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PRLEYFACE

This report covers work carried out for the National Aerounautics
and Space Administration under Research Grant Io. NsG-G37. The
investigation was conducted by John L. Baylor under the supervisicn

of Karl S. Pister, Professor of Civil Engineering.



ABSTRACT

The differential equations governing the small deflections of a
sandwich shell are developed from the Hellinger-Reissner variational
theorem. The facings are thin anisotropic Kirchhoff-Love shells with
different physical properties and thicknesses. The core is considered
a three dimensional orthotropic medium which can only resist transverse
shear and normal stresses. Representative equations for a sandwich
shell with a visccelastic core are displayed.

Illustrative examples investigating a circular plate with a
circular hole, a square plate with orthotropic facings and an infinite

circular cylinder with a visccelastic core are given.
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INTRODUCTION

The type of sandwich construction which is considered here consists
of two thin anisotropic Kirchhoff-ILove shells (facings) separated by a
three dimensional orthotropic medium (core) in which the in-plane
stresses ’Z‘,JO(P + are zero, see figure 1. Since 'E’a'g= O in the
core, only the transverse shear resultants 3§°‘ and the mean normal
stress C?’jg need be considered when dealing with the core. On an

amlitn.

oc
element of a facing (see figure 1) the force N and couple

_--m -

CENA per unit of coordinate are evaluated at the surfaces which
are common to both a facing and the core (interfaces).

The prefix N stands for QO or 1 according as the quantity is
associated with the upper or lower facing, respectively.

To avoid considering continuity of displacements at the interfaces,
the interface displacements (;37- ) are utilized. In the formulation
of the theory, the sums and differences of the interface displacements
LX:ji and,AJf;) are introduced.

The dimensionless surface coordinates GQOC are assumed to be lines
) and the

of curvature. Hence, the metric tensors ( CL and QL

@

coefficients of the second fundamental forms ( k%qg and

op
nbug )

are diagonal matrices. Also, the coefficients of the second fundamental

iv

forms are associated with the curvatures of the surface under consideration.

The differential equations governing the small deflections of the

above described sandwich shell are derived from the Hellinger-Reilssner

+ . .
Usual tensor notation prevails, see reference 1.



variational theorem [2]++. The equilibrium equations for the composite
shell are similar to those obtained in L3] and the boundary conditions for
the individual facings are comparable to those obtained for a homogeneous
shell in [h]. The stress resultant-displacement relations for the
cqmposite shell obtained here have not been presented before. Repre-
sentative equations for a sandwich shell with a viscoelastic core are
displayed.

The equations presented here are applicable to plates as well as
shells, however, they will not be specialized in their general form
since a complete theory of sandwich plates has been given by G. A.
Wempner and J. L. Baylor LSJ.

Many authors have used variational principles in the derivation
of sandwich shell theories. E. Reissner [6] and C. T. Wang [7] used
the principle of minimum complementary energy to derive the stress
resultant-displacement relations for a composite shell. Both Reissner
and Wang regarded the facings as membranes. Equations which include
the bending stiffness of the individual facings have been derived by
E. I. Grigolyuk [8J and R. E. Fulton [9] from the principle of
stationary potential energy. A non-variational derivation of sandwich
shell theory is given by Wempner and Baylor [3].

Presented here is a theory, developed from the Hellinger-Reissner
variational theorem, which includes bending resistance and dissimilarities
of the facings. The resulting equations are applied to examples

illustrating the effects of anisotropic facings and a viscoelastic core

on sandwich shell behavior.

**Numbers in brackets refer to the bibliography at the end of the report.



A THEORY OF ANISOTROPIC VISCOELASTIC SANDWICH SHELLS

1. Stress Distribution thru the Core

In what follows it is assumed that the components of the displace-
ment vector and their derivatives a;e infinitesimals of the first order
and the squares and products of these infinitesimals are neglected when
compared with their first powers.

The core is weak in the sense that it only resists transverse shear
and transverse normal stresses, i.e. Gb‘°93== O. Upon setting
r27'°¥3== O in the equilibrium equations, the core stresses

become statically determinate. Integration of the equilibrium equations

gives [3}

_ 1= S e s
’@WC/ - en|1- .19%‘“3]2 (1)

and

_ Lra’
@,2:/33 — 5 0/33

VT 5% Aber— 67
22, |\ 1— 19%‘“) ()

Jox

=<
where 0/33 and S/L are proportional to physical stress and
physical stress resultants, respectively.
On the edge of the core the shear stress distribution is a priori

statically determined in terms of the shear resultant. From equilibrium



of a boundary element, the shear resultant on the edge of the core is

-—0CC
o = U, 3

This shear resultant must be assigned on the edge of the core.

2., Core Stress-Strain Relations

The relative displacement of two particles on the normal, one at

each interface, is

+1
g\/ L\/ . \/',13 % de .

