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Abstract

Online Robotic Skill Learning and Adaptation: Integrating Real-time Motion Planning,
Model Learning, and Control

By

Changhao Wang

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Robots are designed to perform tasks with precision and efficiency, often surpassing human
capabilities. They not only enhance productivity in manufacturing but also work in areas
inaccessible or hazardous to humans. In homes, robotic vacuum cleaners and assistants make
daily life more convenient. In healthcare, they assist in complex surgeries and patient care.
Moreover, the integration of machine learning and large models further equips robots with
intelligence, enabling them to learn from their environments and make informed decisions
without additional human commands. However, as those models or policies are learned
offline, it is still an open question of whether the robots can reliably interact in the new
scenarios online. To address this question, this dissertation delves into the development of
efficient and robust methods that empower robots to learn and plan manipulation trajectories
in real-time, and to self-adjust their skills based on live sensor feedback.

The core of this dissertation is anchored in three principal challenges:

Efficient Trajectory Optimization: Model predictive control (MPC) plays an important role
in online robotic planning. In these scenarios, a robot will optimize its future actions based on
the dynamics model. Therefore, the development of efficient formulations and algorithms for
MPC and trajectory optimization is crucial for real-time robot learning and skill adaptation.
In Part I of the dissertation, we introduce algorithms and formulations tailored for real-time
robotic trajectory optimization. Our focus is on enhancing the computational speed of the
optimization process while ensuring the resulting trajectory maintains high quality. These
advancements can equip robots with the ability to swiftly plan and adjust their movements
in novel environmental conditions.

Adaptive Model Learning for Deformable Object Manipulation: Building on the efficient MPC
formulation presented in Part I, the second part of the dissertation shifts its focus to the real-
time enhancement of robotic behaviors. This enhancement involves dynamically adjusting
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the robot’s dynamics model based on real-world sensor data. Part II specifically addresses
online model learning for the manipulation of deformable objects, such as ropes and fabrics.
These tasks, characterized by their complex and non-linear state changes, present substantial
challenges for model-based methods, yet are critically important for everyday applications.
In this part of the dissertation, we introduce algorithms capable of learning the dynamics of
these objects and effectively manipulating them. Our research emphasizes the integration
of real-time sensory feedback with machine learning algorithms. This synergy is crucial for
the continuous refinement and updating of the dynamics model. We illustrate how such
real-time adjustments are vital for enabling robotic systems to modify their manipulation
strategies effectively.

Real-time Control Policy Adaptation for Contact-Rich Manipulation Tasks : While the MPC
and adaptive model learning can provide robots with more reliable trajectories, another
crucial aspect for real-time execution is low-level force control, which calculates the motor
torque for reliable environmental interaction. Part III of the dissertation concentrates on
optimizing control policies for robotic systems engaged in contact-rich manipulation tasks
such as assembly, pivoting, and screwing. The main emphasis is on the ability of robotic
systems to dynamically adjust their control policies in response to force and torque feedback.
This level of adaptation is critical for the successful completion of tasks requiring delicate
and precise physical interactions. By doing so, we demonstrate the improvement of the
robot’s motion under massive contacts.
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Chapter 1

Introduction

1.1 Background and Motivations

The evolution of robots from pre-programmed machines to sophisticated, decision-making
systems marks a significant leap in robotics. Today, robots are vital in various aspects of our
lives, notably in manufacturing, healthcare, and logistics. The integration of machine learn-
ing algorithms into these systems has further expanded their capabilities, enabling robots
to autonomously interpret and adapt to their surroundings without the need for continuous
human supervision. This level of autonomy is especially crucial in our daily lives.

A main challenge in the current landscape of robotics is enabling real-time decision-
making and adaptability. While significant progress has been made in offline learning of
models and policies within controlled settings, it is still challenging for robots to reliably
interact with new scenarios. The critical gap is the robot’s ability to not just execute pre-
learned models but to actively make decisions, plan, and adapt their actions in real-time in
response to new and unforeseen situations.

Take the peg-in-hole insertion task as an example: the objective is to accurately align a
peg with a hole and then apply the appropriate force to insert it fully. This task poses con-
siderable challenges for robotic manipulators both from a planning and control perspective.
Firstly, it involves determining the manipulation trajectory to complete the task. Secondly,
it requires the generation of precise low-level force/torque commands for safe and efficient
interaction. Although data can be pre-collected and used to train the robot offline, this alone
is insufficient for handling the variability and unpredictability encountered in real-world sce-
narios. Offline training data might not encompass all possible variations in alignment, force
application, and environmental conditions the robot will encounter. Therefore, the robot
must be capable of online learning and adaptation. It needs to learn from each insertion
attempt, refining its trajectory planning and force control strategies in real time. This ap-
proach not only enhances the robot’s performance in repetitive tasks but also equips it with
the flexibility to handle new, unanticipated scenarios effectively.

This dissertation is motivated by the need to address this gap. It focuses on developing
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methodologies that enable robots to perform online planning and make decisions efficiently.
The objective is to advance robotic capabilities beyond robust offline learning, towards dy-
namic, real-time adaptability in various operational contexts. The emphasis is on enabling
robots to not only follow predetermined paths but to intelligently navigate, adjust their
strategies, and learn from their environment.

Figure 1.1: Overview of the dissertation. This dissertation presents methodologies aimed at
enabling robots to interact reliably with their environment and objects in real time. Our
focus was distributed across three key aspects: robotic motion planning (Chapters 2 and
3), adaptive model learning (Chapters 4, 5, and 6), and online control policy adaptation
(Chapter 7).
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1.2 Dissertation Outlines

The overall goal of this dissertation is to develop methodologies that enable robots to adapt
in real-time to novel scenarios. Specifically, we focus on three main challenges: efficient
robotic motion planning, online model learning for manipulating deformable objects, and
real-time control policy adaptation for contact-rich manipulation tasks.

Part I: Efficient Trajectory Optimization

Robotic motion planning that meets dynamics, kinematics, and collision avoidance con-
straints is fundamental for autonomous robotic systems. Developing an efficient algorithm
to compute optimal trajectories is crucial for robots operating in new and unstructured en-
vironments. This part of the dissertation discusses methodologies developed for effective
trajectory optimization.

Efficient Trajectory Optimization via Trajectory Splitting

Achieving efficient trajectory optimization, especially in unstructured environments, is chal-
lenging due to the need for both speed and quality in the solutions. A significant factor is
that second-order optimality demands Hessian matrix calculations, which grow quadratically
with the number of waypoints. Reducing waypoints can decrease computation time but often
at the cost of trajectory quality, potentially leading to collisions. Our approach, inspired by
recent consensus optimization studies, proposes a distributed formulation of collocated tra-
jectory optimization. It segments a long trajectory into smaller parts, each solved in parallel
and then unified into a single trajectory with consensus constraints. This method distributes
the quadratic complexity and enables the creation of high-quality trajectories with denser
waypoints. We demonstrate the improved efficiency of this method against leading motion
planning algorithms. Part of this work was published in [102].

Bilevel Trajectory Optimization Formulation for Efficient Collision Avoidance

Considering the collision along the continuous trajectory is extremely challenging. Standard
formulations focus on individual waypoints, but a comprehensive approach must account
for potential collisions along the entire path. This dissertation introduces a bilevel path
optimization formulation (BPOMP), which constrains the closest position along the path to
the obstacles. If this position is free of collision, the entire path is likely collision-free. We
formulate this as a bilevel optimization problem, then simplify it to nonlinear programming
(NLP). Experimental and simulation comparisons validate the effectiveness of BPOMP. Part
of this work was published in [103].
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Part II: Adaptive Model Learning for Deformable Object
Manipulation

In addition to classic motion planning problems, interacting with various objects is another
essential challenge in many robotic applications, and having an accurate dynamics model is
beneficial for achieving manipulation skills. However, obtaining and aligning these models
with real-world objects is challenging. This section explores online learning and refinement
of dynamics models for better object manipulation.

A Unified Framework for Deformable Objects State Estimation and Task
Planning

The manipulation of deformable objects like ropes or clothes involves complexities due to
their infinite-dimensional configuration spaces. In Chapter 4, we introduce a comprehensive
framework using Coherent Point Drift (CPD) for state estimation and we utilize it for task
planning. This approach effectively captures the dynamic states of deformable objects by
aligning observed data points with a reference model in simulation, enabling precise real-
time tracking even under occlusions. This accuracy is crucial for robotic systems to adapt
their manipulation strategies dynamically, especially in scenarios involving significant defor-
mation or movement. The CPD-based state estimation method is not only robust in various
manipulation contexts but also essential for achieving high precision and reliability in tasks
requiring complex interactions with deformable materials. Part of this work was published
in [94, 30].

Offline-online Learning of Deformation for Robotic Cable Manipulation

Precisely manipulating deformable linear objects like cables has applications in manufactur-
ing and surgery. An accurate model predicting deformation is crucial for control. We propose
a hybrid offline-online method to learn cable dynamics using a Graph Neural Network (GNN)
for simulation data and a real-time linear residual model to bridge the sim-to-real gap. This
model is integrated into a Model Predictive Controller (MPC) for optimal robot movement.
Comparative results show the method’s effectiveness and robustness. Part of this work was
published in [104].

Robust Deformation Model Learning under Uncertainties

In Chapter 6, we expand upon the methodologies discussed in previous chapters, addressing
more complex scenarios characterized by significant sensor noise and extensive occlusion. We
introduce a novel framework, SPR-RWLS, that synergizes the real-time cable tracking algo-
rithm from Chapter 4 with the online model learning methods outlined in Chapter 5. This
integration is designed to enhance the robustness of object manipulation under challeng-
ing conditions. Specifically, for cable tracking, we employ Structure Preserved Registration
(SPR) to accurately estimate the movement of key points on a cable, even amidst sensor
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noise, outliers, and occlusions. Subsequently, Robust Weighted Least Squares (RWLS) is
utilized to compute the local deformation model of the cable, factoring in various uncer-
tainties. This combined SPR-RWLS approach significantly improves the ability of dual-arm
robots to manipulate cables of different thicknesses and lengths into various desired curva-
tures across multiple scenarios. Moreover, we demonstrate that the real-time implementation
of the SPR-RWLS method can be streamlined through parallel computation, enhancing its
efficiency and applicability. Part of this work was published in [28].

Part III: Real-time Control Policy Adaptation for Contact-Rich
Manipulation Tasks

In addition to the manipulation tasks that do not require extensive force interactions,
contact-rich manipulation, found in tasks like assembly and grasping, requires precise control
over manipulation trajectories and force parameters. Incorrect parameters can cause damage
due to oscillations or excessive forces. This section addresses the challenge of online control
adaptation for efficient and safe contact-rich manipulation.

Efficient Control Policy Adaptation with Online Admittance Residual Learning

Learning contact-rich manipulation skills is vital, but challenging due to data inefficiencies
and the sim-to-real gap. We introduce a hybrid offline-online framework for robust skill
learning, using model-free reinforcement learning in the offline phase for motion and com-
pliance control parameters. In the online phase, we adapt these parameters in real time
based on force sensor data. We provide comparative results to demonstrate our approach’s
effectiveness in tasks such as table wiping, assembly, pivoting, and screwing. Part of this
work was published in [105, 114].

1.3 Summary of Contributions

This dissertation’s contributions are summarized as follows:

• Part I: Efficient Trajectory Optimization

– Chapter 2 introduces a distributed optimization algorithm that segments the
trajectory into smaller parts, effectively distributing problem complexity for en-
hanced computational efficiency.

– Chapter 3 proposes a bilevel optimization formulation for motion planning, fo-
cusing on efficiently resolving potential mid-waypoint collisions.

• Part II: Adaptive Model Learning for Deformable Object Manipulation
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– Chapter 4 presents a comprehensive framework using non-rigid registration to
estimate the states of deformable objects and devise corresponding manipulation
strategies.

– Chapter 5 details a hybrid offline-online learning approach, combining an offline
Graph Neural Network (GNN) model with online residual learning to accurately
predict dynamics for manipulating deformable linear objects.

– Chapter 6 advances these concepts into more unstructured environments, address-
ing challenges like significant sensor noise and occlusions.

• Part III: Real-time Control Policy Adaptation for Contact-Rich Manipulation Tasks

– Chapter 7 introduces an online admittance learning approach, optimizing the
residual of admittance control parameters in real time. This method adapts pre-
viously learned manipulation policies to new scenarios efficiently.
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Part I

Efficient Trajectory Optimization
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Chapter 2

Efficient Trajectory Optimization via
Trajectory Splitting

As discussed in Chapter 1, to enable real-time decision-making capability, one of the fun-
damental problems is to develop efficient trajectory optimization algorithms that can let
the robot navigate through constrained environments and avoid obstacles. In this chapter,
we introduce a novel trajectory optimization algorithm designed to decompose a complex,
long trajectory planning problem into several segments. Each sub-trajectory is processed
in parallel, enhancing computational efficiency. Then the solutions are fused into a single
trajectory with a consensus constraint that enforces continuity of the segments through a
consensus update. With this scheme, the complexity is distributed to each segment and
enables solving for higher-quality trajectories much more efficiently.

2.1 Introduction

Finding optimal, collision-free trajectories is important for robots to interact with people and
the environment. Sampling and optimization are two of the most powerful ways to achieve
the goal. Optimization allows defining the problem in terms of constraints and finding solu-
tions that optimize performance. Currently, collocation-based optimization methods, such
as TrajOpt [80], solve a non-linear program (NLP) using non-linear optimization algorithms
like sequential quadratic programming (SQP) [7]. The structure of the NLP leads to at
least O(N2) time complexity concerning the number of waypoints to satisfy second-order
optimality criteria. Therefore, increasing the density of waypoints quadratically increases
the computation time. In comparison, sampling-based planners, such as rapidly explor-
ing random trees (RRT) [39], are able to be parallelized to achieve a higher computation
efficiency.

Our goal is to combine the expressiveness and quality of optimization-based techniques
with the computational advantages of parallelization in sampling-based methods. We pro-
pose a method that separates the trajectory optimization problem into a set of subproblems
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that can be solved in a distributed manner.
Prevailing methods for parallel or distributed optimization mainly focus on multi-agent

planning [77, 44] with limited research applying the techniques to single-agent planning.
Brendan. et al [68] pioneered in this field by applying the operator splitting method to
convex optimal control problems. They proposed splitting an optimal control problem into
subproblems by constraint. This idea is further studied in [87] and applied to more chal-
lenging control scenarios. If it were applied to a collision-avoiding trajectory problem for
a robot, two subproblems would be created. One subproblem would satisfy only the robot
dynamics and the other would only avoid the collision. These problems would then be fused
using an iterative consensus update to find the optimal trajectory. However, even with this
splitting scheme, the number of variables for each subproblem remains the same, and it still
suffers from the O(N2) time complexity. Furthermore, splitting by constraint may create
subproblems with different complexity. Some subproblems may dominate the computation
time, and others should wait until the most complicated subproblem is finished in order to
begin the next consensus iteration.

To deal with those problems, we propose to split the problem by the path variables,
creating subproblems for segments of the trajectory. In this way, the problem complexity
can be equally distributed. These segments are then fused together using a consensus up-
date scheme similar to the method described above. This proposed method of “trajectory
splitting” exploits the observation that complexity decreases as path length decreases and
in this way offers a more efficient approach to solving trajectory optimization for certain
classes of problems. Moreover, the proposed splitting scheme is amenable to be incorporated
with any existing trajectory optimizers to solve the subproblem. To the authors’ knowledge,
this is the first approach to parallelizing optimization-based trajectory planning by splitting
the path variables in order to equally distribute the problem complexity to each trajectory
segment. The contributions of the proposed method are listed as follows:

• A novel formulation of trajectory optimization problems via splitting the trajectory
into segments that can equally distribute the problem complexity.

• A distributed optimization algorithm to solve the proposed formulation for better com-
putational efficiency.

• An implementation of the trajectory splitting algorithm with a state-of-the-art collision
checker and optimization solver.

• Comprehensive comparisons of the proposed trajectory splitting algorithm against ex-
isting methods using both simulation and real-world experiments.

2.2 Related Works

Motion planning algorithms are nominally classified into two broad categories, sampling, and
optimization. Sampling methods are well suited for problems where any feasible solution
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is acceptable and gradient information is difficult or expensive to compute. Probabilistic
roadmap (PRM) [33] solves the planning problem by constructing a complete map of the
workspace and then using a search algorithm to find a feasible path from the map. One major
problem of PRM is the computation time. It is time-consuming to build a complete roadmap,
especially in high-dimensional space. RRT [39] deals with this problem by incrementally
building a graph and checking feasible paths at the same time. In practice, RRT and its
variants [37, 39] are still some of the most powerful ways to deal with the planning problem.
They are efficient and can easily be parallelized [39] for even better performance. However,
since sampling-based planners are stochastic, they may find different solutions for the same
problem, and the solution quality and the computation time may also have a large variance.
This problem has been reported in several papers [123, 56]. It is still an active research area
to improve the robustness of sampling planners.

Though sampling planners are effective in finding feasible paths, it is often preferable to
obtain ‘optimal’ paths that satisfy an objective. RRT* [39], an optimal variant of traditional
RRT, can obtain optimal paths with the help of an additional ‘rewire’ operation. Exploiting
the probabilistic completeness property provides a theoretical guarantee of globally optimal
solutions. However, in practice, the planner is only given finite time to find a path and thus,
RRT* performance declines sharply as the dimensionality of the scenario increases [56].

Optimization, on the other hand, provides a way to go beyond finding a feasible solution
and offers a means to seek ‘better’ solutions based on an objective. State-of-the-art trajectory
optimization algorithms start with an infeasible solution and evolve a trajectory to minimize
a defined cost and satisfy all constraints. CHOMP [123] pioneered this approach for collision
avoidance planning problems in robotics, proposing a covariant gradient descent update rule
to optimize the trajectory. To deal with non-differentiable constraints, STOMP [32] proposed
a stochastic update rule. TrajOpt [80] introduced an SQP formulation to solve the planning
problems. Recently, there has been considerable progress in this field [61, 49, 90], and these
efforts suggest new approaches to optimization-based planning have the potential to be both
computationally efficient and retain high-quality solutions.

2.3 Mathematical Background

In this section, we introduce the preliminaries of the proposed method. The classic trajectory
optimization formulation by collocation is introduced in Section 2.3. The mathematical back-
ground of consensus optimization and alternating direction method of multipliers (ADMM)
is illustrated in Section 2.3.
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Trajectory Optimization Formulation

A common discrete form of trajectory planning can be formulated as an optimization problem
with the following form:

min
τ

c(τ)

s.t. xi+1 = f(xi)

g(xi) ≤ 0

i = 1, · · · , N − 1

(2.1)

where τ = {x1, · · · , xN} denotes a discretized robot trajectory, and xi denotes the robot state
(position, velocity, and acceleration). c(·) is a human designed cost function, f(·) may include
the robot kinematics or dynamics constraints, and g(·) is the robot state constraint. In this
chapter, we assume the cost function and constraints are separable (or block-separable)
c(τ) =

∑N
i=1 ci(xi).

ADMM and Consensus Optimization

Consensus optimization [8] considers the problem with separable objectives:

min
x1,··· ,xN ,z∈RN

N∑
i=1

ci(xi)

s.t. xi = z i = 1, · · · , N
(2.2)

where xi is called a local variable, and z is a global value that each local variable tries to
achieve.

ADMM [8], an augmented Lagrangian method [6], is able to parallelize the consensus
problem and solve it efficiently. The augmented Lagrangian of (2.2) is shown in (2.3),
where yi denotes the Lagrange multiplier of the corresponding consensus constraint. Similar
to penalty methods, the augmented Lagrangian adds an additional constraint term to the
original Lagrangian in order to penalize the constraint violation, and ρ is a weight that
controls the constraint violation.

L =
N∑
i=1

[ci(xi) + yTi (xi − z) + (ρ/2)∥xi − z∥2 (2.3)

Based on the augmented Lagrangian in (2.3), ADMM can solve the original problem in
a distributed way as shown in Fig. 2.1. First, ADMM initializes N separate agents (solver)
in order to update each local variable xi. Then, a central unit collects the solution from the
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agent and updates the dual variable accordingly yi. The update rule is then given by:

xk+1
i = argmin

xi
[ci(xi) + ykTi (xi − zk) + (ρ/2)||xi − zk||2]

yk+1
i = yki + ρ(xk+1

i + zk+1)

zk+1 =
1

N

N∑
i=1

xk+1
i

(2.4)

The convergence and optimality condition of ADMM is illustrated in Theorem 1. For
the convex consensus optimization problem, a globally optimal solution is guaranteed.

The ADMM algorithm has also been extensively applied to non-convex, coupling opti-
mization problems [106, 50]. Recently, convergence criteria for general non-convex problems
have been studied and we refer readers to [106] for further details. We will discuss conver-
gence for our implementation and similar problems in Section 2.4. In summary, ADMM
algorithms show amazing practical success in solving both convex and general nonlinear
optimization problems even while the theoretical proof of convergence is forthcoming.

Assumption 1. ci(x), i = 1, · · · , N are closed, proper, and convex.

Assumption 2. The augmented Lagrangian L0 contains a saddle point

Theorem 1. Under Assumptions 1 and 2, the ADMM iteration satisfies the following [8]:

• Residual convergence: xi − z → 0 as k →∞

• Objective convergence:
∑N

i=1 ci(xi)→ f ∗ as k →∞

• Dual convergence: yki → y∗i , i = 1, · · · , N as k →∞

It is worth noticing that (2.2) is a simplified form of the consensus problem. For the
general form [8], each local variable, or even each element, can have its own consensus
constraints. The above update rule can be easily transformed to the general case by replacing
the consensus constraint, and the optimality and convergence analysis still hold for the
general formulation.

2.4 Trajectory Splitting Algorithm

Trajectory optimization aims at finding a smooth and collision-free trajectory between two
predefined states. Similar to previous methods [80], we formulate the motion planning
problem as an NLP as introduced in Section 2.3. While in contrast with other methods,
which directly apply optimization algorithms (such as, covariant gradient descent or SQP)
to solve the entire problem, we propose splitting the trajectory into several segments and
solving them in a distributed manner for better computational efficiency. The splitting
formulation as a consensus optimization will be introduced in Section 2.4, 2.4. The collision
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Figure 2.1: An illustration of the ADMM update rule to solve consensus problems. ADMM
solves the problem in a distributed manner, where it creates N separate agents to solve each
subproblem. A central unit then collects the results obtained from each agent and updates
the dual variable until a stopping criterion is met.
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Figure 2.2: Illustration of trajectory splitting algorithm. The waypoints are denoted by
the yellow dots, and the orange dots are the splitting points xsi . The trajectory splitting
algorithm is able to find feasible trajectory pieces in parallel and then connect them together.

avoidance constraints will be formalized in Section 2.4. The optimization update rule will
be explained in Section 2.4. In the end, we provide the stopping criterion and convergence
analysis of the proposed algorithm.
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Intuition for Trajectory Splitting: A Three Waypoint Example

Let us begin with an example with three waypoints x1, x2, x3. Consider we want to split
the trajectory at x2 creating a leading trajectory of τ1 = {x1, x2}, and a trailing trajectory
of τ2 = {x′2, x3}. Here x′2 is a slack variable that is defined to be equal to x2. According
to the consensus formulation in (2.2), in order to achieve the consensus between x2 and x′2,
a global variable z is introduced to enforce this constraint. Therefore, we can rewrite the
three-waypoint trajectory optimization problem in (2.1) as follows:

min
x1,x2,x′2,x2,z

c1(x1) +
1

2
c2(x2) +

1

2
c2(x

′
2) + c3(x3)

s.t. x2 = z, x′2 = z

x2 = f(x1), x3 = f(x′2)

g(xi) ≤ 0, i = 1, 2, 3

g(x′2) ≤ 0

(2.5)

Notice that the problem is separable between these two trajectory pieces, except for
the first two consensus constraints. According to the consensus optimization update rule in
(2.4), each trajectory segment τ1, and τ2 can be updated by solving the following optimization
where the dual variable update follows the same manner as in (2.4).

min
x1,x2

c1(x1) +
1

2
c2(x2) + yT1 (x2 − z) + (ρ/2)∥x2 − z∥2

s.t. x2 = f(x1)

g(x1) ≤ 0, i = 1, 2
(2.6)

min
x′2,x3

1

2
c2(x

′
2) + c3(x3) + yT2 (x

′
2 − z) + (ρ/2)∥x′2 − z∥2

s.t. x3 = f(x′2)

g(x′2) ≤ 0

g(x3) ≤ 0

(2.7)

Remark 1. Constraints can be incorporated into the objective function via indicator func-
tions. Therefore, it does not affect the update rule for the ADMM formulation.

