 ns 0.1300 ns 0.0040 ** 0.0040 **
Phe4 0.0086 ** 0.3149 ns 0.3543 ns 0.3543 ns 0.0512 ns 0.0004 ***
Arg5 0.0086 ** 0.1972 ns 0.7379 ns 0.7379 ns 0.0061 ** 0.0037 **
His6 0.0591 ns 0.2765 ns 0.7798 ns 0.7798 ns 0.0114 * 0.1556 ns
Asp7 0.0802 ns 0.8900 ns 0.2008 ns 0.2008 ns 0.1470 ns 0.0299 *
Ser8 0.0338 * 0.9645 ns 0.0038 ** 0.0038 ** 0.0200 * 0.0147 *
Gly9 0.1686 ns 0.9459 ns 0.9344 ns 0.9344 ns 0.0695 ns 0.0797 ns
Tyr10 0.2865 ns 0.8217 ns 0.5228 ns 0.5228 ns 0.2580 ns 0.1510 ns
Glu11 0.1588 ns 0.7273 ns 0.6432 ns 0.6432 ns 0.2467 ns 0.1332 ns
Val12 0.1633 ns 0.2640 ns 0.0270 * 0.0270 * 0.4493 ns 0.2362 ns
His13 0.3218 ns 0.2758 ns 0.0055 ** 0.0055 ** 0.6497 ns 0.1378 ns
His14 0.2684 ns 0.3256 ns 0.0118 * 0.0118 * 0.0753 ns 0.4123 ns
Gln15 0.1200 ns 0.0523 ns 0.2328 ns 0.2328 ns 0.0731 ns 0.6397 ns
Lys16 0.4164 ns 0.0825 ns 0.6999 ns 0.6999 ns 0.7264 ns 0.9816 ns
Mean 0.0518 ns 0.2534 ns 0.0501 * 0.0501 * 0.0584 ns 0.0165 *

Zn2+-Global
vs.

Cu2+-Global

Aβ1-16-Cu
2+

vs.
Cu2+-Adj

Zn2+-Aff
vs.

Cu2+-Aff

Aβ1-16-Zn
2+

vs.
Zn2+-Adj

Aβ1-16-Zn
2+

vs.
Aβ1-16-Cu

2+

Zn2+-Adj
vs.

Cu2+-Adj
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Segment Mean (Å) SD SE vs.  Ideal        
(upper limit: 5.0 Å)

vs.  Ideal          
(lower limit: 4.5 Å)

vs. mean 
of 1-16

vs.  mean 
of 1-11

1-16 4.6 0.23 0.06 -7% 3% - -2%
1-11 4.8 0.08 0.03 -5% 6% 2% -
12-16 4.4 0.28 0.14 -12% -2% -5% -7%
His13 4.4 0.33 0.17 -12% -2% -5% -8%
His14 4.0 0.19 0.10 -19% -10% -13% -15%

1-16 4.9 0.14 0.03 -3% 8% - 2%
1-11 4.8 0.05 0.02 -4% 6% -2% -
12-16 5.0 0.12 0.06 - 12% 3% 5%
His13 5.0 0.32 0.16 1% 12% 4% 5%
His14 5.2 0.29 0.14 4% 16% 7% 9%

1-16 5.0 0.14 0.04 -1% 10% - -
1-11 5.0 0.16 0.05 -1% 11% - -

12-16 4.9 0.08 0.04 -1% 10% -0.5% -1%
His13 5.0 0.14 0.08 - 11% - -
His14 5.0 0.27 0.16 -1% 10% - -

1-16 4.8 0.06 0.01 -4% 7% - -
1-11 4.8 0.05 0.01 -3% 7% - -

12-16 4.8 0.07 0.03 -4% 7% -1% -1%
His13 4.8 0.30 0.15 -4% 7% - -
His14 4.8 0.23 0.11 -4% 6% -1% -1%

1-16 5.0 0.30 0.07 - 11% - -3%
1-11 5.2 0.08 0.02 3% 15% 3% -

12-16 4.6 0.25 0.13 -8% 3% -8% -11%
His13 4.3 0.29 0.17 -14% -5% -14% -17%
His14 4.4 0.29 0.17 -11% -1% -11% -14%

1-16 5.3 0.14 0.03 6% 18% - -1%
1-11 5.3 0.09 0.03 7% 18% 1% -

12-16 5.2 0.20 0.10 4% 16% -2% -2%
His13 5.4 0.23 0.13 9% 21% 3% 2%
His14 5.4 0.23 0.13 8% 20% 2% 1%

1-16 5.2 0.12 0.03 4% 16% - 1%
1-11 5.1 0.09 0.03 3% 14% -1% -

12-16 5.3 0.07 0.03 7% 19% 2% 4%
His13 5.4 0.60 0.35 9% 21% 4% 5%
His14 5.3 0.36 0.21 5% 17% 1% 2%

1-16 5.2 0.10 0.03 3% 15% - -1%
1-11 5.2 0.04 0.01 5% 16% 1% -

12-16 5.1 0.09 0.04 1% 12% -2% -3%
His13 5.1 0.28 0.16 1% 12% -2% -3%
His14 5.0 0.24 0.14 - 11% -3% -4%

Zn2+-Adj 

Zn2+-Aff

Zn2+-Global

Aβ1-16-Cu2+ 

Cu2+-Adj 

Cu2+-Aff

Cu2+-Global

Aβ1-16-Zn2+ 
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Table 3.4. Comparison of average interstrand distance values of the full length Ab1-16 peptide 

(1-16), first 11 residues from the N-terminus (1-11), last 4 residues of C-terminus (12-16), His13 

and His 14 to ideal interstrand distance (upper 5.0 Å and lower values 4.5 Å), average of 1-16 

and 1-11 residues of Ab1-16 peptide. Positive values represent increases in interstrand distance 

while negative values represent decreases in interstrand distance between examined pairs. 
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Figure 3.4. (a) Scheme of Ab1-16 sequence with a bound metal ion. Predicted distance from the 

metal ion binding site to the C-terminus is 8.12 Å. (b) Comparison between length from the 

metal ion binding site to the C-terminus of predicted (P) Aβ1-16 (black) and measured Aβ1-16-Zn2+ 

(blue) and Aβ1-16-Cu2+ (red). Total length of Aβ1-16-Zn2+ is significantly (p = 0.0117) greater in 

comparison to Aβ1-16-Cu2+, 9.52 ± 0.3 Å and 8.14 ± 0.2 Å, respectively. (c) Comparison of 

inter-residue distances of the three Aβ1-16 strand categories (Scheme 3.1) and two segments based 

on deformation due to ion binding (residues 1-13 vs. residues 14-16). Residues that are not in 

direct contact with M2+ show compact, less than ideal, inter-residue separations of 3.25 Å – 

dashed black line (Panels 1-3). Residues adjacent to M2+ binding site show distorted, larger than 

ideal residue-residue distances. This distortion is most likely due to vacancies created by the 

metal ion binding between strands of Aβ1-16-M2+ and M2+-Adj. These peptides, in the residue 

14-16 segment, show higher than ideal inter-residue separations (Panel 4). Zn2+ (blue) and Cu2+ 

(red) have different effects on the C-terminus of Aβ1-16-M2+ (Panel 5). This difference can be 
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observed from significantly larger (p = 0.0117) inter-residue distances of Aβ1-16-Zn2+ than 

Aβ1-16-Cu2+ in residues 14-16. Zn2+ ions create a strong, local effect on the C-terminus of 

Aβ1-16-M2+, which ultimately leads to a distortion of the C-terminus. Cu2+ ions, in contrast to 

Zn2+, show a strong and long-range effect on Aβ1-16-M2+. This effect ultimately contributes to the 

stabilizing interactions between neighboring peptide strands that results in the overall greater 

β-sheet character. Measurements were collected from at least three independent sets of 

experiments. Error bars represent standard error (S.E.); to determine significance one-way Anova 

was used. Results are shown as *, p < 0.05; **, p < 0.01; and ***, p < 0.001.  
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Figure 3.5. (a) Ab1-16 sequence; upon Cu2+ (red) and Zn2+ (blue) binding to Ab1-16 in interstrand 

fashion between His13 and His14 the highlighted amino acids undergo structural deformation 

acquiring interstrand distances smaller (≤4.4 Å) than the ideal b-sheet range (4.5−5.0 Å). Both 

metal ions have prominent structural effects on certain residues (highlighted), which ultimately 

lead to global ordering of Ab1-16 peptides (for more details see Figure 3.6 and Table 3.5).  

(b) Residues prone to structural deformation upon Ab1-16 interaction with Zn2+, besides His13 and 

His14, are Asp7 and Gln15. (c) Affected residues, besides His13 and His14, in Ab1-16 due to Cu2+ 

binding are Glu3, His6, Gln15, and Lys16. Compared to Cu2+-Aff these residues undergo 

significant strand-to-strand deformation towards adapting small (≤4.4 Å) interstrand distance 
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with similar residues from adjacent strands. Measurements were collected from at least three 

independent experiments. Error bars represent standard error (S.E.); to determine significance, 

one-way Anova was used. Results are shown as *, p < 0.05; **, p < 0.01; and ***, p < 0.001. 
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Figure 3.6. Amino acid frequencies in three interstrand distance categories: small (≤4.4 Å), ideal 

b-sheet range (4.5−5.0 Å), and large (≥5.1 Å) for Aβ1-16 categories and their corresponding 

frequencies of residues in those categories. Error bars represent standard error (S.E.) 
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Table 3.5. Comparison of interstrand distance frequencies (Figures 3.5 and 3.6) of different 

Ab1-16 categories per each amino acid pair via one-way Anova; amino acids with significant 

difference are outlined in red. Measurements were collected from at least three independent 

experiments. Results are shown as *, p < 0.05; **, p < 0.01; and ***, p < 0.001. 

  

Aβ1-16-Cu
2+

Aβ1-16-Cu
2+

Cu
2+

-Adj Aβ1-16-Cu
2+

Aβ1-16-Cu
2+

Cu
2+

-Adj Aβ1-16-Cu
2+

Aβ1-16-Cu
2+

Cu
2+

-Adj

vs. vs. vs. vs. vs. vs. vs. vs. vs.
Cu

2+

-Aff Cu
2+

-Adj Cu
2+

-Aff Cu
2+

-Aff Cu
2+

-Adj Cu
2+

-Aff Cu
2+

-Aff Cu
2+

-Adj Cu
2+

-Aff

Asp1 0.628 ns 0.780 ns 0.504 ns 0.342 ns 0.332 ns 0.632 ns 0.694 ns 0.379 ns 0.809 ns
Ala2 0.466 ns 0.792 ns 0.205 ns 0.263 ns 0.092 ns 0.040 * 0.875 ns 0.256 ns 0.252 ns
Glu3 0.043 * 0.110 ns 0.084 ns 0.093 ns 0.729 ns 0.051 ns 0.807 ns 0.112 ns 0.383 ns
Phe4 0.524 ns 0.870 ns 0.302 ns 0.167 ns 0.581 ns 0.219 ns 0.090 ns 0.465 ns 0.146 ns
Arg5 0.641 ns 0.956 ns 0.701 ns 0.911 ns 0.837 ns 0.979 ns 0.763 ns 0.844 ns 0.679 ns
His6 0.005 ** 0.062 ns 0.356 ns 0.286 ns 0.647 ns 0.223 ns 0.688 ns 0.111 ns 0.426 ns
Asp7 0.175 ns 0.804 ns 0.199 ns 0.556 ns 0.682 ns 0.427 ns 0.293 ns 0.972 ns 0.281 ns
Ser8 0.000 *** 0.250 ns 0.080 ns 0.799 ns 0.110 ns 0.355 ns 0.122 ns 0.798 ns 0.106 ns
Gly9 0.736 ns 0.237 ns 0.458 ns 0.223 ns 0.679 ns 0.295 ns 0.428 ns 0.706 ns 0.322 ns
Tyr10 0.890 ns 0.811 ns 0.732 ns 0.223 ns 0.986 ns 0.389 ns 0.288 ns 0.932 ns 0.383 ns
Glu11 0.674 ns 0.413 ns 0.207 ns 0.742 ns 0.435 ns 0.522 ns 0.930 ns 0.892 ns 0.984 ns
Val12 0.159 ns 0.481 ns 0.472 ns 0.316 ns 0.659 ns 0.375 ns 0.847 ns 0.794 ns 0.669 ns
His13 0.024 * 0.031 * 0.955 ns 0.112 ns 0.038 * 0.923 ns 0.648 ns 0.557 ns 0.946 ns
His14 0.017 * 0.006 ** 0.625 ns 0.891 ns 0.609 ns 0.491 ns 0.023 * 0.001 *** 0.798 ns
Gln15 0.003 ** 0.001 *** 0.390 ns 0.088 ns 0.476 ns 0.251 ns 0.269 ns 0.015 * 0.262 ns
Lys16 0.014 * 0.557 ns 0.099 ns 0.340 ns 0.105 ns 0.684 ns 0.453 ns 0.856 ns 0.388 ns