After some manipulation [3] this yields

+1
_
Ay —é-ﬂfl e,,d6° (3)

and
1 \/.3/oc [ \/3!oc
NANIZ = == X — — ~
- aL) [l—abgjg3=+l I+265 93=_T
1 +) 3
eoc3 Cje3 833 oc93d9
2 (o' =
* . [1—2935(&3) . % 1-26%5% (. (4)

Presuming the core to be orthotropic with respect to the surface

coordinates, the stress and strain components are related as follows;

414
533 —%E—_TBB > (5>

28%0. 2
Soe = S [1-26°%E [ =% (6)




Because of the displacement assumption

b;.a = €. <7>
= e (8)

Substituting, in turn, (7) and (5) into (3) and (7), (8), (5) and
(6) into (L), expanding the integrands in A power series and neglecting

2
A~ when compared to one, there results

. AL 33 2 - (<)
5 = Q—EJ:O/ +§Scx”oc bccx)"h>+

2 go(b(a) :{ L' (@)

3.2 @) yX
and
- 2 @) NG
MG = TAALTG o —A %“b(d)—i/u& b(oc) —
__ 2 @><):f2 C:lwa(a EEF‘B J:lﬁa =g
Xz (Beh) + ZLE® GLE" lpec™

23 a3 3L 33 /@
+Z2=IFh, + =T, (bw+2h) +

oS @ @)
+ 2 =3 b(ﬁ>>ﬁ>,oc(b‘°‘)+eb‘ﬁ>+2h> +

224 _4 @ ((p)
+iz 5 b(,s),,e bge)—f—%)m—f-



L

2 <P) (cx) ((9)
auzs Me[ By Pt O (it <@>>h +
(8) (<) @)
B o (b + 2bg)+ 2%)—

= g(a_hh,o( - /e)o(>]. (10)

Equations (9) and (10) are the core stress-strain relations.

3. Stress Distribution thru a Facing

The force and couple, per unit of coordinate, on an element of a

facing are (see figure 1)

& A
=9/ N f’a + Yo ’,.,%“a

g
and
— e Y
M7= L& L6, TR ?
where gh“p) l__,_,m'xﬁ and D_%O( are proportional to

physical stress resultants.
Neglecting terms of order r\:l_, the stress resultants are related

to the stresses as follows;

é n
= L0 [ w0, (11)
-1

i
M= L4“2% L ~ % 6°%d,6° (12)
-1

J
g = L0905, ) [ = d, e (13)

=l



,
Notice that nhu’g and MM a are symmetric.

Guided by (11) and (12), the stress components are presumed to have

the following form

2. N
IE; anJ

+(2 2 —1> (14)

“nJ

_/_.

or

)
7

dr °7‘9+2Lr7°<5)
1_40'21,;._)

_I_z(enea:l__leE;Vg; 2[_m > (15>

T = @4—3 e°

The normal stress ’QTJJRB is assumed to be zero.

4, Strain-Displacement Relations for a Facing

The facings are presumed to be thin Kirchhoff-Love shells, i.e.
normals remain straight and normal to the interface surfaces.
If extension of the normal is neglected, the displacement of a

particle in a facing is

- y+ Q1L293(ﬂ23— as> (—Zé}

The deformed and undeformed unit normal vectors are related as

follows [3],



A =b, + 2%k

n’ /'3 3 1 [_2 na‘-oc (17)

Substituting (17) into (16), one finds

V=V +,06° 2—%3—_,;&“?

The covariant components of the displacement vector are

ey
\/3 =72V (t8)

v, = (5 2,825 (o +a82 hy)  (19)

where \_

No = AL (0 £ | -

M= LOAFabS oz £z ) (Y
_ n V.o 8

ngee = nt (_:j.z__ -+ _Qboc Q\é > (22}

Equations (20) and (21) are obtained directly from the definitions of
AN and AN .
Because of the displacement assumption [1]
B 2( oc/,e ,B/o<> ( >
If one uses (18), (19), (20), (21) and (22) in (23) and neglects terms

of order _Q:)‘ 5 then



)

- 4
:x,e a[ 3,8 nwsls_)cx 2QE¢QC‘)3J (26)

Equations (24), (25) and (26) are the same strain-displacement relations

obtained in [3]. Also ,,B/ and r}{, as defined here agree
- 0 "B n =B

with b/"?@ and /oo(p of [10].

The shear strain  Zex is zero at the interfaces and will be

assumed zero throughout a facing.

5. Hellinger-Reissner Three Dimensional Variational Theorem

The equilibrium equations, stress resultant-displacement relations
and boundary conditions for a sandwich shell will be derived from the
following variational principle of Hellinger and Reissner Le].

The state of stress and displacement which satisfies the differ-

ential equations of equilibrium and the stress displacement relations

in the interior of the body, and the conditions of prescribed stress on

theApartCSG and of prescribed displacements on the partcSé; of the

surface of the body, is determined by the variational equation

[[J (=%~ w)dz = ([B", dg —
flod dl
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~[[(v-V.)pHds £ = 0. (27)

6. Contribution to the Hellinger-Reissner Theorem from the Facings

The normal stress " 33 and the shear strains Xs ¢

assumed zero. Having zero shear strains, b/ while there exist non-

Fx 2
zero inplane stresses &~ = and non-zero shear stresses /t"‘?oc’

have been

requires the elastic coefficients ﬁc30(,€5/ and C3O<3ﬁ to be

zero. Thus the only contributions from the facings to the volume

integral of the variational theorem are

[ | [=*5,vgde® |dete®+
+£( fa*”*ea/ 1/_'70/ ejdelclea (23)

ff fcx N"(ﬂ%’*@o’geﬁdeyea—/—
+1j§ B_ i_co(%fz“ﬁfz’?@dﬁs do'de= (29)

Substituting (15) and (24t) into the integrals thru a facing thickness

and neglecting terms of order A 3,_ ) one finds

J

o ~ P+ x4
) 3 dn "2l N .
J;?: 5?80/09 T 2L%d.d,J 0%

=l



dmot Lt 2L m°?
4L M

(30)

———

2L2d,d%, J 0" txg
and
5
ffr“ﬁfz: 7d,e*= .
P+ %I ) + ¥
L.éa'ac/%,d Eﬂh LB | dAR7+2Lln 7]-}-

-+ [_5d2c/3 g]ginoﬁgiELh“ﬁ]dr—ﬁ@i’ELmy’?]—l—

3 _ =
+ 2L5d%d%lja@nb{?tQL.r‘)X?v[clm"‘B_tELm%e]-F

+ 7 %4 Em Bt D Lm"‘ﬁ]\}JFﬁ WE2lm 7:}(5 )

The surface of a facing consists of three parts; the interface

surface, the exterior face and the edge. Over the exterior face and

the interface d O i.e., stresses are prescribed. The integrals

fj . d,s,

over the interfaces, from the facings are the negatives of the corre-
sponding integrals from the core, consequently they sum to zero.