General Trajectory Splitting Formulation

Consider we split the trajectory into M + 1 segments, and the position that splitting
happens is denoted by xsi , where si is the index of the i th splitting point on the original
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Algorithm 1: Trajectory Splitting

Require: Trajectory: τi, Dual variables: yi,1, yi,2
1: while splitting tolerance (2.16) not satisfied do
2: for i = 1, · · · ,M + 1 do
3: τi ← Solve Eq. 2.10
4: end for
5: for i = 1, · · · ,M do
6: zi =

1
2
(xsi + x′si)

7: yi,1 = yi,1 + ρ(xsi − zi)
8: yi,2 = yi,2 + ρ(x′si − zi)
9: end for
10: end while
11: return τi i = 1, · · · ,M + 1

L1 =

s1−1∑
j=1

cj(xj) +
1

2
cs1 (xs1 ) + yT1,1(xs1 − z1) + (ρ/2)∥xs1 − z1∥2

· · ·

Li =
1

2
csi−1 (x

′
si−1

) +

si+1−1∑
j=si+1

cj(xj) +
1

2
csi (xsi ) + yTi−1,2(x

′
si−1

− zi−1) + (ρ/2)∥xsi−1 − zi−1∥2 + yTi,1(xsi − zi) + (ρ/2)∥xsi − zi∥2

· · ·

LM =

N∑
j=sM+1

cj(xj) +
1

2
csM (x′sM ) + yTM,1(x

′
sM

− zM ) + (ρ/2)∥x′sM − zM∥2

(2.9)

trajectory as shown in Fig. 2.2. Similar to the previous example, we introduce the slack
variable x′si as a copy of the splitting point. In order to enforce that the trajectories are
connected with each other, a global variable zi is used for this constraint:

xsi = zi

x′si = zi, i = 1, · · · ,M
(2.8)

and we use yi,1 and yi,2 to denote the Lagrangian multipliers of the consensus constraints
above. Thus, we can formulate the augmented Lagrangian Li for each trajectory piece as
shown in (2.9).

Then the primal update rule for each trajectory segment is given in (2.10).

τ k+1
i = min

τi
Li

s.t. xj+1 = f(xj)

g(xj) ≤ 0

∀xj ∈ τi

(2.10)
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Figure 2.3: Illustration of signed distance function. The signed distance value is positive if
objects are collision-free, and the value is negative if they are in collision.

The overall algorithm is illustrated in Alg. 1. In practice, the trajectory τ can be ini-
tialized as a straight line that goes from the initial point to the target point, or it can be
given as a feasible solution from sampling-based planners. The Lagrange multipliers yi,1, yi,2
can be initialized as zero vectors. The number of splitting M could be any integer that is
smaller than the number of waypoints, and the waypoints are then uniformly separated into
each subproblem.

Collision Avoidance Constraints

We consider collision-avoidance constraint g(xi) ≤ 0 as a function of signed distance [80]. As
shown in Fig. 2.3, the signed distance function denotes the minimum distance between two
objects, where the sign is determined by whether the surfaces of the objects interpenetrate.
We mathematically define the signed distance function between two objects A and B by:

sd(A,B) = dist(A,B)− penetration(A,B) (2.11)

where the ‘dist’ function is defined as the minimum translation distance to just cause contact
between the surfaces of a pair of objects:

dist = inf{∥T∥ : ∃pA ∈ A, pA + T ∈ B} (2.12)

and similarly, the ‘penetration’ function denotes the minimum translation that moves the
two objects out of contact:

penetration = inf{∥T∥ : ∀pA ∈ A, pA + T /∈ B} (2.13)
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In our implementation, we approximated the signed distance using methods from the
Flexible Collision Library (FCL) [70]. In turn, this signed distance method was used to
formulate a collision-avoidance constraint where the signed distance between the robot and
each obstacle had a strictly positive value along the entire trajectory. An additional ap-
proximation was adopted by utilizing the Jacobian for the contact point from the signed
distance, as introduced in [80]. With this technique, assume the object A is a robot link
and its position is determined by the robot state x. Then, the signed distance is defined by
contact points denoted by pA for the robot link and pB for an obstacle. A static assumption
is made to arrive at the approximation given in (2.14) by assuming the contact point pA is
not a function of x:

sdAB(x) ≈ n̂(Fw
A (x)pA − Fw

B pB) (2.14)

where Fw
A and Fw

B are the homogeneous transformation from A, and B frames to the world
coordinate, and n̂ is the direction that points from pB to pA.

In addition, the gradient of this constraint can be computed as a Jacobian of the signed
distance sdAB with the following approximation:

∇sdAB(x) ≈ n̂TJpA(x) (2.15)

where JpA denotes the robot translation Jacobian at pA.

Optimization

The key to this algorithm is the separation of the trajectory optimization problem into several
subproblems that can be solved independently. For each subproblem in (2.10), it is expressed
in a standard form for trajectory optimization; therefore, existing optimization algorithms,
such as gradient descent, SQP [7], CHOMP [123], and TrajOpt [80] can be directly applied.

In our implementation, we use the optimization library IPOPT [100] as the basis of
our subproblem solver. IPOPT implements a primal-dual interior-point filter line search
algorithm to solve the general nonlinear optimization problems, and the convergence of this
algorithm is proved in [99].

Stopping Criterion and Convergence Analysis

Similar to [120], we choose to use the primal residuals as the stopping criterion:

∥rk∥2 ≤ ϵ (2.16)

where ϵ is a predefined positive scalar, and splitting tolerance rk is the average of constraint
violations:

∥rk∥2 =
1

M
(
M∑
i=1

∥qksi − q
′
si

k∥2)
1
2 (2.17)
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Figure 2.4: Simulation benchmark results showing four different planning problems and the
results obtained by the trajectory splitting algorithm in the bookcase scenario. The algorithm
can find the local optimal solution for each trajectory segment efficiently and connect them
together in a smooth trajectory.

The convergence of the proposed trajectory splitting algorithm can be divided into three
cases:

• Convex: According to Theorem 1, if the objective functions and constraints are convex
(the equality constraint should be linear), the proposed trajectory splitting algorithm
is guaranteed to converge to a globally optimal solution. An example of this type of
problem is the linear quadratic regulators (LQR). For the LQR problem, the trajectory
splitting algorithm is guaranteed to find a global optimal solution.

• Restricted prox-regular[106]: Recent studies provide the convergence of ADMM
on non-convex, non-smooth problems. [106] proves the condition that if the objectives
and constraints satisfy the restricted prox-regular condition, then the ADMM algorithm
will converge to a stationary point. In our scenario, if the dynamics constraint f(·) is
linear, and the nonlinear collision constraint g(·) is restricted prox-regular, then the
solution (τ, y, z) obtained from Alg. 1 will converge to a stationary point (τ ∗, y∗, z∗)
for the augmented Lagrangian in (2.9). According to [106], restricted prox-regular is a
weaker condition than prox-regular and semi-convex[16]. As studied in [49], the signed
distance function between two convex objects is semi-convex; therefore, a large set of
trajectory optimization problems fall into this category. This includes mobile robot
planning with convex obstacles and linear kinematics (as shown in Section 2.5).

• General non-convex: For the general non-convex case, the convergence of ADMM
is still an active field of optimization research. The multi-joint robotic motion plan-
ning problem falls into this category. Though the signed distance function of convex
obstacles satisfies the semi-convex condition, the nonlinear robot forward kinemat-
ics violates these conditions and makes the planning problem extremely challenging.
This is a common problem encountered by all the existing trajectory optimization
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Figure 2.5: A 2D example of trajectory splitting. The planning problem is split into three
segments and solved in a distributed manner. The trajectory is initialized using linear inter-
polation. As the optimization begins, each segment is very short and there is a large splitting
error since the individual problems have an objective that minimizes segment distance. As
the optimization progresses, the consensus update reduces the splitting error, and a contin-
uous, smooth trajectory is obtained.

algorithms. Though there is no theoretical proof of convergence yet, our practical ob-
servation from simulation and experiments show that the trajectory splitting algorithm
converges reasonably for this challenging scenario (as shown in Section 2.5).

2.5 Simulation and Experiments

Robot Model

The proposed trajectory splitting algorithm is tested in two scenarios. The first scenario is
a simple 2D case with a sphere obstacle (as shown in Fig. 2.5), and the second is on a 6-DoF
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Table 2.1: Simulation Benchmark of 6-DOF Robot Planning

Algorithm RRT LBKPIECE RRT* CHOMP IPOPT TrajSplit 5 TrajSplit 3
Average Time (s) 0.254 0.218 5.001 0.267 0.489 0.381 0.178
Path Length (rad) 11.24 10.97 9.03 7.15 7.23 7.82 7.43
Success Rate 25/25 25/25 25/25 21/25 23/25 21/25 23/25

FANUC LRMATE 200iD robot (as shown in Fig. 3.9).
For the 2D example, the robot state x is defined as the Cartesian position, and velocity

in 2D: x = [px, py, ṗx, ṗy]
T , where px, and py denote the position in x and y axes.

For the multi-jointed robot case, the robot state x is selected to include the robot joint
angle θ ∈ R6, joint velocity θ̇ ∈ R6, and joint acceleration θ̈ ∈ R6. For optimization, we use
linear double-integrator dynamics as the equality constraint:[

θi+1

θ̇i+1

]
=

[
I TI
0 I

] [
θi
θ̇i

]
+

[
0
TI

]
θ̈i (2.18)

where 0 ∈ R6×6, and I ∈ R6×6 are the zero and identity matrices, and T is a positive scalar
that denotes the robot travel time in-between each consecutive waypoint pair. The objective
function is selected to minimize the summation of joint velocities in (2.19) for the minimum
path length trajectory.

c(x) =
N∑
i=1

∥θ̇i∥2 (2.19)

Simulation in 2D

We first evaluate the effectiveness of the proposed trajectory splitting algorithm in a 2D
scene with a sphere obstacle. The collision avoidance constraint is formulated as:

||
[
px
py

]
−
[
pox
poy

]
||2 ≥ r2o (2.20)

where po and ro denote the obstacle center position and its radius. As we can see from the
simulation results in Fig. 2.5, the trajectory is split into three segments. The evolution of the
solution initially produces short segments with a large splitting error that is refined through
the consensus iteration to produce the final smooth trajectory.

Simulation on Multi-jointed Robot

We benchmarked the proposed trajectory splitting algorithm against existing state-of-the-
art motion planners and optimization solvers, which include sampling-based methods RRT,
RRT*, LBKPIECE in OMPL/Moveit, and an optimization-based method CHOMP in MoveIt
using default parameters. We also implemented an optimization baseline using IPOPT with
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Figure 2.6: Parameter sweeps for the trajectory splitting algorithm, where Trajsplit 2, Tra-
jsplit 3, Trajsplit 5 denote using the splitting algorithm to separate a trajectory into two,
three, and five pieces. Computation time decreases as splitting error tolerance in the stop-
ping criterion is increased. In general, increasing the number of split segments does not
guarantee a shorter computation time. For these problems, three segments provide a nice
balance between the number of ADMM iterations and subproblem complexity.

FCL as the collision checker. Our implementation of the trajectory splitting planner is based
on the IPOPT baseline and uses the Python multiprocess library to achieve parallelization.

Fig. 3.9 shows the 4 of the benchmark results obtained from the proposed trajectory
splitting algorithm. We manually selected 5 start poses and 5 end poses to construct 25
unique planning problems. The planning time limit is set to 5 seconds. Since MoveIt planners
can only compute paths instead of trajectories, to make the comparison fair, we also only
compute the joint path and ignore the dynamics constraint in (2.18) for this benchmark.
The initialization for the IPOPT baseline and the trajectory splitting algorithms is set to be
a straight line.

Table. 6.1 shows the benchmark results. TrajSplit 3 and TrajSplit 5 denote the proposed
splitting methods that split a trajectory into 3 and 5 segments respectively. Sampling-based
planners, such as RRT, and LBKPIECE perform well in these tasks. They all achieve a 100%
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Figure 2.7: Parameter sweeps for the trajectory splitting algorithm, where Trajsplit 2, Tra-
jsplit 3, Trajsplit 5 denote using the splitting algorithm to separate a trajectory into two,
three, and five pieces. Reducing the splitting error tolerance results in smoother trajectories
at the cost of greater computation time. These problems show a reasonable trade-off in
quality and performance by setting the splitting error tolerance to 10 degrees with two or
three split segments.

success rate in this setting. However, since those sampling planners are stochastic, they may
generate different paths for the same problem, and the computation time and solution quality
also have a very large variance (for example, RRT is normally efficient in dealing with those
problems, but sometimes it may take over 3.7 seconds to obtain a sub-optimal solution).
We noticed in our benchmarking, that the sampling-based planners sometimes generated
non-intuitive motion with much larger average path lengths than the optimization-based
planners. RRT* is a sampling-based method that tries to deal with the optimality problem.
However, for all our tasks, RRT* was not able to find an optimal solution within the 5 seconds
limit and the solution quality was qualitatively poor relative to the other optimization-based
planners we compared. Similar results have been reported in other papers [56]. These data
corroborate that RRT* is not as competitive in terms of computation efficiency.

The CHOMP algorithm in MoveIt was able to obtain optimal paths efficiently. However,
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the robustness of the optimization-based planner was low. In our benchmark, the planner
was often caught in a local minimum and incapable of finding a feasible solution when the
start pose was close to the obstacle. In contrast, the IPOPT baseline was slower but more
robust, and able to solve most of the problems, which was expected as IPOPT is built for
general NLP and not for speed. Our proposed trajectory splitting method demonstrated
a nice balance between speed and solution quality when the splitting error tolerance was
set to 10 degrees and split into three segments. The splitting error is negligible considering
the robot has 6 DOF. Trade-offs in quality and speed were straightforward by adjusting
the number of splits and tolerance of the splitting error. However, the most efficient setup
required balancing the number of segments that may benefit the computation time for a
single primal update with additional ADMM iterations that may be required to meet the
stopping criterion. The typical failure case of the proposed trajectory splitting algorithm
comes from the misalignment of the splitting point that penetrates the obstacle. Due to
the splitting of the trajectory, each segment tends to keep away from the obstacle. When
the obstacle is thinner than the distance that results from the splitting error tolerance, the
intermediate trajectory may penetrate the obstacle. We will address this problem in future
work.

We further tested the behavior of our method by tuning hyperparameters: number of
segments and splitting tolerance. We illustrate the variation of the computation time and
path length for different splitting tolerances and different splitting segment numbers. As
shown in Fig. 2.7, splitting a trajectory into more pieces resulted in a longer path length due
to the splitting residual. In practice, there was a trade-off between the computation time
and the splitting residual tolerance as shown in Fig. 2.6. To balance the solution quality and
the efficiency, people may need to carefully tune these two parameters for different types of
requirements.

Experiments

We tested the effectiveness of the trajectory splitting algorithm in a real-world scenario
using a 6 DOF FANUC LRMATE 200id robot. As shown in Fig. 2.8, the robot picks a
bottle from a wooden chair and places it on a bookshelf. The trajectory was initialized
with linear interpolation in joint space and the problem was split into two segments with a
splitting tolerance of 10 degrees. The solution was obtained from Alg. 1, and the assembled
trajectory was sent as a list of joint space positions to the robot for execution. The snapshots
from the video show the continuity of the complete trajectory, free from any collision. Note
that with this splitting error tolerance, a small motion artifact is observable between the two
split segments.
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Initial Pose Splitting Point Obstacle Avoidance Target Pose

Figure 2.8: Experiment snapshots. The robot picks a bottle onto the bookshelf. Using the
proposed trajectory splitting framework, the problem is split into two pieces and solved in
a distributed manner. The splitting happens in the middle of the trajectory, and we can
observe a tiny splitting residual during the execution in the experiment video.

2.6 Chapter Summary

Modern computational hardware is replete with opportunities for parallel computation, e.g.
multi-core CPUs, GPUs, and TPUs. Our algorithm offers a novel scheme to exploit paral-
lelism in trajectory optimization and a framework for balancing trajectory quality with com-
putational speed. Planning tasks that require fast solve times can choose fewer segments and
looser splitting tolerances to obtain quick, reasonable quality solutions. Conversely, high-
accuracy trajectories can be obtained with increased segments and tighter splitting tolerance
with modest increases in planning time.
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Chapter 3

Bilevel Trajectory Optimization
Formulation for Efficient Collision
Avoidance

Building on the efficient trajectory optimization algorithm, ’trajectory splitting’, introduced
in Chapter 2 to enhance computational efficiency in motion planning, this chapter addresses
another crucial aspect: solution quality, with a specific emphasis on continuous obstacle
avoidance. We present the Bilevel Path Optimization Formulation for Motion Planning
(BPOMP), an advanced approach designed to ensure collision avoidance along the entire
continuous trajectory. Different from standard formulations that typically focus on avoiding
collisions at discrete waypoints, BPOMP extends this consideration to potential collisions
occurring along the entire path. This is achieved by calculating the closest position to any
obstacle along the trajectory. The underlying intuition is that if this closest point is free
from collision, it implies that the entire path is likely to be collision-free. This optimization
problem is structured as a bilevel problem and subsequently converted into a canonical
form of nonlinear programming (NLP), enabling it to be resolved using classical solution
methods. The chapter delves into a comprehensive analysis and demonstration of BPOMP’s
effectiveness, showcasing its ability to produce higher-quality solutions in motion planning,
particularly in ensuring robust and continuous obstacle avoidance.

3.1 Introduction

Motion planning aims to find a sequence of configurations that moves the robot from an initial
pose to a target pose without collisions. Sampling methods, such as probabilistic roadmap
(PRM) [33] and rapidly exploring random tree (RRT) [40] are well suited for finding feasible
solutions. Moreover, their variants, such as RRT* [39] and PRM*, can obtain optimal paths
according to an objective. Exploiting the probabilistic completeness property provides a
theoretical guarantee of global optimality. However, in practice, the planner is only given a
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Figure 3.1: (a) illustrates the collision that happens between waypoints. One way for existing
methods to deal with the problem is to add more waypoints, as shown in (b). However, dense
waypoint selection (shown in (c)) would significantly increase the computation time and may
result in a jerky motion. The proposed BPOMP formulation can deal with that problem
efficiently by finding and optimizing the worst state without dense waypoint selection.

limited time to find a path, and thus, their performance declines rapidly as the dimensionality
of the scenario increases [56].

In this chapter, we focus on optimization-based planners. These methods involve defining
a set of waypoints along the path/trajectory and checking for collisions for each waypoint.
It is reported in several papers that optimization-based methods are efficient in moving the
robot out of the collision [123, 80, 102]. However, a drawback of the existing optimization
formulation is that collisions may still exist between those waypoints, as illustrated in Fig.
3.1(a).

Increasing the density of waypoints, i.e., making the spacing between waypoints small
enough to detect obstacles as shown in Fig. 3.1(b), is an effective way to avoid potential
collisions. Using dense waypoints, however, brings new challenges. First, it significantly
increases the computation time since the equality constraints (e.g., the forward or inverse
kinematics) and nonlinear constraints (e.g., collision avoidance) have to be evaluated for each
waypoint. Moreover, the number of waypoints is a hyper-parameter that has to be carefully
tuned for different scenarios. These issues limit the achievable performance, efficiency, and
generalizability.

Instead of discrete waypoints, some works proposed to penalize collisions of the continu-
ous path via a convex hull approximation. Authors of TrajOpt[80] validate the optimization
formulation of continuous penalty in various scenarios. However, the convex hull approxi-
mation has no guarantee when rotational movements are involved, particularly in high di-
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mensional spaces. Besides, the convex hull approximation is conservative in many scenarios.
The method is not able to obtain feasible solutions when the feasible set is narrow.

Another way to handle the collisions that happen in the middle of waypoints is via
parameterization, such as B-splines [12, 57]. The convex hull property of the B-spline can
be applied to reduce the decision space from infinite to finite dimensions. Such relaxation,
however, introduces conservatism to the problem and narrows the feasible region. Recently,
researchers proposed to use the Gaussian process for path/trajectory representation[60, 19,
61]. Nevertheless, those frameworks still only check the collisions on some predefined points.

This chapter introduces a bilevel optimization-based path planning formulation called
BPOMP. With fewer waypoints, BPOMP is able to achieve a similar collision checking
accuracy as dense waypoint selection but with better computation efficiency. As shown in
Fig. 3.1(d), BPOMP works with a set of sparsely spaced waypoints by finding and optimizing
the closest position to the obstacle along the continuous path. If that position on the path
is not in collision with the obstacles, then any other point should also be collision-free.
We formulated the BPOMP as a bilevel optimization and relaxed it as canonical nonlinear
programming (NLP) that standard NLP solvers can directly solve.

The contributions of the chapter are listed as follows:

• A bilevel formulation of path optimization problems that consider the collisions that
happen in the middle of waypoints.

• An implementation of BPOMP with the state-of-the-art optimization solver and colli-
sion checker for better quality and efficiency.

• Comparisons of the proposed formulation against existing methods in both simulation
and real-world experiments.

The remainder of the chapter is organized as follows. Section 3.2 introduces the mathe-
matical background of path optimization and bilevel optimization. Section 3.3 proposes the
BPOMP framework including the problem formulation, its relaxation as an NLP, and the
algorithm to solve the bilevel problem. Section 3.4 shows the simulation and experiment re-
sults. Section 3.5 concludes the chapter. Supplementary videos can be found on our website:
https://changhaowang.github.io/BTOMP/BTOMP.html.

https://changhaowang.github.io/BTOMP/BTOMP.html
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3.2 Mathematical Background

The Path Optimization Problem

The planning problem can be naturally formulated as an optimization problem as shown
below:

min
τ

F (τ)

s.t. hi(τ) = 0, i = 1, · · · , neq
gi(τ) ≤ 0, i = 1, · · · , nineq

(3.1)

where, τ = {p1, · · · , pN} denotes a discretized robot path, where pi is the robot position
at ith waypoint. F (·) is a manually designed objective function that reflects the robot
performance, f(·) includes the robot kinematic constraints, and g(·) is the nonlinear state
constraints, such as obstacle avoidance.

Sequential Quadratic Programming

Assumption 3. The cost function F (·), equality constraints hi(·), and the inequality con-
straints gi(·) are twice continuously differentialable.

Sequential Quadratic Programming (SQP) is one of the most powerful methods to solve
constrained nonlinear optimization problems in the form of (3.1). Namely, SQP solves the
problem by iteratively constructing a Quadratic Program (QP) around the current iterate
τ k until convergence:

dk = argmin
d
∇F (τ k)Td+ 1

2
dTHkd

s.t. hi(τ
k) +∇hi(τ k)Td = 0, i = 1, · · · , neq

gi(τ
k) +∇gi(τ k)Td ≤ 0, i = 1, · · · , nineq

(3.2)

where d is the descent direction of the trajectory, ∇ denotes the gradient of scalar functions,
and Hk is a positive semi-definite matrix. Then the trajectory can be updated using the
following update rule. The solution {τ k} obtained by this update rule is proved to converge
to a local optimal solution of the original problem in (3.1) with a proper step length αk [7].

τ k+1 = τ k + αkdk (3.3)

Definition 1. The Lagrangian function of (3.1) is defined as follows:

L(τ, µ, λ) = F (τ) +

neq∑
i=1

µi · hi(τ) +
nineq∑
i=1

λigi(τ) (3.4)

where µ and λ are the Lagrangian multipliers of the equality and inequality constraints.
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In practice, there are multiple ways to select Hk. Newton SQP algorithm [7] suggests
using the Hessian of the Lagrangian function as Hk. At each iteration, along with the primal
descent direction dk, the optimal Lagrange multipliers will be calculated. Letting the optimal
multipliers be denoted by µ∗k and λ∗k, and setting dkµ = µ∗k − µk, and dkλ = λ∗k − λk, we
can have the update rules for the multipliers:

µk+1 = µk + αkdkµ

λk+1 = λk + αkdkλ
(3.5)

For the selection of the step size αk, it should produce a decrease in a merit function
ϕ(τ), which can measure the progress of the algorithm. l1 penalty form is commonly used
as the merit function [7]. With the line search algorithm or any other rules that can find
a proper step size, the overall SQP algorithm is guaranteed to converge to a local optimal
solution [7, 6].

Bilevel Optimization

Bilevel optimization is defined as a mathematical program where an optimization problem
contains another optimization as a constraint. A canonical formulation of bilevel optimiza-
tion problems can be expressed as follows:

min
x∈X,y∈Y

F (x, y)

s.t. G(x, y) ≤ 0

y ∈ argmin
z∈Y

{f(x, y) : g(x, z) ≤ 0}
(3.6)

where F and x represent the upper-level objective and the decision variable, whereas f and
y denote the cost function and the decision variable for the lower-level problem.

There are several approaches [3, 88, 16] to solve the bilevel problem. One well-developed
method replaces the lower-level problem with its KKT conditions and then applies a gradient-
based method to solve the resulting optimization problem. We will discuss this more in detail
in Section 3.3.

3.3 BPOMP Formulation

In this section, we introduce the proposed BPOMP formulation for optimization-based path
planning. In the beginning, we introduce the intuition and formulation of the proposed
collision constraint. Then, we mathematically formulate it as a bilevel optimization. In the
end, its relaxation to NLP and the corresponding update rule is explained.
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Figure 3.2: Illustration of the bilevel formulation of BPOMP. At each iteration, the inner-
level optimization aims to find the position that is closest to the obstacle, and the outer-level
optimization tries to update each waypoint to make that position collision-free.