Aβ1-16-Zn
2+

Aβ1-16-Zn
2+

Zn
2+

-Adj Aβ1-16-Zn
2+

Aβ1-16-Zn
2+

Zn
2+

-Adj Aβ1-16-Zn
2+

Aβ1-16-Zn
2+

Zn
2+

-Adj

vs. vs. vs. vs. vs. vs. vs. vs. vs.
Zn

2+

-Aff Zn
2+

-Adj Zn
2+

-Aff Zn
2+

-Aff Zn
2+

-Adj Zn
2+

-Aff Zn
2+

-Aff Zn
2+

-Adj Zn
2+

-Aff

Asp1 0.919 ns 0.438 ns 0.531 ns 0.680 ns 0.532 ns 0.947 ns 0.649 ns 0.896 ns 0.505 ns
Ala2 0.514 ns 0.293 ns 0.438 ns 0.536 ns 0.510 ns 0.762 ns 0.749 ns 0.622 ns 0.504 ns
Glu3 0.958 ns 0.968 ns 0.992 ns 0.746 ns 0.276 ns 0.421 ns 0.757 ns 0.265 ns 0.448 ns
Phe4 0.457 ns 0.749 ns 0.787 ns 0.044 * 0.033 * 0.303 ns 0.205 ns 0.022 * 0.068 ns
Arg5 0.864 ns 0.769 ns 0.881 ns 0.954 ns 0.473 ns 0.528 ns 0.914 ns 0.747 ns 0.680 ns
His6 0.568 ns 0.744 ns 0.299 ns 0.283 ns 0.618 ns 0.850 ns 0.668 ns 0.547 ns 0.738 ns
Asp7 0.015 * 0.018 * 0.627 ns 0.207 ns 0.674 ns 0.403 ns 0.372 ns 0.303 ns 0.704 ns
Ser8 0.941 ns 0.519 ns 0.696 ns 0.810 ns 0.733 ns 0.974 ns 0.871 ns 1.000 ns 0.871 ns
Gly9 0.348 ns 0.387 ns 0.178 ns 0.704 ns 0.234 ns 0.104 ns 0.820 ns 0.466 ns 0.698 ns
Tyr10 0.756 ns 0.688 ns 0.928 ns 0.940 ns 1.000 ns 0.940 ns 0.761 ns 0.766 ns 0.996 ns
Glu11 0.926 ns 0.968 ns 0.897 ns 0.342 ns 0.562 ns 0.824 ns 0.536 ns 0.781 ns 0.837 ns
Val12 0.166 ns 0.418 ns 0.664 ns 0.811 ns 0.371 ns 0.874 ns 0.503 ns 0.746 ns 0.674 ns
His13 0.003 ** 0.006 ** 0.439 ns 0.500 ns 0.180 ns 0.930 ns 0.090 ns 0.035 * 0.703 ns
His14 0.011 * 0.021 * 0.433 ns 0.660 ns 0.797 ns 0.603 ns 0.112 ns 0.058 ns 0.834 ns
Gln15 0.006 ** 0.218 ns 0.207 ns 0.987 ns 0.356 ns 0.559 ns 0.098 ns 0.242 ns 0.766 ns
Lys16 0.180 ns 0.892 ns 0.216 ns 0.624 ns 0.262 ns 0.714 ns 0.125 ns 0.524 ns 0.331 ns

Small	(≤4.4	Å) Normal	(4.5	Å−5.0	Å) Large	(≥5.1	Å)
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CHAPTER 4 

Copper Ion Interactions with the C-terminus of the β‑Amyloid Peptide
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4.1 Introduction 

The last 26 amino acid residues of the C-terminus of β-amyloid (Aβ) are known as 

Aβ17-42 or p3; this segment is generated via the non-amyloidogenic pathway. Therefore, Aβ17-42 

has been considered non-pathogenic and, thus, a benign form of Aβ.1 The benign nature of 

Aβ17-42 was questioned after it was found in cerebral pre-amyloid plaques in patients with 

Alzheimer's disease (AD) and pre-amyloid lesions (neuritic plaques) in patients with Down 

syndrome (DS).2,3 Nevertheless, until now, its role and its function remain undefined.  

The structural information available about Aβ17-42 indicates that it does not form stable 

oligomers; nevertheless, it is a structural determinant for Aβ fibril assembly. The main feature of 

the segment is an intrastrand salt bridge. The salt bridge can be formed either between aspartic 

acid at position 23 and lysine at position 28 (Asp23-Lys28)4-6 or between glutamic acid at position 

22 and lysine at position 28 (Glu22-Lys28).7,8 The purpose of the salt bridge is hypothesized to be 

stabilization of the hairpin-like hook structure of Aβ, facilitation of Aβ17-42 oligomer formation, 

and consequent propagation of Aβ to fibrils.9 

Previous studies have investigated disruption of the salt bridge by subjecting Aβ17-42 to 

mutations, host molecules, and zinc ions.5,10-12 In these studies, salt bridge disruption resulted in 

the formation of amorphous aggregates instead of fibrils. It has also been found that although the 

non-salt-bridge conformation of Aβ has a similar cross-β structure, it has distinct fibrillar 

morphology compared with Aβ with a salt bridge present in its conformation.5,13 In addition, 

experimental results showed that Zn2+ ions disrupt the salt bridge in Aβ17-42 without altering its 

hairpin secondary structure.5 

The effects of salt bridge disruption and formation versus consequent Aβ structural 

changes have been extensively investigated by employing molecular dynamics (MD) 
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simulations; based on these MD simulations, different models of Zn2+ and Cu2+ interactions with 

Aβ peptides have been proposed. Interestingly, in those models, it is predicted that Cu2+ ions 

have the opposite effect on Aβ17-42 than Zn2+ ions do. Specifically, Cu2+ ions promote salt bridge 

formation, whereas Zn2+ ions disrupt it. Nevertheless, so far, there are no experimental reports to 

test these MD simulation results.7,14  

Finally, the crystal structure of the C-terminus of Aβ – specifically, Aβ18-41 – was 

determined in 2011 by Streltsov et al.15 Based on their crystal data, we know that the C-terminus 

of Aβ forms two distinct motifs. The first motif (Val18-Ile31) has a β-α structure, and the second 

motif (Ile32-Ile41) has a β-hairpin structure, comprising two anti-parallel β-strands. It is critical to 

realize that the only available crystal structure of Aβ18-41 has been determined by 

fusing/complexing Aβ18-41 with other proteins for crystallization purposes. Moreover, to our 

knowledge, the native structure of the C-terminus of Aβ remains unresolved.  

The goal of the present study is to investigate the effects of Cu2+ ions on the secondary 

structure of Aβ17-42, including potential alterations in the salt bridge in Aβ17-42 due to Cu2+ ions 

and potential Cu2+ binding to Aβ17-42. To observe the interaction of Cu2+ ions with Aβ17-42, we 

employed cyclic voltammetry (CV), surface-enhanced Raman spectroscopy (SERS), atomic 

force microscopy (AFM), scanning tunneling microscopy (STM), and X-ray photoelectron 

spectroscopy (XPS). 

 

4.2 Results and Discussion 

4.2.1 Cyclic Voltammetry 

Voltammetry of free Cu2+ and Aβ17-42 incubated with Cu2+ (Aβ17-42-Cu2+) showed 

oxidation and reduction peaks within the ranges 0.3–0.7 V and 0–0.2 V, respectively (Figure 
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4.1). These peaks correspond to oxidation and reduction of Cu2+ ions, respectively. The current 

values corresponding to these voltammetry peaks are smaller in Aβ17-42-Cu2+ because the Cu2+ 

ions in Aβ17-42-Cu2+ are complexed or bound to the peptide. Consequently, Cu2+ ions in the 

complexed or bound state have lower diffusion coefficients because they do not move as easily 

as free Cu2+ ions do.  

Furthermore, the literature based on in-vitro experiments indicates that Cu2+ upon binding 

to Aβ, due to electron transfer, gets reduced to Cu+ (Cu2+ → Cu+). Cu2+ reduction leads to 

changes in the binding configuration of the Aβ-Cu2+ complex from a four-coordination (distorted 

square planar Cu2+) arrangement to two-coordination (linear Cu+) arrangement.16-19 Ultimately, 

this internal reorganization of Aβ-Cu2+ complex induced by Cu+ electron transfer activity can be 

deduced through differences in cathodic-to-anodic peak separation.20 

For Aβ17-42-Cu2+, voltammetry showed peak-to-peak separation of 0.23 V (0.37 V - 

0.14 V ＝ 0.23 V). The presence of this cathodic-to-anodic peak separation exhibited in the 

voltammetry of Aβ17-42-Cu2+ indicates that the rapid heterogeneous electron transfer rate of Cu2+ 

had an effect on the structure of Aβ17-42 and caused rearrangements in Aβ17-42-Cu2+ binding 

configuration. 

In Aβ17-42 voltammetry, we observed broad bands resembling oxidation and reduction 

peaks; however, these peaks are different from the ones which we observed in Aβ17-42-Cu2+ and 

Cu2+ voltammetries, and thus, we conclude they are not related to Cu2+ oxidation. According to 

the literature, small and broad oxidation and reduction bands that are present in Aβ17-42 

voltammetry originate from cycling of redox-active residues, which are present in Aβ17-42 

segment, such as methionine residue at position 35 (Met35), respectively.21,22 Additionally, owing 

to the absence of Cu2+ ions, there is a lack of cathodic-to-anodic peak separation in Aβ17-42 
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voltammetry, unlike in Aβ17-42-Cu2+ voltammetry, which indicates that there is no structural 

change in Aβ17-42. 

 

4.2.2 Surface-Enhanced Raman Spectroscopy 

Surface-enhanced Raman spectroscopy results indicated that in the presence of Cu2+ ions, 

the Aβ17-42-Cu2+ peptide complex adopts a secondary structure that is a mixture of α-helical and 

β-sheet character (Table 4.1 and Figure 4.2). A mixture of α-helical and β-sheet elements in 

Aβ17-42-Cu2+ was deduced from the bands located in the amide I region (1600–1700 cm-1).32,78 

Specifically, one band each at 1705 cm-1 and 1646 cm-1 indicated β-sheet and α-helical 

secondary structures, respectively.23-26 Furthermore, the presence of both secondary structures in 

Aβ17-42-Cu2+ was confirmed based on bands found in the amide III region (1200–

1300 cm-1).25,26,31,79 Specifically, bands at both 1219 and 1236 cm-1 correspond to β-sheet 

secondary structure;28,44,60,61 whereas, a band at 1285 cm-1 corresponds to α-helical secondary 

structure.28,58 Finally, a band at 946 cm-1, which is considered to be a signature of an α-helix, 

confirmed the presence of this secondary structure.30,60,77 

Similar to Aβ17-42-Cu2+, Aβ17-42 showed the presence of both α-helical and β-sheet 

elements in its secondary structure, as deduced on the basis of bands located in the amide I 

region. Specifically, bands at 1705 and 1623 cm-1 indicated the presence of both β-sheet and 

α-helical structures, respectively.23,24,27,28 The latter was confirmed by the bands located in the 

amide III region at 1308 cm-1 and 1287 cm-1, which also corresponds to an α-helical secondary 

structure.53-59 However, in contrast to Aβ17-42-Cu2+, Aβ17-42 did not show a band in the amide III 

region corresponding to a β-sheet secondary structure. 
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To summarize our vibrational spectroscopy findings, in Aβ17-42-Cu2+, both regions – 

amide I and amide III – showed bands that corresponded to α-helical and β-sheet secondary 

structures, respectively. Thus, we conclude that the Aβ17-42-Cu2+ complex retains both these 

secondary structures. In contrast to Aβ17-42-Cu2+, in Aβ17-42, SERS results based on bands in the 

amide I region indicated the presence of both α-helical and β-sheet secondary structures (Table 

4.1 and Figure 4.2). However, a band corresponding to the latter secondary structure was absent 

in the amide III region, whereas it was present in the case of Aβ17-42-Cu2+. Therefore, we 

conclude that in comparison with Aβ17-42-Cu2+, in Aβ17-42, α-helical character is more 

pronounced than β-sheet character.  

The above results indicating the presence of β-sheet secondary structure character in 

Aβ17-42 are in agreement with literature results. This secondary structure in Aβ17-42 results from 

the salt bridge between Asp23 and Lys284-6 (or Glu22 and Lys287,8). Additionally, based on SERS 

spectral analyses of Aβ17-42 and Aβ17-42-Cu2+, it is apparent that 1) Aβ17-42 is structurally different 

from Aβ17-42-Cu2+; thus, Cu2+ ions alter the secondary structure of Aβ17-42; and 2) Cu2+ ions 

promote β-sheet secondary structure character within the Aβ17-42-Cu2+ system. However, based 

on the SERS results, it remains undetermined whether the enhancement of the β-sheet element 

within Aβ17-42-Cu2+ is due to increased β-sheet character within single molecules or to increased 

overall lamination of Aβ17-42 peptides (i.e., peptide-peptide interactions). 

 

4.2.3 Atomic Force Microscopy 

Although it is now possible to utilize AFM to examine structural states of adsorbed 

molecules and biomolecules with sub-molecular resolution,80,81 we employed STM, which has 

higher spatial resolution except under special circumstances (specific non-contact modes of 
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AFM), to investigate structural states of Aβ17-42 and its interaction with Cu2+ ions (covered in 

section 4.2.4). Herein, we utilized AFM to investigate the overall aggregation state of Aβ17-42 vs. 

Aβ17-42-Cu2+ based on parameters such as size and frequency of aggregates and overall surface 

roughness due to aggregate size. In the present study, the following two outcomes were possible: 

first, if Cu2+ ions do not structurally influence Aβ17-42, then the aggregation states of Aβ17-42 and 

Aβ17-42-Cu2+ would be similar. Second, if Cu2+ ions structurally influence Aβ17-42, then the 

aggregation states of Aβ17-42 and Aβ17-42-Cu2+ would be different. Generally, binding of Cu2+ to 

Aβ results in rapid Aβ aggregation.82-84 Thus, we were interested to investigate whether Cu2+ 

ions result in enhanced aggregation of Aβ17-42; ultimately, such results would signify alteration of 

the structural state of Aβ17-42 due to Cu2+ ions. 

The atomic force microscopy results presented in Figure 4.3 indicate different 

aggregation states of Aβ17-42 after incubating peptides for 1 hr with (Aβ17-42-Cu2+) and without 

Cu2+ (Aβ17-42) ions. Specifically, Aβ17-42-Cu2+, in comparison with Aβ17-42, results in larger 

aggregate size and more significant surface coverage. In addition, we confirmed that Cu2+ ions 

result in more extensive aggregation of Aβ17-42 via surface roughness analysis, which indicated 

that Aβ17-42-Cu2+ and Aβ17-42 result in roughness average values (Ra) of 0.524 nm and 0.364 nm, 

respectively (Figure 4.4).  

According to the protein and amyloid aggregation pathways, the β-sheet secondary 

structure is a requirement for protein and amyloid aggregation. The general aggregation trend 

proceeds from disordered species (molecules rich in random coil and α-helical elements) to 

partially folded species (species that are a mixture of α-helices and β-sheets) to oligomers 

(species with β-sheet secondary structure) and finally to fibrils (proteins/amyloids composed of 

organized and stacked β-sheets).85,86 The SERS results indicated a higher β-sheet content in 
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Aβ17-42-Cu2+ than in Aβ17-42. Furthermore, AFM results indicated higher aggregation of 

Aβ17-42-Cu2+ than of Aβ17-42. Based on SERS and AFM results, we conclude that Aβ17-42-Cu2+ 

must be further in the aggregation pathway than Aβ17-42. Thus, Cu2+ ions interact with Aβ17-42 

peptides. These interactions ultimately lead to the higher aggregation state of Aβ17-42-Cu2+ than 

Aβ17-42.  