The load on the exterior face of a facing is

[dﬁ o PO’]L‘? (32)
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where QP 7 l_2 and _Q@ } L? are proportional to physical force
per unit undeformed area.

Using (18), (19), (20), (21) and (32), neglecting surface load times
rotation terms and neglecting terms of order n?g and :l.a one

[D_f PV oS = —ﬁ[i"%iii 7o)

(u—,& *avz —4—(5.531-,033)(,173 i,wgﬂds. 33

From (13), (14), (18) and (19), after neglecting terms of order

and :la it is found that

ffP V, dﬂ+g(\/ \/>P'2/

Ry o L, d2
L bqs)@ij‘bcm afm a\(e]mj A +
] ~, 2 ~
N7 _ — = £ — _
+ | (4m%) = Fom e
2Cs
] @) (8 ~
el \/ —
L b(.e)(l ﬁb@)ﬂm Vs ﬂ\{@>+

., 2 ~\|aU
+ 5 %O‘C,,_vs—gvs, )]—QJ“d24 : (34)
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This is the contribution to the surface integrals from the edge of a

facing.

7. Contribution to the Hellinger-Reissner Theorem from the Core

For the core the equilibrium equations have been identically
satisfied, the stress-strain relations have been determined, the boundary
condition has been obtained and over the interface surfaces cj;a has
been presumed zero. Thus the only contribution to the variational theorem

from the core is

([Prsvidgs.

n

The outward unit normals to the core interface surfaces are
N\ ——
N =%2Lg3 (35)

Equations (1), (2), (20), (21) and (35) give

ng%\/rc!D_s =3ﬁ[@_— gd”— éf_s—oc”cx).

—

'_OC

22 &

(605 £ 6 )+ = (£ 1+ by 6.0 +

i‘é)wgcﬂds. (36)

8. Hellinger—Reissner Variational Theorem for a Sandwich Shell

Upon substituting (28), (29), (30), (31), (33), (34) and (36) into
the variational theorem (27) and using Green's theorem [l], one obtains

the following variational equation appropriate for a sandwich shell.
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g%ﬁ“ﬂ[@-@— Cf:) )u II‘X o, —

) o X
_3'bca)/w?> — A, </WS’ o’ r zr) o¢( -

— X = ) _ 28 m5¥0_
15@ 3 X?(L_ 7+d N7 L7
_38, )\ _ X =, EX Y _E_-—b’ _

_32e

- mx?)]%”"‘e[‘i(”&‘l b >u

~ 1 é“" m )—1’1;5 @‘lb(er)ﬂ?) -

_x?_@zfi? a/__ < =¥
g 7™ 7:/ 7) °$@3’7(L_ s

b ) oL Qw« +T by )+
+2510 (u/-’ +avg b(w) FX7 ééL_X?-f—
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3B, 5 38— e¥ ¥ 2B =¥
"]"dh? i 7—C/ 9) (EL.D 7+

+gén3/’7 L?Fv'o' 7)_© - g X?ﬂ-&— Sm“'e[-———(

@)
+,w&b(°‘)> ( Mgy Ty b“))'hl X 7 MJ"’X‘/‘
(X) - — ¥ é Y 3&’ ¥
X (6’) + C ( 7+_ /= 7

ea’ x7>+

— g—m@):]-%—s/i‘é -

(‘% 704 I8 ) _ ‘%a—/ )

:)_0780“ o

//,e + b n«x,e”ﬁ

(o( 3;9 2 (}__b, 3,/8> o ()
M )-I—J.T (1 e = +3 5@/-/—

-2 (5*&
bz

&) )

—oC 3,/6 .
gy +J.b<°()’l}pm —f—;lb@d’l”

- p+ 2k, Jdo]-/—s [‘52"’ I +3Lb:fﬁ°(/9//ﬁ—
-1 (n*ﬁ ) —3?9> ( )

Jzec, @, SR, 5
+=5 +15 " ls+ By 13 /3 -
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(o) o
+lab T Xﬂ_—dooq_‘j‘ @c))d—g_ﬂ_f_s’w/[b AP

+b prm"\g_s ) ke -—mogg// 1(,1/‘__’5 .
L a/’77 ; i—l— —_= o3 o8
¥ >”b/ Sz b s ""3-5 b n o —

&) o

J

— 21 o 2 /33 [~=9 o@
P —smE 4L (T;sgm 4

o8
+12T°’(:m“5>/} ]}dsw—z { (hoqe
__QP)“Ya)(gQ 5_( e m°43>5

A L zb‘;?x -

_Q%m>gg%}auddgd —& {f (v
CE.

nJ .
Y w_ 2 Y > o8
n\,/é ggn a o_\/gJ!@ -’—"\/SJ,S Sﬂm -+

T n\5"n 3)62%"‘—25@ (Jilb(p) (Q\{s_

“D_f\\/;>6gmo<ﬂ}o('f0< d,< = O. (57)
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In the boundary integrals of (37) the following moment

equilibrium equation was used;

a%o{ = deﬁ”/@ +12rx;§gmﬁaf

This equation is derived in L3J.
Equation (37) is the required variational equation for a composite

sandwich shell.

