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Abstract

On Some Inference Problems for Networks

by

Soumendu Sundar Mukherjee

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Peter J. Bickel, Chair

Networks are abstract representations of relationships between a set of entities. As such
they can be used to represent data in a variety of complex interactive systems such as
people and their social connections, researchers and their collaborations, proteins and their
interactions, and so on. Vast amounts of such interaction data are being collected routinely in
a range of disciplines and thus call for the attention of the statistician. Due to their large size
(number of observations scales as the square of the number of nodes), traditional statistical
methods are usually not scalable and one needs to come up with more computationally
feasible inference techniques.

A concrete example of the issue is the problem of community detection in networks.
Traditional likelihood based methods are computationally intractable, so researchers have
come up with various computation-friendly alternatives. Although these methods work well
on small to moderately large networks, most of them cannot handle truly large networks in
a reasonable amount of time.

In this dissertation, we first advance divide and conquer strategies for community detec-
tion. We propose two algorithms which perform clustering on a number of small subgraphs
and finally patch the results into a single clustering. The main advantage of these algorithms
is that they bring down significantly the computational cost of traditional algorithms, includ-
ing spectral clustering, semidefinite programs, modularity based methods, likelihood based
methods, etc., without losing on accuracy and even improving accuracy at times. These al-
gorithms are also, by nature, parallelizable. Thus, exploiting the facts that most traditional
algorithms are accurate and the corresponding optimization problems are much simpler in
small problems, our divide and conquer methods provide an omnibus recipe for scaling tra-
ditional algorithms up to large networks. We prove consistency of these algorithms under
various subgraph selection procedures and perform extensive simulations and real data anal-
ysis to understand the advantages of the divide and conquer approach in various settings.

We then extend these divide and conquer methods to the more realistic situation of
mixed memberships. Models that can be tackled are the mixed membership blockmodel,
topic models, etc.
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Next we focus on the problem of network comparison. We tackle two aspects of this
problem: clustering and changepoint detection.

While being able to cluster within a network, in the sense of community detection, is
important, there are emerging needs to be able to cluster multiple networks. This is largely
motivated by the routine collection of network data that are generated from potentially dif-
ferent populations. These networks may or may not have node correspondence. For exam-
ple, brain networks of a group of patients have node correspondence, whereas collaboration
networks of researchers in different disciplines such as Computer Science, Mathematics or
Statistics will have little node correspondence. When node correspondence is present, we
cluster networks by summarizing a network by its graphon estimate, whereas when node
correspondence is not present, we propose a novel solution for clustering such networks by
associating a computationally feasible feature vector to each network based on traces of pow-
ers of the adjacency matrix. We illustrate our methods using both simulated and real data
sets, and theoretical justifications are provided in terms of consistency.

In the changepoint problem, one observes a series of networks indexed by time and wishes
the check if there is some significant change in the structure of these networks at some point
of time. Potential applications are in, for instance, brain imaging, where one has brain
scans of individuals collected over time and is looking for abnormalities, ecological networks
observed over time, where one wonders if there is a structural change. We consider a CUSUM
(short for cumulative sum) statistic for this problem, and prove its consistency. We find that
in this high dimensional setting, the estimation error rate is better than the classical rate
for fixed dimensional changepoint problems. As applications, we detect changepoints in the
MIT reality mining data and the US senate roll call data.
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Ananya, my fiancé, kept me sane in a difficult period of my life. She would resent me
if I thank her here, but it would have been so much harder if not for her love and support
during the last eight years.



vii

Finally, I thank my parents, Chandana Mukherjee and Basudev Mukherjee, for their
unconditional love and support, and all their sacrifices throughout my life. It was a dream
of my late father that I pursue higher education, and he did so many things to make that
happen. This dissertation is dedicated to them and to all my teachers who have influenced
and shaped me in many ways in the course of life.



1

Chapter 1

Introduction

1.1 A brief overview of some network models
Networks are abstract representations of relationships between a set of entities. Formally, a
graph or network G = (V,E) consists of a set of vertices (also called nodes, actors, entities)
and a set E of edges (also called links, connections) between them. As a concrete example, V
could be the set of all students in a class and an edge in E could then tell whether a student
considers another student as a friend. So, G, in this case, is a network of friendships among
students in a class. Other examples could be social networks, food-web (predator-prey)
networks, co-authorship networks and so on.

Network data are being collected at an ever-growing volume in modern sciences. Due to
their complex structure representing interactions among a number of entities, these datasets
pose new challenges for a statistician. As the data dimension scales as the square of the
number of entities, traditional statistical methods of inference are not scalable beyond small
networks. So one has to come up with novel methods of inference which are scalable. A
major focus of this dissertation thus will be computation — we want to develop methods
that can be applied to large graphs in a reasonable amount of computing time.

Statisticians deal with data by postulating reasonable probabilistic models and then
learning parameters of these models. Over the years people have come up with various prob-
abilistic models for networks, depending on the focus of study. The simplest such model is the
Erdös-Rényi (ER) model [29], where the edges are independent and identically distributed
as a Bernoulli(p) variable. Although mathematically already quite interesting, this model is
essentially a null model of randomness and fails to capture phenomena seen in real world
networks, such as variable (especially heavy tailed) degree distribution, community struc-
ture, etc. There are many alternative models which address some of the issues. For instance,
in the configuration model, graphs are drawn at random from a specified degree distribu-
tion; in the preferential attachment model, one can see the “rich-get-richer” phenomenon,
seen, for example, in citation networks. For more details on these models and networks in
general, see [57]. Anyway, we will not deal with these models in this dissertation. General
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network models which are appropriate for the problems considered in this dissertation are
latent space models (loosely called “graphons” sometimes), inhomogeneous random graphs,
or kernel random graphs [18].

Among the problems considered in this dissertation, a recurring one will be the problem
of community estimation or network clustering. In various real networks one observes a
group of nodes tightly connected between themselves and sparsely connected to the rest
of the nodes. Such densely connected groups are called communities and the goal is two
extract communities from observed networks. The simplest statistical model for networks
with communities is the stochastic blockmodel (SBM) [37]. The key idea in an SBM is to
enforce stochastic equivalence, i.e. two nodes in the same latent community have identical
probabilities of connection to all nodes in the network.

For an SBM generating a network with n nodes and K communities, one has a hid-
den/unknown community/cluster membership matrix Z ∈ {0, 1}n×K , where Zik = 1 if node
i is in community k ∈ [K]. Given these memberships, the link formation probabilities are
given as

P(Aij = 1 | Zik = 1, Zjk′ = 1) = Bkk′ ,

where B is a K ×K symmetric parameter matrix of probabilities. The elements of B may
decay to zero as n grows to infinity, to model sparse networks. Note that for K = 1, this
reduces to the Erdös-Rényi model.

There are many extensions of SBM. The degree corrected blockmodel (DCBM) [40] al-
lows one to model varied degrees in the same community, whereas a standard SBM does not.
Mixed membership blockmodels (MMBM) [4] allow a node to belong to multiple communi-
ties, whereas in an SBM, a node can belong to exactly one cluster.

We will now do a brief literature review of some of the methods used for community
detection and the computational challenges that arise, before we give an overview of the
work in this dissertation.

Typically, the goal is to estimate the latent memberships consistently. A method out-
putting an estimate Ẑ is called strongly consistent if P(Ẑ = ZΠ) → 1 for some K × K
permutation matrix Π, as n → ∞. A weaker notion of consistency is when the fraction
of misclustered nodes goes to zero as n goes to infinity. Typically, most of the consistency
results are derived where average degree of the network grows faster than the logarithm of
n. This is often called the semi-dense regime. When average degree is bounded, we are
in the sparse regime. In the sparse regime, one cannot hope to reconstruct the community
assignments consistently. Then best one can do is to construct an estimate which has a
better-than-random correlation with the truth. Even this is not possible below the famous
phase-transition threshold [54, 53] where no algorithm is better than a random guess.

On the algorithmic side, there are a handful of methods. These include likelihood based
methods [8], modularity based methods [75, 61, 13], spectral methods [71], semidefinite
programming (SDP) based approaches [21], etc. Among these spectral methods are scalable
since the main bottleneck is computing top K eigenvectors of a large and often sparse matrix.
While the theoretical guarantees of spectral methods are typically proven in the semi-dense
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regime [51, 71, 43], a regularized version of it has been shown to perform better than a
random predictor for sparse networks [42]. Profile likelihood methods [13] involve greedy
search over all possible membership matrices, which makes them computationally expensive.
Semidefinite programs are robust to outliers [21] and are shown to be strongly consistent
in the dense regime [7] and yield a small but non-vanishing error in the sparse regime [34].
However, semidefinite programs are slow and, typically, only scale to thousands of nodes,
not millions of nodes.

Methods like spectral clustering on geodesic distances [11] are provably consistent in the
semi-dense case, and can give a small error in sparse cases. However, it requires computing
all pairs of shortest paths between all nodes, which can pose serious problems for both
computation and storage for very large graphs.

Monte Carlo methods [75, 62], which are popular tools in Bayesian frameworks, are
typically not scalable. More scalable alternatives such as variational methods [32] do not
have provable guarantees for consistency, and often suffer from bad local optima.

So far we have discussed community detection methods which only look at the network
connections and not node attributes which are also often available and may possess use-
ful information on the community structure (see, e.g., [60]). There are extensions of the
methods mentioned earlier which accommodate node attributes, e.g., modularity based [85],
spectral [14], SDP based [81], etc. These methods come with theoretical guarantees and
have good performance in moderately sized networks. While existing Bayesian methods [50,
60, 80] are more amenable to incorporating covariates in the inference procedure, they are
often computationally expensive and lack rigorous theoretical guarantees.

The same situations prevail for the generalizations DCBM and MMBM. Most of the
above mentioned methods have direct counterparts for DCBM. Some notable algorithms for
MMBM are variational inference [3], tensor decomposition methods [9], eigenvector-based
methods [48] among others.

While the above mentioned array of algorithms are diverse and each has its unique
aspects, in order to scale them to very large datasets, one has to apply different computational
tools tailored to different algorithmic settings. While stochastic variational updates may be
suitable to scale Bayesian methods, pseudo likelihood methods are better optimized using
row sums of edges inside different node blocks. Thus it is an important problem to devise
general techniques that aid computation.

1.2 Overview of the work in this dissertation
Chapters 2 and 3 of this dissertation are devoted to scalable community membership esti-
mation. Chapters 4 and 5 are devoted to detecting patterns in a number of given networks.
Below we give short summaries of the work presented in each chapter.
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Scalable community detection
In Chapter 2, we advance divide and conquer strategies for solving the community detec-
tion problem. We propose two algorithms which perform clustering on a number of small
subgraphs and finally patch the results into a single clustering. The main advantage of
these algorithms is that they bring down significantly the computational cost of traditional
algorithms, including spectral clustering, semidefinite programs, modularity based methods,
likelihood based methods, etc., without losing on accuracy and even improving accuracy
at times. These algorithms are also, by nature, parallelizable. Thus, exploiting the facts
that most traditional algorithms are accurate and the corresponding optimization problems
are much simpler in small problems, our divide and conquer methods provide an omnibus
recipe for scaling traditional algorithms up to large networks. We prove consistency of these
algorithms under various subgraph selection procedures and perform extensive simulations
and real data analysis to understand the advantages of the divide and conquer approach in
various settings. This work is available at the arXiv [55].

Scalable estimation in mixed membership models
In Chapter 3, we extend the methods of Chapter 2 to handle the more realistic scenario
of mixed memberships. This in particular includes the mixed membership blockmodel
(MMBM), and topic models (TM) among others. We derive conditions under which align-
ment of estimated mixed memberships are possible for different subsets of nodes.

Clustering network-valued objects
In Chapter 4, we consider clustering network valued objects. While being able to clus-
ter within a network is important, there are emerging needs to be able to cluster multiple
networks. This is largely motivated by the routine collection of network data that are gen-
erated from potentially different populations. These networks may or may not have node
correspondence. For example, brain networks of a group of patients have node correspon-
dence, whereas collaboration networks of researchers in different disciplines such as Computer
Science, Mathematics or Statistics will have little node correspondence. When node corre-
spondence is present, we cluster networks by summarizing a network by its graphon estimate,
whereas when node correspondence is not present, we propose a novel solution for clustering
such networks by associating a computationally feasible feature vector to each network based
on trace of powers of the adjacency matrix. We illustrate our methods using both simulated
and real datasets, and theoretical justifications are provided in terms of consistency. This
work has appeared in NIPS (2017) [56].
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Changepoint detection
In Chapter 5, we consider a temporal analog of the problem considered in Chapter 3, namely
changepoint detection, given a network valued time series. Changepoint detection is a classi-
cal problem in statistics, going all the way back to the early days of statistical quality control
[65, 66, 31]. There is a huge literature on the univariate changepoint problem, where one
tries to detect changes in a scalar stochastic process. An excellent treatment can be found
in the book [20].