 

4.2.4 Scanning Tunneling Microscopy  

The secondary structure of biological molecules and their interaction with metal ions are 

distinguishable with STM. Considering the apparent effect of Cu2+ ions on the aggregation of 

Aβ17-42, we employed STM to investigate the structural conformation of Aβ17-42-Cu2+ and its 

putative metal ion-binding site (Figure 4.5). Because the secondary structure of Aβ18-41 has been 

elucidated via X-ray diffraction (XRD) analysis,15 Aβ17-42 without the presence of metal ions was 

not a subject of interest to us in investigating its structure via STM. Thus, herein, we analyzed 

collected STM micrographs of Aβ17-42-Cu2+ for peptidyl length as well as interstrand separation. 

Disordered molecular assemblies elucidated via STM, due to the absence of periodicity, are 

observed as disordered mesh structures;87,88 i.e., we expect that if Aβ17-42-Cu2+ has a random coil 

conformation, then the molecular assembly of Aβ17-42-Cu2+ will not be determined using STM. In 

contrast to a random coil conformation, α-helical or β-sheet conformations of biological 

molecules, owing to their specific surface arrangements, are easily distinguishable in STM 

micrographs.89-92 Finally, if Aβ17-42 has a metal ion-binding site, then in the Aβ17-42-Cu2+ system, 

it would be observed as a non-periodic protruding feature.92,93 

Figure 4.5 shows an STM micrograph of Aβ17-42-Cu2+ deposited on highly oriented 

pyrolytic graphite (HOPG). We excluded the likelihood of Aβ17-42-Cu2+ having a random coil 
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conformation because, as mentioned above, the molecular structure of Aβ17-42-Cu2+ of the 

random coil conformation would be elucidated via STM as a disordered mesh structure; 

additionally, the signature of random coil conformation would be observed in SERS. 

The average measured peptidyl length and interstrand separation of Aβ17-42-Cu2+ peptides 

are 54.8 ± 1.3 Å and 5.5 ± 0.2 Å, respectively. Based on the interstrand separation of 5.5 ± 0.2 Å, 

laminated Aβ17-42-Cu2+ peptides cannot be classified either as α-helical or β-sheet secondary 

structures. Biological molecules with α-helical and β-sheet secondary structures arrange into 

assemblies with interstrand separations of ~10.5 Å and ~4.7 Å, respectively.89-92,94,95 Taking into 

consideration that SERS results indicating the presence of both α-helical and β-sheet elements in 

Aβ17-42-Cu2+, we hypothesize that the interstrand separation of Aβ17-42-Cu2+ is neither β-sheet nor 

α-helix owing to the presence of both secondary structure elements in Aβ17-42-Cu2+ strands. 

Rather, the interstrand separation of 5.5 ± 0.2 Å indicates mix of α-helical and β-sheet elements 

of Aβ17-42-Cu2+ assemblies on the surface. 

Based on the measured peptidyl length of 54.8 ± 1.3 Å, there are two potential surface 

arrangements for Aβ17-42-Cu2+ peptides. First, owing to the presence of a salt bride between 

Asp23 and Lys28 (or Glu22 and Lys28), Aβ17-42-Cu2+ could have a folded conformation. Second, 

owing to the yet unknown proportions of α-helix and β-sheet elements per Aβ17-42-Cu2+ complex, 

it is possible that the length of 54.8 ± 1.3 Å is due to a linear configuration of Aβ17-42-Cu2+. 

However, the latter cannot be verified since the proportions of the α-helix and β-sheet elements 

per Aβ17-42-Cu2+ complex are unknown. 
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4.2.5 X-Ray Photoelectron Spectroscopy 

We have determined the effects of Cu2+ ions on Aβ17-42 structure using both SERS and 

AFM. However, direct binding of metal ions to Aβ17-42 peptides was not observed 

dirrectly via STM. Nevertheless, the lack of protruding features in STM images, which would 

suggest direct Cu2+ binding to Aβ17-42, does not indicate the absence of such interactions. For 

instance, if Cu2+ ions bind to Aβ17-42 but conformationally stay underneath the backbone of the 

peptide or if Cu2+ ions bind between two Aβ17-42 strands in the direction of Z-axis, then their 

presence in either of those cases would not necessary have been observed via ambient STM. 

Thus, to investigate the presence of Cu2+ in STM samples of Aβ17-42-Cu2+, we employed 

XPS (Figure 4.6). However, because all tested samples, even those that were incubated in excess 

Cu2+, showed negative results for the presence of Cu2+ ions, we conclude that the negative results 

were obtained owing to the limited sensitivity of XPS and not to the absence of Cu2+ ions in the 

tested samples.  

 

4.3 Conclusions and Prospects 

In this study, we investigated the effects of Cu2+ ions on the structure of Aβ17-42. Both 

SERS and AFM showed complementary results, the findings of which indicated that Cu2+ ions 

affect the aggregation of Aβ17-42 peptides. Specifically, Cu2+ ions enhance the aggregation of 

Aβ17-42 peptides. With increased aggregation, we also observed changes in the secondary 

structures of the Aβ17-42 peptides. Specifically, in the presence of Cu2+ ions, Aβ17-42 peptides shift 

from an α-helical secondary structure to a β-sheet secondary structure. The presence of both 

secondary structures has also been confirmed by STM measurements of interstrand separation. 
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However, more single-molecule experiments are required in order to investigate the reasons 

underlying the structural changes in Aβ17-42 in the presence of Cu2+ ions.   
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4.4 Materials and Methods 

4.4.1 Cyclic Voltammetry Sample Preparation 

Solutions were prepared in a glass vial with final total volume of 400 μL for all samples (Cu2+, 

Aβ17-42, and Aβ17-42-Cu2+). Aβ17−42 molarity was kept constant between samples: 6.4 × 10−7 M. 

The Aβ17-42 solution mixture was prepared by mixing 20 μL of phosphate-buffered saline at pH 

6.8, 200 μL of acetonitrile (Sigma-Aldrich Fluka Analytical, St. Louis, MO, purity >99.9%), 

179 μL of double-distilled water, and 1 μL of Aβ17-42 (rPeptide, Premiere Peptide Solutions, 

Bogart, GA, >90% purity). Before depositing Aβ17-42 solution onto gold substrates, the surface of 

the gold substrate was cleaned with ethanol and oxygen plasma. The Aβ17-42-Cu2+ solution 

mixture was prepared by mixing 20 μL of phosphate-buffered saline at pH 6.8, 10 μL of Cu2+ 

(Sigma-Aldrich Fluka Analytical Copper Standard for ICP 1001 ± 2 mg/L), 200 μL of 

acetonitrile, 169 μL of double-distilled water, and 1 μL of Aβ17-42 solution. Aβ17-42 and 

Aβ17-42-Cu2+ solution were incubated before deposition onto the substrate and dried in a vacuum 

desiccator. The samples were immersed in double-distilled water for final cleaning. 

 

4.4.2 Cyclic Voltammetry Measurements 

Electrochemical experiments were performed using Gamry Reference 600 using a plastic 

electrochemical cell. A saturated calomel electrode, isolated from Ag/AgCl solution by a glass 

frit, and a platinum wire were used as reference and counter electrodes, respectively. The 

working electrode was a gold O-ring electrode washed with water and ethanol before and placed 

on top of the gold substrate with the deposited sample. The electrolyte solution was 5 mM 

phosphate-buffered saline at pH 6.8. Before each experiment, the electrolyte solutions were 

degassed by bubbling nitrogen gas into them. The potential was cycled at 50 mV/s at room 
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temperature. Cyclic voltammetry was performed in the potential range of -0.3 to 1.0 V vs. 

Ag/AgCl.  

 

4.4.3 Surface-Enhanced Raman Spectroscopy Sample Preparation 

Silver–coated gold nanostars for Aβ17-42 and Aβ17-42-Cu2+ SERS measurements were prepared, as 

described previously.99 Aβ17−42 and Aβ17−42-Cu2+ solutions were prepared in a glass vial with a 

final total volume of 400 μL for both samples. Aβ17−42 molarity was kept constant between 

samples: 6.4 × 10−7 M. In the Aβ17−42-Cu2+ samples, the final Cu2+ concentration was 

7.8 × 10−6 M. The Aβ17−42 solution mixture was prepared by mixing 20 μL of phosphate-buffered 

saline at pH 6.8, 200 μL of acetonitrile (Sigma-Aldrich Fluka Analytical, St. Louis, MO, purity 

>99.9%), 172 μL silver–coated gold nanostars solution 7 μL of double-distilled water, and 1 μL 

of Aβ17−42 (rPeptide, Premiere Peptide Solutions, Bogart, GA, > 90% purity). Both solutions 

upon preparation were incubated for 10 min at room temperature. Afterwards, Aβ17−42 solution 

was deposited onto glass substrate for 5 min and spin cast at 7000 rpm to get rid of excess 

solution from the glass substrate. The Aβ17−42-Cu2+ solution mixture was prepared by mixing 

20 μL of phosphate-buffered saline at pH 6.8, 2 μL of Cu2+ (Sigma Aldrich Fluka Analytical, 

Copper Standard for ICP 1001 ± 2 mg/L), 200 μL of acetonitrile, 172 μL silver–coated gold 

nanostars solution 5 μL of double-distilled water, and 1 μL of Aβ17−42 solution. 

 

4.4.4 Surface-Enhanced Raman Spectroscopy Measurements 

A Renishaw inVia Raman system (Renishaw, IL) operating under ambient conditions was 

employed for Raman analyses. Spectral analyses were performed via WiRE spectral acquisition 

wizard. During SERS measurements, a 633 nm edge (mode: regular) He−Ne laser was used as 
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the Raman excitation source to match the resonant wavelength of the substrate. Laser power, slit 

opening, and objective were ∼0.25%, ∼50 μm (centre 1733 μm), and 50x respectively. Spectra 

were acquired as a single-scan measurement. Exposure time of each measurement was 2 s. 

 

4.4.5 Atomic Force Microscopy Sample Preparation 

Aβ17−42 and Aβ17−42-Cu2+ solutions were prepared in a glass vial with a final total volume of 

400 μL for both samples. Aβ17−42 molarity was kept constant between samples: 6.4 × 10−7 M. In 

the Aβ17−42-Cu2+ samples, the final Cu2+ concentration was 7.8 × 10−6 M. The Aβ17−42 solution 

mixture was prepared by mixing 20 μL of phosphate-buffered saline at pH 6.8, 200 μL of 

acetonitrile (Sigma-Aldrich Fluka Analytical, St. Louis, MO, purity >99.9%), 179 μL of double-

distilled water, and 1 μL of Aβ17−42 (rPeptide, Premiere Peptide Solutions, Bogart, GA, >90% 

purity). Both solutions upon preparation were incubated for 1 hr at room temperature. 

Afterwards, Aβ17−42 solution was deposited onto HOPG for a 1 min and blown off using nitrogen 

gas. The Aβ17−42-Cu2+ solution mixture was prepared by mixing 20 μL of phosphate-buffered 

saline at pH 6.8, 2 μL of Cu2+ (Sigma Aldrich Fluka Analytical, Copper Standard for ICP 1001 ± 

2 mg/L), 200 μL of acetonitrile, 177 μL of double-distilled water, and 1 μL of Aβ17−42 solution. 

 

4.4.6 Atomic Force Microscopy Measurements 

All AFM measurements were performed under ambient conditions at the California 

NanoSystems Institute (NanoPico Characterization laboratory) using a Bruker FastScan system 

(Bruker, Billerica, MA) under PeakForce tapping mode with a ScanAsyst-Air cantilevers 

(Bruker, spring constant = 0.4 ± 0.1 N/m).  
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4.4.7 Scanning Tunneling Microscopy Sample Preparation 

Scanning tunneling microscopy sample preparation was identical to AFM sample preparation 

with the exception of solution deposition onto HOPG. Both solutions, Aβ17−42 and Aβ17−42-Cu2+, 

were deposited onto HOPG for 1 min and blown dry using nitrogen gas. 

 

4.4.8 Scanning Tunneling Microscopy Measurements 

For STM measurements, a mechanically cut Pt−Ir (80%− 20%) (Goodfellow Corp., Oakdale, 

PA) wire was used as the STM tip. The STM observations were carried out on a Pico SPM 

microscope head (Molecular Imaging, now Agilent, Santa Clara, CA) controlled by a low-noise 

controller (RHK Model R9, RHK Technology, Troy, MI) under ambient conditions. 

 

4.4.9 X-Ray Photoelectron Spectroscopy Sample Preparation 

X-ray photoelectron spectroscopy Aβ17−42 and Aβ17−42-Cu2+ sample preparation was identical to 

AFM and STM sample preparation with the exception of the time period that the solution was 

deposited onto HOPG. Both solutions, Aβ17−42 and Aβ17−42-Cu2+ were deposited onto HOPG for 

10 min and blown dry using nitrogen gas. HOPG washed with excess of Cu2+ sample was 

prepared by depositing concentrated Cu2+ solution (Sigma Aldrich Fluka Analytical, Copper 

Standard for ICP 1001 ± 2 mg/L) onto HOPG for 10 min and blowing off using nitrogen gas.  