9. Equilibrium Equations

The Euler equations resulting from operating on (37) and corre-

sponding to 6,{,(—/'-5 and 6,{,()3 are

— —X — — (°<>
P2+ T+ b A+ EY —b(odbo(ﬂ

+ (T + LG )y =0 (38)
and

2 /33 3
- LS —%—::117C> - Z:ixx3”7cng'+' r’rjcxyg}/oqa —

o3 —-——b/ %!
bbm + (T2 P+

2 3’-——-cx¢?
+22 ),X o. (39)

Forming linear combinations of the Euler equations associated

with 6,0&)" and S,U,)& 5 onme flnds

Foe+AF,—2F A —/—:AT 575—/—

o a/ (ex) () \&
+ 3.’[‘ b(odm °$‘9 (b - ,3 —
—amﬁr“

(x¢) (o<)
(«)_’_3' T ( (=) :) _
(ex) cxl Ei

—am® T i b+ T (b, [=O (40
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and

:Lp — 5%+ N+ :m:‘p N2~
(o() P 22
(0() // (bcx))

_ X3 @) X /) () B
J,m T b +1’}_" (bm]

_— <>c (&K§ @20
Xﬁ[ B b(oo <o<) ] O. (41)

Equations (38), (39), (40) and (41) are the equilibrium equations for
a composite sandwich shell. If the equilibrium equations of [3] are
specialized to small rotations and if 12 is neglected when compared
to one, the resulting equations are the same as (38), (39), (40) and
(b1).

Equations (38) and (40) are identified with the equilibrium of a

gross element of the composite shell.

10. Stress Resultant-Displacement Relations

Combining the Euler equations corresponding to 6 F)— g B 5 nOQQ)

5 m op and Sm“ﬁ in a suitable way, it can be verified that

— . i=. 9= B __/___ )
rﬁ'j%AL == saL/JJ_JSQ:LJSJLL" £3'E;LL Fg[;X?<;;41;;"‘:]LlD@x)/LAéi)”k;'
(=)

) _c;<> —&boqe(’ajé_g‘b ),4,u-/ +
—I—ocb ( —lb w)—l—

+5L(ocT +20c >(,w« b /uﬂ>—/-

+1(oc’7;@ =T, >(/c/u—a’, —;Lb((;)m;ﬂ +
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AT ECZZJ// — 7 (w5 oz b ot
+FLAOE L, X/w +.5% bf?)) +
O F T2 LY Ve i b ﬂ (43)

ERE T e Gl S [ 6 —

lbcc )VW?.Z) '7",3@/“ —ob) o >/(,3 +

()" T

&0 ()

g éw“ ~2Be5)F aﬂé’w—j‘bco«)’wéﬁ
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+a(FL oy )(@—, y+ 7 by, > +

(s)

+Q( b’T +3.<YTX ,wgJa/-/—,w' A(A’)ﬂ' (4—5)



Remembering that rw:l” and ::L?l have been neglected when compared
to one, care must be taken vhen using (42), (43), (4k4) and (45) since
Q:L and A are contained in OC OC>/8 (8) _— and a/and A
may be contained in f3 Czp?a27

Terms multiplied by OC, (6 and b/ when g:l_:_l_l 5 by

cxﬁbf? vhen the facings have the same physical properties, by
:},é)%}i and by ifi;;; and r]:;;; are due to the variation in
the geometry thru the composite shell thickness. If the sandwich shell

is thin these terms can be neglected. Hence for a thin sandwich shell

with equal facings, (42) reduces to

A= A LB () - by )| -

—%9_1 3_2[_95.?/4%[/3@}/ +uz (o<)>/ -]

This is the same stress resultant-displacement relation obtained in Lll}.

Equations (9): (lO), (38)3 (39), (MO), (ul), (MQ), (u3), (uu) and

(L5) form a system of 21 simultaneous differential equations in the 21
variables /w;)/UJF_) d3§ §oc>r—7-oqi f'l“‘g_) I’?')O(’eonc! m“g.

11l. Boundary Conditions

The boundary condition for the edge of the core has already been

given, i.e. the shear resultant on the edge of the core,

¥=uUg
(o4 )
must be specified.
Since on a normel to the core mid-surface at the edge of the
composite shell stresses may be prescribed for one facing while dis-
placements are prescribed for the other facing, the boundary conditions

for the individual facings will be given. Using i'3]
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S5 5
s6% ~ \e%<3 n +7ﬁ°<c§4>

integrating by parts and then setting the resulting coefficients of the
varied quantities in the line integrals equal to zero, the required

facing boundary conditions are

[ar=#(7265) o b [atte =
_ [—Ho('g(}- (x)) %o( 8 )

(o¢) (<) | 2 ,8 >
2T U U = P U U (4.6)
and

—
n V= c:\/3
and
~J
_/3\/3Joc_ ﬂ\{?_)oc
on QCE‘

These boundary conditions have the same form as those obtained in [M].



12. Stress~-Strain Relations for a Sandwich Shell with a Viscoelastic

Core

In the following two sections a sandwich shell with a viscoelastic
core is considered. Representative equations for this shell are
displayed.

Only the core will be presumed viscoelastic, however, viscoelastic
facings could be treated in the same way.

The core stress-strain relations are altered as follows; £  and
oc

=

other functions of time are replaced by their Laplace transforms, e.g.