BPOMP Formulation

The obstacle avoidance constraint in (3.1) can be defined by τ ∈ Γc = {τ : ϕc(τ) ≥ 0},
where ϕc is a distance function between the robot and the obstacles. Since τ is a discretized
path, this constraint only accounts for each waypoint pi, and collisions may be ignored in the
middle. To alleviate this issue, we propose an additional constraint on the closet position
along the interpolated path to the obstacle as shown below:

ϕc(q) ≥ 0 (3.7)

where q denotes the minimum distance position to the obstacles on the interpolated trajec-
tory.

Adding the (3.7) together with the original optimization constraint in (3.1), we have the
proposed BPOMP formulation. Intuitively, if the closest position to obstacles satisfies the
collision constraint, every other position should satisfy the collision avoidance constraint as
well. In the next subsection, we will introduce how to formulate the closest position q as a
function of the optimization variable τ = {p1, · · · , pN}.

BPOMP as a Bilevel Optimization

Assume the robot’s continuous path can be determined by curve fitting on the waypoints.
That is, given a set of waypoints τ = {p1, · · · , pN}, every point on the continuous path can
be obtained by an interpolation function g(α, τ), where α ∈ [0, 1] is a ratio specifying the
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Figure 3.3: Simulation results on a mobile robot in a 2D space. The SQP-based trajectory
optimizer is able to find collision-free waypoints but fails to make the overall trajectory
collision-free. The proposed BPOMP formulation is able to find a feasible trajectory with
sparse waypoint selection.

location of the point with respect to two ends of the trajectory. Fig. 3.2(a) demonstrates
an example of a continuous path in a 2D space, where the five waypoints (yellow dots) are
equally spaced along the continuous path (orange line), so that α = 0 at p1, α = 1

4
at p2, and

etc. Given a set of waypoints and the interpolation function, we can use a single parameter
α to represent an arbitrary point on the continuous path. Therefore, the closest position q
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to the obstacle can then be defined as follows:

α∗ = argmin
α∈[0,1]

ϕc(g(α, τ))

q = g(α∗, τ)
(3.8)

We can substitute (3.8) into the standard optimization formulation and reformulate it
into a bilevel optimization given in (3.9). The optimization problem (3.9) contains two levels
of optimization, where the lower level finds the closest position, and the outer level improves
such position and other waypoints to be collision-free.

min
τ,α∗

F (τ)

s.t. ϕc(pi) ≥ 0 i = 1, · · · , N
ϕc(g(α

∗, τ)) ≥ 0

α∗ ∈ argmin
α∈[0,1]

ϕc(g(α, τ))

(3.9)

Remark 2. For simplicity, we only keep the collision constraint and omit other constraints
like kinematics. Those constraints can be considered without modification in the outer-level
optimization.

BPOMP Relaxation as a NLP

There exist several methods [3, 88] to transform a bilevel optimization to canonical nonlinear
programming (NLP). One effective way is to replace the lower-level optimization problem
with its optimality conditions [88]. Following this strategy, we could replace the lower level
problem of (3.9) with its first-order necessary condition and its second-order sufficient con-
dition [6]:

∂ϕc(g(α
∗, τ))

∂α∗ = 0

∂2ϕc(g(α
∗, τ))

∂α∗2 > 0

(3.10)

Replacing the inner level problem with (3.10), we can transform the BPOMP formulation
into a standard NLP. Compared with the standard formulation of path optimization in (3.1),
the proposed BPOMP formulation considers the collision on the entire path. Therefore it can
have better performance to avoid the robot tunneling through thin obstacles. Since BPOMP
does not require dense waypoints for collision checking, it can achieve a better computation
efficiency that is empirically observed from the simulation and experiment results.

Most of the existing nonlinear optimization solvers can be directly utilized to solve the
BPOMP formulation without modification. In our implementation, we adopt the update
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rule of SQP in (3.2) to solve it. The equality constraint is

h(τ) =
∂ϕc(g(αw, τ))

∂αw
(3.11)

and inequality constraints include

g1:N(τ) = −ϕc(pi) i = 1, · · · , N
gN+1(τ) = −ϕc(g(αw, τ))

gN+2(τ) = −
∂2ϕc(g(αw, τ))

∂α2
w

(3.12)

In practice, we formulate the collision avoidance constraint ϕc(·) using signed distance [123].
The distance values are negative inside obstacles, positive outside, and zero at the boundary.
As we demonstrated in the simulation and experiment section, the obstacles we consider are
general non-convex shapes. We approximate the derivative of the distance function with a
finite difference.

Similar to most of the existing optimization-based planners, due to the non-convexity,
the algorithm can only provide local optimal solutions, and the robot may still penetrate
the obstacle after the optimization. However, we empirically observe from the simulation
and experiment results that BPOMP can effectively increase the success rate and provide
the solutions more efficiently. In the future, we plan to address the local optimal problem
by providing a good initial reference via sampling planners, such as RRT and PRM.

3.4 Simulation and Experimental Results

In this section, we present the simulation and experimental results of BPOMP. We demon-
strate the efficiency and robustness of our optimization formulation on a set of representative
tasks in factories. Comparisons with other state-of-the-art optimization-based planners are
also provided to validate the effectiveness of the proposed formulation. Videos of the exper-
iments can be found at https://changhaowang.github.io/BPOMP/BPOMP.html.

Simulation in 2D Environment

The proposed BPOMP is first implemented on a mobile robot in a 2D space for validation.
The robot has three degrees of freedom [x, y, rotation]. The initial trajectory is selected as
a straight line and discretized into 5 waypoints. Collision checking is done via the Gilbert-
Johnson-Keerthi (GJK) algorithm [21] and the Expanding Polytope Algorithm (EPA) [5].

As shown in Fig. 3.3, the SQP-based trajectory optimizer with the standard formulation
in (3.1) is able to move the waypoints out of the obstacle but fails to make the overall
trajectory collision-free. In contrast, using the BPOMP formulation, the same SQP solver is
able to find a feasible solution. As we expected, the standard trajectory planning formulation
only considers collision on waypoints, where BPOMP continues to update the waypoints until
all collisions are eliminated as Fig. 3.3(b) shows.

https://changhaowang.github.io/BTOMP/BTOMP.html
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(a) (b)

(c) (d)

Figure 3.4: Simulation results of the proposed BPOMP algorithm in the bin picking and car
frame painting scenarios. The FANUC robot is able to finish the task and avoid all the thin
obstacles.

Benchmark on a 6-DOF Robot

The proposed algorithm is also tested on a 6-DOF robot in various scenarios. A FANUC
LR Mate 200iD/7L robot is used. For collision checking, each link is modeled by several
spheres with a different radius that covers the whole link (Fig. 2 of [48]). Then the collision
avoidance constraint can be constructed using spheres. The environment is voxelized into a
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TrajOpt Computation Time TrajOpt Success Rate
SQP Computation Time SQP Success Rate

BPOMP Computation Time BPOMP Success Rate

Figure 3.5: Performance comparison of optimization-based planners in the bin-picking sce-
nario. With the proposed BPOMP formulation, the optimization algorithm is able to achieve
a 100% success rate with only 5 waypoints and the lowest computation time.

Table 3.1: Comparisons in bin picking scenarios

Algorithm Success Rate Solve Time (s) Path Length (rad) Minimum Required Waypoints
RRT 20/20 0.4138± 0.2323 3.9777± 0.9546 NA
RRT* 20/20 0.7033± 0.1863 3.7180± 0.5942 NA
TrajOpt 20/20 0.2035± 0.0337 3.7279± 0.6386 8
SQP 19/20 0.2746± 0.0594 3.7324± 0.6479 8

BPOMP 20/20 0.1567± 0.0251 3.7344± 0.6021 5

200×200×200 grid. The MATLAB function bwdist is used for the distance field computation.
Fmincon with the SQP solver in MATLAB is utilized as our optimization method.

We first test the BPOMP formulation in a bin-picking scenario, where the initial and
target positions are randomly selected on each side. As shown in Fig. 3.4(a)(b), a robot
picked a bin from one box, avoided all the potential collisions, and put the bin into the other
box.
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(a) (b)

Figure 3.6: (a) shows a typical failure case of TrajOpt when the number of waypoints is not
enough to detect the collision happening in the middle. (b) shows that BPOMP is able to
avoid the potential collision. The red line denotes the initial path, and the green line is the
solved path via optimization.

We benchmarked the proposed formulation with existing optimal path planners. Table
6.1 shows the comparison between RRT, RRT*, TrajOpt, SQP, and BPOMP (solved by
SQP). The sampling planners are adopted from the MATLAB implementation in [43], with
a goal sampling probability of 50%.

Observed from the result, sampling planners RRT, and RRT* are able to find feasible
paths robustly. However, due to the stochastic characteristic, there exists a large variance in
the computation time. Compared with RRT, RRT* is able to obtain the optimal path via
the additional rewire operation with some sacrifice on the computation time.

Optimization-based planners, such as TrajOpt, and SQP are able to achieve a high success
rate with better computation efficiency. Utilizing the gradient information of the signed
distance field, they are more efficient than sampling planners to some extent.

For the proposed BPOMP formulation, it is able to achieve a 100% success rate and the
best computation efficiency. The reason is revealed in Fig. 3.5, where we showed the curve
of computation time and success rate with respect to different numbers of waypoints. Even
though for the same amount of waypoints, BPOMP may have the highest computation time
due to the additional constraint. In general, benefit from the special formulation, BPOMP
is able to consider the collision happens on the entire path with minimum waypoints, and
therefore, reduces the dimension of the optimization that is required and results in the
best efficiency. Fig. 3.6(a) demonstrates a typical failure case without using the BPOMP
formulation with sparse waypoints, where the algorithm was not able to detect collisions in
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（a） Failure Case of SQP （b） Failure Case of BTOMP
（a）Failure case of SQP with

standard formulation
（b）Failure case of BPOMP

Figure 3.7: The red line denotes the initial path, and the green line is the solved path via
optimization. (a) shows a failure case of SQP that the robot moves up inside the car and
neglects the collision with the front pillar. (b) shows a failure case of BPOMP, where it
detects the collision but fails to make the trajectory smooth enough.

between waypoints.
We further evaluated the performance of optimization-based planners in a complicated

car frame dispensing scenario, where car frames are thin and non-convex. Fig. 3.8 shows
the curve of the computation time and success rate with respect to different numbers of
waypoints for optimization-based planners. Fig. 3.4(c) and Fig. 3.4(d) demonstrated the
trajectories that BPOMP found to complete the task without collisions. Due to the narrow
feasible region and non-convexity, the optimization-based planners worked poorly in this
scenario. Since SQP and TrajOpt are not able to detect the collision and terminate earlier,
their computation time is not comparable with BPOMP. Fig. 3.7(a) demonstrated a failure
case using the SQP algorithm. The thin car frames are often neglected for collision checking
and result in infeasible solutions for existing methods.

With the BPOMP formulation, the SQP solver is able to achieve a higher success rate.
The optimization will not terminate earlier and ignore the collision that happens in the mid-
dle of those waypoints. The results corroborate the effectiveness of the BPOMP formulation.
Fig. 3.7(b) showed a failure of BPOMP, where it detects the collision but fails to make the
overall trajectory smooth enough within the 5-second time limit. The problem is due to the
non-convexity of the problem. When the optimizer stocks in a local optimal solution, it is
challenging to get out and find the global optimal solution.
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TrajOpt Computation Time* TrajOpt Success Rate
SQP Computation Time* SQP Success Rate

BPOMP Computation Time BPOMP Success Rate

*: TrajOpt and SQP are not able to detect collisions in this
scenario, therefore, their computation time is not comparable

Figure 3.8: Performance comparison of optimization-based planners in the car frame dis-
pensing scenario. With the proposed BPOMP formulation, the optimization algorithm is
able to achieve a higher success rate.

Experiments on a 6-DOF Robot

The proposed BPOMP formulation is experimentally validated with a FANUC M-20iA
robot. Similar to the above car frame dispensing scenario, in the workspace, a cage with
thin frames is placed in front of the robot. The robot is set to put a bottle inside the cage
with several different poses. Due to the geometric structure of the cage, the robot has to
go through different faces of the cage to reach a particular target pose. For example, if the
robot wants to perform a top-down grasp, the only feasible trajectory is passing through
the top of the cage. The thin frames of the cage block the straight trajectories to reach
the goal and result in a narrow feasible set in the joint space. This problem is challenging
for existing optimization-based path/trajectory planning algorithms due to thin obstacles
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Figure 3.9: Sequences of snapshots of two different tasks. A FANUC robot is able to grasp
a bottle and place it inside the cage with different final poses without collision.

as illustrated in the previous simulation results. Fig. 3.10 showed the trajectories obtained
by BPOMP, and Fig. 3.9 showed sequences of motions that the FANUC robot completed
the pick-and-place tasks. From the experiments, we can observe that BPOMP can provide
a larger chance to avoid potential obstacles.

3.5 Chapter Summary

This chapter proposed BPOMP, a novel path optimization formulation that can efficiently
eliminate potential collisions with sparse waypoints. To achieve that, we introduced an addi-
tional collision constraint on the closest position to the obstacle on the continuous path. The
problem is then formulated as a bilevel optimization problem and relaxed to canonical non-
linear programming (NLP). Comparisons with state-of-the-art path optimization/sampling
algorithms corroborate that the proposed formulation could enable optimization-based plan-
ners to achieve higher efficiency and success rates.
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Figure 3.10: Paths obtained by BPOMP for the real-world experiments. Snapshots of the
tasks can be found in Fig. 3.9.
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Part II

Adaptive Model Learning for
Deformable Object Manipulation
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Chapter 4

A Unified Framework for Deformable
Objects State Estimation and Task
Planning

In Part I of the dissertation, we built the foundation for autonomous robotic systems with
the introduction of efficient online trajectory optimization. Building upon that, Part II shifts
the focus to the application of model-based planning and control methodologies, specifically
aimed at achieving robust manipulation of deformable objects. This chapter is dedicated to
discussing the framework we have developed for real-time tracking and state estimation of
such objects.

Deformable objects pose unique challenges due to their variable shapes and behaviors
under manipulation. Our approach utilizes a unified framework to accurately track and
predict the state changes of these objects in real time. This capability is crucial for the
robotic system to make informed decisions and adapt its manipulation strategies effectively.
We will provide a detailed description of how it integrates with the overall control system of
the robot to enable precise and reliable manipulation of deformable objects in a variety of
settings.

4.1 Introduction

While a great amount of work is focused on the manipulation of rigid objects, manipulating
deformable objects, especially deformable linear objects (DLO), remains under-explored.
There are many applications involving the manipulation of DLO, such as cable harnessing
in factories, thread packing in production lines, suturing in medical surgeries, etc. These
tasks are usually labor-intensive and have not been automated for many years. The major
difficulty lies in the fact that these objects have high degrees of freedom which are expensive
to model and control.

Take rope knotting as an example (Fig. 4.1). The objective is to manipulate the rope from



CHAPTER 4. A UNIFIED FRAMEWORK FOR DEFORMABLE OBJECTS STATE
ESTIMATION AND TASK PLANNING 43

Figure 4.1: Two Fanuc LR Mate 200iD/7L robots are knotting a rope

a random initial state to a desired knotted state. Robots need to generate corresponding
motions to manipulate the rope based on the observation of current rope states. This task
has many challenges in several aspects, especially in state estimation, task planning, and
trajectory planning.

First, for state estimation, the position of each rope segment needs to be identified from
3D camera measurements (point clouds). As shwon in Fig. 4.2, the rope we are tracking
is featureless. In other words, there are no distinguishable markers or features to recognize
each segment, and it is unknown which segment on the rope generates the measured points
in the point clouds. This missing correspondence makes traditional visual tracking algo-
rithms, for instance Kalman filter, unable to execute. Besides, since the rope is occluded
by robot arms or self-occluded by itself frequently during manipulation, the state estimator
should be specially designed to handle occlusion robustly. Moreover, considering the curse of
dimensionality, running high dimensional state estimations in real time is also a challenging
problem.

Second, regarding task planning, robots need to take several sequential steps to knot the
rope gradually. Based on the state estimation result, a task planner needs to be developed
to classify at which step the manipulation is and determine what actions each robot should
take. Meanwhile, failure detection and recovery mechanisms should be included in the task
planner in case a failure occurs.

Third, for trajectory planning, the difficulty lies in that the system is underactuated.
Limited numbers of grippers (two in our case) are actuating the rope with high degrees of
freedom. It is also observed that the rope always runs to unrepetitive shapes during manip-
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(b)

(a) (c)

Figure 4.2: Illustration of state estimation for deformable objects. (a) shows the real rope,
(b) shows the point cloud directly gained by the camera, and (c) shows a chain of connected
nodes with uniform distance which we used to represent the rope.

ulation, i.e., shape differences always exist between training and test scenarios. Therefore,
simply replaying the predefined trajectory for training easily fails for the test stages. An
online trajectory planner should be developed to refine the trajectory with high efficiency.

In this chapter, a uniform framework for manipulating deformable linear objects is pro-
posed, which aims to address all the challenges discussed above. The core technique we are
using is called coherent point drift (CPD), a registration method for mapping one point set
to another one non-rigidly. For state estimation, the position of each node on the object
is acquired by registering the previous estimation results to the new point cloud measure-
ments. The object states can be estimated robustly in real time under noise, outliers, and
occlusions. For task planning, CPD is introduced to check the similarity between current
object states and pre-recorded training states, then the manipulation step can be determined
by finding the maximum similarity. Operation failure can also be detected if the similarity
value is below some threshold. For trajectory planning, the learning from the demonstration
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approach is introduced in this chapter. In training scenarios, human operators pre-program
the corresponding trajectories for some specific rope shapes. During the test, a mapping
function from the training scenario to the test scenario is constructed by CPD. The training
trajectory is warped by the mapping function to obtain a new trajectory that is feasible for
the test scenario.

The remainder of this chapter is organized as follows. Section 4.2 introduces related
works on manipulating deformable objects. Section 4.3 describes the coherent point drift
method for point registration. Section 4.4 explains the design of the framework in detail,
which includes state estimation, task planning, and trajectory planning modules. Section
4.5 tests the performance of the proposed framework by a series of experiments. Section 4.6
concludes the chapter and proposes future work.

4.2 Related Works

Manipulation of soft ropes has been a subject of robotics research for decades. Researchers
have addressed this problem with many different methods, such as modeling, knot theory,
deep learning, etc in order to let the robot manipulate the rope just like what human does.
Morita et al. [59] developed a Knot Planning from Observation (KPO) system which es-
timated the states of the rope from the vision feedback by knot theory. The primitive
movements were also predefined to change the states of the rope. Kudoh et al. [36] built a
multi-finger hand and programmed skill motions by observing human knotting procedures.
They realized the three-dimensional in-air knotting with different types of knots. Many of
these methods, however, require empirical laws and are developed for a specific task, which
is not easy to generalize for other tasks. Ashvin Nair et al [63] built a learning-based system
to train the robot to manipulate the rope. However, for each manipulation task, thousands
of training data is required, besides, the success rate is not high.

Human teaching together with non-rigid registration has emerged as a practical and effec-
tive approach for the manipulation of soft ropes. Schulman et al. [81] proposed a non-rigid
registration method to teach the robot to manipulate ropes by human demonstration. Their
method used TPS-RPM to transfer the original trajectory (taught by human demonstration)
to get a new manipulation trajectory that was suitable for the test scene. Since then, many
follow-up works improved the non-rigid registration-based method. Lee et al. [42] extended
Schulman’s approach by jointly optimizing the non-rigid registration and the trajectory opti-
mization into a single optimization framework, such that the resulting trajectory is smoother
given obstacles. Lee et al. [41] then incorporated the normals into the objective function to
find a better registration to ensure that the robot gripper is vertical to the operation surface.
But all of these works use the point cloud of the rope as feedback. When they apply their
methods, there are many limitations like poor performance under occlusion and outliers.

Compared with others, we are the first to propose a uniform framework by non-rigid
registration for robotic manipulation of soft ropes. Together with state estimation, trajec-
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(a) (c)(b)

Figure 4.3: A sequence of pictures of CPD registration. The blue point set registers with
the red point set by a smooth transformation.

tory planning, and scenario recognition, we greatly improve the robustness and efficiency of
manipulation tasks.

4.3 Non-Rigid Registration by Coherent Point Drift

Non-rigid registration, i.e., registration source points to target points non-rigidly, is the core
technique in this chapter to deal with the problem of state estimation, trajectory planning,
and scenario recognition during the task of rope manipulation. Coherent Point Drift (CPD)
is a popular method of non-rigid registration for its robustness towards outliers and missing
points [15], and we will introduce it in detail in this section.

Fig. 4.3 provides an example of CPD registration. The blue point set registers with the
red point set by a smooth transformation.

Assume there are two sets of point cloud, source point set X = {x1, x2, . . . , xN} ∈ RN×D

and target point set Y = {y1, y2, . . . , yM} ∈ RM×D. N and M are the point numbers in
X and Y respectively. D is the dimension of each point. The registration objective is
to find a smooth transformation function v : RD → RD that maps X to a new point set
X̄ = {x̄1, x̄2, . . . , x̄N} ∈ RN×D, such that X̄ is similar to Y .

In the above objective, there are two aspects needing mathematical formulation: (1)
how to measure the similarity between X̄ and Y and (2) how to quantitatively describe the
smoothness of the transformation function v.

For measuring similarity, the CPD algorithm takes a Gaussian mixture model (GMM)
point of view, where the transformed points X̄ are regarded as the centroids of multiple
Gaussians and points in Y are random samples from the Gaussian mixtures.

Assume that each Gaussian has equal membership probability 1
N

and the same isotropic
covariance σ2I. Then the probability of each point ym sampled from the Gaussian mixture
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model can be described as

p(ym) =
N∑
n=1

1

N
N (ym; x̄n, σ

2I)

=
N∑
n=1

1

N

1

(2πσ2)D/2
exp(−∥ym − x̄n∥

2

2σ2
) (4.1)

To account for noise and outliers, an additional uniform distribution is added to the
mixture model. The complete mixture model takes the form:

p(ym) =
N+1∑
n=1

p(n)p(ym|n) (4.2)

with

p(n) =

{
(1− µ) 1

N
, n = 1, . . . , N

µ, n = N + 1
(4.3)

p(ym|n) =
{
N (ym; x̄n, σ

2I), n = 1, . . . , N
1
M
, n = N + 1

(4.4)

where µ denotes the weight of the uniform distribution.
The complete log-likelihood function Q is constructed,

Q =
M∑
m=1

N+1∑
n=1

p(n|ym) log (p(n)p(ym|n))

=
M∑
m=1

N∑
n=1

p(n|ym)
(
log(

1− µ
N(2πσ2)D/2

)− ∥ym − x̄n∥
2

2σ2

)

+
M∑
m=1

p(N + 1|ym) log(
µ

M
) (4.5)

The larger the value of Q, the more likelihood that points in Y are sampled from the
Gaussian mixtures created by X̄, i.e., the more similar between the two point sets X̄ and Y .

The transformed set X̄ is achieved from X by transformation function v:

x̄n = xn + v(xn) (4.6)

v generates globally rigid transformation while also allowing locally non-rigid deforma-
tion. According to the regularization theory [22] , the function smoothness can be quanti-

tatively measured by norm
∫
RD

|V (s)|2
G(s)

ds, where V (s) is the Fourier transform of v and G(s)

is a symmetric filter with G(s) → 0 as s → ∞. The Fourier-domain norm definition basi-
cally passes v by a high-pass filter, then measures its remaining power at high frequency.
Intuitively, the larger the norm, the more “oscillation” v will behave, i.e., less smoothness.
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A modified likelihood function Q̃ is constructed by involving function v and penalizing
its oscillation:

Q̃(v) = Q− λ

2

∫
RD

|V (s)|2

G(s)
ds

=
M∑
m=1

N∑
n=1

p(n|ym) log(
1− µ

N(2πσ2)D/2
)

−
M∑
m=1

N∑
n=1

p(n|ym)
∥ym − xn − v(xn)∥2

2σ2

+
M∑
m=1

p(N + 1|ym) log(
µ

M
)− λ

2

∫
RD

|V (s)|2

G(s)
ds (4.7)

λ ∈ R+ is a trade-off weight that balances the data fitting accuracy (from X̄ to Y ) and
the smoothness constraints (from X to X̄). The negative sign before λ indicates a smaller
norm, or a smoother transformation from X to X̄, is preferred.

It can be proved by variation theory that the maximizer of (4.7) has the form of the
radial basis function [62]:

v(z) =
N∑
n=1

wng(z − xn) (4.8)

where kernel g(·) is the inverse Fourier transform of G(s), and wn ∈ RD is the kernel weights.
In general, kernel g(·) can take many formulations, as long as it’s symmetric, positive definite,
and G(s) behaves like a low-pass filter. For simplicity, a Gaussian kernel g(·) is chosen, with
g(z−xn) = exp(−∥z−xn∥2

2β2 ). β ∈ R+ is a manually tuned parameter that controls the rigidity
of function v, where large β corresponds to rigid transformation, while small β produces
more local deformation.