 

4.4.10 X-Ray Photoelectron Spectroscopy Measurements  

X-ray photoelectron spectroscopy was performed using an AXIS Ultra DLD photoelectron 

spectrometer (Kratos Analytical Inc., Chestnut Ridge, NY) and a monochromatic Al Kα X-ray 

source with a 200 μm circular spot size under ultrahigh vacuum (10-9 Torr). Spectra were 
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acquired at a pass energy of 20 eV using a 300 ms dwell time. For all scans, 15 kV was applied 

with an emission of 15 mA. X-Ray photoelectron spectra were fit with the CasaXPS Software. 
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Figure 4.1. An overlay of the redox potentials measured by cyclic voltammetry. Cyclic 

voltammetric responses represent: substrate – gold on silica (dashed orange line), free Cu2+ 

(dotted blue line), Aβ17-42 (dashed blue line), and Aβ17-42 with Cu2+ (solid blue line). Bands with 

positive current in the range of 0.2 V to 0.7 V represent oxidized state of copper (Cu2+;  

Cu → Cu2+ + 2e-) while bands with negative current in the range of -0.1 V to 0.3 V represent 

reduced state of copper (Cu+; Cu2+ + 2e- → Cu).  
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Figure 4.2. Surface-enhanced Raman spectrum of Aβ17-42 (bottom spectra) and Aβ17-42-Cu2+ (top 

spectra) obtained by depositing Aβ17-42 and Aβ17-42-Cu2+ solutions on the SERS substrate 

composed of silver–coated gold nanostars. Amide I and Amide III indicate structural differences 

between Aβ17-42 and Aβ17-42-Cu2+. Aβ17-42 is more in α-helical configuration because it lacks 

bands that would indicate β-sheet component in Amide III region.  
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Table 4.1. Surface-Enhanced Raman Spectroscopy Band  

Assignment for Acquired Spectra of Aβ17-42 and Aβ17-42-Cu2+  

at 633 nm excitation 

Raman Shift (cm-1) Assignment Reference 
a,b1705* Amide I: β-sheet 23,24 

a1646* Amide I: α-helix 23-26 
b1623* Amide I: α-helix 27,28 
b1585 Phe/Tyr 29-31 
a1560 Trp 23,32-34 
b1504 Tyr/Phe 35,36 
a1474 CH3/CH2 32,37 
b1462 CH3/CH2/CH 29,38 
b1425 CH2 39-41 
a1419 CH2 42,43 
a1386 CH2/CH 40,44,45 
b1375 COO– 46-48 
b1338 CH2 40,41,49 
a1334 CH2/CH3/ CH2/CH 36,50-52 
b1308** Amide III: α-helix 53-57 
b1287** Amide III: α-helix 58,59 
a1285** Amide III: α-helix 28,58 
a1236** Amide III: β-sheet 28,60,61 
a1219** Amide III: β-sheet 44,61 
b1176 Tyr/Phe/Benzene ring 62,63 
b1168 Tyr/Phe 36,64,65 
b1143 CCαN/CN 30,66,67 
a1115 NH3+ (amino moiety) 36,68,69 
b1065 C-C (skeletal) 36,70,71 
a1046 Trp/Tyr 23,72 
b1028 Phe 67,73 
a1007 Trp/Phe 23,32,33,74 
b967 C-C (skeletal) 52,75,76 
a946 α-helix signature 30,60,77 

a = Aβ17-42-Cu2+; b = Aβ17-42; * = amide I; ** = amide III;  

Phe = Phenylalanine; Tyr = Tyrosine; Trp = Tryptophan 
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Figure 4.3. Atomic force microscopy images of Aβ17-42 (a) and Aβ17-42-Cu2+ (b) incubated for 

1 hr in the absence and in the presence of Cu2+ ions, respectively. Both conditions result in 

aggregation of the peptide, however, in contrast to Aβ17-42, aggregates of Aβ17-42-Cu2+ are larger 

in size and result in denser surface coverages than Aβ17-42. In addition, Aβ17-42 and Aβ17-42-Cu2+ 

images were analyzed for average surface roughness (see Figure 4.4 for more details). Average 

surface roughness of Aβ17-42 is lower than for Aβ17-42-Cu2+ specifically, 0.364 nm and 0.524 nm, 

respectively. This result indicates means that Aβ17-42 results in smoother surface than 

Aβ17-42-Cu2+. Overall, AFM results signify that Cu2+ ions enhance aggregation of Aβ17-42 

segment. 
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Figure 4.4. Atomic force microscopy analyses of average surface roughness (Ra) of (a) Aβ17-42 

and (b) Aβ17-42-Cu2+. Average surface roughness of Aβ17-42 and Aβ17-42-Cu2+ is 0.364 nm and 

0.524 nm, respectively. (a,c) Diagonal lines represent (b,d) the cross sections of the Ra analysis. 

(b,d) Corresponding graphs of the Ra analysis of Aβ17-42 and Aβ17-42-Cu2+, respectively.  
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Figure 4.5. Scanning tunneling micrograph of Aβ17-42-Cu2+. Blue arrows signify boundaries of 

laminated Aβ17-42-Cu2+ peptides. For clarity, two Aβ17-42-Cu2+ strands are outlined as blue dashed 

lines. (a) Measured average strand length is 54.8 ± 1.3 Å while, (b) measured average interstrand 

separation is 5.5 ± 0.2 Å.   
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Figure 4.6. X-ray photoelectron spectroscopy of (a) Aβ17-42 (b) Aβ17-42 incubated with excess of 

Cu2+ (c) HOPG washed with excess of Cu2+. All conditions show negative results for presence of 

Cu2+. Copper band (Cu 2p1/2) was expected at ~957 eV (dashed line).96-98  
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5.1 Scanning Tunneling Microscopy: Past and Future 

The advantages of scanning tunneling microscopy (STM) include, but are not limited to, 

its ability to determine structural information without the requirement of biomolecular 

crystallinity that plagues other techniques used for structural determination, such as X-ray 

diffraction (XRD). Furthermore, while other techniques rely on ensemble measurements, STM is 

capable of imaging unique and non-periodic features. Additionally, the use of multi-modal 

imaging techniques allows us to extract chemical as well as structural information.1,2 Using STM 

and mathematical modeling algorithms, we demonstrated that it is possible 1) to differentiate 

between side-chain amino acid residues in peptides,3 2) to visualize in real space the metal 

ion-binding sites in non-crystalline biological molecules,4 3) to map and to differentiate between 

assemblies of biological molecules based on their interaction with two different metal ions 

(manuscript in preparation), and 4) to map buried hydrogen-bonding networks within the buried 

interfaces of amide-containing surface assemblies.5  

In the above studies, we evaluated the potential of STM as a technique to resolve 

secondary structures of biological molecules, specifically, structures of simple model peptides 

and fragments of amyloidogenic peptides. Unique physical properties of amyloidogenic peptides, 

such as conformational flexibility and non-crystallinity, is an interest to us because, by using 

STM in amyloidogenic systems, we not only explore and expand STM as a tool for studying 

biological molecules and assemblies and their interactions with their surroundings but we also 

contribute to understanding the fundamental processes behind amyloid-related diseases such as 

Alzheimer’s disease (AD).  

In initial studies, we focused on either simple oligopeptide systems – linear peptide 

chains with five histidines and five alanines3 – or self-assembled amide-containing alkanethiolate 



 137 

monolayers5 as models to resolve biological structures via STM (not included in this 

dissertation). Further studies examined the short chain segment containing the first 16 amino acid 

residues of β-amyloid (Aβ1-16) and its interactions with Cu2+ ions4 and Zn2+ ions (included in 

Chapters 2 and 3). Based on the analyses of the STM images, we were able to elucidate the 

peptide-peptide interactions as well as the peptide-metal ion interactions with submolecular 

resolution.3-5  

Using our expertise in studying biological molecules via STM, we aim 1) to increase the 

scope of our imaging techniques to effectively study more complex biological molecules and 

changes in their structures due to post-translational modifications (PTMs) and 2) to expand STM 

potential by employing different STM imaging modalities – alternating current coupled to the 

STM (ACSTM or microwave STM) and electrochemical STM (ECSTM). These STM modalities 

would enable us to examine specific biomolecular and metal ion/modulator interactions based on 

their properties, such as local variations in chemical, dielectric, magnetic, and electrochemical 

properties.  

 

5.2 Visualization of Buried Metal Ion-Binding Sites  

The structure of the last 26 amino acid residues of Aβ (Aβ17-42) was discovered using 

steady-state nuclear magnetic resonance and XRD.6,7 However, the location of a second, lower 

affinity binding site in the vicinity of the C-terminus of the peptide remains undetermined.8,9 

Thus, our ongoing project examines the buried metal-ion binding site of Aβ17-42. To explore the 

peptide interactions within this system, it is necessary to use both ambient STM and STM with 

additional imaging modalities such as ACSTM. 
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As discussed in Chapter 4, our preliminary results of surface-enhanced Raman 

spectroscopy (SERS), and cyclic voltammetry (CV), confirm the interaction of Aβ17-42 with Cu2+ 

ions. The scanning tunneling microscopy results show that Aβ17-42 incubated with Cu2+ ions self-

assemble into β-sheets with an interstrand distance of 5.5 ± 0.2 Å, and the strands are 54.8 ± 

1.3 Å in length. This strand length corresponds to approximately ~17 amino acids; because this 

peptide has 26 amino acids, the data suggest that Aβ17-42 must be in a folded conformation. 

Taking into consideration the preliminary SERS and CV data that suggest interactions of Aβ17-42 

with Cu2+ ions and the absence of non-periodic protruding features – which would correspond to 

Cu2+ sites – in STM data, we hypothesize that the Aβ17-42 copper-binding sites are at a buried 

interface underneath the peptide backbone.  

To image locations and interfaces of the buried metal ion-binding sites of Aβ17-42 

effectively, advanced imaging techniques such as polarized STM will be used. These multi-

modal imaging techniques are powerful tools for extracting chemical and structural information 

even from buried interfaces (Figure 5.1).1,2 

 

5.3 Detection of Buried Metal Ion-Binding Sites  

Detection of buried metal ion-binding site within Aβ17-42 will demonstrate that it is 

possible 1) to explore biological systems via ACSTM and 2) to explore buried amino acids 

residues and interaction of those residues with inorganic molecules. After completing the studies 

on Aβ17-42, the next step in our research is to investigate full-length Aβ, which contains 42 amino 

acid residues (Aβ1-42). Both the crystal structure and its adsorbed self-assembled structures have 

been studied by ambient STM and XRD.10,11 It has been established that Aβ1-42 folds twice onto 

itself.10 However, despite recent advances in determining peptide folding and structures of Aβ1-42 
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in its fibrillar form as well as extensive literature on interactions of Aβ1-42 with metal ions, there 

is still a lack of studies on experimental visualization of the position of metal ions bound to 

Aβ1-42. Thus, the second part of the project has two ultimate goals – 1) to elucidate the position 

of the buried metal ion-binding sites in Aβ1-42 and 2) to establish whether the binding sites in 

Aβ1-42 show preferential metal ion binding, by incubating Aβ1-42 with a solution containing both 

Zn2+ and Cu2+. 

 

5.4 Resolving Structures and Interactions between Post-Translationally Modified 

Amyloidogenic Peptides 

Apart from recent interest in the correlation between metal ions and AD, there is growing 

interest in how PTMs in the form of glycosylation affect the structure and function of Aβ and its 

link to AD pathogenesis. Studies have suggested correlations between glycosylation malfunction 

and AD.12,13 Halim et al. examined glycosylation of Aβ in the cerebrospinal fluid of healthy 

patients versus patients with AD.14 They found that Aβ peptides in diseased patients were 

glycosylated 2.5 times more frequently than those in the control group. One of the most abundant 

glycopeptides they found was an Aβ segment containing the first 15 amino acid residues (Aβ1-15) 

with the glycan group attached to the tyrosine residue at position 10 (Tyr10). Wang et al. have 

synthesized Aβ1-15 with ɑ-linked and β-linked glycan attachments at the Tyr10 position, Figure 

5.2.15 However, the effect of these glycan attachments on the structure, interaction with metal 

ions, and aggregation of Aβ in the brain remains unclear. 

This project involves studying post-translationally modified Aβ1-15 via STM. This Aβ 

segment has a glycan group attached at the Tyr10. Our preliminary results based on atomic force 

microscopy (AFM) (Figure 5.3) suggest that glycosylation does not affect the ability of the 
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peptides to self-assemble into β-sheets. We also noted that the self-assembly of the post-

translationally modified Aβ1-15 into β-sheets is not affected by the presence or absence of Cu2+ 

ions. However, the preliminary peak force AFM results suggest that the β-sheet surface of Aβ1-15 

deposited with Cu2+ ions is more adhesive than the surface of Aβ1-15 without Cu2+ ions. 

However, owing to the resolution limits of AFM, we cannot make any structural conclusions 

about how glycosylation affects Aβ1-15 peptides on a structural and sub-molecular level. Because 

our group has previously shown that STM is a powerful new tool for elucidating the structures of 

biomolecules, we propose to utilize our expertise in this area to study the structure of 

glycopeptides such as glycosylated Aβ1-15, to determine the locations of glycosylated bonds, and 

to study its interaction with adjacent glycopeptides and metal ions. This project presents certain 

new challenges because, in the case of post-translationally modified peptides, the molecular 

attachment (glycan) is a bulky group that can freely rotate around the attachment bond and thus, 

constrain STM imaging. If we are successful in imaging and analyzing post-translationally 

modified Aβ1-15, then it would be a stepping stone towards studying complicated PTM systems 

such as systems with multiple glycosylation sites and peptides with multi-glycan chain 

attachments. Such studies, of complicated biological systems, would be broadly applicable to the 

study of biomolecular structures and more representative of in vivo biomolecules.  
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Figure 5.1. Scanning tunneling microscopy image showing molecular polarizability of highly 

polarizable 4,4’-di(ethynylphenyl)-1-benzenethiol (OPE) molecules inserted into 

dodecanethiolate (C12) self-assembled monolayer (SAM). In the ACSTM microwave image, 

OPE molecules appear as high-contrast protruding features (numbered 1–5) against a dark 

background (C12 SAM); contrast between OPE and C12 is more intense in the ACSTM image 

than in the STM topography image. Adapted from ref. 2. Copyright 2010, ACS Nano.   
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Figure 5.2. Primary structure of glycosylated Aβ1-15. The R group on the tyrosine residue 

indicates an ɑ-linked glycan attachment (bottom, left) or a β-linked glycan attachment (bottom, 

right). Adapted from ref. 15. Copyright 2014, Chemical Communications.   
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Figure 5.3. Images of adhesion measurements with atomic force microscopy (a) Aβ1-15 without 

Cu2+ and (b) Aβ1-15 incubated with Cu2+ ions. Aβ1-15 without Cu2+ has higher adhesive properties; 

therefore, laminated β-sheets are more flexible (“sticky”) compared to β-sheets of Aβ1-15 when 

incubated with Cu2+ ions.   
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A.1 Chapter 2 MATLAB Code  

Unstripping Matlab Code: 
 

function [out,D]=Unstripping(I0,rt,winsize) 
 

%===================================================== 
% function out=Unstripping(I0,rt,winsize) 
% 
% This function removes horizontal stripes and 
% saturation segments for nanoimaging 
% 
% Inputs: 
%  ---I0: image 
%  ---rt: detection ratio (0<rt<1) (0.3 seems working) 
%  ---winsize: size of the window on which the median filter is computed 
% 
% Output: 
%  ---out: processed image 
% 
%===================================================== 

 
if ((rt<0) || (rt>1)) 

rt=0.5; 
end 

 
% Take the vertical second order---derivative 
C=zeros(size(I0)); 
C(2:end---1,:)=I0(1:end---2,:)+I0(3:end,:)---2*I0(2:end---1,:); 