- OC
are replaced by 17*5 and )7*5 ) respectively, and all

(9) vecomes

_aL o &)
Sug = 2*E o EREL (b@x) h)*

22 ¥z b<°<)
— @ xg ¥
Since B 2 7 and B ° 7 are not functions of time, the stress
resultant-displacement relations for the composite shell are converted
simply by substituting Laplace transforms for all time functions. To

illustrate this a few terms of the equation corresponding to (42) are

presented;

-&h é"_ ijfw’)-l—ocb ( M’““)-}-

+a =T, +9Lo<T aB2% M) +



2T Y b )]+

13. Equilibrium Equations and Boundary Conditions for a Sandwich Shell

with a Viscoelastic Core

The equilibrium equations for the composite shell and the boundary
conditions for the individual facings and the core are obtained by
merely replacing all functions of time by their Laplace transforms, e.g.
(38) and (L46) become

#—3 ) K= *— ¥___ox
p-tT7S cx//oc_’— b«ph“@_}' m '6//093_
Sk

mogg)//x = O

&)y oz
b(cxlbb(@h +

+ ;L(T; g*rv—n“@+ g

and

* *
N mdg"‘ocau,s = S U g

It has been assumed that O/OC onc{ ) C oc are independent of

time.

EXAMPLES

The theory presented here is valid for sandwich shells (plates)
with thin Kirchhoff-Love shell (plate) facings. However, the following
three examples are only concerned with sandwich shells (plates) with
membrane facings. The facings are presumed membranes so that the
influence of a hole, of orthotropic facings and of a viscoelastic core
on the behavior of a sandwich shell (plate) can be studied without

unduly complicating the examples.
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14, Circuler Plate with a Circular Hole at the Center

Consider a simply supported circular plate with a circular hole at
the center loaded by a uniformly distributed bending couple around the
outer boundary. The facings are isotropic membranes with similar
physical properties and equal thicknesses. The core is presumed
isotropic. The dimensionless surface coordinates are

61=% )92=¢5)

where () and. qb are poler coordinates (see figure 2).

Due to the symmetry of the plate and the applied edge couple,

_...2 —

S =

— —_ o=l _ 12 _
2 =gy =N “=n""=0

and the remaining dependent variables are independent of 69 -

The equilibrium equations which are not identically satisfied are

s+ = =0, (47)
g3 =0, (48)

+ =7 —6'FA% =0, (4-9)




FIG.2, CIRCULAR PLATE
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The core stress-strain relations are

wy = S (51)

_ 5! _ 2% =~
oy =—J g +az_G e //,61. (52)

The stress resultant-displacement relations for the composite plate are
Q.RD [2(/(/1./" 1-}———1/(,0") —
ToA (51t 91- A3, 1>j (53)
AR E T
G )ai—v?—)
1@/‘”’ u.‘?l"‘eiw >] (54)

/22 —

E(V/uf’i-l-el,w') e

1= va (M +91W>
"giéwu‘f'é‘x 3;1)] (55}

22__ A AR E />
N = (91)21 Va[ ()J,(/U" -)-elwi —

——gi(vxwgf)“-/- =513, ﬂ (5¢)

The boundary conditions are

[51]91=1 = O) (5'7)

Y= oA R =

[n“ ol=1" M [”7“]9 s O (59)

[/”73]9 i, =0 (¢0)
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From (48) and (51) one sees that /(/U':a = O. Cél)
The solution of (47) and (57) is

si=0. (62)
Substituting (53), (54) and (61) into (49) gives
1 (T !
= em) ] - 0. 6
91 151 51 CB)

Equation (63) and the boundary conditions (58) yield

o = O (64)

Hence,
Ail=r/2*=0.

In the same way (64) was obtained, from (50), (62), (52), (55),

(56), (59) and (60) one finds

pE———ed

_ M .
3 = 219_1(23.+Q:L)(/:22—r2) RZE]

. (l_y);ea[(el)"l—ij+ 2(1+))>r‘alo€(91)}

This solution has exactly the same character as the solution of a

homogeneous plate [12J. If the facings had been thin plates instead of
membranes the problem would have been greatly complicated and the
character of the solution would have been different. The character of
the solution would depend on the boundary conditions, however, ,ALL{E;
and 5'— L in general would not be zero and ﬁj—é would be considerably

more complicated.

A sandwich plate with equal facings and a hole (circular or not)
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loaded by the same inplane edge tensions on each facing has exactly the
same solution as a homogeneous plate. 1In this case the facings can be

L
either membranes or thin plates.

15. Square Plate with Orthotropic Facings

To illustrate the influence of anisotropic facings consider a
simply supported square plate with orthotropic membrane facings.
The principal axes of each facing are parallel to the coordinate axes.
The facings have the same thickness and the core is isotropic. A
uniform transverse load is applied to the upper facing.

The dimensionless surface coordinates are

X gl Y

e L>Q ™

(see figure 3) and it is assumed that

1 1
l“100 ;) e 2000 °
G - _d - 3
E "o ° YT 10

o<
For this example A Ezcx. is the elastic modulus in the 69 direction

and ”EElEZ is the cross modulus for the facings. If the facings are

isotropic N EO( and QEJZ are equal to Young's modulus. It will

be asgsumed that _QEJ_

it has been assumed that

is the largest of all the moduli. For brevity

—g—a—oc cEle
= o,

o

0
m

E
-4 4 _ 4 e
lE:l - féit ) Eaz;;l - /E%E d safzri - /523 -

)
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FIG. 3, SQUARE PLATE
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Since the plate is simply supported and symmetric

ﬁw:o} (65)