The network version of the problem is also of practical interest. Potential applications
are in, for instance, brain imaging, where one has brain scans of individuals collected over
time and is looking for abnormalities, ecological networks observed over time, where one
wonders if there is a structural change, and so on. There is a significant literature on the
related problem of anomaly detection in graphs. See, e.g., [70] for a survey.

Although some empirical work has been done [68, 67], not much theory can be found, and
most theoretical results focus on particular structures or specialized models. The classical
CUSUM (short for cumulative sum) statistic [66] for univariate changepoint problems can
be used in the network problem as well, and provides a unified way of constructing statistics.
It is also amenable to theoretical analysis because of the averaging structure present. We
consider the offline case where the entire series is observed beforehand and analyze the
CUSUM statistic in this problem, proving the consistency of the resulting estimator, with
asymptotics involving the number of networks in the series, the size of the networks, and their
sparsity. In particular, we show that the classical rate of estimation for fixed dimensional
changepoint problems can be surpassed in the high-dimensional setting of networks. We
analyze the MIT reality mining data and the US senate roll call data as applications.
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Chapter 2

Divide and conquer for community
detection

2.1 Introduction
As mentioned in Chapter 1, most existing algorithms for community detection can be used
only on small to moderately large networks. In this chapter, we propose a divide and conquer
approach to community detection. The idea is to apply a community detection method on
small subgraphs of a large graph, and somehow stitch the results together. If we could
achieve this, we would be able to scale up any community detection method (which may
involve covariates as well as the network structure) that is computationally feasible on small
graphs, but is difficult to execute on very large networks. This would be especially useful
for computationally expensive community detection methods (such as SDPs, modularity
based methods, Bayesian methods, etc.). Another possible advantage concerns variational
likelihood methods (such as mean field) with a large number (depending on n) of local
parameters, which typically have an optimization landscape riddled with local minima. For
smaller graphs there are less parameters to fit, and the optimization problem often becomes
easier.

Clearly, the principal difficulty in doing this is matching the possibly conflicting label
assignments from different subgraphs (see Figure 2.1(a) for an example). This immediately
rules out a simple-minded averaging of estimates ẐS of cluster membership matrices ZS, for
various subgraphs S, as a viable stitching method.

In this regard, we propose two different stitching algorithms. The first is called Piecewise
Averaged Community Estimation (PACE); in which we focus on estimating the clustering
matrix C = ZZ>, which is labeling invariant, since the (i, j)-th element of this matrix
being one simply means that nodes i and j belong to the same cluster, whereas the value
zero means i and j belongs to two different clusters. Thus we first compute estimates of
ZSZ

>
S for various subgraphs S and then average over these matrices to obtain an estimate Ĉ

of C. Finally we apply some computationally cheap clustering algorithm like approximate
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Figure 2.1: (a) Conflicting label assignments on two subgraphs, on one labels are denoted
by 0/1, on the other by +/−, (b) onion neighborhood: the yellow vertices and the solid
edges between them constitute the ego network of the root vertex colored red. The green
and yellow vertices together with the solid edges between them constitute the 2-hop onion
neighborhood of the root (see the paragraph preceding Corollary 2.3.2 for details).

(a) (b)

K-means, DGCluster†, spectral clustering, etc. on Ĉ to recover an estimate of Z.
We also propose another algorithm called Global Alignment of Local Estimates (GALE),

where we first take a sequence of subgraphs, such that any two consecutive subgraphs on
this sequence have a large intersection, and then traverse through this sequence, aligning the
clustering based on a subgraph with an averaged clustering of the union of all its predecessor
subgraphs in the sequence, which have already been aligned. The alignment is done via an
algorithm called Match which identifies the right permutation to align two clusterings on
two subgraphs by computing the confusion matrix of these two clusterings restricted to the
intersection of the two subgraphs. Whereas a naive approach would entail searching through
all K permutations, Match finds the right permutation in K logK time. Once this alignment
step is complete, we get an averaged clustering of the union of all subgraphs (which covers
all the vertices). By design GALE works with estimates of cluster membership matrices ZS
directly to output an estimate of Z, and thus, unlike PACE, avoids the extra overhead of
recovering such an estimate from Ĉ.

The rest of the chapter is organized as follows. In Section 2.2 we describe our algorithms.
In Section 2.3 we state our main results and some applications. Section 2.4 contains sim-
ulations and real data experiments. In Section 2.5 we provide proofs of our main results,
while relegating some of the details to Appendix A. Finally, in Section 2.6 we conclude with
a summarizing discussion.

†This is a greedy algorithm detailed in Section A.3.
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2.2 Two divide and conquer algorithms
As we discussed in the introduction, the main issue with divide and conquer algorithms for
clustering is that one has to somehow match up various potentially conflicting label assign-
ments. We propose two algorithms to accomplish this task. Both algorithms first compute
the clustering on small patches of a network; these patches can be the induced subgraph
of a random subsample of nodes, or neighborhoods. However, the stitching procedures are
different.

Algorithm 1 PACE: Piecewise Averaged Community Estimation
1: Subgraph selection: Fix a positive integer threshold m? for minimum required sub-

graph size. Fix another positive integer T , that will be the number of subgraphs we
will sample. Given A, choose T subsets S1, . . . , ST of the nodes by some procedure, e.g.,
select m ≥ m? nodes at random, or pick h-hop neighborhoods of vertices in G, or ego-
neighborhood of vertices. By AS` denote the adjacency matrix of the network induced
by S`.

2: Clustering on subgraphs: Perform any of the standard clustering algorithms like pro-
file likelihood (PL), mean field likelihood (MFL), spectral clustering (SC), semidefinite
programming (SDP), etc. on each of these T subgraphs which have size at least m? to
obtain estimated clustering matrices Ĉ(S`) = Ĉ(`). For the rest of the subgraphs, set
Ĉ(`) ≡ 0. Extend Ĉ(`) to an n × n matrix by setting Ĉ(`)

ij = 0 if at least one of i, j was
not selected in S`. Denote the resulting matrix again by Ĉ(`).

3: Patching up: Let y(`)
ij denote the indicator of the event that both i, j were selected in

S`. Set Nij = ∑T
`=1 y

(`)
ij . Define the combined estimator Ĉ = Ĉτ by

Ĉij = Ĉτ,ij =
1{Nij≥τ}

∑T
`=1 y

(`)
ij Ĉ

(`)
ij

Nij

=
1{Nij≥τ}

∑T
`=1 Ĉ

(`)
ij

Nij

. (2.1)

Here 1 ≤ τ ≤ T is an integer tuning parameter. We will call Ĉτ as Piecewise Averaged
Community Estimator (also abbreviated as PACE).

PACE: an averaging algorithm
Suppose A is the adjacency matrix of a network with true cluster membership of its nodes
being given by the n × K matrix Z where there are K clusters. Set C = ZZ> to be the
clustering matrix whose (i, j)-th entry is the indicator of whether nodes i, j belong to the
same cluster. Given A we will perform a local clustering algorithm to obtain an estimate of
C, from which an estimate Ẑ of the cluster memberships may be reconstructed.

The τ parameter in PACE reduces variance in estimation quality as it discards information
from less credible sources — if a pair of nodes has appeared in only a few subgraphs, we do
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not trust what the patching has to say about them. Setting τ = θ
(
n
2

)−1∑
i<j Nij, for some

0 < θ < 1, or some quantile (say 0.4-th) of the Nij’s seems to work well in practice (this is
also somewhat justified by our theory).

A slight variant of Algorithm 1 is where we allow subgraph and/or node-pair specific
weights w`,i,j in the computation of the final estimate, i.e.

Ĉij = Ĉτ,ij =
1{Nij≥τ}

∑T
`=1w`,i,jy

(`)
ij Ĉ

(`)
ij

Nij

=
1{Nij≥τ}

∑T
`=1w`,i,jĈ

(`)
ij

Nij

, (2.2)

where Nij now equals ∑T
`=1w`,i,jy

(`)
ij . We may call this estimator w-PACE standing for

weighted-PACE. If the weights are all equal, w-PACE becomes equivalent to ordinary PACE.
There are natural nontrivial choices, including

(i) w`,i,j = |S`|, which will place more weight to estimates based on large subgraphs,

(ii) w`,i,j = degS`(i) + degS`(j), where degS(u) denotes the degree of node u in subgraph S
(this will put more weight on pairs which have high degree in S`).

The first prescription above is intimately related to the following sampling scheme for or-
dinary PACE: pick subgraphs with probability proportional to their sizes. For instance, in
Section 2.4 we analyze the political blog data of [1] where neighborhood subgraphs are chosen
by selecting their roots with probability proportional to degree.

In real world applications, it might make more sense to choose these weights based
on domain knowledge (for instance, it may be that certain subnetworks are known to be
important). Another (minor) advantage of having weights is that when T = 1 and |S1| = n,
we have Nij = w1,i,j and so if w1,i,j ≥ τ , then

Ĉij = Ĉ
(1)
ij ,

i.e. w-PACE becomes the estimator based on the full graph. This is, for example, true with
w`,i,j = |S`|, because τ is typically much smaller than n. However, ordinary PACE lacks this
property unless τ = 1, in fact, with τ > 1, the estimate returned by PACE is identically 0.
Anyway, in what follows, we will stick with ordinary PACE because of its simplicity.

Before we discuss how to reconstruct an estimate Ẑ of Z from Ĉ, let us note that we
may obtain a binary matrix Ĉη by thresholding Ĉ at some level η (for example, η = 1/2):

Ĉη := [Ĉ > η].

This thresholding does not change consistency properties (see Lemma A.4.1). Looking at a
plot of this matrix gives a good visual representation of the community structure. In what
follows, we work with unthresholded Ĉ.
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Reconstruction of Ẑ

How do we actually reconstruct Ẑ from Ĉ? The key is to note that members of the same
community have identical rows in C and that, thanks to PACE, we have gotten hold of a
consistent estimate of C. Thus we may use any clustering algorithm on the rows of Ĉ to
recover the community memberships. Another option would be to run spectral clustering on
the matrix Ĉ itself. However, as the rows of Ĉ are n-vectors, most clustering algorithms will
typically have a running time of O(n3)‡ at best. Indeed, the main computational bottleneck
of any distance based clustering algorithm in a high dimensional situation like the present
one is computing dij = ‖Ĉi? − Ĉj?‖ which takes O(n) bit operations. However, since we
have gotten a good estimate of C, we can project the rows of Ĉ onto lower dimensions,
without distorting the distances too much. The famous Johnson-Lindenstrauss Lemma for
random projections says that by projecting onto Ω(log n/ε2) dimensions, one can keep, with
probability at least 1 − O(1/n), the distances between projected vectors within a factor of
(1 ± ε) of the true distances. Choosing ε as inverse polylog(n) we need to project onto
polylog(n) dimensions and this would then readily bring the computational cost of any
distance based algorithm down from O(n3) to O(n2polylog(n)).

Following the discussion of the above paragraph, we first do a random projection of the
rows of Ĉ onto s (= polylog(n)) dimensions and then apply a (distance based) clustering
algorithm.

Algorithm 2 Recovering Ẑ from Ĉ: random projection followed by distance based clustering
1: Select a dimension s for random projection. Let Cluster(·, K) be a clustering algorithm

that operates on the rows of its first argument and outputs K clusters.
2: Ĉproj ← ĈR/

√
s, where R is a standard Gaussian matrix of dimensions n× s.

3: Ẑ ← Cluster(Ĉproj, K).

As for Cluster(·, K), we may use approximate K-means or any other distance based clus-
tering algorithm, e.g., DGCluster(Ĉ, Ĉproj, K), a greedy algorithm presented in Section A.3
as Algorithm 10.

GALE: a sequential algorithm
First we introduce a simple algorithm for computing the best permutation to align labels of
one clustering (Z1) to another (Z2) of the same set of nodes (with fixed ordering) in a set
S. The idea is to first compute the confusion matrix between two clusterings. Note that
if the two labelings each have low error with respect to some unknown true labeling, then

‡In addition to the standard ‘O’, ‘Ω’, ‘Θ’, ‘o’ notations, and their probabilistic counterparts, we will use
the following less standard alternatives: (i) A � B to mean A = Θ(B), and (ii) A� B to mean B = o(A).
We will also sometimes use a ‘tilde’ over the standard notations to hide polylogarithmic factors.
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the confusion matrix will be close to a diagonal matrix up to permutations. The following
algorithm below essentially finds a best permutation to align one clustering to another.

Algorithm 3 Match: An algorithm for aligning two clusterings of the same set S of nodes.
Input Z1, Z2 ∈ {0, 1}|S|×K .

1: Compute K ×K confusion matrix M = Z>1 Z2. Set Π← 0K×K .
2: while there are no rows/columns left do

(a) Find i, j, such that Mij = maxi′,j′Mi′j′ (a tie can be broken arbitrarily).
(b) Set Πij = 1.
(c) Replace the i-th row and j-th columns in M with −1.

3: Return the permutation matrix Π.