 
% detection by thresholding 
D=zeros(size(C)); 
thresh = rt*max(C(:)); 
D= double(abs(C)>thresh); 
% for c=1:size(C,2) 
% for r=1:size(C,1) 
% if abs(C(r,c))>thresh 
% D(r,c) = 1; 
% end 
% end 
% end 

 
% vertical median 
out=I0; 
% winsize=3; for 
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c=1:size(D,2) 
for r=1:size(D,1) 

if abs(D(r,c)) == 1 
if r<(winsize+1) 

top=1; 
bot=r+winsize; 

elseif r>(size(D,1)---winsize---1) 
top=r---winsize; 
bot=size(D,1); 

else 
top=r---winsize; 
bot=r+winsize; 

end out(r,c)=median(I0(top:bot,c)); 
end 

end 
end 
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A.2 Chapter 3 MATLAB Code and Computation  
 

Interstrand Distance Peptide Measurement Matlab Code (software_distance_peptide): 
 
function varargout = software_distance_peptide(varargin) 
% Last Modified by GUIDE v2.5 07-Sep-2017 17:06:31 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @software_distance_peptide_OpeningFcn, ... 
                   'gui_OutputFcn',  @software_distance_peptide_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before software_distance_peptide is made visible. 
function software_distance_peptide_OpeningFcn(hObject, ~, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to software_distance_peptide (see VARARGIN) 
% Choose default command line output for software_distance_peptide 
handles.output = hObject; 
% Update handles structure 
guidata(hObject, handles); 
 
% Initialisation of all variables 
setappdata(0,'step_find_curve',0); 
setappdata(0,'step_im_load',0); 
setappdata(0,'step_select_ROI',0); 
setappdata(0,'step_dist',0); 
setappdata(0,'im',[]); 
setappdata(0,'ratio',[]); 
setappdata(0,'nb_direction_edit',nan); 
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setappdata(0,'unit',''); 
setappdata(0,'x_curve',[]); 
setappdata(0,'smoothing_spline',[]); 
setappdata(0,'nb_curve',nan); 
setappdata(0,'im',[]); 
setappdata(0,'im_init',[]); 
setappdata(0,'filename',[]); 
set(handles.checkbox_rotate,'Value',0); 
set(handles.checkbox_line_distance,'Value',0); 
set(handles.checkbox_bright_spots_line,'Value',0); 
set(handles.checkbox_bright_spot_points,'Value',0); 
set(handles.checkbox_segment,'Value',0); 
set(handles.checkbox_curve,'Value',0); 
set(handles.checkbox_rotate,'Value',0); 
set(handles.uipanel_transformation,'Visible','Off'); 
set(handles.uipanel_region_of_interest_selection,'Visible','Off'); 
set(handles.uipanel_peptide_detection,'Visible','Off'); 
set(handles.uipanel_curve_modification,'Visible','Off'); 
set(handles.uipanel_distance_computation,'Visible','Off'); 
set(handles.Save_picture,'Visible','Off'); 
 
 
% --- Outputs from this function are returned to the command line. 
function varargout = software_distance_peptide_OutputFcn(~, ~, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
 
% --- Executes on button press in load_image. 
function load_image_Callback(~, ~, handles) 
% Load the new image, a new box is opened to find the file, we save the 
% filename to print the title and the pathname to create the new folder. 
% It converts a color image in grayscale thanks to the rgb2gray function. 
% New picture means to initialize variables. 
 
% OUTPUT :  
% - im : transformed image 
% - im_init : loaded image 
% - filename : sting 
% - pathname : sting 
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% Open new box to load image 
[filename, pathname] = uigetfile('*.png', 'Select a file'); 
if isequal(filename,0) 
   disp('User selected Cancel') 
else 
    pathname = pathname(1:end-1); 
    str = fullfile(pathname); 
    addpath (str) 
    im = imread(filename); 
  % Convert in gray scale    
    if size(im,3)~=1 
        im = rgb2gray(im); 
    end 
    im = imadjust(im); 
    hold off; 
    imshow(im) 
    title(filename) 
    setappdata(0,'im',im); 
    setappdata(0,'im_init',im); 
    setappdata(0,'filename',filename) 
    setappdata(0,'pathname',pathname) 
  % If we push again this button, we initialize all variable as default 
    setappdata(0,'scatter_IC_1',[]); 
    setappdata(0,'scatter_IC_2',[]); 
    setappdata(0,'plot_IC_1',[]); 
    setappdata(0,'plot_IC_2',[]); 
    setappdata(0,'step_find_curve',0); 
    setappdata(0,'step_im_load',1); 
    setappdata(0,'step_select_ROI',0); 
    setappdata(0,'x_curve',[]); 
    setappdata(0,'x_curve_area',[]); 
    set(handles.edit_nb_direction,'string',''); 
    set(handles.edit_nb_curve,'string',''); 
    set(handles.checkbox_line_distance,'Value',0); 
    set(handles.checkbox_bright_spots_line,'Value',0); 
    set(handles.checkbox_bright_spot_points,'Value',0); 
    set(handles.checkbox_segment,'Value',0); 
    set(handles.checkbox_curve,'Value',0); 
    set(handles.checkbox_rotate,'Value',0); 
    set(handles.uipanel_transformation,'Visible','On'); 
    set(handles.uipanel_region_of_interest_selection,'Visible','On'); 
    set(handles.uipanel_peptide_detection,'Visible','Off'); 
    set(handles.uipanel_curve_modification,'Visible','Off'); 
    set(handles.uipanel_distance_computation,'Visible','Off'); 
    set(handles.Save_picture,'Visible','On'); 
end 
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% --- Executes on button press in checkbox_rotate. 
function checkbox_rotate_Callback(hObject, ~, handles) 
% Rotate the image of 90 degrees in the clockwise if yes, or show the 
% initial image if no 
 
% INPOUT : 
% - check_rotate : boolean 
% - im_init : loaded image 
% - filename : string 
 
% OUTPUT : 
% - im : transformed image 
 
step_im_load = getappdata(0,'step_im_load'); 
if step_im_load 
    set(handles.uipanel_curve_modification,'Visible','Off'); 
    set(handles.uipanel_distance_computation,'Visible','Off'); 
    check_rotate = get(hObject,'Value'); 
    filename = getappdata(0,'filename'); 
    im = getappdata(0,'im'); 
    if check_rotate 
        im = imrotate(im,-90); 
    else 
        im = imrotate(im,90); 
    end 
    hold off 
    imshow(im); 
    title(filename); 
    setappdata(0,'im',im) 
    set(handles.edit_nb_direction,'string',''); 
    set(handles.edit_nb_curve,'string',''); 
    set(handles.checkbox_line_distance,'Value',0); 
    set(handles.checkbox_bright_spots_line,'Value',0); 
    set(handles.checkbox_bright_spot_points,'Value',0); 
    set(handles.checkbox_segment,'Value',0); 
    set(handles.checkbox_curve,'Value',0); 
    set(handles.uipanel_transformation,'Visible','On'); 
    set(handles.uipanel_region_of_interest_selection,'Visible','On'); 
    set(handles.uipanel_peptide_detection,'Visible','Off'); 
    set(handles.uipanel_curve_modification,'Visible','Off'); 
    set(handles.uipanel_distance_computation,'Visible','Off'); 
    set(handles.Save_picture,'Visible','On'); 
else 
    set(handles.checkbox_rotate,'Value',0); 
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end 
 
 
% --- Executes on button press in reload_transformed_image. 
function reload_transformed_image_Callback(~, ~, handles) 
% Show the last loaded/rotated/zoomed picture. 
 
% INPUT :  
% - im : transformed image 
% - filename (string) 
 
step_im_load = getappdata(0,'step_im_load'); 
if step_im_load 
    set(handles.uipanel_peptide_detection,'Visible','Off'); 
    set(handles.uipanel_curve_modification,'Visible','Off'); 
    set(handles.uipanel_distance_computation,'Visible','Off'); 
    im=getappdata(0,'im'); 
    filename=getappdata(0,'filename'); 
    if isempty(im)==0 
        if size(im,3)~=1 
            im = rgb2gray(im); 
        end 
        setappdata(0,'im',im); 
        axes(handles.axes1); 
        hold off; 
        imshow(im) 
        title(filename) 
    end 
    setappdata(0,'scatter_IC_1',[]); 
    setappdata(0,'scatter_IC_2',[]); 
    setappdata(0,'plot_IC_1',[]); 
    setappdata(0,'plot_IC_2',[]); 
    setappdata(0,'step_find_curve',0) 
    setappdata(0,'step_select_ROI',0) 
    setappdata(0,'x_curve',[]); 
    setappdata(0,'x_curve_area',[]); 
    set(handles.edit_nb_direction,'string',''); 
    set(handles.edit_nb_curve,'string',''); 
    set(handles.checkbox_line_distance,'Value',0); 
    set(handles.checkbox_bright_spots_line,'Value',0); 
    set(handles.checkbox_bright_spot_points,'Value',0); 
    set(handles.checkbox_segment,'Value',0); 
    set(handles.checkbox_curve,'Value',0); 
end 
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% --- Executes on button press in reload_image. 
function reload_image_Callback(~, ~, handles) 
% Show the loaded image. 
 
% INPUT :  
% - im_init : loaded image 
% - filename : string 
 
step_im_load = getappdata(0,'step_im_load'); 
if step_im_load 
    set(handles.uipanel_peptide_detection,'Visible','Off'); 
    set(handles.uipanel_curve_modification,'Visible','Off'); 
    set(handles.uipanel_distance_computation,'Visible','Off'); 
    im_init=getappdata(0,'im_init'); 
    filename=getappdata(0,'filename'); 
    if isempty(im_init)==0 
        if size(im_init,3)~=1 
            im_init = rgb2gray(im_init); 
        end 
        setappdata(0,'im',im_init); 
        axes(handles.axes1); 
        hold off; 
        imshow(im_init) 
        title(filename) 
    end 
    setappdata(0,'scatter_IC_1',[]); 
    setappdata(0,'scatter_IC_2',[]); 
    setappdata(0,'plot_IC_1',[]); 
    setappdata(0,'plot_IC_2',[]); 
    setappdata(0,'step_find_curve',0) 
    setappdata(0,'step_select_ROI',0) 
    setappdata(0,'x_curve',[]); 
    setappdata(0,'x_curve_area',[]); 
    set(handles.edit_nb_direction,'string',''); 
    set(handles.edit_nb_curve,'string',''); 
    set(handles.checkbox_rotate,'Value',0); 
    set(handles.checkbox_line_distance,'Value',0); 
    set(handles.checkbox_bright_spots_line,'Value',0); 
    set(handles.checkbox_bright_spot_points,'Value',0); 
    set(handles.checkbox_segment,'Value',0); 
    set(handles.checkbox_curve,'Value',0); 
end 
 
 
% --- Executes on button press in Zoom. 
function Zoom_Callback(~, ~, handles) 
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% Use the mouse to click and drag the desired rectangle. 
% If we drag outside, it is ok 
 
% INPUT : 
% - im : tranformed image 
% - filename : string 
% - step_im_load : boolean 
 
% OUTPUT : 
% - im : tranformed image 
 
step_im_load = getappdata(0,'step_im_load'); 
if step_im_load 
    set(handles.uipanel_region_of_interest_selection,'Visible','Off'); 
    set(handles.uipanel_peptide_detection,'Visible','Off'); 
    set(handles.uipanel_curve_modification,'Visible','Off'); 
    set(handles.uipanel_distance_computation,'Visible','Off'); 
    im =getappdata(0,'im'); 
    filename=getappdata(0,'filename'); 
     
    im = run_zoom(im,filename); 
     
    setappdata(0,'im',im); 
    setappdata(0,'scatter_IC_1',[]); 
    setappdata(0,'scatter_IC_2',[]); 
    setappdata(0,'plot_IC_1',[]); 
    setappdata(0,'plot_IC_2',[]); 
    setappdata(0,'step_find_curve',0) 
    setappdata(0,'step_select_ROI',0) 
    setappdata(0,'x_curve',[]); 
    setappdata(0,'x_curve_area',[]); 
    set(handles.edit_nb_direction,'string',''); 
    set(handles.edit_nb_curve,'string',''); 
    set(handles.checkbox_line_distance,'Value',0); 
    set(handles.checkbox_bright_spots_line,'Value',0); 
    set(handles.checkbox_bright_spot_points,'Value',0); 
    set(handles.checkbox_segment,'Value',0); 
    set(handles.checkbox_curve,'Value',0); 
    set(handles.uipanel_region_of_interest_selection,'Visible','On'); 
end 
 
 
% --- Executes on button press in Save_picture. 
function Save_picture_Callback(~, ~, handles) 
% Save the picture as we see. 
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% INPUT :  
% - step_im_load : boolean 
 
step_im_load = getappdata(0,'step_im_load'); 
if step_im_load 
%    Open new box 
    [filename, pathname] = uiputfile({'*.png','.png Files' }); 
%   The user write something 
    if isequal(filename,0)==0  
        F = getframe(handles.axes1); 
        Image = frame2im(F);  
        imwrite(Image,[pathname filename]); 
    end 
end 
 
 
% --- Executes on edit edit_nb_direction 
function edit_nb_direction_Callback(hObject, ~, handles) 
% The users write a number, it has to be an integer to be save. 
 