Nnit=0

The equilibrium equations not identically satisfied are

5% _ —P=0, (66)
1_25334- P=0, 7)
N*E, — %= O. (¢8)
The core stress-strain relaticns are
s = = =33, (69)
3 200E
- _ /uf:;o( Chal lO /g
e o +5a 6L E S e (79
The stress resultant-displacement relations for the composite
plate are
A= L B 578 —
103 [B _)3+B A8
/(= 3/70(,8 — IS )
'4;'.IC):3\<E3 Jz)cxfg'ﬁﬁ' E3 :7 /{ijzifyyg ; <?7ZL>
 _ ¥’ 7%8, y<p__
4 105[5 J/B+ B 4 M,p

e Snop
- 3<B 7y g By, o(/g):] (79
The boundary conditions are

[(ow]e —01= O> [’w{]e"‘ 7O @73
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From (67) it is seen that <:f/£&3 is a constant, hence, from (69)

>4
it follows thet /iA'Tg is a constant. According to (66), S S

is a constant so that (70) reduces to

. "(’L/—/'CNL :;:C>(
T58- + BIG (74)

Us1ng (65), (71) and (72) in (68) one obtains

il — —Jlaa__
P g ]
4ooo ’: Ay 11 3 122

e ——1111_.1 uga_e_
~ 36 [F_ S,u+ F >12]+

—+ 105—.1_ o (75)

2211 peee .
4—OOO[P 3112 + F ATG 202 | T

A =

2811——1 2 _—
EEI_IEBJ:k:- _)12& - F:— 222 f?zizi _+_
0° —
+ *2_ =0, (76)
vhere
E@‘“Xﬁﬁﬁ - B AN

—B(w‘)“ Eaeaaauce,e)__ 5118252263/3)“—-
giigasez_ ([3- Jiea)‘a )
cedza [ B 1 522(5,8)__ §“225“<’3’3>_

=111 =52222 =Jl22\=2
BB — (B*2%)




Equations (66), (75) and (76) are three simultaneous differential

N — =2
equations in the three dependent variables /uJ'é S S L and S <
The following series satisfy the boundary conditions

% =r§= OddArss/n(rﬂr’ei)sin (577’92) N
=1
% =r§ Jd Br.scos(rﬂYQ‘OsinéW92> S
=0
5= oo
=) = ;f:: ddcrs sin(r"n"el)cos(s'n’ee> 5
S=zo
vwhere
R
N L'EQEJ. ]

Substituting these series into (66), (75) and (76) one obtains three

simultaneous algebraic equations in the three sets of constants A

rs »
s and Cr_s . Solving these equations one finds
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/ N”h w .IDVN\C\NL +QQQN|NAW\NL +m.\wWVNW+

h ertmwl.wwmémm+060& m._mm,._rbm@mx
| L [ A, LT _sJ
. Jo<9r| =V
( [(8-2a s+

\

\ + (& =) 44+ 000& OM%m +

+[(51-3)) o5 40002 [(B1+ 1) g +

+ % =1 )g g+ ooo&mermsmw
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The remaining unknown functions can now be determined. One obtains

A’Uo/c from (74) and n(o(oc) from (68) and (73);
AT

|._
I
lh_
M
I
>

LQ oo s cos(rr©t)sin(sw0®) +

+503>  B_cos(rmot)sin(zwe®),

"és—odcl
A ] & 1 2
0 = ioor¢s_scfz;,4 sin (FYE >cos(s77’9 ) +

+ 50 Z C sm(r’?’@ >cos(s’v’9 )

ré¢s =odd
D—f-l= § B "‘L"‘)s}né—-w@1>sin (577’9?'>
P réemodd 'S ray’ >

DP
N

1Y . :
'?/SZ— oc/dC,_s —5-—/,;->sm 6":7’9'1)5//7 (sﬂ/92> .

Figures 4, 5, 6 and 7 show displacements and stress resultants for
a sandwich plate whose upper facing remains isotropic while its lower

facing ranges over various degrees of orthotropy. 1EJ_ is equal to

Young's modulus for the upper facing and 1Ee decreases from JE I

The cross modulus is assumed to have the following form




From the figures we see that as the lower facing ranges over various
degrees of orthotropy all displacements and stress resultants behave as

41

one would expect. The stress resultants §1 and N are larger than

:5-2 and ﬂaa since the plate stiffness in the ei direction is

greater than the stiffness in the 92 direction. For the same reason

the rotation,u)"i is less than,{,u'é_,

Lo
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FIG.5, EDGE ROTATIONS
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16. Infinite Circular Cylinder with a Viscoelastic Core

In order to study the effect of a viscoelastic core, an infinite
circular cylinder loaded by a concentrated uniform ring load acting at
92=O is investigated. The facings are isotropic membranes with
the same thickness and physical properties. The core is isotropic
with an infinite Young's modulus in transverse extension.

The dimensionless surface coordinates are

d 2 Z
69 = Qb 3 e = I:?-

see figure 8. The assumed viscoelastic character of the core is that
of a standard linear solid as shown in figure 9. For this example

we take

In the sequel the variation of the geometry thru the thickness
of the composite shell has been neglected.