Remark 2.2.1. One can also compute the optimal permutation by searching through all K!
permutations of the labels and picking the one which gives smallest mismatch between the two;
but Match brings the dependence on K down from exponential to quadratic. Note that if one
of the clusterings are poor, then Match may not retrieve the optimal permutation. However,
our goal is to cluster many subgraphs using an algorithm which has good accuracy with
high probability (but may be computationally intensive, e.g., profile likelihood or semidefinite
programming) and then use the intersections between the subgraphs to align one to another.
As we shall show later, as long as there are enough members from each community in S, the
simple algorithm sketched above suffices to find an optimal permutation.

Now we present our sequential algorithm which aligns labelings across different subgraphs.
The idea is to first fix the indexing of the nodes; cluster the subgraphs (possibly with a parallel
implementation) using some algorithm, and then align the clusterings along a sequence of
subgraphs. To make things precise, we make the following definition.

Definition 2.2.1. Let Sm,T = (V,E) (vertex set V and edge set E) denote a “super-graph of
subgraphs” where each subgraph is a node, and two nodes are connected if the corresponding
subgraphs have a substantial overlap. For random m-subgraphs, this threshold is m1 :=

⌈
m2

2n

⌉
.

Define a traversal through a spanning tree T of Sm,T as a sequence x1, . . . , xJ , xj ∈ [T ],
T ≤ J ≤ 2T , covering all the vertices, such that along the sequence xi and xi+1 are adjacent,
for 1 ≤ i ≤ J − 1 (i.e. a traversal is just a walk on T of length at most 2T − 1 passing
through each vertex at least once).

After we construct a traversal, we travel through this traversal such that at any step, we
align the current subgraph’s labels using the Match algorithm (Algorithm 3) on its intersec-
tion with the union of the previously aligned subgraphs. At the end, all subgraph labellings
are aligned to the labeling of the starting subgraph. Now we can simply take an average or
a majority vote between these.
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Algorithm 4 GALE: Global Alignment of Local Estimates. Input: adjacency matrix A;
parameters m,T, τi, i ∈ [T ]; a base algorithm A (e.g., PL, MFL, SC, SDP, etc. )

1: Subgraph selection: Given A, choose T subsets S1, . . . , ST of the nodes by some
procedure, e.g., select them at random, or select T random nodes and then pick their
h-hop neighborhoods. By AS` denote the adjacency matrix of the network induced by
S`.

2: Clustering on subgraphs: Perform algorithm A on each of these T subgraphs to
obtain estimated cluster membership matrices Ẑ` = ẐS` . Extend Ẑ` to a n×K matrix
by setting (Ẑ`)jk = 0 for all k ∈ [K] if j /∈ S`.

3: Traversal of subgraphs: Construct a traversal Sx1 , . . . , SxJ through the T subgraphs.
4: Initial estimate of Z: Ẑ ← Ẑx1 . Also set Ẑ(x1) := Ẑx1 .
5: Sequential label aligning: For subgraph Sxi on the traversal (i = 1, . . . , J), if xi has

not been visited yet,
(a) Compute the overlap between the current subgraph with all subgraphs previously

visited, i.e. let S = Sxi ∩ ∪i−1
`=1Sx` .

(b) Compute the best permutation to match the clustering Ẑxi , Ẑ on this set S, i.e.
compute Π̂i = Match(Ẑxi

∣∣∣
S
, Ẑ
∣∣∣
S
).

(c) Permute the labels of the nodes of Sxi to get an aligned cluster membership matrix
Ẑ(xi) ← ẐxiΠ̂.

(d) Update Ẑjk ←
∑

`∈{x1,...,xi}
Ẑ

(x`)
jk

1{j∈Sx`}∑
`∈{x1,...,xi}

1{j∈Sx`}
1{∑

`∈{x1,...,xi}
1{j∈Sx`}>τi}

, for some threshold τi.

(e) Mark Sxi as visited.

Implementation details

Constructing a traversal of the subgraphs can be done using a depth first search of the super-
graph Sm,T of subgraphs. For our implementation, we start with a large enough subgraph
(the parent), pick another subgraph that has a large overlap with it (the child), align it and
note that this subgraph has been visited. Now recursively find another unvisited child of the
current subgraph, and so on. It is possible that a particular path did not cover all vertices,
and hence it is ideal to estimate clusterings with multiple traversals with different starting
subgraphs and then align all these clusterings, and take an average. This is what we do
for real networks. We also note that at any step, if we find a poorly clustered subgraph,
then this can give a bad permutation which may deteriorate the quality of aligning the
subsequent subgraphs on the path. In order to avoid this we use a self validation routine.
Let S be intersection of current subgraph with union of the previously visited subgraphs.
After aligning the current subgraph’s clustering, we compute the classification accuracy of
the current labeling of S with the previous labeling of S. If this accuracy is large enough, we
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use this subgraph, and if not we move to the next subgraph on the path. For implementation,
we use a threshold of 0.55.

Computational time and storage

The main computational bottleneck in GALE is in building a traversal through the random
subgraphs. Let ηm,T be the time for computing the clusterings for T subgraphs in parallel.
A naive implementation would require computing intersections between all

(
T
2

)
pairs of m-

subsets. As we will show in our theoretical analysis, we take m = ω(
√
n/πmin), where πmin :=

mink πk (here πk := nk/n, where nk is the size of the k-th cluster) and T = Ω̃(n/m). Taking
πmin = Θ(1), the computation of intersections takes O(T 2m) = Õ(n3/2) time. Further, a
naive comparison for computing subsets similar or close to a given one would require T log T
time for each subset leading to T 2 log T = Õ(n) computation. However, for building a
traversal one only needs access to subsets with large overlap with a given subset, which is a
classic example of nearest neighbor search in Computer Science.

One such method is the widely used and theoretically analyzed technique of Locality
Sensitive Hashing (LSH). A hash function maps any data object of an arbitrary size to
another object of a fixed size. In our case, we map the characteristic vector of a subset to a
number. The idea of LSH is to compute hash functions for two subsets A and B such that the
two functions are the same with high probability if A and B are “close”. In fact, the amount
of overlap normalized by m is simply the cosine similarity between the characteristic vectors
χ(A) and χ(B) of the two subsets, for which efficient hashing schemes h : {0, 1}n → {0, 1}
using random projections exist [24], with

P(h(A) = h(B)) = 1− arccos(χ(A)Tχ(B)/m)/π.
For LSH schemes, one needs to build L := T ρ hash tables, for some ρ < 1, that governs
the approximation quality. In each hash table, a “bucket” corresponding to an index stores
all subsets which have been hashed to this index. For any query point, one evaluates O(L)
hash functions and examines O(L) subsets hashed to those buckets in the respective hash
tables. Now for these subsets, the distance is computed exactly. The preprocessing time is
O(T 1+ρ) = Õ(n 1+ρ

2 ), with storage being O(T 1+ρ + Tm) = Õ(n), and total query time being
O(T 1+ρm) = Õ(n1+ρ/2). This brings down the running time added to the algorithm specific
ηm,T from sub-quadratic time Õ(n3/2) to nearly linear time, i.e. Õ(n1+ρ/2).

Thus, for other nearly linear time clustering algorithms, GALE may not lead to com-
putational savings. However, for algorithms like profile likelihood or SDP which are well
known to be computationally intensive, GALE can lead to a significant computational saving
without requiring a lot of storage.

Remarks on sampling schemes
With PACE we have mainly used random m-subgraphs, h-hop neighborhoods, and onion
neighborhoods, but many other subgraph sampling schemes are possible. For instance,
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choosing roots of hop neighborhoods with probability proportional to degree, or sampling
roots from high degree nodes (we have done this in our analysis of the political blog data,
in Section 2.4). As discussed earlier, this weighted sampling scheme is related to w-PACE.
A natural question regarding h-hop neighborhoods is how many hops to use. While we do
not have a theory for this yet, because of “small world phenomenon” we expect not to need
many hops; typically, in moderately sparse networks, 2-3 hops should be enough. However,
an adaptive procedure (e.g., cross-validation type) for choosing h would be welcome. Also,
since neighborhood size increases exponentially with hop size, an alternative to choosing full
hop-neighborhoods is to choose a smaller hop-neighborhood and then add some (but not
all) randomly chosen neighbors of the already chosen vertices. Other possibilities include
sampling a certain proportion of edges at random, and then consider the subgraph induced
by the participating nodes [45].

We have analyzed GALE under the random sampling scheme. For any other scheme, one
will have to understand the behavior of the intersection of two samples or neighborhoods.
For example, if one takes h-hop neighborhoods, for sparse graphs, each neighborhood pre-
dominantly has nodes from mainly one cluster. Hence GALE often suffers with this scheme.
We show this empirically in Section 2.4, where GALE’s accuracy is much improved under a
random m-subgraph sampling scheme.

2.3 Main results
In this section we will state and discuss our main results on PACE and GALE, along with a
few applications.

Results on PACE
Let σ and σ′ be two clusterings (of n objects into K clusters), usually their discrepancy is
measured by

δc(σ, σ′) = inf
ξ∈SK

1
n

n∑
i=1

1{σ(i)6=ξ(σ′(i))} = 1
n

inf
ξ∈SK
‖ξ(σ)− σ′‖0,

where SK is the permutation group on [K]. If Z,Z ′ are the corresponding n × K binary
matrices, then a related measure of discrepancy between the two clusterings is δ(Z,Z ′) =
infQ perm.

1
n
‖ZQ − Z ′‖0

∗. It is easy to see that δ(Z,Z ′) = 2δc(σ, σ′). (To elaborate, let Qξ

be the permutation matrix corresponding to the permutation ξ, i.e. Qij = 1{ξ(i)=j)}. Then
ξ(σ(i) 6= σ′(i), if and only if (ZQξ)i? 6= Z ′i?, i.e. ‖(ZQξ)i? − Z ′i?‖0 = 2.) For our purposes,
however, a more useful measure of discrepancy would be the normalized Frobenius squared
distance between the corresponding clustering matrices C = ZZ> and C ′ = Z ′Z ′>, i.e.

δ̃(C,C ′) = 1
n2‖C − C

′‖2
F .

∗In this chapter and the next one, ‖M‖p will denote the `p norm of the vectorized version of the matrix
M , whereas ‖M‖F and ‖M‖ will denote the Frobenius and `2 operator norms respectively.
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Now we compare these two notions of discrepancies.

Proposition 2.3.1. We have δ̃(C,C ′) ≤ 4δ(Z,Z ′) = 8δc(σ, σ′).

Incidentally, if the cluster sizes are equal, then one can show that

δ̃(C,C ′) ≤ 4
K
δ(Z,Z ′) = 8

K
δc(σ, σ′).

Although we do not have a lower bound on δ̃(C,C ′) in terms of δ(Z,Z ′), Lemma A.1 of [77]
gives us (with X = Z, Y = Z ′) that there exists an orthogonal matrix O such that

‖ZO − Z ′‖F ≤
‖C − C ′‖(

√
K‖C‖+

√
K‖C ′‖)

λmin(C) ≤ 2
√
Kn‖C − C ′‖
nmin(Z) ,

where we used the fact that ‖C‖ = λmax(C) = nmax(Z) ≤ n. The caveat here is that the
matrix O need not be a permutation matrix.

To prove consistency of PACE we have to assume that the clustering algorithm A we use
has some consistency properties. For example, it will suffice to assume that for a randomly
chosen subgraph S (under our subgraph selection procedure), Eδ(ẐS, ZS)† is small. The
following is our main result on the expected misclustering rate of PACE.

Theorem 2.3.1 (Expected misclustering rate of PACE). Let S be a randomly chosen sub-
graph according to our sampling scheme. Let πmax = maxk πk. We have

Eδ̃(Ĉ, C) ≤ T

τn2 × E‖Ĉ(S) − C(S)‖2
F + πmax ×max

i,j
P(Nij < τ), (2.3)

where
E‖Ĉ(S) − C(S)‖2

F ≤ n2P(|S| < m?) + 4E|S|2δ(ẐS, ZS)1(|S|≥m?).

The first term in (2.3) essentially measures the performance of the clustering algorithm we
use on a randomly chosen subgraph. The second term measures how well we have covered the
full graph by the chosen subgraphs, and only depends on the subgraph selection procedure.
The effect of the algorithm we use is felt through the first term only.

We can now specialize Theorem 2.3.1 to various subgraph selection schemes. First, we
consider randomly chosen m-subgraphs, which is an easy corollary.

Corollary 2.3.1 (Subgraphs are induced by m ≥ m? randomly chosen nodes). Let p =
m(m−1)
n(n−1) , 0 < θ < 1 and τ = θTp. We have

Eδ̃(Ĉ, C) ≤ m

θ(m− 1) × Eδ̃(Ĉ(S), C(S)) + πmax × e−(1−θ)2Tp/2. (2.4)

†The expectation is taken over both the randomness in the graph and the randomness of the sampling
mechanism.
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Notice that the constant m
θ(m−1) in (2.4) can be made as close to 1 as one desires, which

means that the above bound is essentially optimal.
Full h-hop neighborhood subgraphs are much harder to analyze and will not be pursued

here. However, ego networks, which are 1-hop neighborhoods minus the root node (see
Figure 2.1(b)), are easy to deal with. One can also extend our analysis to h-hop onion
neighborhoods which are recursively defined as follows: O1(v) = S1(v) is just the ego network
of vertex v; in general, the h-th shell Sh(v) := ]u∈Sh−1(v)[O1(u)\Oh−1(v)∪{v}], and Oh(v) =
Oh−1(v)]Sh(v), where the operation ] denotes superposition of networks. Here, for ease of
exposition, we choose to work with ego networks (1-hop onion neighborhoods).