% OUTPUT : 
% - nb_direction_edit : number of direction from the edit box 
 
nb_direction_edit = str2double(get(hObject,'String')); 
if nb_direction_edit<0 || floor(nb_direction_edit) - nb_direction_edit ~= 0 || nb_direction_edit == 
0 
    nb_direction_edit = nan; 
%   Delete the number in the box 
    set(handles.edit_nb_direction,'string',''); 
end 
setappdata(0,'nb_direction_edit',nb_direction_edit); 
 
 
% --- Executes during object creation, after setting all properties. 
function edit_nb_direction_CreateFcn(hObject, ~, ~) 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on button press in roi_selection. 
function roi_selection_Callback(~, ~, handles) 
% The user has to delimited the ROI where he wants to detect peptides by  
% giving 2 piecewises curves composed of straight lines. The first initial  
% condition is IC_1 and the second is IC_2. 
% To pass from the first to the second initial condition, it is  
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% automatically detected by comparing the abscissa, if the abscissa is  
% shorter than the previous point, so we pass from the first to the second. 
% In case of the user click outside, it is automatically fixed by 
% putting the new point in the intersection between the picture and the 
% straight line created by the new point and the previous one. If the first 
% point is outside, the algorithm waits the second point and fixes it by 
% the same method 
% We estimate the number of curve at the end 
 
% INPUT :  
% - scatter_IC_1 : scatter of IC_1 
% - scatter_IC_2 : scatter of IC_2 
% - plot_IC_1 : plot of IC_1 
% - plot_IC_2 : plot of IC_2 
% - im : tranformed image 
% - nb_direction_edit : number of direction from the edit box 
 
% OUTPUT : 
% - IC_1 : first initial condition 
% - IC_2 : second initial condition 
% - scatter_IC_1 : scatter of IC_1 
% - scatter_IC_2 : scatter of IC_2 
% - plot_IC_1 : plot of IC_1 
% - plot_IC_2 : plot of IC_2 
% - nb_direction_edit : number of direction 
 
step_im_load = getappdata(0,'step_im_load'); 
if step_im_load  
    set(handles.uipanel_peptide_detection,'Visible','Off'); 
    set(handles.uipanel_curve_modification,'Visible','Off'); 
    set(handles.uipanel_distance_computation,'Visible','Off'); 
    nb_direction_edit = str2double(get(handles.edit_nb_direction,'String')); 
    scatter_IC_1 = getappdata(0,'scatter_IC_1'); 
    scatter_IC_2 = getappdata(0,'scatter_IC_2'); 
    plot_IC_1 = getappdata(0,'plot_IC_1'); 
    plot_IC_2 = getappdata(0,'plot_IC_2'); 
    im = getappdata(0,'im'); 
    filename = getappdata(0,'filename'); 
     
    [IC_1, IC_2, scatter_IC_1, scatter_IC_2, plot_IC_1, plot_IC_2, nb_direction, plot_IC_edge] = 
run_select_ROI(scatter_IC_1, scatter_IC_2, plot_IC_1, plot_IC_2, im, 
nb_direction_edit,handles.edit_nb_direction,filename); 
    drawnow; 
    nb_curve = find_nb_curve(im,IC_1,IC_2); 
     
    setappdata(0,'IC_1',IC_1); 
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    setappdata(0,'IC_2',IC_2); 
    setappdata(0,'scatter_IC_1',scatter_IC_1); 
    setappdata(0,'scatter_IC_2',scatter_IC_2); 
    setappdata(0,'plot_IC_1',plot_IC_1); 
    setappdata(0,'plot_IC_2',plot_IC_2); 
    setappdata(0,'step_select_ROI',1); 
    setappdata(0,'nb_direction',nb_direction); 
    setappdata(0,'plot_IC_edge',plot_IC_edge); 
    set(handles.edit_nb_curve,'string',nb_curve); 
    set(handles.checkbox_line_distance,'Value',0); 
    set(handles.checkbox_bright_spots_line,'Value',0); 
    set(handles.checkbox_bright_spot_points,'Value',0); 
    set(handles.checkbox_segment,'Value',0); 
    set(handles.checkbox_curve,'Value',0); 
    set(handles.uipanel_peptide_detection,'Visible','On'); 
end 
 
 
% --- Executes on button press in modify_points. 
function modify_points_Callback(~, ~, handles) 
% The closest point is replaced by the new one. 
% We estimate again the number of curve at the end 
 
% INPUT : 
% - IC_1 : first initial condition 
% - IC_2 : second initial condition 
% - im : tranformed image 
 
% OUTPUT : 
% - IC_1 : first initial condition 
% - IC_2 : second initial condition 
% - scatter_IC_1 : scatter of IC_1 
% - scatter_IC_2 : scatter of IC_2 
% - plot_IC_1 : plot of IC_1 
% - plot_IC_2 : plot of IC_2 
% - plot_IC_edge : plot of ROI edge 
 
step_select_ROI=getappdata(0,'step_select_ROI'); 
if step_select_ROI 
    set(handles.uipanel_peptide_detection,'Visible','Off'); 
    set(handles.uipanel_curve_modification,'Visible','Off'); 
    set(handles.uipanel_distance_computation,'Visible','Off'); 
    IC_1=getappdata(0,'IC_1'); 
    IC_2=getappdata(0,'IC_2'); 
    im=getappdata(0,'im'); 
    hold on; 
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    imshow(im); 
    scatter_IC_1 = scatter(IC_1(:,1),IC_1(:,2),'b','x','Linewidth',2); 
    scatter_IC_2 = scatter(IC_2(:,1),IC_2(:,2),'b','x','Linewidth',2); 
    plot_IC_1 = zeros(size(IC_1,1)-1,1); 
    plot_IC_2 = zeros(size(IC_1,1)-1,1); 
    plot_IC_edge = zeros(2); 
    for i=1:size(IC_1,1)-1 
       plot_IC_1(i) = plot([IC_1(i,1) IC_1(i+1,1)],[IC_1(i,2) IC_1(i+1,2)],'b','Linewidth',2); 
       plot_IC_2(i) = plot([IC_2(i,1) IC_2(i+1,1)],[IC_2(i,2) IC_2(i+1,2)],'b','Linewidth',2); 
    end 
    plot_IC_edge(1) = plot([IC_1(1,1) IC_2(1,1)],[IC_1(1,2) IC_2(1,2)],'blue','LineWidth',2.); 
    plot_IC_edge(2) = plot([IC_1(end,1) IC_2(end,1)],[IC_1(end,2) 
IC_2(end,2)],'blue','LineWidth',2.); 
     
    [IC_1,IC_2,scatter_IC_1,scatter_IC_2,plot_IC_1,plot_IC_2,plot_IC_edge] = 
run_modify_points_ROI(IC_1,IC_2,im,scatter_IC_1,scatter_IC_2,plot_IC_1,plot_IC_2,plot_IC_
edge); 
    nb_curve = find_nb_curve(im,IC_1,IC_2); 
    
    setappdata(0,'IC_1',IC_1); 
    setappdata(0,'IC_2',IC_2); 
    setappdata(0,'scatter_IC_1',scatter_IC_1); 
    setappdata(0,'scatter_IC_2',scatter_IC_2); 
    setappdata(0,'plot_IC_1',plot_IC_1); 
    setappdata(0,'plot_IC_2',plot_IC_2); 
    setappdata(0,'plot_IC_edge',plot_IC_edge); 
    set(handles.edit_nb_curve,'string',nb_curve); 
    set(handles.checkbox_line_distance,'Value',0); 
    set(handles.checkbox_bright_spots_line,'Value',0); 
    set(handles.checkbox_bright_spot_points,'Value',0); 
    set(handles.checkbox_segment,'Value',0); 
    set(handles.checkbox_curve,'Value',0); 
    set(handles.uipanel_peptide_detection,'Visible','On'); 
end 
 
 
% --- Executes on button press in erase_selection. 
function erase_selection_Callback(~, ~, handles) 
% Delete the direction plots and variables is equivqlent to show the last 
% image 
 
% INPUT:  
%  - im : transformed image 
 
step_select_ROI=getappdata(0,'step_select_ROI'); 
if step_select_ROI 
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    set(handles.uipanel_peptide_detection,'Visible','Off'); 
    set(handles.uipanel_curve_modification,'Visible','Off'); 
    set(handles.uipanel_distance_computation,'Visible','Off'); 
    im=getappdata(0,'im'); 
    imshow(im); 
    set(handles.edit_nb_direction,'string',''); 
    set(handles.edit_nb_curve,'string',''); 
    set(handles.checkbox_line_distance,'Value',0); 
    set(handles.checkbox_bright_spots_line,'Value',0); 
    set(handles.checkbox_bright_spot_points,'Value',0); 
    set(handles.checkbox_segment,'Value',0); 
    set(handles.checkbox_curve,'Value',0); 
    setappdata(0,'step_select_ROI',0) 
end 
 
 
% --- Executes on button press in Find_curve. 
function Find_curve_Callback(~, ~, handles) 
% We crop image by area. 
% For each image, we compute the scale space of the image.  
% For each step we save the position of all local maxima, it give us curve 
% We compute the length of curves 
% We find the threshold thanks to the Otsu method 
% We have our points of all bright spot 
% We crop each area in nb_curve part 
% We join all points by part and join them in all areas 
% We compute the smoothing spline of these points 
% We plot these curves 
 
% INPUT : 
% - im : tranformed image 
% - nb_direction : number of peptide direction 
% - IC_1 : first initial condition 
% - IC_2 : second initial condition 
% - step_im_load : boolean 
% - step_select_ROI : boolean 
% - nb_curve : number of curve 
 
% OUTPUT : 
% - nb_curve : number of curve 
% - x_curve_area : abscissa of all whole curves by area 
% - y_curve_area : ordinate of all whole curves by area 
% - points : coordinate of meaningfull maximum 
% - step_find_curve : boolean 
% - x_curve : abscissa of all whole curves 
% - y_curve : ordinate of all whole curves 
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% - smoothing_spline : fit object of all curves 
% - plot_spline : plot of the smoothing_spline 
% - txt_curve : number of curve 
 
hold on; 
im = getappdata(0,'im'); 
nb_direction = getappdata(0,'nb_direction'); 
IC_1 = getappdata(0,'IC_1'); 
IC_2 = getappdata(0,'IC_2'); 
step_im_load = getappdata(0,'step_im_load'); 
step_select_ROI = getappdata(0,'step_select_ROI'); 
nb_curve = str2double(get(handles.edit_nb_curve,'String')); 
if step_im_load && step_select_ROI  
    set(handles.checkbox_curve,'Value',1); 
    set(handles.checkbox_line_distance,'Value',0); 
    set(handles.checkbox_bright_spots_line,'Value',0); 
    set(handles.checkbox_bright_spot_points,'Value',0); 
    set(handles.checkbox_segment,'Value',0); 
    hold on; 
    imshow(im); 
    plot_IC_1 = zeros(size(IC_1,1)-1,1); 
    plot_IC_2 = zeros(size(IC_1,1)-1,1); 
    plot_IC_edge = zeros(2); 
    scatter_IC_1 = scatter(IC_1(:,1),IC_1(:,2),'b','x','Linewidth',2); 
    scatter_IC_2 = scatter(IC_2(:,1),IC_2(:,2),'b','x','Linewidth',2); 
    for i=1:size(IC_1,1)-1 
       plot_IC_1(i) = plot([IC_1(i,1) IC_1(i+1,1)],[IC_1(i,2) IC_1(i+1,2)],'b','Linewidth',2); 
       plot_IC_2(i) = plot([IC_2(i,1) IC_2(i+1,1)],[IC_2(i,2) IC_2(i+1,2)],'b','Linewidth',2); 
    end 
    plot_IC_edge(1) = plot([IC_1(1,1) IC_2(1,1)],[IC_1(1,2) IC_2(1,2)],'blue','LineWidth',2.); 
    plot_IC_edge(2) = plot([IC_1(end,1) IC_2(end,1)],[IC_1(end,2) 
IC_2(end,2)],'blue','LineWidth',2.); 
    setappdata(0,'scatter_IC_1',scatter_IC_1); 
    setappdata(0,'scatter_IC_2',scatter_IC_2); 
    setappdata(0,'plot_IC_1',plot_IC_1); 
    setappdata(0,'plot_IC_2',plot_IC_2); 
     
    [x_curve, 
y_curve,smoothing_spline,plot_spline,points,x_curve_area,y_curve_area,nb_curve,txt_curve] = 
run_find_curve(im, nb_direction, IC_1, IC_2,nb_curve,handles.edit_nb_curve); 
     
    hold off; 
    step_find_curve = 1; 
    setappdata(0,'nb_curve',nb_curve) 
    setappdata(0,'x_curve_area',x_curve_area) 
    setappdata(0,'y_curve_area',y_curve_area) 
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    setappdata(0,'points',points) 
    setappdata(0,'step_find_curve',step_find_curve) 
    setappdata(0,'x_curve',x_curve) 
    setappdata(0,'y_curve',y_curve) 
    setappdata(0,'smoothing_spline',smoothing_spline) 
    setappdata(0,'plot_spline',plot_spline) 
    setappdata(0,'txt_curve',txt_curve) 
    set(handles.uipanel_curve_modification,'Visible','On'); 
    set(handles.uipanel_distance_computation,'Visible','On'); 
end 
 
 
% --- Executes on edit edit_nb_curve 
function edit_nb_curve_Callback(hObject, ~, handles) 
% The users write a number, it has to be a positive integer to be save. 
 
% OUTPUT :  
% - nb_curve : number of curve from the edit box 
 
nb_curve = str2double(get(hObject,'String')); 
if nb_curve<=0 || floor(nb_curve) - nb_curve ~= 0 
    nb_curve = nan; 
%   Delete the number in the box 
    set(handles.edit_nb_curve,'string',''); 
end 
setappdata(0,'nb_curve',nb_curve); 
 
 
% --- Executes during object creation, after setting all properties. 
function edit_nb_curve_CreateFcn(hObject, ~, ~) 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on button press in checkbox_bright_spot_points. 
function checkbox_bright_spot_points_Callback(hObject, ~, handles) 
% Plot or delete all points detected 
 
% INPUT : 
% - step_find_curve : boolean  
% - nb_direction : number of direction 
% - check_points : boolean 
% - points : coordinate of meaningfull maximum 
% - scatter_Otsu : scatter of meaningfull maximum 
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% OUTPUT :  
% - scatter_Otsu : scatter of meaningfull maximum 
% - check_points : boolean 
 
step_find_curve = getappdata(0,'step_find_curve'); 
nb_direction = getappdata(0,'nb_direction'); 
check_points = get(hObject,'Value'); 
setappdata(0,'check_points',check_points) 
scatter_Otsu = cell(nb_direction,1); 
% Usable only if we run 'find_curve' 
if step_find_curve == 1 
    if check_points == 1 
        for niter=1:nb_direction 
            points = getappdata(0,'points'); 
            x = points{niter}(:,2); 
            y = points{niter}(:,1); 
            hold on; 
            scatter_Otsu{niter} = scatter(x,y,'x','red','LineWidth',2.); 
            setappdata(0,'scatter_Otsu',scatter_Otsu) 
            hold off; 
        end 
    else 
        scatter_Otsu = getappdata(0,'scatter_Otsu'); 
        for i=1:size(scatter_Otsu,1) 
            delete(scatter_Otsu{i}); 
        end 
    end 
else 
    set(handles.checkbox_bright_spot_points,'Value',0); 
end 
 
 
% --- Executes on button press in checkbox_segment. 
function checkbox_segment_Callback(hObject, ~, handles) 
% Plot or delete segment between all point joined by area. 
 