From symmetry of the shell and the load

35'1 ==="izz;?; — ’446{1, —_ F:;.JEE — ’,31152 — C:)

J
and all remaining functions are independent of é;; -
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FIG.8, CIRCULAR CYLINDER



FIG.9, CORE VISCOELASTIC
BEHAVIOR
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The following equations are the time Laplace transforms of the
equilibrium equations, the core stress-strain relations and the stress

resultant-displacement relations for the composite shell

-5 Ps@E) +5 5. FA'=0, (77)
%%33,_’_ 8_é_,7p5(ea) _*n =0, (78)
*nes, =0, (79)
*5® X*n* =0, (80)
Tz ="‘§15*5‘7?3,a+ :E;*G ’ Ch
A= Sl [ty 4+ g, ||

*p522 é_—;__g 735*_—3 +*,a7g)

2
164680 |
* 22 LoE [* 1 % ]
& To480l° “"Wae ™ [gon 3,22 &3)
Notice that
¥l D k22 (84)
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The boundary conditions cre

"J"Eé :]E;El==(:>==: C:> ) <3£3£Ei>

-

L 6% =+0 2

and ,u)’ Mféoncl/ujéavarn%h as 92__’_ + Co.
J

From {79), (82) and the boundary conditions one finds

A %E=0

2,2 = = 10 —_—;3 ) C%Bé>>

r_)il — L—EaEE;.,Z:ZJE; . (&3;{)

2
Differentiating (80) with respect to 6 < and then using (77),

(87) and (81) one obteins

4-.[ ¥ ____ - OE  —
16007 32222 8007 ’(’Ué:ae. +

1456.*.__ /:6(92)
s ST —
0 /L,U':B’ = 116480 , .

+ ;e*e s (ea)]) o @8

2Y .. . . .
where é;(é; is Dirac's delts function.

Fo
Taking the 6;;23 Fourier transform of (88) yields L13J [lh}

_+_




p[116480+ 5° ]
’795 r?aéli-c_)

/-———-1 o E 2 1456
Lya 8007“6§ 10 ]

,(89)

S
Il

6OO

where.ig is the Fourier transform parameter znd =a \/ over a function
indicates & Fourier transform.

The inverse Laplace transform of (89) is

1456
V + r2C
O 128000 izd; 4 i
L CON . y2rr 4 _zoo 232960
AN Ef+ 2R 2
5 o2 1456 25 o4, 1456
64§+ za§ '+ Tz
4 ooo e.zc_%o
féreo0gezze0 g4y L LooD 02, 232960
4, 100D o2, 232060
£ ZT§ IS
(70)

(-} ex}D

where

G P o f

[EE > E

v
Observing that ,LAJ-’ is an even function of‘é? it is seen that

N

/o__g: = 7/2—,3;—'[ (§) cos@@)dE (a1)

Expanding the exponential function

§4+ looo§ +~ 232960

— 41
P 45%’21 4 (92)
200 232940
£+ Z7 F o+ ZL
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in a power series and comparing the integrals which result from substi-
tuting (90) and the power series of (92) into (91), it is seen that in

approximating (92) by exp (— %00’() only a term of order _[ O-s as
compared to one is being neglected when % < 1200. with this

approximation (91) reduces to

— _ £ 2
72 = —3020(1— e W)éé"é’ae.

'[cos (5.6292) +0.602 sin (5.626 2)] _
25705 0w 5 6240 e[cos (6.046%) +

+0.907sin (6.0462) |. (@3)

Making the same approximation in the integral form of /Wé and

satisfying (85) one finds
= =zeo—1eo(z—e‘"4‘;%”?>é“"629.a
‘[cos (5.6292> — 0.164 sin (5 6292‘)_7 —

_ X 2
— 1RO e 40T S 6248 cos(é.04-92> —

- 0.0324 sin (6.0452):]. (94)
=

The stress resultant )) can be determined from (87) and (93).

To determine S 2 one uses (77), {87) and (86) to obtain

55, _ e\ 1 [AUz.
=2 5(6%) 240\ Ta /- (35)

Integrating (95) and using the boundary conditions on ,(,ué and 3_ S

one finds
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S _ ey L _ I
P =H (%) 2 240

Equation (81) can bs written

iy 80(1‘_”_“4__)—!—50(——-)-/—

+ 5= f o ooz -t )[ =) (2‘: ’):} dt’.  (97)

CXD’CJ {97) veccmes

———-——[4—66(1 e‘%’t)-——loo(t )e'-’foo'z:

& &% s (5.620 ) — [:'582@ eﬁ_) —

— l6. 4(2_‘0““’—>e 40T o 56 éegjm (5.6292> -+

Again approximating (92) by exp (,

e —6.240%
+ [o 623+100(Ezs 4«00@)]6 “00TS Cos (6.046%)—

- [3 77+3-24(250“t>]ez’i? & 24§m(é.o4e") (38)

Equations (83), (81), (96) and (86) yieid

ne& / 500&(6%) - 4002 s YCE
P ] 164-80

T o 3aa>+ 8( >+_
T =2 )jafg

800
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2
In evaluating /{,(/'5 22 it is seen that it contains 5(9 ) and
8]

that (92) can no longer be approximated by exp (—ZO 0,9_ Here one
must use 4 100 o 232@60
O
oxp -¢ (E+ZT §+ =Z1 ~
400T —
E?‘4-*- EiC?CDig? - ElESEE‘?é:C)

~ S| io—of
- € (4‘00’2:‘/&?4+ 20 ? _/_ 832‘960 )

After some manipulaticn one finds

JoofT- %) — —[3 75(1 4 s o
P ) - —€ -

— 1. 29(400rg> e “""”‘]e & 629c os (5.626%) +

- [4.45ﬂ— € m) + 0778 (Z%O—fz) e Zgg’?‘}

- & ¢5%in(5.620%) - [4.28 + 110 (FEo)|

— .t __ _&240%
o © 4007T o ios(é,o4-9?') - [4—.4—2 —

_ 1 O°(4oot>:]ez'_°_°—'te 62487 12 046?) (99)