Substitute (4.8) to (4.7), then we get

Q̃ =
M∑
m=1

N∑
n=1

p(n|ym) log(
1− µ

N(2πσ2)D/2
)

−
M∑
m=1

N∑
n=1

p(n|ym)
∥ym − xn −

∑N
k=1wkg(xn − xk)∥2

2σ2

+
M∑
m=1

p(N + 1|ym) log(
µ

M
)− λ

2
trace(WTGW) (4.9)

where G ∈ RN×N is a symmetric positive Gramian matrix with element Gij = g(xi − xj).
W = [w1, . . . , wN ]

T ∈ RN×D is the vectorization of kernel weights in (4.8).
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Figure 4.4: The framework of point set registration. Yt is the perceived point cloud at time
step t. Xt−1 is the state estimation at the previous step. A new estimation Xt is achieved
by registering Xt−1 to Yt

Q̃ is now parameterized by (W, σ2) in (4.9). The EM algorithm can be performed to
maximize the value of Q̃ and to estimate the parameter (W, σ2) iteratively. In the E-Step,
the posterior probability distribution p(n|ym) is calculated using the estimated (W, σ2) from

the last M-step. In M-Step, take ∂Q̃
∂W

= 0 and ∂Q
∂σ2 = 0 to achieve a new estimation of

(W, σ2). The closed-form solution for M-step requires some linear algebra derivation, and
more details can be found in [62].

When Q̃ is converged, transfer function v can be calculated by (4.8), and the transformed
set X̄ is:

X̄ = X +GW (4.10)

4.4 Robotic Manipulation of Deformable Linear

Objects

This section introduces the framework for robotic manipulation of deformable linear objects.
Three major modules, state estimation, task planning, and trajectory planning, are intro-
duced in sequence. Each of them uses CPD as a primary tool. For ease of illustration,
an example of rope manipulation will be discussed in the following sections. However, the
proposed framework should be general for other types of linear objects as well.
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State Estimation of Deformable Linear Objects

During the process of rope manipulation, since the soft rope easily deforms into unscheduled
shapes, it is necessary to close the execution loop by monitoring the rope states in real time.

Tracking infinite-dimensional configuration space is important. Therefore, we first dis-
cretized the rope to a chain of connected nodes with uniform distance (Fig. 4.9). Our
objective is to estimate the position of each node at each time step from the dense, noisy,
and occluded point clouds (Fig. 4.9) perceived by stereo cameras.

Suppose at the initial time step, the rope state is noted as X t=0 = {xt=0
1 , xt=0

2 , . . . , xt=0
N } ∈

RN×3, where xt=0
n ∈ R3 is the nth node’s initial position in the three-dimensional Cartesian

space. N is the number of nodes. At time step t = 1, the rope moves to a new shape, and
its point cloud Y t=1 = {yt=1

1 , yt=1
2 , . . . , yt=1

M } ∈ RM×3 is perceived by cameras. yt=1
m ∈ R3

denotes the position of a single point in the cloud. M is the total number of points and
usually M >> N . Using CPD, the node positions X t=0 can be non-rigidly transformed to
X̄, which is well aligned to the point cloud Y t=1. X̄ serves as the state estimation of rope
nodes at time step t = 1, i.e., X t=1 ≜ X̄.

Running the above procedure iteratively, the state estimation X t at time step t can be
achieved by registering the previous step estimation X t−1 to the current point cloud Y t.
Fig. 4.4 shows the structure of this state estimator. Note that since tracking is performed
in sequences, and the rope shapes between adjacent time steps should not deviate much,
only a few iterations of EM updates will register X t−1 to Y t. Therefore, the proposed state
estimator can be run efficiently in real-time. Besides, the estimator is robust to occlusion.
During robot manipulation, the robot arm easily occludes the stereo camera, which results
in missing points in the rope point cloud. However, since the transformation function, v is
applied on source points coherently, X t−1 can still be registered to the missing point area in
Y t, i.e., the node position in the occluded area is still able to be obtained.

Task Planning

A complete manipulation task is usually composed of multiple procedures. For example,
as shown in Fig. 4.5, there are two major steps to move the rope from a straight line to
a ‘Z’ shape. At each procedure, a corresponding trajectory can be programmed by human
operators to guide the robot to successfully manipulate the rope.

For autonomous manipulation, it is necessary for the robot to recognize at which proce-
dure the current state is so that the most relevant trajectory from the human-programmed
‘trajectory pools’ can be selected for the following manipulation.

The CPD registration is utilized again to design the task planner. Suppose there are S
procedures in total to manipulate the rope, and the initial state of the rope at each procedure
is recorded as Xs ∈ RN×3, s = 1, · · · , S. The current state of the rope, X t, is estimated by
the proposed observer (Section IV.A). CPD is then applied to register each recorded state
Xs to the current state X t. The log-likelihood function Qt

s can be calculated after each
registration (4.9). Note that Qt

s is negative, and the less negative Qt
s is, the more similar
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(a) Step 1

: Rope : Trajectory : Destination

(b) Step 2

: Target Shape : Grasping Point

Figure 4.5: Two steps to move a straight line to a ‘Z’ shape.

between the states Xs and X t. To normalize the similarity within the 0-100% range, the
similarity matrix ηts is defined as follows:

ηts =
Qs
s

Qt
s

(4.11)

where Qs
s is the log-likelihood between Xs and itself. When the source point set and the

target point set overlay,

p(ym|n) =
{

1, n = m
0, otherwise

(4.12)

p(n|ym) =
{

1, n = m
0, otherwise

(4.13)

Therefore,

Qs
s = N log(

1

N
) (4.14)

and

ηts =
N log( 1

N
)

Qt
s

(4.15)

ηts approaching to 100% indicates stronger similarity between Xs and X
t. The most possible

step that the current manipulation lies in can be determined by finding maximum similarity:

s∗ = argmax
s

ηts, s = 1, · · · , S (4.16)

Moreover, the task planner can be applied to detect failures during manipulation. If the
maximum similarity ηts∗ is smaller than a pre-defined threshold, ηthre, it indicates that the
current rope state differs from all the scheduled steps. Rope manipulation runs into some
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Figure 4.6: The framework of task planning. ηst represents the similarity between current
state X t and recorded steps. If the maximum ηst is smaller than a lower-bound ηthre, an
unknown failure occurs. Human is asked to help robots recover the rope. The scenarios
pools will be augmented so that when running into the same failure next time, it will be
recognized and the taught recovering trajectory will be traced back.

unknown failures. Human operators need to interfere and teach robots some recovering tra-
jectories to move the rope back to one of the recorded states. Then from that recorded state,
manipulation can be continued autonomously. The failure state will also be augmented to
the scenario pools Xs. If this similar failure occurs again in the future, no human interference
is required, instead, the planner will use the taught trajectory for recovering as last time.
The framework of the proposed task planning module is shown in Fig. 4.6.

Trajectory Planning

During Training, human operators program the end-effector’s trajectory T strain, s = 1, · · · , S
for each of the S procedures. At the test, robots succeed in recognizing that the current
rope is at sth step by the task planning module (Section IV.B). However, the sth step’s
corresponding trajectory T strain cannot be directly applied for the test scenario, since no
matter how similar, there is always some minor shape difference between the rope at training
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and that at test. This minor difference makes the exact replay of the training trajectory
fail during the test, such as failing to grasp the rope. Therefore, T strain only serves as an
approximate reference, while some trajectory replanning based on T strain is required to achieve
a feasible manipulation at test time.

Note that when registering Xs to the current rope shape X
t during task planning, besides

the likelihood function Qt
s, the transformation function v : R3 → R3 is also constructed ( see

(4.6),(4.8)). As shown in Fig. 4.13, v transforms Xs to align to X t by twisting the original
Cartesian space. v can also be utilized here to transform the end-effector trajectory T strain to
get a new trajectory T stest that is feasible for the rope at test.

The trajectory T of a robot end-effector can be regarded as a sequence of poses {p,R},
where p ∈ R3 is the position vector of the end-effector, and R ∈ SO(3) is the orientation
matrix. With this observation, the feasible trajectory T stest can be achieved by applying the
following transformation on T strain:

ptest = ptrain + v(ptrain) (4.17)

Rtest = orth(Jv(ptrain) ·Rtrain) (4.18)

Jv(p) is the Jacobian matrix of v evaluated at position p, and orth(·) is a function that
orthogonalizes matrices. If v is a rigid transformation Tv, this trajectory transformation
procedure is equal to left-multiplying each end-effector pose Ttrain by Tv.

4.5 Experiments and Results

A series of experiments were performed to test the proposed state estimation, task planning,
and trajectory planning algorithms for manipulating soft ropes. The task is that two FANUC
LR-Mate 200iD robots collaboratively knot a 1-meter-long soft rope from a random initial
shape.

State Estimation

As shown in Fig. 4.7, the Microsoft Kinect was utilized to monitor the environment at 10Hz.
The captured 640× 480 RGB and depth images were sent to a Ubuntu 14.04 desktop (Intel
i7@3.60 GHz + RAM 16GB) synchronously and then synthesized to get the environmental
point cloud. Since object segmentation is not our focus in this work, we simply placed a red
rope on a green or white color background and implemented a color-based filter to segment
out the rope from the environment. The rope’s point cloud was then downsampled to 200
points uniformly by the VoxelGrid filter.

For state estimation, the 1-meter rope was discretized and modeled by 50 linked capsules.
A CPD toolbox implemented with C++ was utilized to register the 50 nodes’ positions
to the rope’s point cloud. The point sets were first normalized to zero mean and unit
variance before registration. The weight µ for uniform distribution was chosen to be 0.1.
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Figure 4.7: The testbed setup.

Table 4.1: Execution time of State Estimation

Segmentation 7 ms
Downsampling 2 ms

CPD Registration 10 ms
Total ∼20 ms

Smoothness regularization parameter λ and Gaussian kernel’s variance β were set as 3.0 and
2.0 respectively. All the data points were denormalized after registration.

Fig. 4.9 and Fig. 4.8 show the real-time tracking results when the two robots were ma-
nipulating the rope. Note that the rope’s point cloud was noisy, containing outliers and
occluded by the robot arms from time to time, but the proposed state estimator could still
track the rope robustly and efficiently. Table 4.1 lists the major execution time of the state
estimator. The overall running time is less than 20ms.

As shown in Fig. 4.10, to analyze the tracking accuracy, 11 markers with distinct colors
were attached to the rope with 10cm intervals. These markers were distinguished by a color-
based filter and their ground-truth positions were measured directly from Kinect. Note that
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(a)

(b)

Figure 4.8: Snapshots during the real-time tracking experiments.

Table 4.2: Estimation Error of State Estimation

Rope configuration Estimation Error (cm)
Straight Line 0.63± 0.11

L-Shape 1.49± 0.37
Circle 2.15± 1.06

these markers were only used for the purpose of ground truth. They were not utilized in
our state estimation algorithm. The estimation results from our proposed method were
compared with these ground-truth values. Fig. 4.11 shows the average tracking error and
standard deviation at six different rope configurations. In general, the tracking error is less
than 2.2cm, smaller than the jaw width (6cm) of the robot gripper. Therefore, even if the
gripper went to an inaccurate grasp pose because of the tracking error, the rope was still
located between the gripper’s fingers and could be successfully grasped. We also compared
our tracking with the MEM method. Fig. 4.11 shows that their tracking performance is
similar. However, our proposed framework advances in extendibility since its application
is not limited to state estimation, but can also be applied to task planning and trajectory
planning for deformable object manipulation.
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Figure 4.9: Snapshots during the real-time tracking experiments.

Task Planning

Following the pipeline in Fig. 4.7, the state estimation result was then sent to a Windows
desktop (Intel i7@3.60 GHz + RAM 8GB), which ran the task planning and trajectory
planning algorithms. ROS was utilized to serve as the interface to communicate between the
Kinect, the Ubuntu PC, and the Windows PC.

As shown in Fig. 4.13(a), four major steps were predefined by human operators for the
task of rope knotting. At each step, human operators placed the rope into one initial shape
which was recorded by the state estimator. Then the corresponding manipulation trajectory
was demonstrated by lead through teaching. To be specific, operators guide the two robots’
end-effectors through some key poses, and then the training trajectory is obtained by linear
interpolation between neighbor poses.

At the test, the current rope states were estimated and compared by CPD to each of the
four recorded templates. The similarity level is calculated by (4.15). As shown in Fig. 4.12,
the red point set (current state) and the blue point set (recorded state) in the second image
had the largest similarity (90%), which indicated that the manipulation process was at the
second step at that moment. The similarity lower-bond ηthre was set as 80%. If all the
similarity check is below 80%, a warning message will be shown to ask the human operator
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Figure 4.10: Benchmark setting: Six configuration shapes with markers attached.

to demonstrate a recovering trajectory. The failure states and recovering trajectories were
then augmented into the task planning sample pools. The robot’s ability to detect and
recover from failures is shown in the attached videos.

Trajectory Planning

After identifying the task step, the manipulation trajectory was generated by the proposed
trajectory planning algorithm.

To represent the rope positions and the manipulation trajectory under the same coor-
dinate system, the relative translation (extrinsic parameter) between the Kinect. The rope
states were all translated to the robot world frame afterward.

As shown in Fig. 4.13, the rope state during the test was different from that in training.
With CPD registration, the training trajectory was transformed by (4.17) and (4.18) at each
step to achieve the test trajectory. The end-effector poses were then transformed to robot
joint command by robotic inverse kinematics. The joint command was finally sent to the
robot controller for execution.

Fig. 6.7 shows the snapshots of autonomous rope knotting by two robot arms. Three
types of knotting were designed, with each type tested 15 times. The overall success rate
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Figure 4.11: Average tracking errors and standard deviations at the marker positions.

was 40/45. Most of the failure was miss-grasping, which might have resulted from the
relatively low accuracy of Kinect and calibration errors between the camera frame and robot
base frame.

To quantify the accuracy of the calculated trajectory, the similarity between the rope’s
final shape in training and at test was achieved by (4.11) to evaluate the distortion. In
addition, the execution time of the trajectory planning was also recorded to test the efficiency.
Since the accuracy and execution time highly rely on the shape of the rope and the complexity
of the manipulation step, a benchmark is designed as shown in Fig. 4.15. In training, humans
demonstrated a trajectory to manipulate the red rope into a desired shape. At the test, the
initial state of the 1-meter-long rope was placed by the following rules:

(1) the positions P0, P1 (in both the x and y directions) remain the same as the positions
in training.

(2) the distance from the root point P0 to the corner point P2, L0, is changed from 40cm
to 60cm.

(3) the angle θ0 is changed from +30 deg to +70 deg
According to the above rules, 100 different initial states of the rope were placed and

manipulated by the robot. Table 4.3 lists the results of the test. For each trial, the average
execution time of the trajectory planning algorithm is about 11ms. The primary time-
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(a) Comparison with Step 1，ߟଵ ൌ23% (b) Comparison with Step 2，ߟଶ ൌ90% 

(c) Comparison with Step 3，ߟଷ ൌ37% (d) Comparison with Step 4，ߟସ ൌ 13% 

* Current State
￮ Recorded State

Figure 4.12: Similarity check between the current rope state (red dots) and the four recorded
training states (blue dots). The second scenario is most similar to the current state with a
90% similarity.

Table 4.3: Result of Rope Manipulation Benchmark

Average Execution Time (ms) Average Similarity (%)
11 90

consuming component of this part is the registration step. If following the entire framework,
registration will be done in the scenario recognition step, hence, the execution time of tra-
jectory planning will decrease to about 2ms. For shape distortion, the trajectory planning
algorithm is able to guarantee about a 90% of similarity between the final state of the rope
at test and in training. Even though the similarity may decrease when dealing with more
difficult tasks, considering the high tolerance of distortion during rope manipulation, we can
still conclude that this trajectory planning algorithm is able to generate a suitable trajectory
efficiently.

To conclude, the experimental results show the proposed algorithms are able to ma-
nipulate ropes autonomously. The state estimation algorithm enables robots to track the
rope states in real time; the task planning algorithm lets robots recognize the manipulation
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(a) Training Scenarios

(b) Test Scenarios

rope;        trajectory;      grasping point*

Figure 4.13: Four major steps for rope knotting manipulation. The red line is the rope
state, and the green line is the trajectory of the robot end-effector. Blue dots are the
grasping/releasing positions. Black grids show that the original Cartesian space is twisted
so as to map the training scenarios toward test scenarios.

procedure and detect failure cases robustly; the trajectory planning algorithm can generate
feasible trajectories for new scenarios by warping the old trajectories from training scenarios.

4.6 Chapter Summary

A uniform framework, which includes state estimation, task planning, and trajectory plan-
ning, is proposed and implemented in this chapter for manipulating deformable linear objects.
Based on coherent point drift (CPD), a robust real-time observer is developed to estimate
the position of each node on the rope from noisy and occluded point clouds. A task plan-
ner is then developed to let robots recognize which procedure the current manipulation is
and decide which action to take. Finally, by registering the training scenario and the test
scenario, a transformation function can be constructed and utilized to warp the training
trajectory to achieve a feasible test trajectory. A series of experiments on ropes knotting
tasks are implemented, which indicate the effectiveness of the proposed methods.
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(a) Knot Type 1

(b) Knot Type 2

(c) Knot Type 3

Figure 4.14: Snapshots of the rope knotting experiments. Two robot arms were collabo-
rating to knot the rope based on the transformed trajectory. (a)(b)(c) show three different
types of knotting.
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Figure 4.15: Test benchmark for trajectory planning.
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Chapter 5

Offline-online Learning of
Deformation for Robotic Cable
Manipulation

In this chapter, following the introduction of our framework for real-time tracking and state
estimation of deformable objects, we shift our focus to their reliable manipulation, achieved
through a combination of offline and online learning methods. We address the challenge of
manipulating objects such as cables by proposing a novel hybrid offline-online approach for
learning their dynamic behaviors efficiently and robustly. In the offline phase, we utilize
Graph Neural Networks (GNN) to learn the deformation dynamics of these objects from
simulated data. This phase lays the foundational understanding of the object’s behavior
under various conditions. The online phase then builds on this foundation, where a linear
residual model is developed in real-time. This model acts as a bridge, effectively closing
the gap between the simulated environment and real-world scenarios. The learned model is
then utilized as the dynamics constraint of a trust region-based Model Predictive Controller
(MPC) to calculate the optimal robot movements. This integration enables the calculation
of optimal movements by the robotic manipulator, adapting to the continuously updated
model. The entire process, encompassing online learning and MPC, operates in a closed-
loop system, ensuring robust and accurate task execution.

5.1 Introduction

Manipulating deformable linear objects, especially cables, has a wide range of applications.
For example, in factory manufacturing, both stator winding and cable harnessing [31] require
cables to be assembled in a precise manner. In medical surgery, steering needles or catheters
are essential for vascular pathology treatment and minimally invasive surgery. To complete
the above tasks automatically, robustly manipulating cables to the desired shape remains a
fundamental problem for robotics. However, due to the high dimensionality and nonlinearity,
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it is challenging to obtain an accurate dynamics model for precise planning and control.
The finite element method (FEM) serves as a powerful tool to model cables. Through

discretizing the objects into small elements, the deformation can be derived by solving a set
of partial differential equations. FEM can accurately represent the dynamics of deformable
objects with fine tessellation [9]. However, it is usually computationally expensive to solve,
thus posing a challenge to use it for real-time robotic manipulation tasks.

Aside from the FEM models, data-driven approaches are often utilized to learn the non-
linear deformation dynamics [112, 26, 110]. Recently, many works have attempted to use deep
neural networks (DNN) to learn such dynamics. However, the characteristic of deformable
objects is complex, and it is found challenging for those general-purpose network structures
to capture the cable behaviors.

Recent studies on graph neural networks (GNN) bring a new structure for model learning.
By viewing particles of the object as the graph vertices, the dynamics are modeled as the
interaction between the vertices pairs [79]. The future object state can be predicted through
a sequence of ‘message passing’ blocks, which mimic the transmission of the interaction from
one graph vertex to another. Compared with those general-purpose network structures, the
GNN encodes the prior knowledge on how the interaction may transmit inside the deformable
objects. However, as most of the machine learning-based approach does, the GNN model
relies on simulation for data generation. Thus, the sim-to-real gap still poses a significant
challenge for the model to be adopted in robotic manipulation tasks.

To tackle the above issues, we propose a dynamics learning framework that consists of an
offline GNN model and an online residual model, as shown in Fig. 5.1. In the offline phase, we
learn rough global graph dynamics from the simulation data. In the online phase, we further
refine the local predictions through a time-varying linear residual model that estimates the
error of the GNN output. In contrast with existing sim-to-real approaches, our method
does not require pre-collecting real-world data. The linear residual model can be learned
simultaneously as the robot executes. With this framework, we can efficiently capture the
global deformation behaviors without sacrificing local accuracy. For manipulation, a trust
region-based MPC formulation with the learned model is proposed to optimize the robot
movement. In summary, the main contributions are listed as follows:

• Combine the GNN with an online linear residual model for robust model learning.

• Formulate a trust region-based model predictive controller to optimize the robot move-
ments.

• Demonstrate the effectiveness of the proposed method through comparative simulations
and experiments.
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Figure 5.1: The proposed cable manipulation framework combines offline model learning
with online residual learning. In the offline phase, we trained a GNN with simulated data
as the global model of the cable. In the online phase, a local residual model that estimates
the GNN prediction error is learned in real-time to reduce the sim-to-real gap. The learned
models are then sent to an MPC controller to obtain the optimal robot motion.

5.2 Related Works

Global Deformation Model Learning

Learning-based approaches approximate the cable dynamics from the collected data set.
Nair et al. [63] proposed a predictive model learned from step-by-step images of a rope
collected during human demonstration. Yan et al. [109] proposed to utilize bi-directional
LSTM to model chain-like objects. By recurrently applying the same LSTM block along
the cable, we can enforce how the interaction will propagate inside the model. Similarly,
the graph neural network arises as a novel structure to learn the deformation dynamics. By
explicitly modeling the vertices and edges, authors of [45] demonstrated the effectiveness
of the proposed dynamic particle interaction networks (DPI-Nets) on fluids and deformable
foam manipulation tasks. The graph network structure proposed in [79] further improved
the generalizability in terms of prediction steps and particle scalability. Moreover, Pfaff et
al. [74] generalized the graph structure to mesh-based dynamics, which proved to be effective
for more complex simulation tasks.
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Sim-to-real Transfer for Model Learning

While neural networks can capture complex behaviors of deformable objects, those meth-
ods typically require sim-to-real methods as complements in case of parameter changes or
uncertainties encountered in the real-world experiment. Matching the simulator parameters
with real-world parameters and directly applying the learned model to the real world is the
most common way to utilize the model. However, the learned model may suffer from uncer-
tainties in the real world. Another approach is to randomize several aspects of the domain
to provide enough variability in training [96, 11, 76]. As a result, the learned model can
cover a large fraction of scenarios. Fine-tuning the learned model with real-world data is
also demonstrated to be effective in closing the sim-to-real gap [109]. By collecting new data
in the real world and re-training the network, we can adapt the model to the new scenario
robustly.

Combining the offline model with a residual model is also beneficial to resolve the sim-to-
real gap [2, 34]. Since the offline model does not need to match reality accurately, training
in simulation is more efficient and more manageable.

Online Local Model Estimation

Instead of learning the global model and transferring it to the real world, online approxi-
mating a local model is another powerful way for cable manipulation. Visual servoing is a
commonly used method for online cable manipulation. Visual servo approaches approximate
the local linear deformation model by iteratively updating the deformation Jacobian [67, 121,
122], which represents the mapping between the robot end-effector’s velocity and the object
state. Compared with offline global model learning approaches, there are no sim-to-real gaps,
and it can generalize to different objects and scenarios. Jin et al. [28] further improved the
robustness of the online linear model under sensor noises and occlusions. However, as the
linear model’s expressiveness is limited, it is challenging for the online methods to manage
large deformations.

Offline-Online Learning for Robust Manipulation

Though the online model estimation methods are useful in certain tasks, it is still desirable
to take advantage of the more powerful offline global model. As demonstrated in [112, 111,
113], the offline learning provides the initial guess of the linear Jacobian matrix, and in the
online phase, the Jacobian matrix is further updated with an adaptive control law. Distinct
from the sim-to-real methods introduced in the previous subsection, this combination does
not require additional online data collection. The sim-to-real gap can be instantaneously
resolved as the robot executes. While the motivation of our proposed framework is similar
to the motivation of [112], our algorithm is unique in several aspects: 1) we utilize GNN to
capture the global model instead of providing the initial guess of the local Jacobian, 2) we
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online learn a residual model for refinement, 3) we construct an optimization-based MPC
controller to obtain optimal robot motions within a long horizon.

5.3 Proposed Framework

In this section, we introduce the proposed framework for cable manipulation as shown in
Fig. 5.1. We mainly focus on the task of precisely shaping a cable to the desired curvature
in a 2D and uncluttered environment. We utilized the proposed state tracking algorithm in
Chapter 4 to get an estimation of the cable state. Then the cable dynamics are approximated
by a combination of an offline graph neural network (GNN) and an online residual model. In
the end, a model predictive controller (MPC) is utilized to control the robot to manipulate
the cable to the desired states.