Corollary 2.3.2 (Ego networks under a stochastic blockmodel). Let B# = maxBab, B? =
minBab and τ = TB2

?

4 and m? ≤ (n− 1)B?/2. Let θ > 1. Then†

Eδ̃(Ĉ, C) ≤
16(1 + θ)2B2

#

B2
?

× Eδ(ẐS, ZS)1(|S|≥m?) + ∆, (2.5)

where

∆ ≤ 4
B2
?

× exp
(
− nB2

?

16B#

)
+ 4
n2B2

?

× exp
(
−θ

2nB#

6

)

+ πmax ×
[
2 exp

(
− nB4

?

16B2
#

)
+ exp

(
−TB

2
?

16

)]
.

Results on GALE
We denote the unnormalized miscustering error between estimated labels Ẑ and the true la-
bels Z, (Ẑ, Z ∈ {0, 1}n×K) of the same set of nodes asM(Z, Ẑ) := nδ(Z,Z ′) = minQ perm. ‖Ẑ−
ZQ‖0. Note that since Ẑ, Z are binary, the ‖Ẑ − ZQ‖0 = ‖Ẑ − ZQ‖1 = ‖Ẑ − ZQ‖2

F . As
noted earlier, the number of misclustered nodes will be half of this.

The main idea behind GALE is simple. Every approximately accurate clustering of a set
of nodes is only accurate up to a permutation, which can never be recovered without the
true labels. However, we can align a labeling to a permuted version of the truth, where the
permutation is estimated from another labeling of the same set of vertices. This is done by
calculating the confusion matrix between two clusterings. We call two clusterings aligned
if cluster i from one clustering has a large overlap with cluster i from the other clustering.
If the labels are “aligned” and the clusterings agree, this confusion matrix will be a matrix
with large diagonal entries. This idea is used in the Match algorithm, where we estimate the
permutation matrix to align one clustering to another.

Now we present our main result. We prove consistency of a slightly modified and weaker
version of Algorithm 4. In Algorithm 4, at every step of a traversal, we apply the Match

†Actually, we can allow τ = θ′TB2
? , for any 0 < θ′ < 1.
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algorithm on the intersection of the current subgraph and the union of all subgraphs previ-
ously aligned to estimate the permutation of the yet unaligned current subgraph. However,
in the theorem presented below we use the intersection between the unaligned current sub-
graph with the last aligned subgraph. Empirically, it is better to use the scheme presented
in Algorithm 4 since it increases the size of the intersection which requires weaker conditions
on the clustering accuracy of any individual subgraph.

We now formally define our estimator ẐGALE. Let y(`)
i = 1{i∈S`}. Let Ẑ(`) denote the

aligned clustering of subgraph S` and let Ni = ∑T
`=1 y

(`)
i . Define

ẐGALE
ik :=

∑T
`=1 y

(`)
i Ẑ

(`)
ik

Ni

1{Ni≥τ}. (2.6)

The entries of ẐGALE will be fractions, but as we show in Lemma A.4.2, rounding it to a
binary matrix will not change consistency properties.

Note that GALE depends on the spanning tree we use and, in particular, the traversal of
that spanning tree. Let ẐGALE

T ,(x1,...,xJ ) be the outcome of GALE on the traversal (x1, . . . , xJ) of
the spanning tree T of Sm,T .

Theorem 2.3.2 (Misclustering rate of GALE). Let 0 < θ < 1 and r, r′ > 0. Let m =
Ωr,r′,θ

(√
n logn
πmin

)
, T = Ωr,r′,θ(n log n/m), and τ = θTm

n
. Consider an algorithm A which labels

any random m-subgraph with error ≤ m1πmin/12 with probability at least 1 − δ. Then we
have, with probability at least 1− Tδ −O(1/nr′), that

max
T

max
(x1,...,xJ )

δ(ẐGALE
T ,(x1,...,xJ ), Z) ≤ 1

θT

T∑
`=1

δ(Ẑ`, Z) +O
( 1
nr

)
. (2.7)

Again, the constant θ can be taken as close to 1 as one desires. Thus the above bound is
also essentially optimal.

We will now use existing consistency results on several clustering algorithms A, in con-
junction with the above bounds to see what conditions (i.e. conditions on the model pa-
rameters, and m,T , etc.) are required for PACE and GALE to be consistent. We will use
stochastic blockmodel as the generative model and for simplicity will assume that the link
probability matrix has the following simple form

B = αn[λI + (1− λ)11>] with 0 < λ < 1. (2.8)

Corollary 2.3.3 (PACE and GALE with spectral clustering and SDP). Consider the block-
model (2.8) and also assume balancedness, i.e. πmin, πmax � 1/K. Suppose we use PACE
or GALE with T random m-subgraphs and adjacency spectral clustering (ASP) or SDP as
algorithm A. Then, in order for PACE to give a consistent clustering, it suffices to take

m� K2

λ2αn
, T � n2

m2 , (2.9)
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and for GALE, it suffices to take

m� K2

λ2αn
, m = Ω(

√
Kn log n), T = Ω

(
n log n
m

)
. (2.10)

If ego-subgraphs and ASP are used with PACE, then for consistency in model (2.8), with
balanced block sizes and fixed K,λ, it is sufficient to have

min{nα2
n, Tα

2
n} → ∞. (2.11)

Thus we see that for large K or small αn (i.e. high sparsity) or a small separation between
the blocks (i.e. λ), we would need a large m, which is natural to expect. For fixed K,λ,
the average degree dn � nαn. Rephrasing in terms of dn, we need m � nd−1

n . So, if our
implementation of A has complexity O(n3), then the complexity of PACE and GALE will be:

O

(
Tm3

Nc

)
=

Õ( n2

m2Nc
m3) = Õ( n3

dnNc
) for PACE,

O(n logn
mNc

m3) = Õ(max(n
2(logn)2

Nc
, n

3 logn
d2
nNc

)) for GALE,

where Õ hides slowly growing factors that may come from �, and Nc is the number of
parallel processor cores we use. We see that we may get a significant boost in terms of
computation, if the average degree dn = Ω(log n). Even in the bounded degree case, the
benefit from parallelization may be significant from a practical point of view.

On the other hand, the condition (2.11) translates to dn �
√
n, and T � n2

d2
n
. That with

ego neighborhoods we can not go down to dn = Θ(log n) is not surprising, since these ego
networks are rather sparse in this case. One would want to use larger neighborhoods.

Although not clear from our analysis, in numerical simulations, we have found that PACE
with neighborhood subgraphs works quite well in sparse settings. For example, in sparse and
unbalanced graphs PACE with (regularized) spectral clustering vastly outperforms ordinary
(regularized) spectral clustering (see Table 2.4). It seems that the reason why PACE works
well in sparse settings lies in the weights Nij. With h-hop neighborhoods as the chosen
subgraphs, if Puv = 1{ρg(u,v)≤h}, where ρg is the geodesic distance on G, then Nij = (P 2)ij.
It is known that spectral clustering on the matrix of geodesic distances works well in sparse
settings [12]. PACE seems to inherit that property through N ; proving this is part of our
ongoing work.

Quantitative versions of Corollary 2.3.3 appear in Appendix A. Needless to say, there is
nothing special about using spectral clustering or SDP. Similar results can be derived readily
for other clustering algorithms.

2.4 Simulations and real data analysis†

In Table 2.1 we present a qualitative comparison of PACE and GALE with four representative
global community detection methods profile likelihood (PL), mean field likelihood (MFL),

†Code used in this chapter is publicly available at https://github.com/soumendu041/
divide-and-conquer-community-detection.

https://github.com/soumendu041/divide-and-conquer-community-detection
https://github.com/soumendu041/divide-and-conquer-community-detection
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spectral clustering (SC) and semidefinite programming (SDP).

Table 2.1: Qualitative comparison of various methods; TC = theoreti-
cal complexity, RWS = real world scalability in terms of the size of the
network, P = parallelizability.

PL MFL SC SDP PACE GALE
TC NP hard O(nθ1)‡ O(n3) O(nθ2)‡ O(n2+ε)§ O(n2+ε)§

RWS 102 − 103 102 − 103 106 102 − 103 � 106 � 106

P 7 7 7 7 3 3
‡ θj ’s (≥ 3) depend on details of implementation and numerical accuracy sought.
§ with O(n3) algorithms.

Simulations: comparison against traditional algorithms
For simulations we will use the planted partition model with B = (p− q)I + qJ = ρna((1−
r)I + rJ), where I is the K dimensional identity matrix and J is the K ×K matrix of all
ones. Here ρn denotes the density, r denotes the ratio between the within between block
linkage probabilities p and q. For cluster proportions πi, i = 1, . . . , K, the average degree d
is given by dn = (n− 1)ρna((1− r)∑i π

2
i + r).

In order to understand and emphasize the role of PACE and GALE in reducing computa-
tional time while maintaining good clustering accuracy, we use different settings of sparsity
for different methods. For recovering Ẑ from Ĉ in PACE, we have used random projec-
tion plus K-means (abbreviated as RPKmeans below), and spectral clustering (SC). We will
denote these two variants of PACE by PACE-1 and PACE-2 respectively. We also want to
point out that, for sparse unbalanced networks GALE may return more than K clusters,
typically when a very small fraction of nodes has not been visited. However, it is possible
that the unvisited nodes have important information about the network structure. For ex-
ample, all subgraphs may be chosen from the larger clusters, thereby leaving the smallest
cluster unvisited. We take care of this by computing the smallest error between the (K+ 1)!
permutations of GALE’s clustering to the ground truth. This essentially treats the smallest
cluster returned by GALE as misclustered. In real and simulated networks we have almost
never seen GALE return a large number of unvisited nodes. All experiments except those
of Section 2.4 were carried out on a Dell PowerEdge R620 server with Intel Xeon E-26XX
v2 processors, 48 cores, 384GB RAM. The experiments of Section 2.4 were carried out on a
server with AMD Opteron Processor 8384, 32 cores, 62 GB RAM.

SDP with ADMM

Interior point methods for SDPs are not very fast in practice. We have solved SDPs using
an ADMM based implementation of [81]. From Table 2.2 we see that PACE and GALE
significantly reduces the running time of SDP without losing accuracy too much. In fact,



CHAPTER 2. DIVIDE AND CONQUER FOR COMMUNITY DETECTION 20

if we use spectral clustering to estimate Ẑ from Ĉ in the last step of PACE, we get zero
misclustering error (ME).

Mean field likelihood (MFL)

Our implementation of global MFL did not converge to an acceptable solution even after
five and half hours, while both PACE and GALE return better solutions (Table 2.3) in about
two minutes. Interestingly, the misclustering error of PACE-2 is only 0.14, which is quite
low, which begs the question if this improvement is due to spectral clustering step of PACE-2
only. In the next simulation, we show certain parameter settings where PACE and GALE
lead to significant improvements in terms of accuracy and running time even when spectral
clustering is used as the base algorithm.

Table 2.2: PACE and GALE with SDP. n =
5000, dn = 128, m = 500, 4 equal sized
clusters, T = 100, 20 workers.

Algorithm ME(%) Time
SDP 0 1588s

SDP + PACE-1 9.1 281s
SDP + PACE-2 0 288s
SDP + GALE 1.2 281s

Table 2.3: PACE and GALE with MFL.
n = 5000, dn = 13, 2-hop neighborhood, 2
equal sized clusters, T = 100, 20 workers.

Algorithm ME(%) Time
MFL 50 20439s

MFL + PACE-1 36.5 125s
MFL + PACE-2 1.4 131s
MFL + GALE 19.2 126s

Regularized spectral clustering (RSC)

In sparse unbalanced settings (Table 2.4), RSC with PACE and GALE performs significantly
better than global RSC. Remarkably, with PACE-2 we can hit about 5% error or below. As
mentioned before, this is probably due to the connection of the Nij’s with geodesics. In
Section 2.4 we will see that PACE and GALE also stabilize spectral clustering in terms of
clustering degree 1 vertices.

Profile likelihood (PL) with tabu search

PL involves combinatorial optimization and is hard to scale, even if we ignore the problem
of local minima. In Table 2.5 we show that the local versions of PL (optimized using tabu
search [87]) significantly improve the running time without sacrificing accuracy too much.
We also apply PL on 5000 node graphs with 20 workers. Although PACE and GALE finished
in about 22 minutes, the global method did not finish in 3 days. Hence we use 1000 node
networks instead.