% INPUT : 
% - check_seg : boolean 
% - plot_seg  : plot of the segments 
% - x_curve : abscissa of all whole curves 
% - y_curve : ordinate of all whole curves 
 
% OUTPUT :  
% - plot_seg  : plot of the segments 
% - check_seg : boolean 
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check_seg = get(hObject,'Value'); 
x_curve = getappdata(0,'x_curve'); 
y_curve = getappdata(0,'y_curve'); 
 
x_curve_area = getappdata(0,'x_curve_area'); 
y_curve_area = getappdata(0,'y_curve_area'); 
 
if isempty(x_curve) == 0 
    if check_seg==1 
        cpt = 0; 
        hold on 
        for i_area = 1:size(x_curve_area,2) 
            for i_curve=1:size(x_curve_area,1) 
                for i_point=1:size(x_curve_area{i_curve,i_area},1)-1 
                    cpt = cpt + 1; 
                    plot_seg(cpt) = plot([x_curve_area{i_curve,i_area}(i_point) 
x_curve_area{i_curve,i_area}(i_point+1)],[y_curve_area{i_curve,i_area}(i_point) 
y_curve_area{i_curve,i_area}(i_point+1)],'b', 'Linewidth',2.); 
                end 
            end 
        end 
%         for i_curve=1:size(x_curve,1) 
%             for i_point=1:size(x_curve{i_curve},1)-1 
%                 cpt = cpt + 1; 
%                plot_seg(cpt) = plot([x_curve{i_curve}(i_point) 
x_curve{i_curve}(i_point+1)],[y_curve{i_curve}(i_point) 
y_curve{i_curve}(i_point+1)],'b','Linewidth',2.); 
%             end 
%         end 
        hold off 
        setappdata(0,'plot_seg',plot_seg) 
    else 
        plot_seg = getappdata(0,'plot_seg'); 
        delete(plot_seg); 
    end 
else 
    set(handles.checkbox_segment,'Value',0); 
end 
setappdata(0,'check_seg',check_seg); 
 
 
% --- Executes on button press in checkbox_curve. 
function checkbox_curve_Callback(hObject, ~, handles) 
% Plot or delete curves 
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% INPUT : 
% - x_curve : abscissa of all whole curves 
% - y_curve : ordinate of all whole curves 
% - check_curve : boolean 
% - smoothing_spline : fit object of all curves 
% - txt_curve : number of curve 
 
% OUTPUT :  
% - plot_spline : plot of the smoothing_spline 
% - check_curve : boolean 
 
 
x_curve = getappdata(0,'x_curve'); 
txt_curve = getappdata(0,'txt_curve'); 
check_curve = get(hObject,'Value'); 
hold on 
if isempty(x_curve) == 0 
    if check_curve == 1 
        y_curve = getappdata(0,'y_curve'); 
        txt_curve = getappdata(0,'txt_curve'); 
        smoothing_spline = getappdata(0,'smoothing_spline'); 
        plot_spline = cell(size(x_curve,1),1); 
        for i = 1 : size(x_curve,1) 
            hold on; 
            plot_spline{i} = plot(smoothing_spline{i},x_curve{i},y_curve{i}); 
            set(plot_spline{i},'LineWidth',2.,'MarkerSize',10); 
            legend('off'); 
            xlabel([]); 
            ylabel([]); 
            txt_curve{i} = text(x_curve{i}(1)-10,y_curve{i}(1)-10,num2str(i),'color','red'); 
        end 
        setappdata(0,'plot_spline',plot_spline); 
        setappdata(0,'txt_curve',txt_curve); 
    else 
        plot_spline = getappdata(0,'plot_spline'); 
        for i = 1 : size(plot_spline,1) 
            delete(plot_spline{i}); 
            for i_txt = 1:size(txt_curve,1) 
                delete(txt_curve{i_txt}) 
            end 
        end 
    end 
else 
    set(handles.checkbox_curve,'Value',0); 
end 
setappdata(0,'check_curve',check_curve) 
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% --- Executes on button press in checkbox_line_distance. 
function checkbox_line_distance_Callback(hObject, ~, handles) 
% Plot or delete some segment showing how the distance is computed 
 
% INPUT : 
% - nb_direction : number of peptide direction 
% - IC_1 : first initial condition 
% - IC_2 : second initial condition 
% - smoothing_spline : fit object of all curves 
% - x_curve : abscissa of all whole curves 
% - y_curve : ordinate of all whole curves 
% - x_curve_area : abscissa of all whole curves by area 
% - y_curve_area : ordinate of all whole curves by area 
% - check_line_distance : boolean 
% - plot_line_distance : plot of distance line 
 
% OUTPUT : 
% - plot_line_distance : plot of distance line 
 
check_line_distance = get(hObject,'Value'); 
 
if check_line_distance == 1 
    x_curve = getappdata(0,'x_curve'); 
    if isempty(x_curve) == 0 
        nb_direction = getappdata(0,'nb_direction'); 
        IC_1 = getappdata(0,'IC_1'); 
        IC_2 = getappdata(0,'IC_2'); 
        smoothing_spline = getappdata(0,'smoothing_spline'); 
        x_curve = getappdata(0,'x_curve'); 
        y_curve = getappdata(0,'y_curve'); 
        x_curve_area = getappdata(0,'x_curve_area'); 
        y_curve_area = getappdata(0,'y_curve_area'); 
         
        [plot_line_distance] = 
run_checkbox_line_distance(nb_direction,IC_1,IC_2,smoothing_spline,x_curve,y_curve,x_curv
e_area,y_curve_area); 
         
        setappdata(0,'plot_line_distance',plot_line_distance); 
    else 
        set(handles.checkbox_line_distance,'Value',0); 
    end 
else 
    plot_line_distance = getappdata(0,'plot_line_distance'); 
    delete(plot_line_distance); 
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end 
 
 
% --- Executes on button press in checkbox_bright_spots_line. 
function checkbox_bright_spots_line_Callback(hObject, ~, handles) 
% Plot or delete the curve passing through the same corresponding bright 
% spot of each curve 
 
% INPUT : 
% - check_bright_spot_line : boolean 
% - x_curve_area : abscissa of all whole curves by area 
% - y_curve_area : ordinate of all whole curves by area 
% - IC_1 : first initial condition 
% - IC_2 : second initial condition 
% - nb_direction : number of peptide direction 
% - plot_bright_spot_line : plot of all bright spot lines 
 
% OUTPUT : 
% - plot_bright_spot_line : plot of all bright spot lines 
 
 
check_bright_spot_line = get(hObject,'Value'); 
 
if check_bright_spot_line == 1 
    x_curve_area = getappdata(0,'x_curve_area'); 
    if isempty(x_curve_area) == 0 
        IC_1 = getappdata(0,'IC_1'); 
        nb_direction = getappdata(0,'nb_direction'); 
        IC_2 = getappdata(0,'IC_2'); 
        y_curve_area = getappdata(0,'y_curve_area'); 
         
        plot_bright_spot_line = 
run_checkbox_bright_spot_line(nb_direction,IC_1,IC_2,x_curve_area,y_curve_area); 
         
        setappdata(0,'plot_bright_spot_line',plot_bright_spot_line); 
    else 
        set(handles.checkbox_bright_spots_line,'Value',0); 
    end 
else 
    plot_bright_spot_line = getappdata(0,'plot_bright_spot_line'); 
    for i = 1 : size(plot_bright_spot_line,1) 
        for j = 1:size(plot_bright_spot_line{i},1) 
            delete(plot_bright_spot_line{i}{j}) 
        end 
    end 
end 
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% --- Executes on button press in add_point. 
function add_point_Callback(~, ~, handles) 
 
% NOT USE AND NOT UPDATED, SEE run_add_delete_points TO THE UPDATED 
VERSION 
 
% Add unlimited points, the user clicks to delete a point, to find the area,  
% we test if the point is in the area.   
% To find the curve, we find the distance between all curve and the straight  
% line given by the point and the slope joining the left points of the initial  
% condition of the area. The shortest distance gives the nearest curve. 
% After we find the local and global position of the point by computing the  
% substract in abscissa between each points of the curve and the new point.  
% The first which is positive gives the position.  
% We adjust all variables and delete the curve’s plot and plot the new 
% curve. 
% To stop to add points, just click outside. 
 
% INPUT : 
% - x_curve : abscissa of all whole curves 
% - y_curve : ordinate of all whole curves 
% - x_curve_area : abscissa of all whole curves by area 
% - y_curve_area : ordinate of all whole curves by area 
% - smoothing_spline : fit object of all curves 
% - IC_1 : first initial condition 
% - IC_2 : second initial condition 
% - plot_spline : plot of the smoothing_spline 
% - im : tranformed image 
 
% OUTPUT 
% - x_curve : abscissa of all whole curves 
% - y_curve : ordinate of all whole curves 
% - x_curve_area : abscissa of all whole curves by area 
% - y_curve_area : ordinate of all whole curves by area 
% - smoothing_spline : fit object of all curves 
% - plot_spline : plot of the smoothing_spline 
 
if get(handles.checkbox_curve,'Value') == 1 
    hold on; 
    smoothing_spline = getappdata(0,'smoothing_spline'); 
    x_curve = getappdata(0,'x_curve'); 
    y_curve = getappdata(0,'y_curve'); 
    x_curve_area = getappdata(0,'x_curve_area'); 
    y_curve_area = getappdata(0,'y_curve_area'); 
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    IC_1 = getappdata(0,'IC_1'); 
    IC_2 = getappdata(0,'IC_2'); 
    plot_spline = getappdata(0,'plot_spline'); 
    im = getappdata(0,'im'); 
    txt_curve = getappdata(0,'txt_curve'); 
 
    [x_curve,y_curve,smoothing_spline,plot_spline,x_curve_area,y_curve_area,txt_curve] = 
run_add_point(smoothing_spline,x_curve,y_curve,IC_1,IC_2,plot_spline,im,x_curve_area,y_cur
ve_area,txt_curve); 
     
    setappdata(0,'txt_curve',txt_curve) 
    setappdata(0,'x_curve',x_curve) 
    setappdata(0,'y_curve',y_curve) 
    setappdata(0,'x_curve_area',x_curve_area) 
    setappdata(0,'y_curve_area',y_curve_area) 
    setappdata(0,'smoothing_spline',smoothing_spline) 
    setappdata(0,'plot_spline',plot_spline) 
    hold off; 
end 
 
 
% --- Executes on button press in Delete_points. 
function Delete_points_Callback(~, ~, handles) 
 
% NOT USE AND NOT UPDATED, SEE run_add_delete_points TO THE UPDATED 
VERSION 
 
% Delete unlimited points, the user clicks to delete a point, to find the area,  
% we test if the point is in the area.   
% To find the curve, we find the distance between all curve and the straight  
% line given by the point and the slope joining the left points of the initial  
% condition of the area. The shortest distance gives the nearest curve. 
% To find the local and global position of the point, it computes the absolute  
% value of the offset in abscissa between the new point and all the points  
% of the curve. The minimum is the nearest point. 
% It deletes it 
% We adjust all variables and delete the curve’s plot and plot the new 
% curve. 
% To stop to add points, just click outside. 
 
% INPUT : 
% - x_curve : abscissa of all whole curves 
% - y_curve : ordinate of all whole curves 
% - x_curve_area : abscissa of all whole curves by area 
% - y_curve_area : ordinate of all whole curves by area 
% - smoothing_spline : fit object of all curves 
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% - IC_1 : first initial condition 
% - IC_2 : second initial condition 
% - plot_spline : plot of the smoothing_spline 
% - im : tranformed image 
 
% OUTPUT 
% - x_curve : abscissa of all whole curves 
% - y_curve : ordinate of all whole curves 
% - x_curve_area : abscissa of all whole curves by area 
% - y_curve_area : ordinate of all whole curves by area 
% - smoothing_spline : fit object of all curves 
% - plot_spline : fit object of all curves 
 
if get(handles.checkbox_curve,'Value') == 1 
    hold on; 
    smoothing_spline = getappdata(0,'smoothing_spline'); 
    x_curve = getappdata(0,'x_curve'); 
    y_curve = getappdata(0,'y_curve'); 
    x_curve_area = getappdata(0,'x_curve_area'); 
    y_curve_area = getappdata(0,'y_curve_area'); 
    IC_1 = getappdata(0,'IC_1'); 
    IC_2 = getappdata(0,'IC_2'); 
    plot_spline = getappdata(0,'plot_spline'); 
    im = getappdata(0,'im'); 
    txt_curve = getappdata(0,'txt_curve'); 
 
    [x_curve,y_curve,smoothing_spline,plot_spline,x_curve_area,y_curve_area,txt_curve] = 
run_delete_point(smoothing_spline,x_curve,y_curve,IC_1,IC_2,plot_spline,im,x_curve_area,y_c
urve_area,txt_curve); 
     
    setappdata(0,'txt_curve',txt_curve) 
    setappdata(0,'x_curve',x_curve) 
    setappdata(0,'y_curve',y_curve) 
    setappdata(0,'x_curve_area',x_curve_area) 
    setappdata(0,'y_curve_area',y_curve_area) 
    setappdata(0,'smoothing_spline',smoothing_spline) 
    setappdata(0,'plot_spline',plot_spline) 
    hold off; 
end 
 
 
% --- Executes on button press in pushbutton21. 
function Add_Delete_points_Callback(~, ~, handles) 
% Right click to delete a point 
% Left click to add a point 
% outside click to stop 
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% To delete a point, we find the closest point, delete it and adjust 
% variable and plot 
% To add a point, if the new point is not an extrema, we find the closest 
% curve, find the good position to add the point, adjust variable and plot. 
% If the new point is an extrema, we compute the slope between the new 
% point and the closest extrema of each curve, the slope closest to the 
% initial condition in this area corresponds to the curve to add the point. 
% If check_bright_spot_line == 1, so we compute the new curve passing 
% through the same bright spot and adjust the plot. 
 