Offline Model Learning with Graph Neural Networks

Offline Graph Neural Network Dynamics
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Figure 5.2: The structure of the Graph Neural Network (GNN). The offline GNN takes
in a graph that represents the state of the cable and outputs the prediction of the cable
movements.

Graph neural networks (GNN) are demonstrated to be effective in representing complex
dynamics [79]. In this chapter, we adopt a similar idea from [79] to learn the graph dynamics
of the cable.
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We assume that the connection between the robot end-effector and the grasping point
is fixed throughout task executions. The dynamics f(·) is then modeled by the interactions
among the cable key points and the robot end-effectors as shown in (5.1). The dynamics
takes in m+1 previous cable states from X(t−m) to X(t)and the current robot end-effector
velocities (translations in x, y and rotation around z) R(t) = [r1(t), r2(t), · · · , rQ(t)]T , where
ri(t) ∈ R1×3 is the end-effector velocities of the i-th robot, and Q is the number of robots.

Ẋ(t) = f(X(t−m : t), R(t)) (5.1)

As studied in [79], the dynamics can be captured via a graph G = (V,E), where the
graph vertices V = [v1, v2, · · · , vN ] correspond to the key points, and the graph edges E
correspond to the interactions between the key points pair. As shown in Fig. 5.2, the
features of the i-th graph vertex vi consist of a sequence of previous key point positions
[xi(t), xi(t − 1), · · · , xi(t − m)], and the robot control input at that point. For the graph
edge, it models the relative movement between vertices ei,j = ∥xi(t) − xj(t)∥. An edge is
constructed if two vertices are within a ‘connective radius’.

To learn such a graph, we follow the GNS network structure [79], which contains three
steps – encoding, processing, and decoding:

Illustration of the Latent Graph G’=(V’,E’)
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Figure 5.3: Illustration of the graph encoder and decoder. By minimizing the reconstruction
loss in (5.2), the encoder can project the high dimensional graph representation to a latent
space.

Encoding: Instead of operating in the high dimensional space, we project the graph
G to a low dimensional representation G′ = (V ′, E ′) for efficiency. Graph vertices auto-
encoder and graph edges auto-encoder are trained, respectively as shown in Fig. 5.3. The
reconstruction error in (5.2) is minimized to make the network learn the optimal latent space
that can capture all the original information. ϕv, ϕe denote the encoder for the graph vertices
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and edges, and ψv, ψe are the corresponding decoders.

ϕv∗, ψv∗ = argmin
ϕv ,ψv
∥vi − (ϕv ◦ ψv)(vi)∥2

ϕe∗, ψe∗ = argmin
ϕe,ψe
∥ei,j − (ϕe ◦ ψe)(ei,j)∥2

(5.2)

Processing: The processor mimics the dynamics of the cable by computing the in-
teraction between vertices in the latent graph.The message passing block in Fig. 5.4 is to
propagate the graph vertex, and edge features based on the current graph state and the
robot control input as shown in (5.3).

k+1v′i = f v(kv′i,
∑
j

ke′i,j)

k+1e′i,j = f e(ke′i,j,
kv′i,

kv′j)

(5.3)

where f v(·) and f e(·) are the graph vertex network and graph edge network, and k+1v′i,
k+1e′i,j

denote the latent vertex/edge features after the k-th message passing block.
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Figure 5.4: Illustration of the message passing block. Each message-passing block transmits
the interaction from one graph vertex to others through the graph edge.

Decoding: As the inversion of the encoder, the decoder converts the latent graph
representation back to get the prediction of the cable movement Ẋ(t). The weight is directly
taken from the decoder part of the auto-encoder ψv and ψe.
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Online Residual Model Learning

The offline GNN model is able to learn the global nonlinear dynamics and provide a rough
prediction. However, due to the sim-to-real gap, the training data from the simulation may
not accurately capture the dynamics of the physical object. To overcome the sim-to-real
gap and the generalization issues, we propose to online learn a residual model to correct
the local predictions. As shown in (5.4), δẊ(t) is the error between the actual cable state

increment Ẋ(t) and the predicted cable state increment ̂̇X(t) given by the offline learned

dynamics denoted as f̂(·). For simplicity, we use X to represent the history key point
trajectory X(t −m : t). Given the history cable trajectory X, we assume that the ground
truth residual model is linear with respect to R(t) inside ∥R(t)∥ ≤ ϵ, where J(t) denotes the
local residual dynamics. For simplicity, we omit the bias term. It can be considered without
much modification.

δẊ(t) = Ẋ(t)− ̂̇X(t)

= f(X,R(t))− f̂(X,R(t))
= R(t)J(t), ∥R(t)∥ < ϵ

(5.4)

To estimate the residual, we online collect δẊ and the corresponding robot end-effector
velocities R during the task execution as shown in (5.5).

δẊ =
[
δẊ(t−m) · · · δẊ(t− 1) δẊ(t)

]T ∈ R(m+1)×2N

R =
[
R(t−m) · · · R(t− 1) R(t)

]T ∈ R(m+1)×3Q
(5.5)

Based on the collected data δẊ and R, we solve a regularized least squares (ridge re-
gression). The problem can be decomposed to a 3Q independent ordinary ridge regression
problem and solved in parallel. δẊn denotes the n-th column of δẊ, and similarly, Jn(t)
represents the n-th column of J(t).

Ĵ(t) = argmin
J(t)

∥δẊ−RJ(t)∥2F + λ∥J(t)∥2F

=
6N∑
n=1

argmin
Jn(t)

∥δẊn −RJn(t)∥22 + λ∥Jn(t)∥22
(5.6)

The solution is given below, where λ is the regularization weight, and I denotes the
identity matrix.

Ĵ∗
n(t) = (δẊn

T
δẊn + λI)−1δẊn

T
R (5.7)

Model Predictive Control for Manipulation

To utilize the learned model for manipulation, we adopt the idea of model predictive control
(MPC).



CHAPTER 5. OFFLINE-ONLINE LEARNING OF DEFORMATION FOR ROBOTIC
CABLE MANIPULATION 70

min
R(0:h)

h+1∑
t=1

∥X(t)−Xd∥22

s.t. X(t+ 1) = X(t) + Ẋ(t)∆t

Ẋ(t) = f̂(X,R(t)) +R(t)Ĵ(t)

∥R(t)∥ ≤ ϵ

t = 0, 1, · · · , h

(5.8)

As shown in (5.8), the optimization variables are the robot’s end-effector velocities within
a horizon h, and the objective function is to minimize the shape position error. The con-
straints include the learned dynamics, where ∆t denotes the sample time of the dynamics.
More importantly, we consider movement limit constraints to ensure that the learned model
(offline and online) is in effect in the optimized region. Borrowing the idea from the trust-
region optimization, we update the trust-region size according to the ratio ρ between the
actual shape error reduction ∆eactual and the predicted shape error reduction ∆epred as
shown in (5.9). The pseudo-code is summarized in Alg. 2, where the trust-region size will
expand/shrink if ρ is greater/smaller than a threshold.

ρ =
∆eactual
∆epred

(5.9)

Algorithm 2: Trust Region Based Model Predictive Control

Require: Initialize R, ϵ
1: while ∥X(t)−Xd∥ ≥ e do
2: R← Solve the optimization in (5.8)
3: X(t+ 1)← Execute the robot and obtain the new cable state
4: ρ← Calculate the ratio according to (5.9)
5: if ρ ≥ η+ then
6: ϵ← τ+ϵ
7: else if ρ ≤ η− then
8: ϵ← τ−ϵ
9: end if
10: end while

During the task execution, the MPC controller iteratively solves for the optimal robot
movements and sends the results to the robot for execution. Similar as our previous work [102],
the optimization is solved by IPOPT [100], which implements a primal-dual interior-point
linear search algorithm. The local convergence is guaranteed as proved in [99]. We empiri-
cally demonstrated the effectiveness through simulation and experiments.
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Figure 5.5: The relation between prediction error and rollout steps of various offline models.
The models are forwarded 1 step to 20 steps with the same cable that is utilized for training.
The y-axis is log-scaled.

5.4 Simulation and Experiments

Simulation and Experiment Setup

1) Simulation Setup: The simulation setup is shown in Fig. 5.7, two KUKA robots move
the ends of a cable so that the cable matches the desired shape. The simulation environment
is built upon the PyBullet Physics Engine. The cable model is generated by Gmsh and
simulated by the built-in finite element method (FEM). Detailed cable simulation parameters
are summarized in Table 6.2.

2) Experiment Setup: The experiment setup is shown in Fig. 5.1. Two FANUC
LR-Mate 200iD robots collaboratively manipulate the cable to different desired shapes. An
Intel Realsense RGB-D camera is utilized to obtain the cable point clouds. The online model
learning and MPC calculation are achieved on a Ubuntu 18.04 desktop. The optimized robot
velocities are sent to the robot for execution with a communication frequency of 100Hz.
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Table 5.1: Parameter Values of the Proposed Approach

Simulator Parameters Value
Cable Length 1m
Cable Diameter 0.01m
Spring Elastic Stiffness 4× 103

Spring Damping Stiffness 2× 103

Spring Bending Stiffness 3× 103

Global Scale 2
GNN Model Parameters Value
Encoder

Number of Hidden Layers 2
Size of Hidden Layers 128
Activation Function ReLU

Processor
Time Window Size (m) 5
Number of Message Passing (k) 10
Connective Radius 0.2m
Number of Hidden Layers 2
Size of Hidden Layers 128
Activation Function ReLU

Decoder
Number of Hidden Layers 2
Size of Hidden Layers 128
Activation Function ReLU

GNN Training Parameters Value
Batch Size 1
Learning Rate 10−4 to 10−6

MPC Parameters Value
MPC Horizon (h) 5
Dynamics Sample Time (∆t) 1s
Regularization Weight (λ) 10
Initial Trust Region Size 0.05m
η+, η− 0.8, 0.4
τ+, τ− 1.05, 0.95
optimizer IPOPT
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(a) Desired Cable Pose (b) Performance Comparison

Figure 5.6: Benchmark comparison results. The robots will manipulate the cable from a
straight line to three desired shapes. The curve shows the result in the environment that we
double the cable stiffness.

Table 5.2: Manipulation Performance Comparison of in Simulation

Scenario 1: U shape Scenario 2: S shape Scenario 3: Z shape
Terminal Error(cm) Settling Time(s) Terminal Error(cm) Settling Time(s) Terminal Error(cm) Settling Time(s)

Online Visual Servo 1.96± 0.29 27.47± 5.44 3.28± 0.82 24.76± 3.27 8.72± 1.15 19.43± 6.11
Direct Transfer GNN 1.54± 0.53 11.32± 1.46 1.61± 0.42 13.98± 1.31 1.87± 0.56 11.91± 1.75

Domain Randomization 1.11± 0.21 12.60± 1.32 1.30± 0.33 14.33± 1.47 1.76± 0.41 12.07± 1.66
GNN + Fine-tune 0.42± 0.10 8.31± 0.72 0.57± 0.08 13.58± 1.06 1.19± 0.23 9.82± 1.32

GNN + Online Residual 0.58± 0.13 12.35± 1.09 0.61± 0.14 13.79± 1.50 0.78± 0.17 16.32± 1.15

* Fine-tuning requires additional data collection before the robot execution, and its performance depends
on the quality of the online dataset.
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(a) Test 1: Random Initial and Target Cable States

desired cable pose current cable pose

(b) Test 2: Random Initial and Target Cable States

initial state

initial state target state

target state

Figure 5.7: Snapshots of the proposed method. The proposed method is tested to manipulate
the cable from random initial shapes to randomly generated targets. With the GNN model,
the robot is able to find a rough global trajectory, while the online residual model is able to
refine the local behaviors.

Table 5.3: Performance Comparison in Experiments with the Ethernet Cable

Scenario 1: U shape Scenario 2: S shape
Terminal Error(cm) Settling Time(s) Terminal Error(cm) Settling Time(s)

Online Visual Servo 5.58± 1.11 52.04± 12.11 1.64± 0.28 44.18± 8.00
Direct Transfer GNN 2.54± 0.61 25.23± 5.19 1.57± 0.35 24.63± 5.16

GNN + Domain Randomization 1.91± 0.59 36.29± 5.45 1.36± 0.34 16.73± 4.37
GNN + Fine-tune 1.56± 0.43 22.29± 5.63 1.12± 0.33 23.03± 4.80

GNN + Online Residual 1.03± 0.24 24.29± 7.92 0.99± 0.16 19.29± 7.71

Table 5.4: Performance Comparison in Experiments with the USB Cable

Scenario 1: U shape Scenario 2: S shape
Terminal Error(cm) Settling Time(s) Terminal Error(cm) Settling Time(s)

Online Visual Servo 3.41± 0.91 113.66± 20.93 2.04± 0.16 106.12± 17.09
Direct Transfer GNN 1.79± 0.45 21.16± 4.38 1.91± 0.67 23.71± 5.13

GNN + Domain Randomization 1.39± 0.40 13.65± 4.39 1.33± 0.43 31.19± 6.90
GNN + Fine-tune 0.86± 0.38 14.83± 3.87 1.08± 0.24 21.44± 4.06

GNN + Online Residual 0.93± 0.23 18.81± 7.64 0.82± 0.16 34.81± 8.61

Data Collection and Learning

Offline Data Collection and Training: The state of the cable is approximated by a
series of key points. In simulation, we uniformly select 13 points on the cable. The cable
is initialized with a straight line, and we randomly move the robot end-effector to obtain
a trajectory {X(t), R(t)}t=0,1,··· ,200, where the trajectory contains 200 steps of transitions.
With this mechanism, we form a data set with 10K trajectories. The network structure and
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parameters are summarized in Table 6.2.
Online Data Collection and Learning: In the online phase, the proposed approach

does not require pre-collect data before execution. The online linear residual model is ob-
tained in real-time by solving (5.7) with 5 previous cable states and robot movements.

Simulation Results

We first evaluate the performance of the offline model. The cable is randomly initialized,
and two robots will randomly move two cable tips for 1 to 20 steps. We tested the GNN
model with two baselines: 1) a two-layer MLP with the hidden layer size of 128, 2) a bi-
directional LSTM model proposed in [109]. All methods are trained with the same amount
of data. The results are provided in Fig. 5.5. The GNN and bi-directional LSTM models
outperform the MLP by a large margin (over 10 times). The result confirms our hypothesis
that the structural designs of the GNN and bi-directional LSTM encode the prior knowledge
of how the interaction will transmit inside the cable. This prior knowledge can make the
training result better. While the LSTM model shares many similarities with the GNN
on how the interaction is propagated through the vertex, the GNN model performs better
in our scenarios. The average prediction error of GNN is less than 2 × 10−2cm after 20
steps of predictions, which confirms our assumption that an offline GNN model is a good
approximation of the ground truth cable model.

For manipulation, we change the stiffness of the cable (0.1×, 0.5×, 1×, 2×, and 3×
of the original values) to test the performance of the proposed online residual model. We
compare the performance of the proposed method with three sim-to-real baselines: 1) direct
transfer, 2) domain randomization, and 3) fine-tuning the network. To be more specific,
direct transfer refers to applying the offline learned model directly to the testing scenarios
without modification. Domain randomization denotes randomly perturbs some parameters
of the cable in the training dataset. We change the spring elastic stiffness, damping stiffness,
and bending stiffness in the range of 0.1 to 3 times the original values. For fine-tuning,
we collect 2k transitions in the testing scenario and re-train the network before executing
the robot. In addition, we also compared it with an existing online visual servo control
method proposed in [121, 28], where a linear deformation Jacobian is online estimated via
least squares. The benchmark scenarios are illustrated in Fig. 5.6. The robots need to
collaboratively manipulate the cable from straight lines to three desired shapes. The results
are averaged over 5 trails with the cable stiffness changing from 0.1 to 3 times the original
value.

The results are summarized in Table 5.2. For settling time, the methods with the offline
model outperform the online visual servo method. Since the online visual servo method
purely relies on the local information, it is easy to get stuck in a local optimal region and
spend lots of time to get out. This phenomenon is also revealed in Fig. 5.6. In all three
scenarios, the online visual servo controller is able to reduce the shape error quickly in
the beginning but fails to continue this trend in the end. However, since the visual servo
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control does not require offline training, the online visual servo method still has the inherent
advantage of data efficiency.

For the terminal shape error, we notice that both domain randomization and fine-tuning
can improve the test time performance than direct transfer. It is reasonable since the training
data for both approaches covers more similar scenarios as in the test time, especially for
fine-tuning, which utilizes the data collected in the test scenario to refine the network.
However, it is worth noticing that the proposed online residual learning method does not
require additional data, and it is robust across all the scenarios. Though fine-tuning slightly
outperforms the proposed approach in the first two scenarios, it has a larger error in the
third. This may indicate the performance of fine-tuning may greatly depend on the fine-
tuned dataset.

We also applied the proposed framework in more challenging scenarios as shown in
Fig. 5.7, where the initial state and the target state are randomly generated in simula-
tion. Both tasks require large deformation and accurate local adjustment. Utilizing the
proposed method, we are able to complete the tasks robustly.

Experiment Results

We further evaluate the performance of the proposed framework on two different cables, a
blue Ethernet cable, and a black USB cable. The offline GNN dynamics are the same as the
offline dynamics in the previous experiment. The online models are initialized by randomly
moving around the initial configuration, and the fine-tuned dataset is similarly collected
with 2k transitions. The desired shapes are selected as U shapes and S shapes as the purple
curves in Fig. 5.9.

Table 5.3 and Table 5.4 summarize the performance of both cables. The online visual
servo control method achieves good performance by gradually learning the local model and
moving the cable. However, the online method may converge to a local optimal region
and get stuck. As shown in Fig. 5.9(b), the online method fails to achieve the U shape
and gets stuck in an S shape that is relatively far away from the desire. The offline GNN
method has fair performance on both cables. The global model can efficiently guide the
robot to avoid potential local optimal regions for better performance. However, due to
the sim-to-real gap, the predictions from the offline model may become inaccurate, and
the final shape errors are inevitable. Domain randomization can slightly perform better
because the training data already includes the deformation of some higher stiffness cables.
However, there is still a gap between simulation and reality. Fine-tuning performs better
than domain randomization but is not comparable with the proposed approach. As we
analyzed in the previous simulation benchmark, its performance may greatly depend on the
fine-tuned dataset. Since it is expensive and time-consuming to obtain real-world data, it
is challenging to obtain a dataset covering most of the scenarios. The proposed method
achieves the best performance in terms of terminal error. The result corroborates that the
proposed framework is effective and robust in manipulating cables.



CHAPTER 5. OFFLINE-ONLINE LEARNING OF DEFORMATION FOR ROBOTIC
CABLE MANIPULATION 77

(a) Ethernet Cable, S Shape

(b) Ethernet Cable, U Shape

(c) USB Cable, S Shape

(d) USB Cable, U Shape

desired cable pose current cable pose

Figure 5.8: Snapshots of the proposed methods. We tested the performance of the proposed
method on two cables. For each cable, we set two desired shapes: U shape and S shape. The
proposed method is able to achieve high accuracy efficiently.
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(a) Ethernet Cable, S Shape (b) Ethernet Cable, U Shape

(c) USB Cable, S Shape (d) USB Cable, U Shape

Offline + Online Residual

Direct Transfer

Online Visual Servo Desired Shape

Domain Randomization Fine-tuning

Figure 5.9: We show the final shapes that each method achieved for the benchmark. The
benchmark is to manipulate the cable to a U shape and an S shape, as shown with the purple
curve. The proposed method can achieve high accuracy across all four tasks.

5.5 Chapter Summary

This chapter has explored the robotic manipulation of deformable linear objects, a task with
significant applications in sectors like manufacturing and medical surgery. A key challenge
in these tasks is the ability to accurately model and predict the deformation of such objects
for robust and precise control. Addressing this need, we introduced a novel hybrid offline-
online methodology for learning the dynamics of cables. In the offline phase, we employed
a Graph Neural Network (GNN) to understand the deformation dynamics from simulated
data, laying a foundational model of the object’s behavior. To align this model with real-
world scenarios, we further developed a linear residual model in real-time, effectively bridging
the gap between simulation and practical application. The integration of the learned model
into a trust region-based Model Predictive Controller (MPC) forms a critical component of
our approach. This crucial step enables the calculation of optimal movements for the robotic
manipulator, which dynamically adapts to the model and is continually refined through real-
time updates. We demonstrated the effectiveness of the proposed method through several
simulations and real-world experiments.
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Chapter 6

Robust Deformation Model Learning
under Uncertainties

In Chapter 5, we explored a framework that synergizes offline and online information for
the effective manipulation of deformable linear objects. Advancing further in this chapter,
we take a step forward by demonstrating how our methods can robustly accomplish these
tasks in environments characterized by substantial sensor noise and occlusions. We will
showcase how the integration of Structure Preserved Registration (SPR), an enhanced version
of the tracking algorithm discussed in Chapter 4, combined with the online learning methods
outlined in Chapter 5, and a robust optimization formulation, enables reliable manipulation
of a variety of deformable linear objects even under challenging conditions of noise and visual
interference. This chapter aims to illustrate the effectiveness of this comprehensive approach,
highlighting its capability to maintain high precision and control in manipulating deformable
objects amidst significant sensory disruptions.

6.1 Introduction

Robotic cable manipulation has a wide range of applications, such as cable harnessing in
factories, thread packing in production lines, and suturing in medical surgeries. However,
these tasks are challenging for robots. Compared with rigid objects, models of cables are
high dimensional and computationally expensive. Besides, such an object can easily deform
to unexpected shapes during manipulation, which may make the manipulation process fail.

There are already some studies on robotic cable manipulation. Many of them are model-
based methods. The deformation properties of the cable in terms of stiffness, Young’s mod-
ules, and/or FEM coefficients are required to build models for trajectory planning. However,
such deformation parameters are difficult to estimate accurately and may even change during
the manipulation process, especially for objects made of nonlinear elastic or plastic materials.

In this chapter, we introduce a robust online deformation model approximation method
for cable manipulation planning. A deformation model is constructed to describe the rela-
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Figure 6.1: Two robots manipulating a cable to a desired shape

tion between the movement of the robot’s end-effectors and the displacement of the cable.
The idea of the online deformation model approximation was first proposed by Navarro-
Alarcon [66]. Cables have infinite degrees of freedom and it is hard to find an explicit model.
Instead of finding a global model, real-time data is utilized for local linear model approxi-
mation. After the model is obtained, we find the pseudo-inverse of the model, which takes
the desired movement of the cable as the input and the velocity of the robot’s end-effectors
as the output. As the robots manipulate the cable, the deformation model is updated online
using real-time data.

In order to approximate the local deformation model of the cable, the motion data of
the robot’s end-effectors and the cable are required. The motion of the end-effectors can
be accurately obtained by solving forward kinematics. However, the motion of the cable
is hard to obtain without the help of markers. Sensor noise and occlusions could introduce
uncertainties when estimating the motion of the cable. Such uncertainties significantly affect
the accuracy of the approximate deformation model.

To handle the above challenges, we propose a framework that is robust in both cable
tracking and model approximation. For cable tracking, the core technique we use is called
structure preserved registration (SPR) [93], which is a robust non-rigid registration method
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for mapping one point set to another. Considering both global and local structures, SPR
can robustly estimate the motion of the deformable object in real time even in the presence
of sensor noise, outliers, and occlusions.

For model approximation, we take tracking uncertainties into account by solving a ro-
bust optimization problem. We formulate the problem as a ’Min-Max’ problem, where the
maximization takes the worst case of the measurement uncertainty into account, and the
minimization penalizes the cost function to find an optimal deformation model. The defor-
mation model is then utilized to plan a trajectory to manipulate the cable.

The remainder of this chapter is organized as follows. Section 6.2 introduces related works
on cable tracking and manipulation. Section 6.3 describes the SPR method for cable rep-
resentation and tracking. Section 6.4 explains the local model approximation method using
robust optimization. Section 6.5 explains the design of the framework, which includes point
tracking, local model approximation, and trajectory planning modules. Section 6.6 tests the
performance of the proposed method by a series of experiments. Section 6.7 concludes the
chapter.

6.2 Related works

Robotic cable manipulation has been gaining more attention recently for its broad applica-
tions. In order to accomplish this challenging task, a robust state estimator to track the
configuration of the cable in real time is vital. Metaxas and Terzopoulos [58] constructed
a second-order dynamic model for multi-body objects and recursively estimated the body
motion from sequences of point clouds by an extended Kalman filter. Schulman et al. [84]
proposed a modified expectation maximization (EM) algorithm for deformable object track-
ing,

Similarly, Petit et al. [73] introduced a finite element method for tracking elastic objects.
Navarro-Alarcon et al. proposed a Fourier-based shape servoing method for deformable
object representation [65]. Tang and Tomizuka used a non-rigid registration tracking method
called structure preserved registration (SPR) [93]. SPR is able to estimate the positions of
virtual tracking points on the deformable object in real-time robustly by considering both
the local structure and the global topology of the deformable object (Fig. 6.2).