Remark 2.4.1. So far we have seen that, for recovering Ẑ from Ĉ in PACE, spectral clus-
tering outperforms the random projection based algorithms (e.g., RPKmeans). For smaller
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Table 2.4: PACE and GALE with RSC. Simulation settings: n = 5000, average degree = 7,
cluster proportions π = (0.2, 0.8), T = 100, parallel implementation in Matlab with 20
workers.

Random 1500-subgraph 3-hop neighborhood 5-hop onion
Algorithm ME(%) Time ME(%) Time ME(%) Time

RSC 39.6 87s
RSC+PACE-1 34.7 20s 34.2 14s 18 53s
RSC+PACE-2 11.1 26s 3.4 21s 5.1 59s
RSC + GALE 17.9 23s 33.6 13s 29.7 52s

Table 2.5: PACE and GALE with PL. n = 1000, average degree = 18.47, Cluster proportion
π = (0.4, 0.6), T = 50, parallel implementation in Matlab with 12 workers. Roots of the
2-hop neighborhoods were sampled uniformly at random from nodes with degree above the
0.1th lower quantile (= 12) of the degree distribution (average neighborhood size was 310).
Ordinary PACE with such a scheme may be thought of as w-PACE (see Section 2.2).

Random 310-subgraph 2-hop neighborhood
Algorithm ME(%) Time ME(%) Time

PL 0 70m
PL + PACE-1 3.9 30m 3.5 38m
PL + GALE 1.2 30m 29.5 38m

networks, this is not an issue (e.g., spectral clustering on the dense 5000× 5000 matrix Ĉ in
the context of Table 2.3 took only about 7-8 seconds). However, for networks of much larger
scale (say, with several million nodes), that last step would be costly if spectral clustering is
used.

Real data analysis with political blog data
This is a directed network (see Figure 2.2) of hyperlinks between 1490 blogs (2004) that are
either liberal or conservative [1]; we have ground truth labels available for comparison, 758
are liberal, 732 are conservative. We convert it into an undirected network by connecting
blogs i and j if there is at least one directed edge between them.

Since the resulting network has many isolated nodes and edges, we focus on the largest
connected component. To correct for its heterogeneous degree distribution (so a degree-
corrected model would be more appropriate), we use normalized spectral clustering [69] with
PACE.
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Figure 2.2: Network of political blogs, red nodes are conservative, blues are liberal; picture
courtesy: [1].

Table 2.6: Misclustering rate in the political blog data. There are 1222 nodes in the graph
w/ leaves, and 1087 w/o leaves. In (a), PACE is used with T = 10, and h-hop neighborhoods
with h = 2 (the roots are chosen at random from high degree nodes). In (b), PACE and
GALE are used with T = 50, and random m-subgraphs with m = 300.

w/ leaves w/o leaves
RSC 18.74% 11.87%
SC 48.12% 3.13%

RSC + PACE-2 6.79% 4.23%
SC + PACE-2 6.55% 3.86%

(a)

w/ leaves w/o leaves
RSC + PACE-2 13.34% 12.8%
RSC + GALE 11.62% 10.0%
SC + PACE-2 7.86% 7.28%
SC + GALE 5.81% 6.7%

(b)

Table 2.6 shows that PACE and GALE add stability (possibly in eigenvector computation)
to spectral clustering. Indeed, PACE and GALE can cluster “leaf” vertices (i.e. vertices of
degree 1) with significantly higher accuracy.
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2.5 Proofs

Results on PACE
We will first prove Theorem 2.3.1. The proof will be broken down into two propositions.
First we decompose

Ĉij − Cij = Ĉij − Cij1{Nij≥τ}︸ ︷︷ ︸
=:(E1)ij

+Cij1{Nij≥τ} − Cij︸ ︷︷ ︸
=:(E2)ij

(2.12)

Now observe that (E1)ij = 1{Nij≥τ}
∑T
`=1 y

(`)
ij (Ĉ(`)

ij − Cij)/Nij, and (E2)ij = −1{Nij<τ}Cij, so
that (E1)ij(E2)ij = 0. Therefore

1
n2‖Ĉ − C‖

2
F = 1

n2 (‖E1‖2
F + ‖E2‖2

F ). (2.13)

We will estimate ‖E1‖F and ‖E2‖F separately.

Proposition 2.5.1. We have

E‖E1‖2
F ≤

T

τ
E‖Ĉ(S) − C(S)‖2

F , (2.14)

where S is a randomly chosen subgraph under our subgraph selection scheme.

Proof. Let Wij :=
1{Nij≥τ}
Nij

. Then (E1)ij = Wij
∑T
`=1 y

(`)
ij (Ĉ(`)

ij − Cij). Therefore ‖E1‖2
F =∑

i,jW
2
ij

(∑T
`=1 y

(`)
ij (Ĉ(`)

ij − Cij)
)2

. So, by an application of Cauchy-Schwartz, we can upper
bound this by

∑
i,j

W 2
ij

(
T∑
`=1

y
(`)
ij

)(
T∑
`=1

y
(`)
ij (Ĉ(`)

ij − Cij)2
)

=
T∑
`=1

∑
i,j

Wijy
(`)
ij (Ĉ(`)

ij − Cij)2.

Noting that Wij ≤ 1
τ
, and ∑i,j y

(`)
ij (Ĉ(`)

ij − Cij)2 = ‖Ĉ(`) − C(`)‖2
F , we finally obtain ‖E1‖2

F ≤
1
τ
× ∑T

`=1 ‖Ĉ(`) − C(`)‖2
F . Since the subgraphs are chosen independently using the same

sampling scheme, the ‖Ĉ(`) − C(`)‖F are identically distributed. Now taking expectation
yields the desired result.

Proposition 2.5.2. Let nmax be the largest block size. Then we have

E‖E2‖2 ≤ nmaxnmax
i,j

P(Nij < τ). (2.15)

Proof. Since −(E2)ij = Cij1{Nij<τ}, we have ‖E2‖2
F = ∑

i,j C
2
ij1{Nij<τ}, and by taking expec-

tations we get
E‖E2‖2

F =
∑
i,j

C2
ijP(Nij < τ) ≤ max

i,j
P(Nij < τ)

∑
i,j

C2
ij.

The result now follows since ∑i,j C
2
ij = ∑K

a=1 n
2
a ≤ nmaxn.
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Proof of Theorem 2.3.1. Combining Propositions 2.5.1 and 2.5.2, we get (2.3). Finally,

E‖Ĉ(S) − C(S)‖2
F1(|S|<m?) ≤ n2P(|S| < m?),

and
E‖Ĉ(S) − C(S)‖2

F1(|S|≥m?) ≤ 4E|S|2δ(ẐS, ZS)1(|S|≥m?),

yielding the last claim.

Proof of Corollary 2.3.1. For this sampling scheme |S| = m ≥ m? and with p = m(m−1)
n(n−1) ,

Nij ∼ Binomial(T, p) so that we have, using the Chernoff bound‡ for binomial lower tail, that

P (Nij < θTp) ≤ e−(1−θ)2Tp/2.

Plugging in these parameter values and estimates in (2.3) gives (2.4).

Proof of Corollary 2.3.2. The most crucial thing to observe here is that if one removes the
root node and its adjacent edges from a 1-hop neighborhood, then the remaining “ego net-
work” has again a blockmodel structure. Indeed, let S be a random ego neighborhood of
size ≥ s with root R, i.e. V (S) = {j : ARj = 1}. Then conditional on V (S) being R’s
neighbors, and the latent cluster memberships, edges in E(S) are independently generated,
i.e. for j, k, `,m ∈ V (S), and s, t ∈ {0, 1}, we have

P(Ajk = s, A`m = t|S,Z) = P(Ajk = s|Z)P(A`m = t|Z).

This is because the “spoke” edges ARj are independent of Aj,k, j, k ∈ V (S). Therefore,
conditional on S, this ego-subgraph is one instantiation of a blockmodel with the same
parameters on |S| vertices.

Now for ego networks, y(`)
ij ∼ Bernoulli(nij/n), where nij is the total number of ego-

subgraphs containing both i and j. Notice that

nij =
∑
` 6=i,j

1{Ai`=1,Aj`=1},

that is, nij is the sum of (n− 2) independent Bernoulli random variables

1{Ai`=1,Aj`=1} ∼ Bernoulli(Bσ(i)σ(`)Bσ(j)σ(`)).

So
(n− 2)B2

# ≥ Enij =
∑
` 6=i,j

Bσ(i)σ(`)Bσ(j)σ(`) ≥ (n− 2)B2
? ,

‡We use a slightly loose but convenient form of the Chernoff bounds: (i) P(X ≤ (1−δ)µ) ≤ exp(−δ2µ/2),
and (ii) P(X ≥ (1+δ)µ) ≤ exp(−δ2µ/3), where X = X1 + · · ·+Xn and Xi’s are independent binary random
variables, with EX = µ, and 0 < δ < 1.
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and we have, by the Chernoff bound, that

P(nij ≤ (n− 2)B2
? −∆) ≤ exp

(
−(Enij − (n− 2)B2

? + ∆)2

2Enij

)

≤ exp
(
− ∆2

2(n− 2)B2
#

)
. (2.16)

In order to apply Theorem 2.3.1 we need (i) an estimate of |S|, and (ii) an estimate of
P(Nij < τ).
(i) Estimate of |S|. Note that |S| = ∑

k AkR. Since AkR, 1 ≤ k ≤ n are independent, and

(n− 1)B? ≤ E(|S| |R) =
∑
j 6=R

Bσ(k)σ(R) ≤ (n− 1)B#,

we have, by Chernoff’s inequality, that

P(|S| < m? |R) ≤ exp
(
−(E(|S| |R)−m?)2

2E(|S| |R)

)

≤ exp
(
−((n− 1)B? −m?)2

2(n− 1)B#

)
,

where m? ≤ (n−1)B?. Therefore the same upper bound holds for P(|S| < m?). In particular,
for m? ≤ (n− 1)B?/2 we have

P(|S| < m?) ≤ exp
(
−(n− 1)B2

?

8B#

)
≤ exp

(
− nB2

?

16B#

)
. (2.17)

Similarly, using Chernoff’s inequality for binomial upper tail, we can show that, for θ > 0,

P(|S| > (1 + θ)nB#) ≤ exp
(
−θ

2nB#

6

)
. (2.18)

(ii) Estimate of P(Nij < τ). Recall that Nij |nij ∼ Binomial(T, nij/n). Then

P(Nij < τ) = P
(
Nij < τ, nij <

2nτ
T

)
︸ ︷︷ ︸

=:P1

+P
(
Nij < τ, nij ≥

2nτ
T

)
︸ ︷︷ ︸

=:P2

.

Clearly

P1 ≤ P
(
nij <

2nτ
T

)
≤ P

(
nij <

nB2
?

2

)
.

Now, given nij such that nij ≥ 2nτ
T

, we can invoke Chernoff’s inequality to get

P(Nij < τ |nij) ≤ exp
(
−(E(Nij |nij)− τ)2

2E(Nij |nij)

)
≤ exp

(
−Tnij8n

)
.
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Therefore

P2 ≤ E exp
(
−Tnij8n

)
1{nij≥ 2nτ

T
}

≤ E exp
(
−Tnij8n

)
= E exp

(
−Tnij8n

)
1
{nij<

nB2
?

2 }
+ E exp

(
−Tnij8n

)
1

(nij≥
nB2

?
2 )

≤ P
(
nij <

nB2
?

2

)
+ exp

(
−TB

2
?

16

)
.

Thus
P(Nij < τ) ≤ 2P

(
nij <

nB2
?

2

)
+ exp

(
−TB

2
?

16

)
.

But by (2.16)

P
(
nij <

nB2
?

2

)
≤ exp

−((n− 2)B2
? −

nB2
?

2 )2

2(n− 2)B2
#

 ≤ exp
(
−(n− 2)

8
B4
?

B2
#

)

≤ exp
(
− nB4

?

16B2
#

)
.

Thus
P(Nij < τ) ≤ 2 exp

(
− nB4

?

16B2
#

)
+ exp

(
−TB

2
?

16

)
.

Now we are ready to use (2.3). Using our estimates on |S| we get that

E|S|2δ(ẐS, ZS)1(|S|≥m?) ≤ (1 + θ)2n2B2
#Eδ(ẐS, ZS)1(|S|≥m?)

+ exp
(
−θ

2nB#

6

)
.

Next we plug into (2.3) all the estimates we derived in this subsection to get the desired
bound (2.5) As mentioned before, we can allow τ = θ′TB2

? , for any 0 < θ′ < 1. As the
resulting bound involves complicated constants depending on θ′ and does not add anything
extra as to the nature of the bounds, we have chosen to work with a particular θ′ (= 1/4)
to ease our exposition. With a general θ′, the constant multiplier in the first term in (2.5)
will be 4 (1+θ)2

θ′
, instead of 16(1 + θ)2.