% INPUT : 
% - smoothing_spline : fit object of all curves 
% - x_curve : abscissa of all whole curves 
% - y_curve : ordinate of all whole curves 
% - x_curve_area : abscissa of all whole curves by area 
% - y_curve_area : ordinate of all whole curves by area 
% - IC_1 : first initial condition 
% - IC_2 : second initial condition 
% - plot_spline : plot of the smoothing_spline 
% - im : tranformed image 
% - txt_curve : number of curve 
% - plot_bright_spot_line : plot of all bright spot lines 
% - check_bright_spot_line : boolean 
 
% OUTPUT : 
% - txt_curve : number of curve 
% - x_curve : abscissa of all whole curves 
% - y_curve : ordinate of all whole curves 
% - x_curve_area : abscissa of all whole curves by area 
% - y_curve_area : ordinate of all whole curves by area 
% - smoothing_spline : fit object of all curves 
% - plot_spline : plot of the smoothing_spline 
% - plot_bright_spot_line : plot of all bright spot lines 
 
if get(handles.checkbox_curve,'Value') == 1 
    hold on; 
    smoothing_spline = getappdata(0,'smoothing_spline'); 
    x_curve = getappdata(0,'x_curve'); 
    y_curve = getappdata(0,'y_curve'); 
    x_curve_area = getappdata(0,'x_curve_area'); 
    y_curve_area = getappdata(0,'y_curve_area'); 
    IC_1 = getappdata(0,'IC_1'); 
    IC_2 = getappdata(0,'IC_2'); 
    plot_spline = getappdata(0,'plot_spline'); 
    im = getappdata(0,'im'); 
    txt_curve = getappdata(0,'txt_curve'); 
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    plot_bright_spot_line = getappdata(0,'plot_bright_spot_line'); 
    check_bright_spot_line = get(handles.checkbox_bright_spots_line,'Value'); 
    set(handles.text_add_delete_point,'Visible','On'); 
 
    
[x_curve,y_curve,smoothing_spline,plot_spline,x_curve_area,y_curve_area,txt_curve,plot_brigh
t_spot_line] = 
run_add_delete_points(smoothing_spline,x_curve,y_curve,IC_1,IC_2,plot_spline,im,x_curve_ar
ea,y_curve_area,txt_curve,check_bright_spot_line,plot_bright_spot_line); 
     
    setappdata(0,'txt_curve',txt_curve) 
    setappdata(0,'x_curve',x_curve) 
    setappdata(0,'y_curve',y_curve) 
    setappdata(0,'x_curve_area',x_curve_area) 
    setappdata(0,'y_curve_area',y_curve_area) 
    setappdata(0,'smoothing_spline',smoothing_spline) 
    setappdata(0,'plot_spline',plot_spline) 
    setappdata(0,'plot_bright_spot_line',plot_bright_spot_line) 
    set(handles.text_add_delete_point,'Visible','Off'); 
    hold off; 
end 
 
 
% --- Executes on button press in add_curve. 
function add_curve_Callback(~, ~, handles) 
% After giving the initial conditions or after ploting the curve, the user 
% can add one curve by one curve.  
% He can add unlimited points to the new curve, to stop he has to click 
% outside the picture. 
% The first point gives the position of the curve following the other and 
% after it is the same as add a point. 
 
% INPUT : 
% - x_curve : abscissa of all whole curves 
% - y_curve : ordinate of all whole curves 
% - x_curve_area : abscissa of all whole curves by area 
% - y_curve_area : ordinate of all whole curves by area 
% - smoothing_spline : fit object of all curves 
% - IC_1 : first initial condition 
% - IC_2 : second initial condition 
% - plot_spline : plot of the smoothing_spline 
% - im : tranformed image 
% - txt_curve : number of curve 
 
% OUTPUT : 
% - x_curve_add : abscissa of all whole curves 
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% - y_curve_add : ordinate of all whole curves 
% - x_curve_area_add : abscissa of all whole curves by area 
% - y_curve_area_add : ordinate of all whole curves by area 
% - smoothing_spline_add : fit object of all curves 
% - plot_spline_add : plot of the smoothing_spline 
% - txt_curve_add : number of curve 
 
x_curve = getappdata(0,'x_curve'); 
if (get(handles.checkbox_curve,'Value') == 1 && isempty(x_curve) == 0) || 
(get(handles.checkbox_curve,'Value') == 0 && isempty(x_curve) == 1) 
    hold on; 
    smoothing_spline = getappdata(0,'smoothing_spline'); 
    y_curve = getappdata(0,'y_curve'); 
    x_curve_area = getappdata(0,'x_curve_area'); 
    y_curve_area = getappdata(0,'y_curve_area'); 
    IC_1 = getappdata(0,'IC_1'); 
    IC_2 = getappdata(0,'IC_2'); 
    plot_spline = getappdata(0,'plot_spline'); 
    step_select_ROI = getappdata(0,'step_select_ROI'); 
    txt_curve = getappdata(0,'txt_curve'); 
    im = getappdata(0,'im'); 
 
    if step_select_ROI == 1 
        [x_curve,y_curve,smoothing_spline,plot_spline,x_curve_area,y_curve_area,txt_curve] = 
run_add_curve(smoothing_spline,x_curve,y_curve,IC_1,IC_2,plot_spline,im,x_curve_area,y_cu
rve_area,txt_curve); 
    end 
    set(handles.checkbox_curve,'Value',1) 
    setappdata(0,'x_curve',x_curve) 
    setappdata(0,'y_curve',y_curve) 
    setappdata(0,'x_curve_area',x_curve_area) 
    setappdata(0,'y_curve_area',y_curve_area) 
    setappdata(0,'smoothing_spline',smoothing_spline) 
    setappdata(0,'plot_spline',plot_spline) 
    setappdata(0,'txt_curve',txt_curve) 
end 
         
 
% --- Executes on button press in delete_curve. 
function delete_curve_Callback(~, ~, handles) 
% The user can delete one curve by clicking on it. 
% It is the same as to delete a point but here it is the whole curve. 
 
% INPUT : 
% - x_curve : abscissa of all whole curves 
% - y_curve : ordinate of all whole curves 
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% - x_curve_area : abscissa of all whole curves by area 
% - y_curve_area : ordinate of all whole curves by area 
% - smoothing_spline : fit object of all curves 
% - IC_1 : first initial condition 
% - IC_2 : second initial condition 
% - plot_spline : plot of the smoothing_spline 
% - im : tranformed image 
 
% OUTPUT 
% - x_curve : abscissa of all whole curves 
% - y_curve : ordinate of all whole curves 
% - x_curve_area : abscissa of all whole curves by area 
% - y_curve_area : ordinate of all whole curves by area 
% - smoothing_spline : fit object of all curves 
% - plot_spline : fit object of all curves 
 
if get(handles.checkbox_curve,'Value') == 1 
    hold on; 
    smoothing_spline = getappdata(0,'smoothing_spline'); 
    x_curve = getappdata(0,'x_curve'); 
    y_curve = getappdata(0,'y_curve'); 
    IC_1 = getappdata(0,'IC_1'); 
    IC_2 = getappdata(0,'IC_2'); 
    plot_spline = getappdata(0,'plot_spline'); 
    x_curve_area = getappdata(0,'x_curve_area'); 
    y_curve_area = getappdata(0,'y_curve_area'); 
    txt_curve = getappdata(0,'txt_curve'); 
    im = getappdata(0,'im'); 
     
    [x_curve,y_curve,smoothing_spline,plot_spline,x_curve_area,y_curve_area,txt_curve] = 
run_delete_curve(smoothing_spline,x_curve,y_curve,IC_1,IC_2,plot_spline,im,x_curve_area,y_
curve_area,txt_curve); 
     
    if isempty(x_curve) == 1 
        set(handles.checkbox_curve,'Value',0) 
        set(handles.uipanel_curve_modification,'Visible','Off'); 
        set(handles.uipanel_distance_computation,'Visible','Off'); 
    end 
    setappdata(0,'x_curve',x_curve) 
    setappdata(0,'y_curve',y_curve) 
    setappdata(0,'smoothing_spline',smoothing_spline) 
    setappdata(0,'plot_spline',plot_spline) 
    setappdata(0,'x_curve_area',x_curve_area) 
    setappdata(0,'y_curve_area',y_curve_area) 
    setappdata(0,'txt_curve',txt_curve) 
end 
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% --- Executes on edit ratio. 
function ratio_Callback(hObject, ~, handles) 
% The ratio is save if it is positive 
 
% OUTPUT : 
% - ratio : conversion from pixel to unit 
 
ratio = str2double(get(hObject,'String')); 
if ratio>0 
    set(handles.redratio,'BackgroundColor',[0.94 0.94 0.94]); 
    set(handles.text_ratio,'BackgroundColor',[0.94 0.94 0.94]); 
else 
    ratio = nan; 
    set(handles.ratio,'string',''); 
end 
setappdata(0,'ratio',ratio); 
     
 
% --- Executes during object creation, after setting all properties. 
function ratio_CreateFcn(hObject, ~, ~) 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on selection change in unit_menu. 
function unit_menu_Callback(hObject, ~, handles) 
% Give the unit 
 
% OUTPUT : 
% - unit : string 
 
contents = cellstr(get(hObject,'String')); 
unit = contents{get(hObject,'Value')}; 
set(handles.redunit,'BackgroundColor',[0.94 0.94 0.94]); 
set(handles.text4,'BackgroundColor',[0.94 0.94 0.94]); 
setappdata(0,'unit',unit); 
 
 
% --- Executes during object creation, after setting all properties. 
function unit_menu_CreateFcn(hObject, ~, ~) 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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% --- Executes on button press in Plot_distance. 
function Plot_distance_Callback(~, ~, handles) 
% By area we compute the bright spot line passing through the same bright 
% spot. To compute it, we choose a curve, of all its points, we search if 
% there is a point in each others curves close to the straight line passing 
% through the point and with slope equal to the mean of a14 a23. 
% Of all these line, we compute the linear regression and compute the mean 
% of the slope. 
% For each curve, we discretize it such as for all points, the straight 
% line passing from these points intersects the next curve.  
% We compute the distance between all point and the intersection. 
% PLot the curve and the histogramm 
 
% INPUT : 
% - nb_direction : number of peptide direction 
% - IC_1 : first initial condition 
% - IC_2 : second initial condition 
% - x_curve_area : abscissa of all whole curves by area 
% - y_curve_area : ordinate of all whole curves by area 
% - x_curve : abscissa of all whole curves 
% - y_curve : ordinate of all whole curves 
% - smoothing_spline : fit object of all curves 
% - ratio : conversion from pixel to unit 
% - unit : string 
 
nb_direction = getappdata(0,'nb_direction'); 
IC_1 = getappdata(0,'IC_1'); 
IC_2 = getappdata(0,'IC_2'); 
x_curve_area = getappdata(0,'x_curve_area'); 
y_curve_area = getappdata(0,'y_curve_area'); 
x_curve = getappdata(0,'x_curve'); 
y_curve = getappdata(0,'y_curve'); 
smoothing_spline = getappdata(0,'smoothing_spline'); 
ratio = getappdata(0,'ratio'); 
unit = getappdata(0,'unit'); 
 
if isempty(ratio) || isnan(ratio) 
    set(handles.redratio,'BackgroundColor','red'); 
    set(handles.text4,'BackgroundColor','red'); 
    set(handles.text_ratio,'BackgroundColor','red'); 
end 
 
if strcmp(unit,'') == 1 
    set(handles.redunit,'BackgroundColor','red'); 
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end 
 
if isempty(x_curve) == 0 && isempty(ratio) == 0 && isnan(ratio) == 0 && strcmp(unit,'') == 0 
    
run_distance(nb_direction,IC_1,IC_2,x_curve_area,y_curve_area,smoothing_spline,x_curve,y_c
urve,ratio,unit); 
end 
 
 
% --- Executes on button press in save_distance. 
function save_distance_Callback(~, ~, handles) 
% We create a new folder, save all distance in a .txt file 
% Save the picture as we seen 
% Plot and take a screenshot of the distance's plot 
 
% INPUT : 
% - nb_direction : number of peptide direction 
% - x_curve_area : abscissa of all whole curves by area 
% - y_curve_area : ordinate of all whole curves by area 
% - smoothing_spline : fit object of all curves 
% - ratio : conversion from pixel to unit 
% - unit : string 
% - pathname : string 
% - filename : string 
 
ratio = getappdata(0,'ratio'); 
pathname = getappdata(0,'pathname'); 
filename = getappdata(0,'filename'); 
unit = getappdata(0,'unit'); 
smoothing_spline = getappdata(0,'smoothing_spline'); 
nb_direction = getappdata(0,'nb_direction'); 
x_curve_area = getappdata(0,'x_curve_area'); 
y_curve_area = getappdata(0,'y_curve_area'); 
 
if isempty(ratio) || isnan(ratio) 
    set(handles.redratio,'BackgroundColor','red'); 
    set(handles.text4,'BackgroundColor','red'); 
    set(handles.text_ratio,'BackgroundColor','red'); 
end 
 
if strcmp(unit,'') == 1 
    set(handles.redunit,'BackgroundColor','red'); 
end 
 
if isempty(smoothing_spline) == 0 && isempty(ratio)==0 && isnan(ratio) == 0 && 
strcmp(unit,'') == 0 



 178 

    run_save_distance(ratio, pathname, filename, unit, smoothing_spline, nb_direction, 
x_curve_area, y_curve_area) 
end 
 
 
 
 
% PREPROCESSING 
% --- Executes on button press in fft_high. 
function fft_high_Callback(~, ~, ~) 
im = getappdata(0,'im_init'); 
im_bandpass = Bandpass_Butterworth_Filter(im, 0, 90); 
imshow(im_bandpass); 
setappdata(0,'im_bandpass',im_bandpass) 
 
 
% --- Executes on button press in Correlation_averaging. 
function Correlation_averaging_Callback(~, ~, ~) 
% im_bandpass = getappdata(0,'im_bandpass_rotate'); 
im_bandpass = getappdata(0,'im'); 
im_average_adjust = Correlation_averaging(im_bandpass); 
imshow(im_average_adjust,[0 255]) 
setappdata(0,'im',im_average_adjust) 
 
 
% --- Executes on slider movement. 
function rotate_slider_Callback(hObject, ~, ~) 
theta = get(hObject,'Value'); 
% im_bandpass = getappdata(0,'im_bandpass'); 
% im_bandpass_rotate = imrotate(im_bandpass,-theta); 
% imshow(im_bandpass_rotate) 
% setappdata(0,'im_bandpass_rotate',im_bandpass_rotate); 
im_init = getappdata(0,'im_init'); 
im = imrotate(im_init,-theta); 
imshow(im) 
setappdata(0,'im',im); 
 
 
% --- Executes during object creation, after setting all properties. 
function rotate_slider_CreateFcn(hObject, ~, ~) 
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
 
 
% --- Executes on button press in Show_image_init. 
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function Show_image_init_Callback(~, ~, ~) 
im = getappdata(0,'im_init'); 
imshow(im) 