From (78) and (84) we have

Lac/.?s 22
S— =-66%)+ 24(%— ) (100)
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Equations (93), (94), (98) and (99) are only valid for f/z < 200
and 622 O For Qaé (O it is observed that,&'}’é and [) 22
are even functions of 92 and that ﬂ}é and % are odd functions

of 92 Equations (96), (87) and (100) are valid for all € and o<

For f:oo

/Z:—g = — 30209_6'6292 cos(5.6298> -+
+0.602 5in(5.626%) |,
2 =120 120 &6429% | o5 (5.6262) —
— 0 Le4sin(5.620%) ], (101)
/Z.()C-Qé_ = 4.66 e_é.éeea cos(5.é>892> -
— 82.0 sin (5.62.98>] ) (102)

Joo(%f-a) = _z7885°% [cos(S. 626°%) —
— 1185 (6.626%) |

Equations (98) and (102) show that/(,ué is discontinuous at 62=O
wnich does not agree with physical reality. From (83) it is seen that

/(/U'é

If the facings had been thin shells instead of membranes this incon-

mist be discontinuous if )= is to finite at ©==(D.

sistency would not have arisen.
As can be seen from (94) and (101), ,ufé at 62==-oo is

independent of ﬁ_
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In figures 10 to 14 only the functions for t equal zero and
infinity are plotted. The functions at f%%:::liiCDC)are so close to the
functions at 1f =00 that they are almost indistinguishable on the
figures.

For the numerical values of the physical constants chosen the
displacements and stress resultants do not vary greatly as functions of
time. However, for a different set of numerical values for the physical

constants this may not be true.
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NOTATIONS

The tensor notations of I.E] are utilized. Latin suffixes take on
numbers 1, 2 and 3 while Greek suffixes take on numbers 1l and 2.
Repeated indices are not summed when enclosed by parentheses. The
prefix /1 stends for O or i according as the quantity is associated
with the upper or lower facing, respectively. If two signs appear, i.e.
i_ i'—)ch the upper (or lower) sign applies whenever reference is being

J

made to the upper (or lower) facing. A comma denotes partial differen-

tiation, i.e. h —éh

il
differentiation with respect to the three dimensional space while a

A vertical bar (l) denotes covariant

double vertical bar ( “) denotes covariant differentiation with respect

to the core mid-surface coordinates.

Symbol Description

L. a characteristic length of the core

mid-surface

Q

thickness of the core

d thickness of & facing, N =0 or 1

9 dimensionless surface coordinates,

lines of curvature

3 3

2] B ,.,9 dimensionless normal coordinates

—ah E— o] NS Y
base vectors where is

oc P) (o & P

the dimensionless position vector of
the core mid-surface

A

Q unit normal to core mid-surface



R
L)

40
Q
)

i3
s{')

N
D>

»

J>

P

N
™

R RO

61

dimensionless interface base vectors

(see O, )

2\

03

coefficients of the second fundamental

form for the core mid-surface

coefficients of the second fundamental

form for the interface surfaces

L(g‘x WK b‘x Qﬁ,base vectors
2\

LD

oy =

( 7! 3~> 93

p— N -

QD‘. Qﬁ

e a——rae.

Goc” J

determinant / Qo(ﬁl

determinant I 9 =4 I

Yot ebc 83 where er_s - is the

permutation symbol
deformed unit normal to interface
surfaces
= “

L,LOCQ. unit normal to core edge
at the mid-surface

< unit 1 to the ed
nuoc nQ unit normal to the edge
of a facing at the interface

A o uni

e QO unit tangent to the edge
of a facing at the interface

mean curvature of core mid-surface

Gaussian curvature of core mid-surface
1 ] ] )

/L".B ede d + /1_3_1_ Ji Cl

1 . _ .

/L3gdszd A—SLL)J_CI
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/2 0ud? + “/L%Jid"’-
l/L od & 72 3J.d
%_ngf + J/LN;C/B
W aded®= A, J,d°

Christoffel symbols of the second

kind evaluated at the interface

surfaces

¥ ¥
C;:ﬁB — [jﬁ;: :]£;£3==:C3
¥ ¥
e Lo+ Yo
.4 .4
s doe =1 Yo

volume of a body

surface of a body

core mid-surface

interface surfaces

exterior faces of the facings
part of CJ( on which the stresses
are prescribed

part of c:/ on which the displace-
ments are prescribed

cSi for the edges of the facings
<=b/€1 for the edges of the facings
part of interface boundary curves on
which the stress resultants are

prescribed
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part of interface boundary curves on
which the displacements are prescribed
dimensionless arc length along inter-
face boundary curves

dimensionless arc length along the
normals to the edges of the facings

at the interfaces

\/V.-Q— V') displacement vector
Vi-ls + Vs

Vr—}s — \/.s / .

interface displacement vector

—— ——

Qr.‘ (Q\/'*'l\/ ) average displacement

of the interfaces

—— s 4 el
Q_+(\N/—\V ) relative displacement
rr\e" 4

of the interfaces
strain tensor

stress tensor
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n Co(,éa/7

6l

Young's modulus for transverse
extension of the core

shear modulus of zn orthotropic core
shear modulus of an isotropic cere
Young's modulus of an isotropic facing
Poisson's ratio for both facings
elastic coefficients for a facing

OBOC/QB’7+ chxﬂX7

QBo(,BB/7__ -J-Boge 3/7

elastic coefficients defined by

B7 2Crypu= A(s:5i+875%)

_g_coep 5/7 +_-1 coqg 3/7

_gco(,ea?) -icx,aa’»?
2n-rskl

a symbol placed over a quantity
indicating that the quantity is
prescribed on the edge of a facing
a symbol placed over a function of
time to indicate the Laplace trans-

form of the function

Laplace transform parameter

]/2% = |[F2ah+22k
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