Results on GALE
For any clustering Ẑi on subgraph Si, let Πi ∈ arg minQ perm. ‖Ẑi−ZiQ‖1, where Zi is used a
shorthand for ZSi = Z

∣∣∣
Si

, the true cluster membership matrix for the members of Si. Define
the matrix Fi by the requirement

Ẑi = ZiΠi + Fi, Fi ∈ {0,±1}n×K . (2.19)
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In other words, ‖Fi‖1 =M(Ẑi, Zi).
We now analyze Algorithm 3, i.e. Match. Recall that, if two clusterings on some set S

agree, then the confusion matrix will be diagonal up to permutations, with the entries in
the diagonal corresponding to the cluster sizes in either of the clusterings. In the following
lemma, we consider a noisy version of this, where the two clusterings are not in perfect
agreement. This lemma essentially establishes that if supplied with two clusterings whose
confusion matrix is a diagonal matrix up to permutations plus noise, then Match will recover
the correct aligning permutation, if the noise is not too large.

Lemma 2.5.1. Let d ∈ RK
+ . Also let M = Π>2 diag(d)Π1 + Γ, where Γ ∈ RK×K, ‖Γ‖∞ ≤

mini di/3. Then Match returns Π = Π>2 Π1, when applied on the confusion matrix M .

Proof of Lemma 2.5.1. Let D := diag(d). Let ξi be the permutation encoded in Πi, for
i ∈ [2], i.e. (Πi)uv = 1{v=ξi(u)}. It is easy to see that Muv = Dξ−2

1 (u),ξ−1
2 (v) + Γuv. We have for

all u, v such that (Π>2 Π1))uv = 0, Muv ≤ ‖Γ‖∞, whereas for all u, v such that (Π>2 Π1)uv = 1,
Muv ≥ minaDaa − ‖Γ‖∞. Hence

min
u,v : (Π>2 Π1)uv=1

Muv ≥ min
a
Daa − ‖Γ‖∞ ≥ 2‖Γ‖∞ ≥ 2 max

u,v : (Π>2 Π1)uv=0
Muv.

Hence the top K (recall that K is the number of rows in M) elements are the diagonal
elements in D. Thus the elements of Π learned by the Match algorithm will be Πuv =
1{ξ−1

2 (u)=ξ−1
1 (v)}. This is equivalent to Π = Π>2 Π1.

Now we will establish that post-alignment misclustering errors on subgraphs equal the
original misclustering errors. For this we first need a lemma on what happens when we align
two subgraphs based on their intersection.

Lemma 2.5.2. Consider two random m-subgraphs S1 and S2. Suppose our clustering al-
gorithm A outputs clusterings Ẑi, i = 1, 2. Let S = S1 ∩ S2 be of size at least m1 =

⌈
m2

2n

⌉
.

Assume thatM(Ẑi, Zi) ≤ m1πmin/12 and that mink∈[K] n
(S)
k ≥ m1πmin. Then ‖Ẑ2Π−ZΠ1‖ =

M(Ẑ2, Z), where Π is the output of Match(Ẑ2

∣∣∣
S
, Ẑ1

∣∣∣
S
).

Proof of Lemma 2.5.2. To ease notation, let us write Z̃i := Ẑi
∣∣∣
S
, F̃i := Fi

∣∣∣
S
, i = 1, 2, and

Z̃ := Z
∣∣∣
S
. Then by restricting (2.19) to S, we get

Z̃i = Z̃Πi + F̃i, F̃i ∈ {0,±1}n×K .

Now
Z̃>2 Z̃1 = Π>2 Z̃>Z̃Π1 + Π>2 Z̃>F̃1 + F̃>2 Z̃Π1 + F̃>2 F̃1︸ ︷︷ ︸

=:Γ

.
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Note that (a) multiplication by a permutation matrix does not change the ‖ · ‖1 norm, and
(b) for any matrix A, we have ‖A‖1 = ‖A>‖1. Therefore

‖Π>2 Z̃>F̃1‖1 = ‖Z̃>F̃1‖1 =
∑
a,b

|
∑
i

(Z̃>)ai(F̃1)ib|

≤
∑
a,b

∑
i

Z̃ia|(F̃1)ib| =
∑
i,b

|(F̃1)ib| ×
∑
a

Z̃ia︸ ︷︷ ︸
=1

= ‖F̃1‖1.

Similarly,
‖F̃>2 Z̃Π1‖1 = ‖Π>1 Z̃>F̃2‖1 ≤ ‖F̃2‖1.

Finally,

‖F̃>2 F̃1‖1 ≤
∑
a,b

∑
i

|(F̃2)ia(F̃1)ib| =
∑
i,b

|(F̃1)ib| ×
∑
a

|(F̃2)ia)|︸ ︷︷ ︸
=2

= 2‖F̃1‖1,

where we have used the fact that each row of F̃i has exactly one 1 and one −1. By (b),
‖F̃>2 F̃1‖1 = ‖F̃>1 F̃2‖1 ≤ 2‖F̃2‖1, and therefore

‖F̃>2 F̃1‖1 ≤ ‖F̃1‖1 + ‖F̃2‖1.

Note that, by our assumptions on the individual misclustering errors,

‖F̃i‖1 ≤ ‖Fi‖1 =M(Ẑi, Zi) ≤ m1πmin/12.

Therefore
‖Γ‖∞ ≤ 2(‖F̃1‖1 + ‖F̃2‖1) ≤ m1πmin/3.

Since by our assumption, (Z̃>Z̃)kk = n
(S)
k ≥ m1πmin, we can apply Lemma 2.5.1 to see that

the output Match(Z̃2, Z̃1) is Π = Π>2 Π1. Hence

‖Ẑ2Π− ZΠ1‖1 = ‖Ẑ2Π>2 Π1 − ZΠ1‖1 = ‖Ẑ2Π>2 − Z‖1 = ‖Ẑ2 − ZΠ2‖1 = ‖F2‖1.

Proposition 2.5.3. Let the T subsets, (Si)Ti=1 be associated with estimated clusterings Ẑi
with misclustering error M(Ẑi, Zi) ≤ m1πmin/12. Consider a traversal x1 ∼ x2 ∼ · · · ∼ xJ
of some spanning tree T of Sm,T as in Algorithm 4, satisfying

min
2≤i≤J

min
k∈[K]

n
(Si,i−1)
k ≥ m1πmin,

where n(S)
k is the number of nodes from cluster k in a subgraph S, and Si,i−1 := Sxi ∩ Sxi−1.

Apply GALE on this walk. Let Ẑ(x1) := Ẑx1 , Π̂x1 = I and for 2 ≤ i ≤ J , define recursively

Π̂xi =

I if xi = xj for some 1 ≤ j < i,

Match(Ẑxi
∣∣∣
Si,i−1

, Ẑ(xi−1)
∣∣∣
Si,i−1

) otherwise,



CHAPTER 2. DIVIDE AND CONQUER FOR COMMUNITY DETECTION 29

and set Ẑ(xi) = ẐxiΠ̂xi . Then, for any 1 ≤ i ≤ J , we have that

M(Ẑ(xi), Zxi) =M(Ẑxi , Zxi).

Proof. We claim that, for all 1 ≤ i ≤ J , we have

Πx1 ∈ arg min
Q
‖Ẑ(xi) − ZxiQ‖, and M(Ẑ(xi), Zxi) =M(Ẑxi , Zxi). (2.20)

We use strong induction to prove this claim. (2.20) is true by definition, for i = 1. Now
assume that it is true for all i ≤ `. Then, for all i ≤ `, we have the representation Ẑ(xi) =
ZxiΠx1 + F̄xi , for some matrix F̄xi ∈ {0,±1}m×K . If x`+1 has been visited before, i.e.
x`+1 = xj for some j ≤ `, then (2.20) holds by our induction hypothesis. Otherwise, we can
apply Lemma 2.5.2 on the two clusterings Ẑ(x`) on Sx` and Ẑx`+1 on Sx`+1 , to conclude that

‖Ẑ(x`+1) − Zx`+1Πx1‖1 = ‖Ẑx`+1Π̂x`+1 − Zx`+1Πx1‖1 =M(Ẑx`+1 , Zx`+1).

But Ẑ(x`+1) = Ẑx`+1Π̂x`+1 , and Π̂x`+1 = Π>x`+1
Πx1 . So, for any permutation matrix Q we have

‖Ẑ(x`+1) − Zx`+1Q‖1 = ‖Ẑx`+1Π̂x`+1 − Zx`+1Q‖1 = ‖Ẑx`+1 − Zx`+1QΠ̂>x`+1
‖1

≥M(Ẑx`+1 , Zx`+1) = ‖Ẑ(x`+1) − Zx`+1Π1‖1.

So, indeed, Πx1 ∈ arg minQ ‖Ẑ(x`+1)−Zx`Q‖ and henceM(Ẑ(x`+1), Zx`+1) andM(Ẑx`+1 , Zx`+1)
are equal. The induction is now complete.

Now we establish an upper bound on the error of the estimator ẐGALE in terms of the
errors of the aligned clusterings Ẑ(`).

Proposition 2.5.4. Let 0 < θ < 1, and set τ = θTm
n
. Then, for any cluster membership

matrix Z̄ ∈ {0, 1}n×K,

‖ẐGALE − Z̄‖2
F

n
≤ 1
θT

T∑
`=1

‖Ẑ(`) − Z̄`‖2
F

m
+
∑
i

1{Ni<τ}. (2.21)

Proof. The proof is very similar to that of Theorem 2.3.1. We decompose

Z̄ik = Z̄ik1{Ni≥τ} + Z̄ik1{Ni<τ}.

Using this we have

ẐGALE
ik − Z̄ik =

∑T
`=1 y

(`)
i (Ẑ(`)

ik − Z̄ik)
Ni

1{Ni≥τ} − Z̄ik1{Ni<τ}.
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Therefore

‖ẐGALE − Z̄‖2 =
∑
i,k

∑T
`=1 y

(`)
i (Ẑ(`)

ik − Z̄ik)
Ni

2

1{Ni≥τ} +
∑
i,k

Z̄2
ik1{Ni<τ}

≤
∑
i,k

∑T
`=1 y

(`)
i (Ẑ(`)

ik − Z̄ik)
Ni

2

1{Ni≥τ}︸ ︷︷ ︸
=:E

+
∑
i

1{Ni<τ}.

Let Wi := 1(Ni≥τ)
Ni

. Noting that E = ∑
i,kW

2
i (∑T

`=1 y
(`)
i (Ẑ(`)

ik − Z̄ik))2, an application of
Cauchy-Schwartz inequality gives

E ≤
∑
i,k

W 2
i

(
T∑
`=1

y
(`)
i

)
T∑
`=1

y
(`)
i (Ẑ(`)

ik − Z̄ik)2 =
T∑
`=1

∑
i,k

Wiy
(`)
i (Ẑ(`)

ik − Z̄ik)2. (2.22)

Using Wi ≤ 1
τ

= n
θTm

, and ∑i,k y
(`)
i (Ẑ(`)

ik − Z̄ik)2 = ‖Ẑ(`) − Z̄`‖2
F , we get the required bound

on E.

We now mention some auxiliary results, whose proofs are deferred to Appendix A. These
will help us control the probability of a “bad” event, defined in the proof of Theorem 2.3.2.

Lemma 2.5.3. Let τ = θTm
n

, where 0 < θ < 1. Let r > 0. Then, with probability at least
1− 1

nr
, we have

∑
i

1{Ni<τ} ≤ ne−(1−θ)2Tm/2n

1 +
√

3r log n
ne−(1−θ)2Tm/2n

 .
Recall that we view the T random m-subsets of [n] as nodes of a super-graph Sm,T and

put an edge between nodes a(≡ Sa) and b(≡ Sb) in Sm,T (we use the shorthand a ∼ b to
denote an edge between a and b), if Yab := |Sa ∩ Sb| ≥ m1 =

⌈
m2

2n

⌉
. The next lemma shows

that Sm,T is in fact an Erdös-Rényi random graph.

Lemma 2.5.4. The super-graph Sm,T is an Erdös-Rényi random graph with

P (a ∼ b) = P

(
Yab ≥

⌈
m2

2n

⌉)
≥ 1− exp

(
−m

2

16n

)
. (2.23)

Because of our assumptions on m, it follows that Sm,T is well above the connectivity
threshold for Erdös-Rényi random graphs.

Lemma 2.5.5. The super-graph Sm,T is connected with probability at least 1− exp(−O(n)).

The next lemma states that intersection of two random m-subgraphs contains enough
representatives from each cluster, with high probability.
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Lemma 2.5.6. Consider two random m-subgraphs Sa and Sb. Let r > 0 and m2πk
n logn ≥ 20r.

Then

P

n(Sa∩Sb)
k <

m2πk
n

1−O
√2rn log n

m2πk

 ≤ 2
nr
.

We are now ready to prove our main result on GALE.