For manipulation planning, Morita et al. [59] developed a ‘knot planning from observa-
tion’ (KPO) system that estimated the states of ropes, especially the overlap orders by knot
theory. Kudoh et al. [36] built a multi-finger hand and programmed skill motions by imitat-
ing human knotting procedures. They realized three-dimensional air knotting with diverse
types of knots. However, many of these methods require empirical laws and are developed
for a specific task, which is not easy to generalize for other tasks. To generalize the manipu-
lation skills, Schulman et al. [82] proposed to teach robots to manipulate deformable objects
from human demonstrations. They implemented the thin plate spline robust point matching
(TPS-RPM) algorithm [15] to warp the original trajectory taught by human demonstration
to get a new trajectory that was suitable for the test scene. Tang et al. [95] proposed a
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(a) Fourier-Based Estimation (b) SPR Estimation

Figure 6.2: Comparison of Fourier-based method and SPR on cable tracking. Blue dots (or
the blue line) are the point clouds with outliers and occlusions, and red circles (or the red
line) are the estimated position. The Fourier-based method fails to estimate the state, while
SPR still works well and can give the variance of estimation uncertainty.

tangent space mapping method that guaranteed not to overstretch the cable during manipu-
lation. Several follow-up works further improved this demonstration-based method. Tang et
al. [94] proposed a uniform framework based on coherent point drift for robustly manipulat-
ing deformable linear objects. However, these methods lack the ability to achieve accurate
position and can hardly apply to new scenarios that have significant differences with the
training scene. Navarro-Alarcon et al. [66] proposed the idea of local deformation model ap-
proximation and then utilized the local model to automatically servo-control the soft object
to desired shapes. Hu et al. [25] improved the performance by Gaussian process regression.
Zhu et al. [121] extended their work by setting up a framework, Fourier-LS, which combines
the truncated Fourier series visual servoing method and an efficient continuous local model
approximation method. The framework proposed in this chapter has a similar structure to
the Fourier-LS.

Compared with other methods, the proposed method SPR-RWLS is the first to take visual
tracking uncertainties into consideration for robotic cable manipulation. As shown in Fig.
6.2, for cable tracking, compared with the Fourier-based visual servoing method, SPR works
robustly in the presence of outliers and occlusions. For deformation model approximation, a
novel algorithm for solving robust weighted least squares is introduced in this chapter. The
robust local deformation model for trajectory planning can be obtained efficiently by solving
several second-order cone programs (SOCP) in parallel. We show that our method is able
to obtain robust deformation models in different scenarios with modest computational costs
by several experiments.
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Tracking points Feature points

Figure 6.3: Illustration of tracking points and feature points.

6.3 Structure preserved registration

In order to track the shape of the cable, we select a finite number of virtual tracking points
along the cable to represent the state of the cable. In Fig. 6.3, the blue dots represent the
tracking points, which we select to track the shape of the cable, and the red circles are the
feature points, which we use to solve the deformation model in the later section. Usually,
feature points are a subset of tracking points. Because of the sparsity of feature points, we
can assume that the position of every feature point is uncorrelated with other feature points.

The proposed CPD-based framework in Chapter 4 can reliably track and estimate the
state of deformable objects, the estimation performance is poor especially when a part of
the point cloud is missing, for example when occlusion happens during perception, which is
very common in robot manipulation. The major problem is that there are no constraints on
the positions of Gaussian centroids between different time steps. In reality, the cable cannot
move arbitrarily and its deformation must follow some topological constraints. Globally those
registered Gaussian centroids must form a smooth curvature, and locally those Gaussian
centroids should maintain a certain distance from their neighborhood.

To deal with this problem, we introduce both global and local structure regularization
to (4.9) in GMM registration.

Q̃ = Q(xtn, σ
2)− τ

2
ELocal −

λ

2
EGlobal (6.1)
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where τ ∈ R+ and λ ∈ R+ are trade-off weights that balance the regularization on the local
and global structure. ELocal and EGlobal are regularization terms that will be explained in
the following.

For local structure, any point at time step t− 1 can be characterized as a weighted sum
of its neighbor points. That is xt−1

n =
∑

i∈In Sni · x
t−1
i , where Sni is the weight matrix and

In is the set for K nearest points to xt−1
n . When the cable deforms to another shape at

time step t, the position of tracking points might change, but their relative local structure
is expected to be maintained, which means at time step t, xtn ≈

∑
i∈In Sni · x

t
i. The local

structure weights Sni can be obtained by solving a least squares problem. There could be
many sub-optimal weights due to the singularity of the matrix when solving least squares,
so we integrate all L sub-optimal weights to characterize the local structure. More details
can be found in [93].

ELocal =
N∑
n=1

L∑
l=1

||
N∑
i=1

S
(l)
ni x

t
i||2 (6.2)

The global structure should also be preserved during registration. Since cable in the real
world cannot move arbitrarily, the registered tracking points should also follow a smooth
trajectory in neighboring time steps. In order to preserve the global structure, we regularize
the coherent movement xtn = v(xt−1

n ). v : RD → RD is a transformation function which

should be as smooth as possible. The smoothness can be evaluated by
∫
RD

|V (s)|2
G(s)

, where

V (s) is the Fourier transform of v and G(s) is a low-pass filter.

EGlobal =

∫
RD

|V (s)|2

G(s)
ds (6.3)

Substituting (6.2) and (6.3) into (6.1) we obtain the modified likelihood function Q̃.

Q̃ = Q(xtn, σ
2)− τ

2

N∑
n=1

L∑
l=1

||
N∑
i=1

S
(l)
ni x

t
i||2 −

λ

2

∫
RD

|V (s)|2

G(s)
ds (6.4)

Though the global and local structure regularization can be formulated in other different
ways, the reason for the above regularization is to obtain a closed-form solution for it. This
is crucial if we want to solve the problem in real time. More details about SPR and the
proof of the existence of closed-form solution can be found in [93].

6.4 Local Linear Deformation Model

Deformation Model

To approximate the deformation model, we uniformly select several feature points along the
cable, which are a subset of the tracking points (Fig. 6.3).
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By holding two tips of the cable, the end-effectors of the robots are assumed to be fixed
with cable tips. We can build a deformation model for describing the interaction between
the end-effectors and the cable. Assuming that there are Nf selected feature points on the
cable and the degrees of freedom for each point is D. The state of the cable is denoted as
c = [c1, c2, ..., cNf

]T ∈ RNf×D, where ci = [ci1, ci2, ..., ciD] ∈ R1×D, cij denotes the coordinate
of the i-th point in the j-th direction, for example in 2D space, c5,2 denotes the second
direction of the 5-th selected point. Assume that there are L manipulators and each end-
effector has K degrees of freedom. The motion of the robots end-effectors is denoted as
r = [r11, r12, ..., r1K , ..., rLK ] ∈ RL×K . The local linear model we used is expressed in (6.5)
[66]. As shown in (6.5) the desired local linear model is δc

δr
, and each row of δc

δr
is decoupled

with each other, therefore we can make use of parallel computation to find linear model δci
δr

for each direction simultaneously, which can greatly improve the efficiency.

δc(t) =

 δc1(t)
...

δcNf
(t)

 =
δc

δr
(t)δr(t) =


δc1
δr
(t)
...

δcNf

δr
(t)

 δr(t)
= A(t)δr(t)

(6.5)

Local Linear Model

The time-varying deformation model is difficult to obtain due to its high dimensions, non-
linear behaviors, and configuration-dependent properties. Actually, it is unnecessary to find
a global deformation model that is suitable for every possible cable configuration. If the
displacement of the robot’s end-effectors is small enough, the local deformation model can
be approximated with linear functions.

The local linear deformation model is expressed in (6.5), where A(t) ∈ RNf×LK is a time-
varying Jacobian Matrix, which represents the relation between the movement of the robots
and the movement of the feature points. Remember that our goal is to plan the trajectory for
the robot’s end-effectors to manipulate the deformable cable to a desired shape. To achieve
this, we try to find the motion of the robots δr(t) given the desired displacement of the cable
δc(t). For convenience, instead of calculating the Jacobian matrix A(t), we directly find the
pseudo-inverse of the Jacobian matrix G(t) = A†(t). Since A(t) ∈ RNf×LK , in practice, the
number of feature points on the cable is always larger than the DOF of robots end-effectors
Nf >> LK. Therefore, we can guarantee that G(t) exists.

To estimate G(t), we denote the current time as tm. Using a constant sampling period
δt, within the time period (m− 1)δt, we collect m consecutive data of δci and δri while the
robot is moving:

δC(tm) =
[
δc(t1) δc(t2) . . . δc(tm)

]
∈ RNf×m

δR(tm) =
[
δr(t1) δr(t2) . . . δr(tm)

]
∈ RLK×m
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The local linear model can be found by solving (6.6), which can be decomposed to a sum of
several least squares. GT

n (t) represents the n-th column of the matrix GT (t), and similarly
δRT

n (t) represents the n-th column of δRT
n (t).

G(t)∗ = argmin
G(t)

∥δCT (t)GT (t)− δRT (t)∥2F

=
LK∑
n=1

argmin
Gn(t)

∥δCT (t)GT
n (t)− δRT

n (t)∥22
(6.6)

In the next subsection, we will introduce how to improve the robustness of the local
model approximation by using robust optimization.

Robust weighted least squares

The displacement of the robot’s end-effectors δR(t) can be calculated accurately using the
robotic forward kinematics. However, δC(t) is an estimation with lots of uncertainties from
visual tracking. If uncertainties are not considered, we may fail to recover a suitable local
deformation model. Uncertainty in δC(t) can be approximated by Gaussian distribution, so
we are able to bound it inside a certain area given a confidence probability.

In SPR, we regard the tracking points in the last time step as Gaussian centroids and
each point in the new point cloud as a sample from the Gaussian mixture model. The
objective is to maximize the log-likelihood of the point cloud sampled from the GMM. Thus
it is reasonable to regard the variance of each Gaussian as the uncertainty of this movement.
Taking the i-th point as an example, µ(ci(t)) is the mean of the i-th point at time step t,
and σt is the uncertainty from time step t− 1 to t. Besides, we assume that each Gaussian
has an equal membership probability 1/N and a consistent isotropic covariance σ2I in SPR
registration. So all the selected tracking points on the cable have the same variance σt at
time step t, and all the feature points are uncorrelated.

δCT (t) = µ(δCT (t)) + ∆ (6.7)

(6.7) shows the uncertainty in the matrix δCT (t) for robust optimization, where ∆ de-
scribes the uncertainty. From the above analysis, the j − th column of the matrix ∆ can be
regarded as a sample from a Gaussian Distribution N(0,Σ), where Σ = diag(σ2

1, σ
2
2, ..., σ

2
m).

We rewrite (6.6) in the form of robust optimization in (6.8),

LK∑
n=1

min
Gn(t)

max
∥∆∥2≤s

∥W [(µ(δCT (t)) + ∆)GT
n (t)− δRT

n (t)]∥22 (6.8)

where s is the upper bound or equivalently the largest singular value of ∆, and W =
diag(w1, w2, ..., wm) is a weight matrix for the data from different time steps.

When solving the robust optimization problem (6.8), a tight bound s is preferred. Each
column of ∆ can be regarded as a random sample from the Gaussian distribution, and
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there are some existing works in statistics to bound the largest singular value with a desired
probability.

Theorem 2. Let ∆ ∈ Rm×n be drawn according to the Σ-Gaussian ensemble. Then for all
δ > 0, the maximum singular value σmax(∆) satisfies the upper deviation inequality,

P[
σmax(∆)√

n
≤ γmax(

√
Σ)(1 + δ) +

√
trace(Σ)

n
] ≥ 1− e−nδ2/2

where γmax(
√
Σ) denotes the largest eigenvalue of

√
Σ.

Theorem 2 provides a theoretically tight bound of the random matrix ∆ which is proved
in Chapter 6 of [101]. Using this theorem, we can find an upper bound of the largest singular
value of uncertainty matrix ∆ given a desired probability.

Theorem 3. Any robust least squares in the form:

min
x∈Rn

max
∥∆∥2≤s

∥(A+∆)x− b∥2

is equivalent to a SOCP problem:

min
x∈Rn

∥Ax− b∥2 + s∥x∥2

Proof. For fixed x, and using the fact that the Euclidean norm is convex, we have

∥(A+∆)x− b∥2 ≤ ∥Ax− b∥2 + ∥∆x∥2

By the definition of the largest singular value norm, and given our bound on the size of the
uncertainty, we have

∥∆x∥2 ≤ ∥∆∥2∥x∥2 ≤ s∥x∥2
Thus, we have a bound on the objective value of the robust least squares problem:

max
∥∆∥2≤s

∥(A+∆)x− b∥2 ≤ ∥Ax− b∥2 + s∥x∥2

The upper bound is actually attained by

∆ =
s

∥Ax− b∥2∥x∥2
(Ax− b)xT

Therefore, the robust weighted least squares (RWLS) in (6.8) can be written in the form
of a summation over several SOCPs as shown in (6.9). For each SOCP, we find one column
of the model matrix GT (t). The columns of GT (t) do not depend on each other, which means
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that we can make use of parallel computation to solve each SOCP and greatly increase the
efficiency of the solution process.

LK∑
n=1

min
Gn(t)

∥Wµ(δCT (t))GT
n (t)−WδRT

n (t)∥2 + s∥WGT
n (t)∥2 (6.9)

If the matrix G(t) is obtained, it means that the local model at time step t is approxi-
mated. Given the desired movement of the cable, we are able to obtain the trajectory of the
robot’s end-effectors.

6.5 Framework Details

Algorithm Overview

Combining the above SPR estimation with RWLS for solving the local deformation model,
we propose our method ’SPR-RWLS’ to manipulate soft cables to desired shapes. SPR is
utilized to estimate the cable state in real time. Robust weighted least squares (RWLS) are
used to obtain a robust local deformation model considering tracking uncertainties. The
proposed method is summarized in Algorithm 3.

Algorithm 3: SPR-RWLS

1 Initialize cable, and record desired cable shape;
2 Using SPR to get initial and desired tracking points along the cable;
3 Downsample tracking points with a fixed index to get feature points;
4 Initialize data set D(δR, δC) by randomly executing robot δR and collecting

corresponding movement of cable δC for m0 times;
5 while diff(ccurrent, cdesired) > ϵ do
6 Compute weight matrix W ;
7 Solve Robust Weighted Optimization for local deformation Jacobian Matrix G(t);
8 Compute δr = λG(t)δCdesired;
9 Execute δr, collect new δc by SPR;

10 Append δr and δc to dataset D;

11 end

Cable Tracking

We select Ntracking tracking points uniformly distributed along the initial point cloud. At
time step t, the tracking points are denoted as X t = {xt1, xt2, ..., xtNtracking

}, where xtn ∈
R2. At the next time step t + 1, the cable deforms to a new shape, and its point cloud
Y t+1 = {yt+1

1 , yt+1
2 , ..., yt+1

M } ∈ R2 is captured by the camera. By applying SPR registration
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as described in Section III, the node positions Xk can be smoothly registered towards the
point cloud Y t+1, and we can get the new estimation of tracking point positions X t+1, and
the variance σt+1 of this step.

As shown in Fig. 4.4, running the above procedure iteratively, we can obtain the estimated
position of each tracking point in real-time.

Deformation Approximation

We select Nfeature feature points from the tracking points just as Fig. 6.3 shows. Also, at
time step t, the movement of each feature point δc(t) = c(t) − c(t − 1), and the tracking
uncertainties of this step σk can be obtained from SPR registration. The movement of the
robot’s end-effectors δr can also be calculated by forward kinematics. Then we append these
new data δc(t), δr(t), and σt to data set δC(t), δR(t), and Σ(t) respectively. Before we
calculate the deformation model, we assign weights to different (δr, δc) pairs in the data set.
We rank the data pairs in the data set based on their mean squared errors to the current cable
shape. A discount factor γ is used to assign weights to different data pairs. The discount
factor is a tuning parameter and we use 0.95 in our experiments. Besides, the bound of the
uncertainties can be efficiently calculated by a given confidence probability. In practice, we
set the confidence probability larger than 99%. Finally, the local deformation model G(t)
can be solved by the robust optimization problem (6.9).

By running this algorithm iteratively, we are able to get an approximation of the defor-
mation model in real time.

Trajectory Planning

After the deformation model G(t) is obtained at time step t, we first need to compute
the desired movement of the cable δcdesired(t) in order to get the motion of the robots.
For the scenarios in which the desired shape is far away from the initial shape, several
intermediate desired shapes cintermediate are preferred to be generated and reached in sequence.
In order to achieve such δC, the desired movement of end-effectors is computed using δr(t) =
λG(t)δcdesired(t), where λ is a gain we need to tune. In order to make the cable move at a
low speed without vibration and make sure the deformation model is locally accurate, the
gain λ is chosen to be small. In our experiment, λ is set to 0.1.

6.6 Experiments and Results

We conducted several experiments on two FANUC LR-Mate 200iD robots to show that
SPR-RWLS is efficient and robust in the presence of outliers and occlusions for robotic cable
manipulation.
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Figure 6.4: The testbed setup

Cable Tracking

As shown in Fig.6.4, an IDS Ensenso N35 stereo camera was utilized to monitor the envi-
ronment. The captured point cloud was sent to a Windows 10 desktop (Intel i7@3.60 GHz
+ RAM 8GB), which ran SPR registration algorithms in real-time in MATLAB. Using a
color filter, the point cloud of the cable was extracted from the red background. Since the
cable was manipulated in a two-dimensional plane, the 3D point cloud was projected to the
2D plane. Given the initial point cloud of a straight cable, we manually selected 55 tracking
points uniformly distributed along the cable. When the cable deformed to a different shape
in the next step, we registered the newest point cloud to the point cloud from the last time
step using SPR. Then the corresponding 55 tracking points which represent the current cable
state were obtained.

Tracking results show that SPR cable tracking module is able to robustly track the
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(a) RGB Image (b) Object Tracking

Outliers
Occlusion

Figure 6.5: SPR cable tracking in the presence of outliers and occlusions. In (b), blue dots
represent the perceived point cloud; yellow dots represent the target shape; red squares
represent the desired feature points; and green squares represent current feature points.

movement of the cable in real-time. SPR outperforms Fourier-Based estimation when the
point cloud is contaminated by outliers, noise, and occlusions. When manually adding white
noise to the point cloud and removing 20% of the point cloud from the middle part to
simulate occlusions (Fig. 6.2), Fourier-Based estimation fails tracking the cable, while SPR
is still able to provide a robust estimation of the cable position as well as estimation of the
uncertainties. Fig.6.5 shows SPR tracking performance in the presence of occlusions and
outliers due to objects of similar colors to the cable appearing in the workspace.

Cable Manipulation

To evaluate the performance of the proposed framework, we conducted experiments to ma-
nipulate cables of different thicknesses under different scenarios. The goal is to manipulate
the cable from straight lines to given desired shapes.

The robot’s end-effectors are parallel grippers that can open and close. When closing,
the gripper can clamp the cable firmly without any slipping. Since the experiment is con-
ducted on a 2D plane, each end-effector has 3 degrees of freedom including two orthogonal
displacements on the horizontal plane and one rotation along the axis that is perpendicular
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Figure 6.6: Mean Squared Error vs Timesteps. (a) shows the results of manipulation of a
cable to different curvatures, which are shown in Fig. 6.7, and (b) compares SPR-RWLS
with Fourier-LS in different scenarios, which are introduced in Section VI.B

to the horizontal plane. For the model approximation, ECOS [18], an efficient SOCP solver,
was utilized to solve the problem (6.9).

Given the positions and variances of 55 estimated tracking points from SPR, we select
19 feature points from the tracking points to estimate the deformation model. Each feature
point has two degrees of freedom in the 2D plane. Using Algorithm 3 introduced in section
V, several experiments are conducted to test the proposed framework. We use the mean
squared distance errors of 55 tracking points between the cable and the desired shape to
evaluate the manipulation performance.

A sequence of snapshots is shown in Fig.6.7. The cable was successfully manipulated
from a straight line to given desired curvatures. For a simple desired shapes (Fig.6.7 (a),
(b)), the manipulated cable overlaps with the desired shape perfectly with the mean squared
error (MSE) smaller than 0.08 cm2. For complicated desired shapes with more curvatures
(Fig.6.7 (c)), the MSE is about 1.5 cm2. Fig. 6.6 (a) shows that the MSE converges over
time steps.

The performance of the algorithm with different cables is analyzed in Table 6.1. We
conducted experiments with two cables of different diameters. One Ethernet cable has a
diameter of 4.04mm, and the other cable has a diameter of 8.10mm. We manipulated both
cables to the same simple desired shape (curvature 1 in Fig. 6.7) 10 times. Both experiments
have very high success rates. The thinner cable has a slightly higher MSE. It is reasonable
because the thinner cable is more likely to deform, which makes the deformation model not
accurate.

We also performed several experiments to show that SPR-RWLS is able to perform
robustly in the presence of outliers and occlusions. As shown in Table 6.2, we conducted
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(a) Curvature 1

(b) Curvature 2

(c) Curvature 3

Figure 6.7: Snapshots of the cable manipulation experiments. Two robot arms were collab-
orating to manipulate a cable to desired shapes, which are shown by the yellow lines. (a),
(b), and (c) show three different curvatures.

Table 6.1: Experiments with different cables

Cable diameters Success rate Mean squared error (cm2)
4.04mm 9/10 0.242± 0.079
8.10mm 10/10 0.051± 0.014

experiments to manipulate the blue Ethernet cable to curvature 1 in 4 different scenarios.
In the first scenario where there are no outliers and occlusions, both Fourier-LS and SPR-
RWLS performed very well. Uncertainty scenarios 1,2 and 3 are the scenarios in the presence
of noise, outliers, and occlusions. In uncertainty scenario 1, we manually occluded 20% of
the point cloud and added 5% white noise with σ = 10%δc. In uncertainty scenario 2, we
occluded 25% point cloud and added 10% white noise with σ = 15%δc. Uncertainty scenario
3 is shown in Fig.6.5, where objects of color similar to the Ethernet cable are placed on the
table and part of the Ethernet is occluded by other objects. In Table 6.2, we can clearly
see that SPR-RWLS outperforms Fourier-LS [121] in the presence of noise, outliers, and
occlusions.
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Table 6.2: Comparison of mean squared error of our robust method and Fourier-LS Method

Feature Fouriers-LS SPR-RWLS
No outliers and occlusions 0.045± 0.026cm2 0.051± 0.014cm2

Uncertainty scenario 1 14.712± 1.5832cm2 0.411± 0.093cm2

Uncertainty scenario 2 23.45± 1.259cm2 0.629± 0.1623cm2

Uncertainty scenario 3 fail 2.503± 0.438cm2

6.7 Chapter Summary

This chapter introduces a novel framework, SPR-RWLS, specifically designed for cable ma-
nipulation under massive sensor noises and occlusions. For the real-time tracking aspect, we
employ the Structure Preserved Registration (SPR) method that demonstrates robust per-
formance in tracking deformable cables, even under challenges such as sensor noise, outliers,
and occlusions. On the other hand, for the deformation model approximation, we utilize
an approach where the local deformation model of the cable is dynamically approximated
online. This is achieved through solving a robust optimization problem in parallel, effectively
handling uncertainties that may arise during manipulation.

The experiments conducted under this framework have proven the efficacy of the SPR-
RWLS method. The results highlight the framework’s capability to accurately manipulate
deformable cables into desired shapes and configurations. This successful manipulation is
achieved consistently despite the presence of environmental challenges and uncertainties,
showcasing the robustness and reliability of the proposed method in practical applications.
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Part III

Real-time Control Policy Adaptation
for Contact-Rich Manipulation Tasks
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Chapter 7

Efficient Control Policy Adaptation
with Online Admittance Residual
Learning

The previous two parts of the dissertation focus on two important aspects of online ma-
nipulation: planning and model learning. This chapter turns its focus to another crucial
aspect of reliable online manipulation: robotic control. The ability of robots to interact with
a range of environments using appropriate force is important for successful task execution.
This chapter is dedicated to presenting algorithms designed to enhance real-time control
adaptability in robotic systems through online optimization techniques. In this chapter, we
will introduce a hybrid offline-online framework to learn robust manipulation skills. We em-
ploy model-free reinforcement learning for the offline phase to obtain the robot motion and
compliance control parameters in simulation. Subsequently, in the online phase, we learn
the residual of the compliance control parameters to maximize robot performance-related
criteria with force sensor measurements in real time. The effectiveness and robustness of
our approach will be demonstrated through a series of real-world experiments. Videos are
available at https://sites.google.com/view/admitlearn.

7.1 Introduction

Contact-rich manipulation is common in a wide range of robotic applications, including
assembly [27, 116, 98, 52, 29, 108, 107, 85], object pivoting [119, 115, 86], grasping [53], and
pushing [89, 24]. To accomplish these tasks, robots need to learn both the manipulation
trajectory and the force control parameters. The manipulation trajectory guides the robot
toward completing the task while physically engaging with the environment, whereas the
force control parameters regulate the contact force. Incorrect control parameters can lead
to oscillations and excessive contact forces that may damage the robot or the environment.