Proof of Theorem 2.3.2. First we construct a good set in the sample space. Consider the
following “bad” events

B1 := {(S1, . . . , ST ) | Sm,T is connected},

B2 :=
{

(S1, . . . , ST ) | min
(i,j)

min
k
n

(Si∩Sj)
k < m1πmin

}
,

B3 :=

(S1, . . . , ST ) |
∑
i

1{Ni<τ} > e−
(1−θ)2Tm

2n

1 +
√√√√ 3r′ log n
ne−

(1−θ)2Tm
2n

 ,
B4 := {(A, S1, . . . , ST ) | max

1≤i≤T
M(Ẑi, Zi) > m1πmin/12}.

Let B := ∪4
i=1Bi. Let r′′ > 0. By Lemma 2.5.5, we have P(B1) ≤ exp(−O(n)).

Lemma 2.5.6, and a union bound gives P(B2) ≤
(
T
2

)
× K × 2

nr′′
≤ KT 2

nr′′
. By Lemma 2.5.3,

P(B3) ≤ 1
nr′

. Finally, by our hypothesis on individual misclustering errors, we have, by a
union bound, that P(B4) ≤ Tδ. Therefore

P(B) ≤
4∑
i=1

P(Bi) ≤ exp(−O(n)) + KT 2

nr′′
+ 1
nr′

+ Tδ ≤ Tδ +O
( 1
nr′

)
,

by choosing r′′ suitably large.
Now on the good set Bc, for any spanning tree T of Sm,T and for any traversal (x1, . . . , xJ)

of T , the hypotheses of Propositions 2.5.3 and 2.5.4 are satisfied. Now note that

δ(ẐGALE
T ,(x1,...,xJ ), Z) ≤

‖ẐGALE
T ,(x1,...,xJ ) − ZΠx1‖1

n
=
‖ẐGALE
T ,(x1,...,xJ ) − ZΠx1‖2

F

n
.

By Proposition 2.5.3, we also have, for any 1 ≤ ` ≤ T , that

‖Ẑ(`) − Z`Πx1‖2
F

m
= ‖Ẑ

(`) − Z`Πx1‖1

m
= δ(Ẑ(`), Z) = δ(Ẑ`, Z).

Thus, by of Proposition 2.5.4, taking Z̄ = ZΠx1 and noting then that Z̄` = Z`Πx1 , we have

δ(ẐGALE
T ,(x1,...,xJ ), Z) ≤ 1

θT

T∑
`=1

δ(Ẑ`, Z) +
∑
i

1{Ni<τ}.
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Since the bound on the RHS does not depend on the particular spanning tree used, or a
particular traversal thereof, on the good event Bc, we have:

max
T

max
(x1,...,xJ )

δ(ẐGALE
T ,(x1,...,xJ ), Z) ≤ 1

θT

T∑
`=1

δ(Ẑ`, Z) +
∑
i

1{Ni<τ}.

Now, for our choice of τ , and T ≥ 2r′′′n logn
(1−θ)2m

, we have e−(1−θ)2Tm/2n ≤ 1
nr′′′

. Therefore, on the
event Bc, ∑

i

1{Ni<τ} = O

√ log n
n1+r′′′

 = O
( 1
nr

)
,

by choosing r′′′ suitably large. Thus we conclude that with probability at least 1 − Tδ −
O
(

1
nr′

)
, we have

max
T

max
(x1,...,xJ )

δ(ẐGALE
T ,(x1,...,xJ ), Z) ≤ 1

θT

T∑
`=1

δ(Ẑ`, Z) +O
( 1
nr

)
.

2.6 Discussion
To summarize, we have proposed two divide and conquer type algorithms for community
detection, PACE and GALE, which can lead to significant computational advantages without
sacrificing accuracy. The main idea behind these methods is to compute the clustering for
each individual subgraph and then “stitch” them together to produce a global clustering
of the entire network. The main challenge of such a stitching procedure comes from the
fundamental problem of unidentifiability of label assignments. That is, if two subgraphs
overlap, the clustering assignment of a pair of nodes in the overlap may be inconsistent
between the two subgraphs.

PACE addresses this problem by estimating the clustering matrix for each subgraph and
then estimating the global clustering matrix by averaging over the subgraphs. GALE takes a
different approach by using overlaps between two subgraphs to calculate the best alignment
between the cluster memberships of nodes in the subgraphs. We prove that, in addition to
being computationally much more efficient than base methods which typically run in Ω(n2)
time, these methods have accuracy at least as good as the base algorithm’s typical accuracy
on the type of subgraphs used, with high probability. Experimentally, we show something
more interesting — we identify parameter regimes where a local implementation of a base
algorithm based on PACE or GALE in fact outperforms the corresponding global algorithm.
One example of this is the mean field algorithm, which typically suffers from bad local optima
for large networks. Empirically, we have seen that on a smaller subgraph, with a reasonable
number of restarts, it finds local optima that are often highly correlated with the ground
truth. PACE and GALE take advantage of this phenomenon to improve on accuracy/running
time significantly. Another example is regularized spectral clustering on sparse unbalanced
networks.
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Chapter 3

Divide and conquer for mixed
memberships

3.1 Introduction
Latent space models are very popular tools in modern Statistics in modeling rich structures in
real world data. These models typically involve a large number of latent variables, and fitting
them is no easy task, especially when the dataset is large. Serious computational challenges
arise from non-convexity of the relevant objective functions resulting from the multitude
of parameters to learn. In this chapter, we shall discuss divide and conquer approaches to
several important latent space models which aim to alleviate some of the computational
issues.

Mixed membership blockmodels (MMBM) [3] are natural extensions of stochastic block-
models, allowing for a node to be in multiple communities with varying degrees of strength.
The model is specified as follows: there are node specific membership probability distribu-
tions θi i.i.d.∼ Dirichlet(α), α = (α1, . . . , αK), and a block probability matrix B. Two nodes
i and j are connected with probability θ>i Bθj independently of other pairs∗. A principal
goal is to estimate the membership probabilities θi. There are identifiability issues with
this model. For a discussion and necessary/sufficient conditions for identifiability, see [48].
There are several algorithms in the literature for estimating θi’s, such as variational Bayes
[3], tensor decomposition methods [9], eigenvector-based methods [48] among others.

Topic models (TM) are mixed membership models used for text analysis. The most
simple generative topic model is latent Dirichlet allocation (LDA) [17], where one observes
a collection of D (independent) documents W1:D,1:N (a document is a collection of N words)
— Wd,n representing the n-th word in document d. These words are from a vocabulary of V

∗This is a simplified version of the MMBM of [3], where for each ordered pair of nodes (i, j), there are
two latent random community assignment vectors zi→j ∼ Mult(θi), zj→i ∼ Mult(θj), and a directed edge
is created with probability z>i→jBzj→i. Our methods address the problem of estimating θi’s and so are
applicable to this model as well.
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words. A topic is a distribution over the vocabulary, modeled as Dirichlet(α). Suppose there
are K topics, β1:K with βk

i.i.d.∼ Dirichlet(α). A document d is a mixture of topics, modeled
as θd ∼ Dirichlet(η). Thus we have a set of D independent latent mixing distributions θ1:D.
For each word, there is a topic assignment parameter zd,n ∼ Mult(θd), and the word is
drawn as Wd,n ∼ Mult(βzd,n). The topic assignment parameters are independent of each
other, and given these, the words are also drawn independently. Here the topic distributions
β1:K , the document representations θ1:D and the word-topic-assignments zd,n are all latent
parameters, and the goal is to learn their posterior distribution given the document corpus.
This is typically done by using the mean field variational approximation to the likelihood.
There are extensions of the simple LDA, such as correlated topic models (CTM) [15], dynamic
topic models (DTM) [16] among others.

A related but simpler problem is that of biclustering [36], where there are two types of
clusters in an observed network: row clusters and column clusters. An example would be
a predator-prey network where an individual species can be both a predator and a prey,
and there are two different types of clusterings based on these roles (of course, this can be
generalized to m-ary clustering, where there are m roles/dimensions). Thus there are row
cluster assignments Y ∈ {0, 1}n×Kr and column cluster assignments Z ∈ {0, 1}n×Kc , and
the network is drawn as an inhomogeneous Erdös-Rényi random graph with link probability
matrix P = Y BZ>, where Bab now denotes the probability of link formation between a
member of the row cluster a and a member of the column cluster b. Again, one can have
mixed membership versions of this model.

In Chapter 2, we proposed divide and conquer wrapper algorithms for the related problem
of community detection (where a node is assumed to belong to a single community). In this
chapter, we will generalize those algorithms for mixed membership structures. Thus they can
be used for MMBM, TM or mixed membership versions of m-ary clustering (topic models
are closer in spirit to such models).

3.2 Two divide and conquer algorithms
In all of the models described in the introduction, the following feature is present: there is
a set of K clusters/communities, and nodes have hidden community assignment distribu-
tions θi. These θi could be degenerate (stochastic blockmodels, m-ary clustering) or mixed
(MMBM, topic models, m-ary mixed memberships, etc.). The goal is to recover these θi’s.

As in Chapter 2, the main issue with divide and conquer algorithms is that one has to
somehow match up various potentially conflicting label assignments, arising from subsets of
nodes. For the problem of clustering (degenerate θi’s) we tackled this issue in Chapter 2
with the two algorithms PACE and GALE.

We can actually use the these two algorithms with minor modifications for mixed θi’s. In
this chapter, we will describe the modified algorithms and prove some results towards their
consistency. Several new issues also arise with mixed θi which will also be addressed.
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PACE: an averaging algorithm
Suppose the true cluster membership of the nodes of the data in concern is given by the
n × K mixed-membership matrix Θ where there are K clusters. Set C = ΘΘ> to be
the “clustering” matrix whose (i, j)-th entry is a measure of the correlation of the mixed
cluster membership structures of i and j. Given the data, we will perform a local clustering
algorithm to obtain an estimate of C, from which an estimate Θ̂ of the cluster memberships
may be reconstructed.

Algorithm 5 PACE: Piecewise Averaged Community Estimation
1: Subset selection: Fix a positive integer threshold m? for minimum required subset

size. Fix another positive integer T , that will be the number of subsets we will sample.
Given the data, choose T subsets S1, . . . , ST of the nodes by some procedure, e.g., select
m ≥ m? nodes at random, or pick h-hop neighborhoods (or onion neighborhoods) of
vertices in the underlying graph (in case of MMBM or biclustering).

2: Clustering on subsets: Apply any existing clustering algorithm A of choice for the
problem in question (such as the eigenvector-based method of [48] for MMBM, variational
Bayes or tensor-decomposition for MMBM or TM, spectral clustering for biclustering,
etc.) on each of these T subsets which have size at least m? to obtain estimated clustering
matrices Ĉ(Sl) = Ĉ(l). For the rest of the subsets, set Ĉ(l) ≡ 0. Extend Ĉ(l) to an n× n
matrix by setting Ĉ

(l)
ij = 0 if at least one of i, j was not selected in Sl. Denote the

resulting matrix again by Ĉ(l).
3: Patching up: Let y(l)

ij denote the indicator of the event that both i, j were selected in
Sl. Set Nij = ∑T

l=1 y
(l)
ij . Define the combined estimator Ĉ = Ĉτ by

Ĉij = Ĉτ,ij =
1{Nij≥τ}

∑T
l=1 y

(l)
ij Ĉ

(l)
ij

Nij

=
1{Nij≥τ}

∑T
l=1 Ĉ

(l)
ij

Nij

. (3.1)

Here 1 ≤ τ ≤ T is an integer tuning parameter. We will call Ĉτ as Piecewise Averaged
Community Estimator (also abbreviated as PACE).

Discussions on the PACE algorithm for community detection from Chapter 2 also apply
here. In particular, one may consider a weighted version of PACE.

Reconstruction of Θ̂: How do we actually reconstruct Θ̂ from Ĉ? One can apply any
cheap mixed membership estimation algorithm such as the sequential projection algorithm
SPACL of [48] on Ĉ to construct an estimate. Note that reconstructing Θ̂ from Ĉ is same
as (approximate) symmetric non-negative matrix factorization (SNMF) under the constraint
of the solution having 1 as an eigenvalue with eigenvector 1. SPACL is one such algorithm.
Developing a more computationally efficient algorithm would be an interesting topic of future
research.
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GALE: a sequential algorithm
First we extend Match to compute the best permutation to align labels of one clustering
(Θ1) to another (Θ2) of the same set of nodes in a set S.

Algorithm 6 Match: A Matching algorithm for matching the two labelings
1: Compute k × k confusion matrix M = Θ>1 Θ2.
2: While there are no rows/columns left,

1: Find i, j, such that Mij = maxi′,j′Mi′,j′ .
2: Set v(i) = j
3: Replace the ith row and jth columns in M with −1.
4: Repeat.

Now we can extend GALE.

Algorithm 7 GALE: Global Alignment of Local Estimates. Input: problem specific data
such as adjacency matrix A for network models, collection of documents W1:D,1:N for topic
models; parameters T, τi, i ∈ [T ]; a base algorithm A (e.g., tensor decomposition, variational
Bayes, eigenvector-based methods, etc.)