Past works have tackled the contact-rich skill-learning problem in different ways. First,

https://sites.google.com/view/admitlearn
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Figure 7.1: As shown in (a), we propose a robust contact-rich manipulation skill learning
framework that offline learns the robot motion and compliance control parameters in the
simulation and online adapts to the real world. The structure of the admittance controller
is depicted in (b). Our framework demonstrates robustness in sim-to-real transfer and gen-
eralizability to diverse real-world tasks in (c)

the majority of previous works [116, 115, 108, 107, 98, 64, 119] focus on learning the manip-
ulation trajectories and rely on human experts to manually tune force control parameters.
While this simplification has demonstrated remarkable performance in many applications,
letting human labor tune control parameters is still inconvenient. Furthermore, the tuned
parameter for one task may not generalize well to other task settings with different kinematic
or dynamic properties. For example, assembly tasks with different clearances will require
different control parameters. Another line of work deals with this problem by jointly learn-
ing the robot’s motion and force control parameters [72, 1, 117, 10, 78, 4, 52, 54, 85]. Such
learning processes can be conducted in both real-world and simulation. However, learning
such skills on real robots is time-consuming and may damage the robot or environment.
Learning in simulation is efficient and safe, however, the learned control parameters may
be difficult to transfer to real robots due to the sim-to-real gap, and directly deploying the
learned control parameters may cause damage to the robot.

In this chapter, we focus on transferring robotic manipulation skills. We notice that the
manipulation trajectory is more related to the kinematic properties, such as size and shape,
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which have a smaller sim-to-real gap and can be transferred directly, as demonstrated by
previous works [119, 116, 115, 98]. However, simulating the contact dynamics proves to be
challenging, primarily due to its sensitivity to various parameters, including surface stiffness
and friction [71]. This sensitivity will result in a large sim-to-real gap and affects the learned
compliance control parameters.

Inspired by the above analysis, we propose a framework to learn robot manipulation skills
that can transfer to the real world. As depicted in Fig. 7.1(a), the framework contains two
phases: skill learning in simulation and admittance adaptation on the real robot. We use
model-free RL [23, 83] to learn the robot’s motion with domain randomization to enhance
the robustness for direct transfer. The compliance control parameters are learned at the
same time and serve as an initialization to online admittance learning. During online execu-
tion, we iteratively learn the residual of the admittance control parameters by optimizing the
future robot trajectory smoothness and task completion criterion. We conduct real-world
experiments on three typical contact-rich manipulation tasks: assembly, pivoting, and screw-
ing. Our proposed framework achieves efficient transfer from simulation to the real world.
Furthermore, it shows excellent generalization ability in tasks with different kinematic or
dynamic properties, as shown in Fig. 7.1(c). Comparison and ablation studies are provided
to demonstrate the effectiveness of the framework.

7.2 Related Works

Sim-to-real Transfer in Robot Contact-Rich Manipulation

Contact-rich manipulation tasks involve the interaction between robots and the environ-
ment through physical contact. In recent years, there has been a growing trend in utilizing
simulation environments such as MuJoCo [97], Bullet [17], and IsaacGym [64] to learn and
train robots for these tasks. These simulation environments offer advantages in terms of
safety, scalability, and cost-effectiveness. Nevertheless, the sim-to-real gap remains a signifi-
cant challenge.To address the gap, various approaches have been explored, including system
identification, transfer learning, domain randomization, and online adaptation. System iden-
tification approaches [51, 47] involve the calibration of simulation parameters to improve ac-
curacy and align the simulation with real-world dynamics. Transfer learning methods [14, 4]
aim to fine-tune skills learned in simulation for application in real-world scenarios. Domain
randomization techniques [115, 119, 4, 11] are employed to create diverse environments with
varying properties, enabling the learning of robust skills for better generalization. Instead of
collecting large datasets in the real world, online adaptation methods [104, 111, 28, 13, 91,
38] utilize real sensor measurements to optimize a residual policy/model or directly update
the policy network in real-time. Tang et al. [92] further improve the sim-to-real transfer
performance by combining the above techniques with a modified objective function design
for insertion tasks.
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Learning Variable Impedance/Admittance Control

Compliance control [69], such as impedance and admittance control, enables robots to behave
as a mass-spring-damping system. Tuning the compliance control parameters is crucial for
stabilizing the robot and accomplishing manipulation tasks. However, manual tuning can
be time-consuming. To address this issue, learning-based approaches have been applied to
automatically learn the control parameters. Previous methods have focused on learning
compliance control parameters either from expert demonstrations [72, 1, 117] or through
reinforcement learning (RL) [10, 78, 4, 52, 54, 35] to acquire gain-changing policies. [1, 52,
72, 10, 4] propose to directly collect data in the real world. However, it is time-consuming
to collect the data. Authors in [117, 54] have demonstrated success in directly transferring
the learned control parameters from the simulation to the real world. Nevertheless, their
applications are limited to simple tasks, such as waypoint tracking and whiteboard wiping.

7.3 Proposed Approach

We focus on learning robust contact-rich manipulation skills that can achieve efficient sim-
to-real transfer. We define the skill as π(xd, P |s), which generates both the robot’s desired
trajectory xd and the compliance control parameters P given the current state s.

We use Cartesian space admittance control as the compliance controller. As shown in
Fig. 7.1(b), the admittance control takes in the desired trajectory [xd, ẋd, ẍd] ∈ R18, and
the external force/torque Fext ∈ R6 measured on the robot end-effector and outputs the
compliance trajectory [xc, ẋc, ẍc] ∈ R18 to the position/velocity controller according to the
mass-spring-damping dynamics [69]:

M(ẍc − ẍd) +D(ẋc − ẋd) +K(xc − xd) = Fext (7.1)

where M,K,D are the robot inertia, stiffness, and damping matrices, respectively. We
assumeM,K,D is diagonal for simplicity and P = {M,K,D} as the collection of all control
parameters.

To achieve this goal, We propose an offline-online framework for learning contact-rich
manipulation skills as depicted in Fig. 7.1(a). In the offline phase, we employ the model-free
RL with domain randomization to learn the robot motion and the initial guess of compliance
control parameters from the simulation (Section 7.3). In the online phase, we execute the
offline-learned motions on the real robot and learn the residual compliance control parameters
by optimizing the future robot trajectory smoothness and task completion criteria(Section
7.3).

Learning offline contact-rich manipulation skills

We utilize model-free RL to learn contact-rich manipulation skills in MuJoCo simulation [97].
The problem is modeled as a Markov decision process {S,A,R, P, γ} where S is the state
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space, A is the action space, R is a reward function, P denotes the state-transition proba-
bility, and γ is the discount factor. For each timestep t, the agent is at the state st ∈ S,
executes an action at ∈ A, and receives a scalar reward rt. The next state is computed by
the transition probability p(st+1|st, at). Our goal is to learn a policy π(a|s) that maximizes
the expected future return E [

∑
t γ

trt].
Specifically, we focus on learning robot skills for three contact-rich tasks: assembly,

pivoting, and screwing. In these tasks, the robot needs to utilize the contact to either align
the peg and hole or continuously push and pivot the object, which makes them suitable
testbeds for our proposed framework. The detailed task setups can be found below:

Assembly Task: The goal is to align the peg with the hole and then insert it.
State space: The state space s ∈ R18 contains peg pose sp ∈ R6 (position and Euler

angles) relative to the hole, peg velocity vp ∈ R6, and the external force measured on the
robot wrist Fext ∈ R6.

Action space: The action a ∈ R12 consists of the end-effector velocity command vd ∈ R6

and the diagonal elements of the stiffness matrix k ∈ R6. To simplify the training, the robot
inertia M is fixed to diag(1, 1, 1, 0.1, 0.1, 0.1), and the damping matrix D = diag(d1, · · · , d6)
is computed according to the critical damping condition di = 2

√
miki, i = {1, 2, 3, 4, 5, 6}.

Reward function: The reward function is defined as r(s) = 10(1−∥spos−sdpos∥2), where spos ∈
R3 is the peg position and sdpos ∈ R3 is the nominal hole location. The exponential function
encourages successful insertion by providing a high reward.

Pivoting Task: The goal is to gradually push the object to a stand-up pose against the
wall.

State space: The state s ∈ R12 consists of the robot pose sp ∈ R6 and the external force
Fext ∈ R6.

Action space: For simplicity, we consider a 2d pivoting problem: the robot can only
move in the X,Z direction. The robot action a ∈ R4 contains the velocity command in X,Z
direction and the corresponding stiffness parameter.

Reward function: We use the rotational distance between the goal orientation Rgoal and
current object orientation R as the cost and define the reward function as r = π

2
−d, with d =

arccos
(
0.5(Tr(RgoalRT )− 1)

)
, which computes the distance of two rotation matrices between

R and Rgoal. The constant term π
2
simply shifts the initial reward to 0. This reward

encourages the robot to push the object to the stand-up orientation.
In both the assembly and pivoting tasks, we introduced Gaussian noise with a mean of

zero and a standard deviation of 0.2 N to the FT sensor readings as measurement noise.
Additionally, we applied a clipping operation to the collected contact force, limiting it to the
range of ±10 N for regulation purposes. To enhance the robustness of the learned skills, we
incorporated randomization into the robot’s initial pose.

For the assembly task, the robot’s initial pose was uniformly sampled from a range of
[±30mm,±30mm, 30±5mm] along the X, Y , and Z axes, respectively. As for the pivoting
task, the range for the initial pose was set to [150± 30 mm, 5± 5 mm] along the X and Z
axes relative to the rigid wall.



CHAPTER 7. EFFICIENT CONTROL POLICY ADAPTATION WITH ONLINE
ADMITTANCE RESIDUAL LEARNING 101

RL Training Details

We use the Soft Actor-Critic [23] with implementation in RLkit [75] to learn robot manipu-
lation skills in simulation. The hyperparameter selections are summarized in Table. 7.1.

Hyperparameters Assembly Pivoting
Learning rate - Policy 1e-3 1e-4

Learning rate - Q function 1e-4 3e-4
Networks [128,128] MLP [128,128] MLP
Batch size 4096 4096

Soft target update (τ) 5e-3 5e-3
Discount factor (γ) 0.95 0.9
Replay buffer size 1e6 1e6
max path length 20 40

eval steps per epoch 100 400
expl steps per epoch 500 2000

Table 7.1: Hyperparameters for RL training

Online Optimization-Based Admittance Learning

We have learned a policy that can perform contact-rich manipulation tasks in simulation.
However, the sim-to-real gap may prevent us from directly transferring the learned skills
to the real world. Our goal is to adapt the offline learned skills, especially the admittance
control parameters, with online data in real time. Instead of retraining skills with real-world
data, we propose locally updating the control parameters using the latest contact force
measurements during online execution. We formulate online learning as an optimization
problem that optimizes the residual control parameters to achieve smooth trajectory and
task completion criteria while respecting the interaction dynamics between the robot and
the environment. We will describe the optimization constraints, objective function, and
overall online learning algorithm in Section 7.3, 7.3, and 7.3, respectively.

Optimization Constraints

Robot dynamics constraint: Admittance control enables robot to behave as a mass-
spring-damping system as shown in Eq. 7.1. We consider the robot state x = [e, ė], where
e = xc − xd, and we can obtain the robot dynamics constraint in the state space form:

ẋ =

[
ė
ë

]
= f(x, Fext, u) =

[
ė

−M−1Dė−M−1Ke+M−1Fext

]
(7.2)
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where the optimization variable u = [m−1
1 , . . . ,m−1

6 , k′1, . . . , k
′
6, d

′
1, . . . , d

′
6]
T is the diagonal

elements of M−1, K ′ = M−1K, D′ = M−1D. e, ė are the robot states that can be di-
rectly accessed, and Fext is the external force that should be modeled from the environment
dynamics.

Contact force estimation: Modeling the contact force explicitly is difficult because
the contact point and mode can change dramatically during manipulation. Therefore, we
propose to estimate the contact force online using the force/torque sensor measurements. In
our experiments, we utilize a simple but effective record & replay strategy, where we record
a sequence of force information {F 0

ext, . . . , F
T
ext} within a time window [0, T ] and replay them

during the optimization.
There are other approaches for force estimation, such as using analytical contact mod-

els [20, 118] or numerically learning the contact force by model fitting.
To estimate or approximate the contact force in real time, we compare four approaches:

• record & replay : We record the force/torque from the most recent measurements within
a time window and directly use the pre-recorded data as Fext in the optimization.

• hybrid impulse dynamics : We use Eq. 7.2 with Fext = 0 when there is no contact. For
the contact, we model it implicitly as Mẋ− = γMẋ+, where ẋ− and ẋ+ are the robot
end-effector velocities before and after the contact. By online fitting the γ, we can
optimize these hybrid dynamics to calculate the optimal parameters.

• analytical contact model with online parameter fitting : We model the contact explicitly
using analytical models and fit the necessary parameters using online data, following
[20, 118].

• contact force fitting : We fit a contact force model using online force sensor measure-
ments.

However, the hybrid impulse dynamics approach is not suitable for our requirements. As
shown in Fig. 7.2, the contact force profile in contact-rich manipulation indicates that the
robot maintains contact with the environment most of the time. Therefore, neglecting the
entire contact process and modeling it implicitly is not appropriate for our applications.

Similarly, analytical contact model with online parameter fitting does not fit our scenarios
either. Although it has been successful in some pivoting tasks, it relies on the quasi-static
assumption that does not hold in our scenario. One of the main challenges of transferring
the admittance parameters is to avoid the robot bouncing on the object. Moreover, the
analytical model assumes point or sliding contact modes, which may be hard to generalize
to different tasks, such as assembly.

Finally, for contact force fitting, we assume a linear (spring-damping) contact force model:
Fext = a(t)x(t) + b(t)ẋ(t) + c(t) within a short time window. We use the least square to
estimate the parameters a, b, and c in real-time. Fig. 7.2 shows an example of fitting results.
It can fit the force profile well in a short time window. However, as we need to apply the
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Figure 7.2: Performance of online force fitting (in z axis). In every time window, we collect
the force/torque measurements and use the least square to fit the force model Fext(x, ẋ) =
a(t)x(t) + b(t)ẋ(t) + c(t). On the left, it shows the linear model can fit the force profile
locally. However, it can be extremely challenging to generalize to the next time window, as
shown on the right.

model learned in the previous time window to the next step, the generalization ability is
poor as it is hard to capture the peak of the force profile. Experiment videos comparing the
performance of contact force fitting and record & replay are available on our website. We
can observe that the contact force fitting method cannot stabilize the robot during contact.

Stability constraint: To ensure stability for admittance control, we need the admit-
tance parameters to be positive-definite. Therefore, we constrain the optimization variable
u to be positive.

Objective Function Design

We want to optimize the admittance parameters to establish stable contact and successfully
achieve the task. Previous work [105] introduces the FITAVE objective

∫ T
0
t|ė(t)|dt to effec-

tively generate smooth and stable contact by regulating the robot’s future velocity error. In
addition, the ITAE objective

∫ +∞
0

t|e(t)|dt in [55] minimizes the position error to ensure the
robot tracking the desired trajectory and finishes the task. We combine those two functions
as our objective:

C(x) =

∫ T

0

t[w|e(t)|+ (1− w)|ė(t)|]dt (7.3)

where w ∈ R is a weight scalar to balance the trajectory smoothness and task completion
criterion.

Online admittance learning

The optimization formulation is shown in Eq. 7.4. We optimize the residual admittance
parameters δu, with uinit obtained from the offline learned skill.
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min
δu

C(x)

s.t. ẋ = f(x, Fext, uinit + δu)

Fext ← record & replay

uinit + δu > 0

(7.4)

We illustrate the online admittance learning procedures in Alg. 4. In the online phase, we
executed the skill learned offline on the real robot and recorded the contact force at each time
step. Every T seconds, the online optimization uses the recorded force measurements, the
current robot state and the admittance parameters learned offline to update the admittance
parameter residual. The process runs in a closed-loop manner to complete the desired task
robustly.

u = uinit + δu∗,M = diag{m1, · · · ,m6}, K =M · diag{k′1, · · · , k′6}, D =M · diag{d′1, · · · , d′6} (7.5)

Algorithm 4: Online Admittance Residual Learning

Require: uinit from the offline policy π(a|s), current robot state x
1: while task not terminated do
2: if every T seconds then
3: δu∗ ← admittance optimization in (7.4)
4: M,K,D ← Recover admittance parameters from (7.5)
5: end if
6: {Fext} ← record force sensor data
7: end while

7.4 Experiment Results

We conduct experiments on three contact-rich manipulation tasks, peg-in-hole assembly,
pivoting, and screwing, to evaluate: 1) the robustness of sim-to-real transfer and 2) the
generalizability of different task settings. We provide comparison results with two baselines
in the assembly and pivoting tasks: 1) Direct Transfer: directly sim-to-real transfer both
the learned robot trajectory and the control parameters [54], 2) Manual Tune: transfer
learned trajectory with manually tuned control parameters [116]. We consider three metrics
for evaluation: 1) success rate indicates the robustness of transfer, 2) completion time
for successful trials denotes the efficiency of the skills, and 3) max contact force shows
the safety. The screwing experiments further demonstrate the robustness of our method
for solving complex manipulation tasks. In addition, the effect of weight selection of the
proposed online optimization objective is discussed.
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Figure 7.3: (a) shows the snapshots of the learned policy in simulation.(b) demonstrates the
snapshots using the proposed approach for sim-to-real transfer. (c)(d) illustrate the forces
and control parameters profiles for both the learned and proposed approach in the real world.
The proposed approach can adjust the parameters to get the best performance in real time.

Skill Learning in Simulation

We use Soft Actor-Critic [23] to learn manipulation skills in simulation.1 During the evalua-
tion, the learned assembly and pivoting skills both achieved a 100% success rate. Fig. 7.3(a)
shows the snapshots of the learned assembly skills. The robot learns to search for the exact
hole location on the hole surface with a learned variable admittance policy and smoothly
inserts the peg into the hole. For the learned pivoting skill, the robot pushes the object
against the wall and gradually pivots it to the target pose with suitable frictional force.

Sim-to-Real Transfer

We evaluate the sim-to-real transfer performance on the same task. In the real world, the
task setup, such as the object and robot geometry, is identical to the simulation. We mainly
focus on evaluating the effect of the sim-to-real gap on robot/environment dynamics.

We first apply the offline learned skill to the real world. From the experiments, we notice
that the Direct Transfer baseline fails to produce safe and stable interactions. As depicted in
Fig 7.3(c), for peg-in-hole assembly tasks, the peg bounces on the hole surface and generates

1We also tested other RL algorithms like DDPG [46] and TD3 [23]. As a result, all the methods are able
to learn a policy and have similar performance when transferring to the real robot. Details can be found on
our website.
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large contact forces, making the assembly task almost impossible to complete. Similarly, in
the pivoting task, the robot cannot make stable contact with the object and provide enough
frictional force for pivoting.

Figure 7.4: Snapshots of baseline approaches for the sim-to-real experiment. The control
parameters learned in the simulation will result in a large contact force and make the robot
bounce on the surface, which will, in turn, result in failures of the tasks.

Then we examine whether the learned robot motion is valid with manually tuned control
parameters. As shown in Tab. 7.2, the Manual Tune baseline can achieve a 100% success
rate for both tasks. This supports our hypothesis and previous works that the manipulation
trajectory is directly transferable with suitable control parameters to address the sim-to-real
gap.

However, manual tuning requires extensive human labor. We want to evaluate whether
the proposed online admittance learning framework can perform similarly without any tun-
ing. Table 7.2 presents an overview of the sim-to-real transfer results. For all experiments,
the weight parameter w of the proposed approach was consistently set to 0.4. Notably, our
proposed method achieves a 100% success rate in the assembly task, along with a 90% suc-
cess rate in the pivoting task. Furthermore, it achieves these results while exhibiting shorter
completion times than the other two baselines.

We also investigate the contact force and the adjusted admittance parameters during
the manipulation, shown in Fig. 7.3(c)(d). Initially, the robot establishes contact with
the environment using the offline learned parameters, resulting in a large applied force.
In the subsequent update cycle, the proposed method effectively adjusts the parameters by
decreasingK and increasingD, enabling the robot to interact smoothly with the environment
and reduce the contact force. Later, it increases K and decreases D to suitable values to
finish the task more efficiently.

Generalization to Different Task Settings

The aforementioned experiments highlight the ability of the proposed framework to achieve
sim-to-real transfer within the same task setting. In this section, we aim to explore the
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Figure 7.5: Snapshots of directly using the learned policy to generalize to various task
settings. The snapshots and videos of the baseline methods are available on our website.

Figure 7.6: Snapshots of directly using learned trajectory and the manually tuned admittance
control parameters to generalize to various task settings. The snapshots and videos of the
baseline methods are available on our website.
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Assembly Task Pivoting Task
Succ. Rate Time (s) Max F (N) Succ. Rate Time (s) Max F (N)

Proposed 10/10 19.0± 11.2 23.6± 6.3 9/10 25.6± 2.1 20.1± 4.1
Manual 10/10 28.1± 8.6 10.3± 2.2 10/10 25.3± 3.6 9.2± 0.6
Direct 3/10 39.0± 12.8 63.7± 6.8 0/10 N/A 30.7± 4.6

Table 7.2: Success rate evaluation in real-world experiments.

Figure 7.7: Snapshots of using the proposed approach to generalize to various task settings.
The snapshots and videos of the baseline methods are available on our website.

generalization capabilities of the proposed approach across different task settings, which
may involve distinct kinematic and dynamic properties. For two baselines, we directly use
the manually tuned or learned control parameters of the training object for new tasks.

Triangle (gap = 1mm) Pentagon (gap = 1mm) Ethernet (gap = 0.17mm) Waterproof (gap = 0.21mm)
Succ. Rate Time (s) Succ. Rate Time (s) Succ. Rate Time (s) Succ. Rate Time (s)

Proposed 10/10 15.9± 6.2 10/10 20.1± 8.9 9/10 42.1± 13.7 9/10 37.8± 17.7
Manual 8/10 43.± 17.0 9/10 38.0± 18.0 1/10 78.0± 0.0 0/10 N/A
Direct 0/10 N/A 1/10 7.0± 0.0 0/10 N/A 0/10 N/A

Adapter [L=8.8 cm, w=69g] Eraser [L=12.2 cm, w=36g] Pocky Short [L=7.9 cm, w=76g] Pocky Long [L=14.8 cm, w=76g]
Succ. Rate Time (s) Succ. Rate Time (s) Succ. Rate Time (s) Succ. Rate Time (s)

Proposed 8/10 25.0± 4.8 9/10 28.4± 2.7 8/10 12.9± 1.7 7/10 31.8± 11.0
Manual 0/10 N/A 10/10 30.0± 1.0 1/10 19.0± 0.0 1/10 40.0± 0.0
Direct 0/10 N/A 0/10 N/A 0/10 N/A 0/10 N/A

Table 7.3: Generalization performance to different assembly tasks (Top) and pivoting tasks
(Below).
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Figure 7.8: Snapshots of the screwing task

Peg-in-hole assembly: We test various assembly tasks, including polygon-shaped peg-
holes such as triangles and pentagons, as well as real-world socket connectors like Ethernet
and waterproof connectors. These tasks are visualized in Fig. 7.1(c). The outcomes of our
experiments are outlined in Table 7.3. Our proposed method achieves 100% success rates
on the polygon shapes and a commendable 90% success rate on Ethernet and waterproof
connectors. Moreover, the completion time of the proposed method is much shorter than
other baselines. The Manual Tune baseline also achieves decent success rates on the polygon
shapes as it is similar to the scenario in that we tune the parameters. However, for the
socket connectors, due their tighter fit and irregular shapes, substantial force is required for
insertion (approximately 15N for Ethernet and 40N for waterproof connectors) and Manual
Tune baseline cannot accomplish these two tasks.

Pivoting: Similarly, we conduct a series of pivoting experiments on various objects, en-
compassing diverse geometries and weights as shown in Table 7.3. Remarkably, our proposed
approach exhibits robust generalization capabilities across all tasks, achieving a success rate
exceeding 70%. However, when relying solely on manually tuned parameters, the ability to
pivot an object is limited to the eraser that has a similar length to the trained object and is
the lightest object in the test set. As the object geometry and weight diverge significantly,
the manually tuned parameters often fail to establish stable contact with the object and
exert sufficient force to initiate successful pivoting.

Screwing:
We conducted experiments on a more challenging robot screwing task to further validate

our method as shown in Fig. 7.8. Its primary challenge is to precisely align the bolt with a nut
and then smoothly secure them together. To address this, we employed the assembly skills
previously learned for aligning the bolt and nut and then used a manually-designed rotation
primitive to complete the screwing. Throughout the process, online admittance learning



CHAPTER 7. EFFICIENT CONTROL POLICY ADAPTATION WITH ONLINE
ADMITTANCE RESIDUAL LEARNING 110

Figure 7.9: Ablation on the weight parameter. The left figure shows the completion time
and success rate with respect to different w, and the right figure shows the contact force.

continually optimizes the admittance controller. Impressively, our approach allowed the
robot to consistently and reliably align and secure the nut and bolt. We executed this task
five times, achieving a 100% success rate.

Ablation: Objective Weight Selection

In this subsection, we would like to study the effect of weight selection. We evaluated different
weight parameters on both the assembly and pivoting tasks. The results are depicted in
Figure 7.9. For the assembly task, all proposed method variations achieve a 100% success rate
except for w <= 0.2. Smaller weight parameters tend to prioritize trajectory smoothness,
which may not provide sufficient contact force for successful insertion. On the other hand,
in pivoting tasks, larger weight values led to a decrease in the success rate. This is because
larger weight values prioritize task completion, potentially leading to a failure in establishing
a stable initial contact for pivoting. These observations align with the objective design
motivation. Based on our findings, selecting the parameter 0.4 strikes a good balance between
both objectives and yields the best overall performance.

7.5 Chapter Summary

This chapter proposes a contact-rich skill-learning framework for sim-to-real transfer. It
consists of two main components: skill learning in simulation during the offline phase and
admittance learning on the real robot during online execution. These components work
together to enable the robot to acquire the necessary skills in simulation and optimize ad-
mittance control parameters for safe and stable interactions with the real-world environment.
We evaluate the performance of our framework in three contact-rich manipulation tasks: as-
sembly, pivoting, and screwing. Our approach achieves promising success rates in both tasks
and demonstrates great generalizability across various tasks.
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Chapter 8

Conclusions and Future Work

This dissertation has presented methodologies aimed at enabling robots to interact reliably
with their environment and objects in real time. Our focus was distributed across three key
aspects: robotic motion planning (Chapters 2 and 3), adaptive model learning (Chapters 4,
5, and 6), and online control policy adaptation (Chapter 7).

In Chapter 2, we introduced a novel trajectory optimization algorithm that effectively
breaks down complex, long-range trajectory planning problems into manageable segments.
These segments are processed in parallel, significantly boosting computational efficiency.
The resultant trajectories from each segment are then cohesively integrated into a single
path, maintained by a consensus constraint that ensures segment continuity. This innovative
approach allows for the distribution of computational complexity and the creation of high-
quality trajectories more efficiently. Future efforts could focus on optimizing the convergence
speed of the consensus optimization process to further enhance efficiency.

Chapter 3 proposed the Bilevel Path Optimization Formulation for Motion Planning
(BPOMP), a novel formulation that efficiently addresses potential collisions using sparse
waypoints. An innovative collision constraint, focusing on the closest position to obstacles
along the continuous path, was integrated. The problem was then formulated as a bilevel
optimization, and subsequently relaxed to canonical nonlinear programming (NLP). Com-
parative analyses with leading path optimization/sampling algorithms demonstrated that
BPOMP enhances the efficiency and success rates of optimization-based planners. Future
research might integrate sampling planners within this framework to generate initial paths
that circumvent local optima.

Chapter 4 detailed a uniform framework for manipulating deformable linear objects,
incorporating state estimation, task planning, and trajectory planning. Utilizing coherent
point drift (CPD), a robust real-time observer was developed to accurately estimate the
position of each node on a rope, even in noisy and occluded environments. A task planner was
then introduced to guide robotic actions during manipulation processes. Experimentation
on rope knotting tasks validated the effectiveness of these methods. The current work limits
to simple scenarios with minor sensor noise and occlusions. Future studies will aim to extend
these methods to more complex and challenging environments.
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In Chapter 5, we explored the robotic manipulation of deformable linear objects. We
tackled the challenge of accurately modeling object deformation for precise control by de-
veloping a hybrid offline-online learning methodology. The offline phase utilized a Graph
Neural Network (GNN) for foundational model building, which was then aligned with real-
world scenarios through a real-time linear residual model. This model was integrated into a
trust region-based Model Predictive Controller (MPC), crucial for calculating optimal robotic
movements. The method’s effectiveness was proven in simulations and real-world tests, but
only in 2D environments. Expanding this framework to three-dimensional contexts and more
complex objects is a promising direction for future work.

Chapter 6 introduced SPR-RWLS, a novel framework designed for cable manipulation in
environments with significant sensor noise and occlusions. The Structure Preserved Registra-
tion (SPR) method was employed for robust real-time tracking, complemented by an online
dynamic deformation model approximation through robust parallel optimization. Experi-
mental results underscored the framework’s ability to manipulate cables precisely, even under
challenging conditions. While experimental results were promising, the current methodology
has limitations in real-world applications like cable assembly or medical scenarios. Future
work will look to adapt this framework to more realistic industrial settings.

Chapter 7 presented a framework for skill learning in contact-rich manipulation tasks,
suitable for sim-to-real transfer. This framework combined skill learning in simulation (offline
phase) with admittance learning on the actual robot (online phase), enabling safe and stable
real-world interactions. Tested on tasks such as assembly, pivoting, and screwing, the frame-
work demonstrated high success rates and significant generalizability across various tasks.
However, its application has been limited to these specific tasks. The next steps involve
expanding these methodologies to more complex scenarios such as cutting and polishing.



113

Bibliography

[1] Fares J Abu-Dakka, Leonel Rozo, and Darwin G Caldwell. “Force-based Learning of
Variable Impedance Skills for Robotic Manipulation”. In: 2018 IEEE-RAS 18th Int.
Conf. on Humanoid Robots (Humanoids). IEEE. 2018, pp. 1–9.

[2] Anurag Ajay et al. “Augmenting physical simulators with stochastic neural networks:
Case study of planar pushing and bouncing”. In: 2018 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 3066–3073.

[3] Jonathan F Bard. Practical bilevel optimization: algorithms and applications. Vol. 30.
Springer Science & Business Media, 2013.

[4] Cristian C Beltran-Hernandez et al. “Variable compliance control for robotic peg-in-
hole assembly: A deep-reinforcement-learning approach”. In: Applied Sciences 10.19
(2020), p. 6923.

[5] Gino van den Bergen. “A fast and robust GJK implementation for collision detection
of convex objects”. In: Journal of graphics tools 4.2 (1999), pp. 7–25.

[6] Dimitri P Bertsekas. “Nonlinear programming”. In: Journal of the Operational Re-
search Society 48.3 (1997), pp. 334–334.

[7] Paul T Boggs and Jon W Tolle. “Sequential quadratic programming”. In: Acta nu-
merica 4 (1995), pp. 1–51.

[8] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Now Publishers Inc, 2011.

[9] Susanne C Brenner, L Ridgway Scott, and L Ridgway Scott. The mathematical theory
of finite element methods. Vol. 3. Springer, 2008.

[10] Jonas Buchli et al. “Learning variable impedance control”. In: The Int. J. of Robotics
Research 30.7 (2011), pp. 820–833.

[11] Yevgen Chebotar et al. “Closing the sim-to-real loop: Adapting simulation random-
ization with real world experience”. In: 2019 International Conference on Robotics
and Automation (ICRA). IEEE. 2019, pp. 8973–8979.

[12] Yao-Chon Chen. “Solving robot trajectory planning problems with uniform cubic
B-splines”. In: Optimal Control Applications and Methods 12.4 (1991), pp. 247–262.



BIBLIOGRAPHY 114

[13] Cheng Chi et al. “Iterative residual policy: for goal-conditioned dynamic manipulation
of deformable objects”. In: arXiv preprint arXiv:2203.00663 (2022).

[14] Rohan Chitnis et al. “Efficient bimanual manipulation using learned task schemas”.
In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2020, pp. 1149–1155.

[15] Haili Chui and Anand Rangarajan. “A new point matching algorithm for non-rigid
registration”. In: Computer Vision and Image Understanding 89.2 (2003), pp. 114–
141.

[16] Andrea Colesanti and Daniel Hug. “Hessian measures of semi-convex functions and
applications to support measures of convex bodies”. In: manuscripta mathematica
101.2 (2000), pp. 209–238.

[17] Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics simulation
for games, robotics and machine learning. http://pybullet.org. 2016–2019.

[18] Alexander Domahidi, Eric Chu, and Stephen Boyd. “ECOS: An SOCP solver for em-
bedded systems”. In: 2013 European control conference (ECC). IEEE. 2013, pp. 3071–
3076.

[19] Jing Dong et al. “Motion Planning as Probabilistic Inference using Gaussian Processes
and Factor Graphs.” In: Robotics: Science and Systems. Vol. 12. 2016, p. 4.

[20] Neel Doshi, Orion Taylor, and Alberto Rodriguez. “Manipulation of unknown objects
via contact configuration regulation”. In: 2022 International Conference on Robotics
and Automation (ICRA). IEEE. 2022, pp. 2693–2699.

[21] Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. “A fast procedure for
computing the distance between complex objects in three-dimensional space”. In:
IEEE Journal on Robotics and Automation 4.2 (1988), pp. 193–203.

[22] Federico Girosi, Michael Jones, and Tomaso Poggio. “Regularization theory and neu-
ral networks architectures”. In: Neural computation 7.2 (1995), pp. 219–269.

[23] Tuomas Haarnoja et al. “Soft actor-critic algorithms and applications”. In: arXiv
preprint arXiv:1812.05905 (2018).

[24] Karol Hausman et al. “Learning an embedding space for transferable robot skills”.
In: International Conference on Learning Representations. 2018.

[25] Zhe Hu, Peigen Sun, and Jia Pan. “Three-dimensional deformable object manipula-
tion using fast online gaussian process regression”. In: IEEE Robotics and Automation
Letters 3.2 (2018), pp. 979–986.

[26] Zhe Hu et al. “3-D deformable object manipulation using deep neural networks”. In:
IEEE Robotics and Automation Letters 4.4 (2019), pp. 4255–4261.

[27] Tadanobu Inoue et al. “Deep reinforcement learning for high precision assembly
tasks”. In: 2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Syst. (IROS). IEEE.
2017, pp. 819–825.

http://pybullet.org


BIBLIOGRAPHY 115

[28] Shiyu Jin, Changhao Wang, and Masayoshi Tomizuka. “Robust deformation model
approximation for robotic cable manipulation”. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 6586–6593.

[29] Shiyu Jin et al. “Contact pose identification for peg-in-hole assembly under uncer-
tainties”. In: 2021 American Control Conference (ACC). IEEE. 2021, pp. 48–53.

[30] Shiyu Jin et al. “Real-time state estimation of deformable objects with dynami-
cal simulation”. In: Workshop on Robotic Manipulation of Deformable Objects 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2020.

[31] Shiyu Jin et al. “Robotic cable routing with spatial representation”. In: IEEE Robotics
and Automation Letters 7.2 (2022), pp. 5687–5694.

[32] Mrinal Kalakrishnan et al. “STOMP: Stochastic trajectory optimization for motion
planning”. In: 2011 IEEE international conference on robotics and automation. IEEE.
2011, pp. 4569–4574.

[33] Lydia E Kavraki et al. “Probabilistic roadmaps for path planning in high-dimensional
configuration spaces”. In: IEEE transactions on Robotics and Automation 12.4 (1996),
pp. 566–580.

[34] Alina Kloss, Stefan Schaal, and Jeannette Bohg. “Combining learned and analytical
models for predicting action effects”. In: arXiv preprint arXiv:1710.04102 11 (2017).

[35] Shir Kozlovsky, Elad Newman, and Miriam Zacksenhouse. “Reinforcement learning
of impedance policies for peg-in-hole tasks: Role of asymmetric matrices”. In: IEEE
Robotics and Automation Letters 7.4 (2022), pp. 10898–10905.

[36] Shunsuke Kudoh et al. “In-air Knotting of Rope by a Dual-arm Multi-finger Robot”.
In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference
on. IEEE. 2015, pp. 6202–6207.

[37] James J Kuffner and Steven M LaValle. “RRT-connect: An efficient approach to
single-query path planning”. In: Proceedings 2000 ICRA. Millennium Conference.
IEEE International Conference on Robotics and Automation. Symposia Proceedings
(Cat. No. 00CH37065). Vol. 2. IEEE. 2000, pp. 995–1001.

[38] Ashish Kumar et al. “Rma: Rapid motor adaptation for legged robots”. In: arXiv
preprint arXiv:2107.04034 (2021).

[39] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[40] Steven M LaValle et al. “Rapidly-exploring random trees: A new tool for path plan-
ning”. In: (1998).

[41] A.X. Lee et al. “A non-rigid point and normal registration algorithm with applications
to learning from demonstrations”. In: Robotics and Automation (ICRA), 2015 IEEE
International Conference on. May 2015, pp. 935–942. doi: 10.1109/ICRA.2015.
7139289.

https://doi.org/10.1109/ICRA.2015.7139289
https://doi.org/10.1109/ICRA.2015.7139289


BIBLIOGRAPHY 116

[42] Alex X Lee et al. “Unifying scene registration and trajectory optimization for learning
from demonstrations with application to manipulation of deformable objects”. In: In-
telligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference
on. IEEE. 2014, pp. 4402–4407.

[43] Jessica Leu et al. “Efficient Robot Motion Planning via Sampling and Optimization”.
In: 2021 American Control Conference (ACC). IEEE. 2021, pp. 4196–4202.

[44] Mushu Li et al. “Energy-efficient UAV-assisted mobile edge computing: Resource allo-
cation and trajectory optimization”. In: IEEE Transactions on Vehicular Technology
69.3 (2020), pp. 3424–3438.

[45] Yunzhu Li et al. “Learning particle dynamics for manipulating rigid bodies, de-
formable objects, and fluids”. In: arXiv preprint arXiv:1810.01566 (2018).

[46] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In:
arXiv preprint arXiv:1509.02971 (2015).

[47] Vincent Lim et al. “Real2Sim2Real: Self-Supervised Learning of Physical Single-Step
Dynamic Actions for Planar Robot Casting”. In: 2022 International Conference on
Robotics and Automation (ICRA). 2022, pp. 8282–8289. doi: 10.1109/ICRA46639.
2022.9811651.

[48] Hsien-Chung Lin et al. “Human guidance programming on a 6-dof robot with collision
avoidance”. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE. 2016, pp. 2676–2681.

[49] Changliu Liu, Chung-Yen Lin, and Masayoshi Tomizuka. “The convex feasible set al-
gorithm for real time optimization in motion planning”. In: SIAM Journal on Control
and optimization 56.4 (2018), pp. 2712–2733.

[50] Qinghua Liu, Xinyue Shen, and Yuantao Gu. “Linearized admm for nonconvex nons-
mooth optimization with convergence analysis”. In: IEEE Access 7 (2019), pp. 76131–
76144.

[51] Lennart Ljung. System identification. Springer, 1998.

[52] Jianlan Luo et al. “Reinforcement learning on variable impedance controller for high-
precision robotic assembly”. In: 2019 International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2019, pp. 3080–3087.

[53] Jeffrey Mahler et al. “Dex-net 2.0: Deep learning to plan robust grasps with synthetic
point clouds and analytic grasp metrics”. In: arXiv preprint arXiv:1703.09312 (2017).

[54] Roberto Mart́ın-Mart́ın et al. “Variable impedance control in end-effector space: An
action space for reinforcement learning in contact-rich tasks”. In: arXiv preprint
arXiv:1906.08880 (2019).

[55] Fernando G Martins. “Tuning PID controllers using the ITAE criterion”. In: Inter-
national Journal of Engineering Education 21.5 (2005), p. 867.

https://doi.org/10.1109/ICRA46639.2022.9811651
https://doi.org/10.1109/ICRA46639.2022.9811651


BIBLIOGRAPHY 117

[56] Jonathan Meijer, Qujiang Lei, and Martijn Wisse. “Performance study of single-
query motion planning for grasp execution using various manipulators”. In: 2017
18th International Conference on Advanced Robotics (ICAR). IEEE. 2017, pp. 450–
457.

[57] Tim Mercy, Ruben Van Parys, and Goele Pipeleers. “Spline-based motion planning
for autonomous guided vehicles in a dynamic environment”. In: IEEE Transactions
on Control Systems Technology 26.6 (2017), pp. 2182–2189.

[58] Dimitris Metaxas and Demetri Terzopoulos. “Shape and nonrigid motion estimation
through physics-based synthesis”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 15.6 (1993), pp. 580–591.

[59] Takuma Morita et al. “Knot planning from observation”. In: Robotics and Automa-
tion, 2003. Proceedings. ICRA’03. IEEE International Conference on. Vol. 3. IEEE.
2003, pp. 3887–3892.

[60] Mustafa Mukadam, Xinyan Yan, and Byron Boots. “Gaussian process motion plan-
ning”. In: 2016 IEEE international conference on robotics and automation (ICRA).
IEEE. 2016, pp. 9–15.

[61] Mustafa Mukadam et al. “Continuous-time Gaussian process motion planning via
probabilistic inference”. In: The International Journal of Robotics Research 37.11
(2018), pp. 1319–1340.

[62] Andriy Myronenko and Xubo Song. “Point set registration: Coherent point drift”.
In: IEEE transactions on pattern analysis and machine intelligence 32.12 (2010),
pp. 2262–2275.

[63] Ashvin Nair et al. “Combining Self-Supervised Learning and Imitation for Vision-
Based Rope Manipulation”. In: arXiv preprint arXiv:1703.02018 (2017).

[64] Yashraj Narang et al. “Factory: Fast contact for robotic assembly”. In: arXiv preprint
arXiv:2205.03532 (2022).

[65] David Navarro-Alarcon and Yun-Hui Liu. “Fourier-based shape servoing: A new feed-
back method to actively deform soft objects into desired 2-D image contours”. In:
IEEE Transactions on Robotics 34.1 (2017), pp. 272–279.

[66] David Navarro-Alarcon et al. “Model-free visually servoed deformation control of elas-
tic objects by robot manipulators”. In: IEEE Transactions on Robotics 29.6 (2013),
pp. 1457–1468.

[67] David Navarro-Alarcon et al. “Visually servoed deformation control by robot manipu-
lators”. In: 2013 IEEE International Conference on Robotics and Automation. IEEE.
2013, pp. 5259–5264.

[68] Brendan O’Donoghue, Giorgos Stathopoulos, and Stephen Boyd. “A splitting method
for optimal control”. In: IEEE Transactions on Control Systems Technology 21.6
(2013), pp. 2432–2442.



BIBLIOGRAPHY 118

[69] Christian Ott, Ranjan Mukherjee, and Yoshihiko Nakamura. “Unified impedance and
admittance control”. In: 2010 IEEE international conference on robotics and automa-
tion. IEEE. 2010, pp. 554–561.

[70] Jia Pan, Sachin Chitta, and Dinesh Manocha. “FCL: A general purpose library for
collision and proximity queries”. In: 2012 IEEE International Conference on Robotics
and Automation. IEEE. 2012, pp. 3859–3866.

[71] Mihir Parmar, Mathew Halm, and Michael Posa. “Fundamental challenges in deep
learning for stiff contact dynamics”. In: 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2021, pp. 5181–5188.
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[100] Andreas Wächter and Lorenz T Biegler. “On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming”. In: Mathematical
programming 106.1 (2006), pp. 25–57.

[101] Martin JWainwright. High-dimensional statistics: A non-asymptotic viewpoint. Vol. 48.
Cambridge university press, 2019.

[102] Changhao Wang, Jeffrey Bingham, and Masayoshi Tomizuka. “Trajectory splitting:
A distributed formulation for collision avoiding trajectory optimization”. In: 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
2021, pp. 8113–8120.

[103] Changhao Wang et al. “Bpomp: A bilevel path optimization formulation for motion
planning”. In: 2022 American Control Conference (ACC). IEEE. 2022, pp. 1891–1897.

[104] Changhao Wang et al. “Offline-online learning of deformation model for cable manip-
ulation with graph neural networks”. In: IEEE Robotics and Automation Letters 7.2
(2022), pp. 5544–5551.

[105] Changhao Wang et al. “Safe online gain optimization for Cartesian space variable
impedance control”. In: 2022 IEEE 18th International Conference on Automation
Science and Engineering (CASE). IEEE. 2022, pp. 751–757.

[106] YuWang, Wotao Yin, and Jinshan Zeng. “Global convergence of ADMM in nonconvex
nonsmooth optimization”. In: Journal of Scientific Computing 78.1 (2019), pp. 29–63.

[107] Zheng Wu et al. “Prim-LAfD: A Framework to Learn and Adapt Primitive-Based
Skills from Demonstrations for Insertion Tasks”. In: arXiv preprint arXiv:2212.00955
(2022).

[108] Zheng Wu et al. “Zero-Shot Policy Transfer with Disentangled Task Representation of
Meta-Reinforcement Learning”. In: 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2023, pp. 7169–7175.



BIBLIOGRAPHY 121

[109] Mengyuan Yan et al. “Self-supervised learning of state estimation for manipulat-
ing deformable linear objects”. In: IEEE robotics and automation letters 5.2 (2020),
pp. 2372–2379.

[110] Wilson Yan et al. “Learning predictive representations for deformable objects using
contrastive estimation”. In: arXiv preprint arXiv:2003.05436 (2020).

[111] Mingrui Yu et al. “A coarse-to-fine framework for dual-arm manipulation of de-
formable linear objects with whole-body obstacle avoidance”. In: 2023 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE. 2023, pp. 10153–
10159.

[112] Mingrui Yu et al. “Adaptive Control for Robotic Manipulation of Deformable Linear
Objects with Offline and Online Learning of Unknown Models”. In: arXiv preprint
arXiv:2107.00194 (2021).

[113] Mingrui Yu et al. “Generalizable whole-body global manipulation of deformable lin-
ear objects by dual-arm robot in 3-D constrained environments”. In: arXiv preprint
arXiv:2310.09899 (2023).

[114] Xiang Zhang et al. “Efficient sim-to-real transfer of contact-rich manipulation skills
with online admittance residual learning”. In: arXiv preprint arXiv:2310.10509 (2023).

[115] Xiang Zhang et al. “Learning Generalizable Pivoting Skills”. In: 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE. 2023, pp. 5865–5871.

[116] Xiang Zhang et al. “Learning insertion primitives with discrete-continuous hybrid ac-
tion space for robotic assembly tasks”. In: 2022 International Conference on Robotics
and Automation (ICRA). IEEE. 2022, pp. 9881–9887.

[117] Xiang Zhang et al. “Learning variable impedance control via inverse reinforcement
learning for force-related tasks”. In: IEEE Robotics and Automation Letters 6.2 (2021),
pp. 2225–2232.

[118] Jiaji Zhou et al. “A convex polynomial model for planar sliding mechanics: theory,
application, and experimental validation”. In: The International Journal of Robotics
Research 37.2-3 (2018), pp. 249–265.

[119] Wenxuan Zhou and David Held. “Learning to Grasp the Ungraspable with Emergent
Extrinsic Dexterity”. In: ICRA 2022 Workshop: Reinforcement Learning for Contact-
Rich Manipulation. 2022. url: https://openreview.net/forum?id=Zrp4wpa9lqh.

[120] Ziyi Zhou and Ye Zhao. “Accelerated admm based trajectory optimization for legged
locomotion with coupled rigid body dynamics”. In: 2020 American Control Confer-
ence (ACC). IEEE. 2020, pp. 5082–5089.

[121] Jihong Zhu et al. “Dual-arm robotic manipulation of flexible cables”. In: 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2018,
pp. 479–484.

https://openreview.net/forum?id=Zrp4wpa9lqh


BIBLIOGRAPHY 122

[122] Jihong Zhu et al. “Vision-based manipulation of deformable and rigid objects us-
ing subspace projections of 2d contours”. In: Robotics and Autonomous Systems 142
(2021), p. 103798.

[123] Matt Zucker et al. “Chomp: Covariant hamiltonian optimization for motion plan-
ning”. In: The International Journal of Robotics Research 32.9-10 (2013), pp. 1164–
1193.


	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Motivations
	Dissertation Outlines
	Summary of Contributions

	Efficient Trajectory Optimization
	Efficient Trajectory Optimization via Trajectory Splitting
	Introduction
	Related Works
	Mathematical Background
	Trajectory Splitting Algorithm
	Simulation and Experiments
	Chapter Summary

	Bilevel Trajectory Optimization Formulation for Efficient Collision Avoidance
	Introduction
	Mathematical Background
	BPOMP Formulation
	Simulation and Experimental Results
	Chapter Summary


	Adaptive Model Learning for Deformable Object Manipulation
	A Unified Framework for Deformable Objects State Estimation and Task Planning
	Introduction
	Related Works
	Non-Rigid Registration by Coherent Point Drift
	Robotic Manipulation of Deformable Linear Objects
	Experiments and Results
	Chapter Summary

	Offline-online Learning of Deformation for Robotic Cable Manipulation
	Introduction
	Related Works
	Proposed Framework
	Simulation and Experiments
	Chapter Summary

	Robust Deformation Model Learning under Uncertainties
	Introduction
	Related works
	Structure preserved registration
	Local Linear Deformation Model
	Framework Details
	Experiments and Results
	Chapter Summary


	Real-time Control Policy Adaptation for Contact-Rich Manipulation Tasks
	Efficient Control Policy Adaptation with Online Admittance Residual Learning
	Introduction
	Related Works
	Proposed Approach
	Experiment Results
	Chapter Summary

	Conclusions and Future Work
	Bibliography