1: Subset selection: Given A, choose T subsets S1, . . . , ST of the nodes by some proce-
dure, e.g., select them at random, or select T random nodes and then pick their h-hop
neighborhoods (in case of MMBM or biclustering).

2: Clustering on subsets: Perform algorithm A on each of these T subsets to obtain
estimated cluster membership matrices Θ̂` = Θ̂S` . Extend Θ̂` to an n × K matrix by
setting (Θ̂`)jk = 0 for all k ∈ [K] if j /∈ S`.

3: Traversal of subsets: Construct a traversal Sx1 , . . . , SxJ through the T subsets.
4: Initial estimate of Θ: Θ̂← Θ̂x1 . Also set Θ̂(x1) := Θ̂x1 .
5: Sequential label aligning: For subset Sxi on the traversal (i = 1, . . . , J), if xi has not

been visited yet,
(a) Compute the overlap between the current subset with all subsets previously visited,

i.e. let S = Sxi ∩ ∪i−1
`=1Sx` .

(b) Compute the best permutation to match the clustering Θ̂xi , Θ̂ on this set S, i.e.
compute Π̂i = Match(Θ̂xi

∣∣∣
S
, Θ̂
∣∣∣
S
).

(c) Permute the labels of the nodes of Sxi to get an aligned cluster membership matrix
Θ̂(xi) ← Θ̂xiΠ̂.

(d) Update Θ̂jk ←
∑

`∈{x1,...,xi}
Θ̂(x`)
jk

1{j∈Sx`}∑
`∈{x1,...,xi}

1{j∈Sx`}
1{∑

`∈{x1,...,xi}
1{j∈Sx`}>τi}

, for some threshold τi.

(e) Mark Sxi as visited.
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Again the discussion in Chapter 2 about construction of paths of subsets also applies
here.

3.3 Main results
In this section we will state and discuss our main results on PACE and GALE for mixed
memberships. The results will be similar in flavor to those of Chapter 2.

Results on PACE
To prove consistency of PACE we have to assume that the clustering algorithm A we use
has some consistency properties. For example, it will suffice to assume that for a randomly
chosen subset S (under our subset selection procedure), E‖Ĉ(S) − C(S)‖2

F
† is small. The

following is our main result on the expected misclustering rate of PACE.

Theorem 3.3.1 (Expected error of PACE). Let S be a randomly chosen subset of nodes
according to our sampling scheme. Then we have

Eδ̃(Ĉ, C) ≤ T

τn2 × E‖Ĉ(S) − C(S)‖2
F + max

i,j
P(Nij < τ). (3.2)

The proof of Theorem 3.3.1 is the same as the proof of Theorem 2.3.1 of Chapter 2
modulo minor changes. We omit the details.

For randomly chosen m-subsets, we have an easy corollary.

Corollary 3.3.1 (Subsets formed by m ≥ m? randomly chosen nodes). Let p = m(m−1)
n(n−1) ,

0 < θ < 1 and τ = θTp. We have

Eδ̃(Ĉ, C) ≤ 1
θm(m− 1) × E‖Ĉ(S) − C(S)‖2

F + e−(1−θ)2Tp/2. (3.3)

Results on GALE
We first prove a deterministic result concerning the correctness of Match. This is similar to
Lemma 2.5.1. There, however, the matrix D below was a diagonal matrix.

Lemma 3.3.1 (Correctness of Match). Let M = Π>2 DΠ1 + Γ, where Πi, i = 1, 2 are permu-
tation matrices, and D,Γ satisfy

(1) maxa6=bDab ≤ γ1 minaDaa,

(2) ‖Γ‖∞ ≤ γ2 minaDaa,
†The expectation here is taken with respect to the randomness of the sampling procedure and the

randomness of the network, given the latent variables Θ.
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where 0 < γ1 + 2γ2 < 1. Then Match applied to M returns Π>2 Π1.

Proof. Let πi be the permutations corresponding to Πi. We note that if a, b are such that
π−1

2 (a) 6= π−1
1 (b), i.e. (Π>2 Π1)ab = 0, then

Mab = Dπ−1
2 (a),π−1

1 (b) + Γab ≤ (γ1 + γ2) min
a
Daa.

On the other hand, if a, b are such that π−1
2 (a) = π−1

1 (b), i.e. (Π>2 Π1)ab = 1, then

Mab = Dπ−1
2 (a),π−1

2 (a) + Γab ≥ (1− γ2) min
a
Daa.

Combining we get

min
a,b:(Π>2 Π1)ab=1

Mab ≥
(

1− γ2

γ1 + γ2

)
max

a,b:(Π>2 Π1)ab=1
Mab.

So, if 1−γ2
γ1+γ2

> 1, i.e. if γ1 + 2γ2 < 1, then the K largest entries of M appear at positions
that map via Πi to the diagonal entries of Π>2 Π1. Hence the result.

Suppose we have two conflicting estimates Θ̂i = ΘΠi +Ei of Θ (based on the same set S
of nodes). Then their mismatch matrix

M = Θ̂>2 Θ̂1 = Π>2 ΘTΘΠ1 + Γ,

where Γ = Π>2 Θ>E1 + E>2 ΘΠ1 + E>2 E1. To align these two estimates, we can apply Match
on M . Condition (1) of Lemma 3.3.1 becomes

max
a6=b

(Θ>Θ)ab ≤ γ1 min
a

(ΘTΘ)aa. (3.4)

In all the models described before, the rows of Θ are sampled i.i.d. from Dirichlet(α). Under
a reasonable assumption on α, one can prove that Condition (1) is satisfied with high prob-
ability. (We emphasize that such a Dirichlet assumption is not necessary, one only needs
(3.4).)

Lemma 3.3.2 (Dirichlet prior). Suppose that the rows θi of Θ are i.i.d. Dirichlet(α), and
for γ3 ∈ (0, 1), we have

(1 + γ3)α2
max ≤ γ1(αmin + α2

min). (3.5)

Then, with probability at least 1− exp(−Ωα,γ1,γ3(n)), one has

max
a6=b

(Θ>Θ)ab ≤ γ1 min
a

(ΘTΘ)aa.

In particular, if α = η1, then (3.5) translates to η ≤ γ1
1−γ1+γ3

.
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Proof. It can be shown by using matrix Bernstein type inequalities that Θ>Θ concentrates
around its expectation E(Θ>Θ) = n(diag(α)+αα>)

1+α>1 (see, e.g., Lemma A.2 of [48]):

P(‖Θ>Θ− E(Θ>Θ)‖ ≥ t) ≤ K exp
(
− t2

8n+ 4t/3

)
. (3.6)

Let us write Θ>Θ = E(Θ>Θ) +E, where ‖E‖ is small with high probability. Then we need

max
a6=b

αaαb + (1 + α>1)Eab/n ≤ γ1 min
a

(αa + α2
a + (1 + α>1)Eab/n). (3.7)

The LHS of (3.7) ≤ α2
max + 1+α>1

n
‖E‖, whereas the RHS ≥ γ1(αmin + α2

min + 1+α>1
n
‖E‖).

Thus a simple sufficient condition is

α2
max + 1 + α>1

n
‖E‖ ≤ γ1(αmin + α2

min + 1 + α>1
n

‖E‖),

which is satisfied if

α2
max + (1− γ1)1 + α>1

n
‖E‖ ≤ γ1(αmin + α2

min).

Now, by the concentration result (3.6), for γ3 ∈ (0, 1),

‖E‖ ≤ nγ3α
2
max

(1− γ1)(1 + α>1) ,

with probability ≥ 1− exp(−Ωα,γ1,γ3(n)). Therefore the condition

(1 + γ3)α2
max ≤ γ1(αmin + α2

min) (3.8)

suffices.

In general (e.g., in CTM), one often uses distributions on the simplex other than the
Dirichlet, one example being logistic-normal. One can derive sufficient conditions for such
distributions as well, by deriving expressions for E(Θ>Θ).

As for Condition (2) of Lemma 3.3.1, we can prove, as in the proof of Lemma 2.5.2, that

‖Γ‖∞ ≤ ‖Γ‖1 ≤ 2(‖E1‖1 + ‖E2‖1).

Thus we will need bounds on the error of the algorithm in use for subsets to control ‖Γ‖∞.
Under assumptions on the parameters of the model in hand, we can derive analogues of
Theorem 2.3.2. Further development of such results is left for future work.

Remark 3.3.1. For identifiability of MMBM, a necessary condition is to have one pure
(i.e. a node which only belongs to one cluster) node from each cluster. Therefore it seems
that, in order for the algorithm A we use to produce meaningful and comparable estimates on
each subset, we would need one pure node per cluster in each subset, which is an annoying
restriction on the subset sampling scheme. Whether this issue can be resolved is another
intersting question for future investigation.
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Relation to assignment problem: Note that Match is essentially a special case of the
standard Hungarian algorithm [41] for the assignment problem, for cost matrices M which
are diagonal up to a permutation of rows/columns. As our results show, Match can work
even in cases where the diagonal entries of the cost function are sufficiently larger than
the off-diagonal entries. We can substitute Match with any algorithm for the assignment
problem, such as the Hungarian algorithm. It would be an interesting topic for future work
to verify if the conditions on D can be relaxed by using such an algorithm.

3.4 Discussion
In this chapter, we have extended PACE and GALE to handle mixed memberships. Thus
they can be used with topic models, mixed membership blockmodels, models for m-ary
mixed memberships, etc. We have discussed which parts of the theoretical arguments from
Chapter 2 need to be extended, and worked out a correctness criterion for the alignment
algorithm Match. Derivation of problem specific results are left for future work. Another
interesting direction would be investigate if divide and conquer has any statistical benefits.
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Chapter 4

Clustering network-valued objects

4.1 Introduction
The majority of the works in the community detection literature including those mentioned
in the Chapter 1 focus on finding communities among the nodes in a single network. While
this is still a very important problem with many open questions, there is an emerging need
to be able to detect clusters among multiple network-valued objects, where a network itself
is a fundamental unit of data. This is largely motivated by the routine collection of popula-
tions or subpopulations of network-valued data objects. Technological advancement and the
explosion of complex data in many domains has made this a somewhat common practice.

There has been some notable work on graph kernels in the Computer Science litera-
ture [79, 73]. In these works the goal is to efficiently compute different types of kernel
based similarity measures (or their approximations) between networks. In contrast, we ask
the following statistical questions. Can we cluster networks consistently from a mixture of
graphons, when 1) there is node correspondence and 2) when there isn’t? The first situa-
tion arises, for example, when one has a network evolving over time, or multiple instances
of a network between well-defined objects. If one thinks of them as random samples from
a mixture of graphons, then can we cluster them? We propose a simple and general al-
gorithm to address this question, which operates by first obtaining a graphon estimate of
each of the networks, constructing a distance matrix between those graphon estimates, and
then performing spectral clustering on the distance matrix. We call this algorithm Network
Clustering based on Graphon Estimates (NCGE).

The second situation arises when one is interested in global properties of a network. This
setting is closer to that of graph kernels. Say we have co-authorship networks from Computer
Science and High Energy Physics. Are these different types of networks? There has been a
lot of empirical and algorithmic work on featurizing networks or computing kernels between
networks. But most of these features require expensive computation. We propose a simple
feature based on traces of powers of the adjacency matrix for this purpose which is very
cheap to compute as it involves only matrix multiplication. We cluster the networks based
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on these features and call this method Network Clustering based on Log Moments (NCLM).
We provide some theoretical guarantees for our algorithms in terms of consistency, in

addition to extensive simulations and real data examples. The simulation results show that
NCGE clearly outperform the naive yet popular method of clustering (vectorized) adjacency
matrices in various settings. We also show that, in absence of node correspondence, NCLM
is consistently better and faster than methods which featurize networks with different global
statistics and graphlet kernels. We also apply NCLM to separate out a mixed bag of real
world networks, like co-authorship networks form different domains and ego networks.

4.2 Related work
Our focus is on 1) clustering networks which have node correspondence based on estimating
the underlying graphon and 2) clustering networks without node correspondence based on
global properties of the networks. In this section we first cite two methods of obtaining
graphon estimates, which we will use in our first algorithm. Second, we cite existing work
that summarizes a network using different statistics and compares those to obtain a measure
of similarity.

A prominent estimator of graphons is the so-called Universal Singular Value Thresh-
olding (USVT) estimator proposed by [25]. The main idea behind USVT is to essentially
estimate the low rank structure of the population matrix by thresholding the singular values
of the observed matrix at an universal cutoff, and then use retained singular values and the
corresponding singular vectors to construct an estimate of the population matrix.

Another recent work [86] proposes a novel, statistically consistent and computationally
efficient approach for estimating the link probability matrix by neighborhood smoothing.

Typically, for large networks, USVT is a lot more scalable than the neighborhood-
smoothing approach. There are several other methods for graphon estimation, e.g., by
fitting a stochastic blockmodel [63]. These methods can also be used in our algorithm.

In [26], a graph-based method for changepoint detection is proposed, where an inde-
pendent sequence of observations are considered. These are generated i.i.d. under the null
hypothesis, whereas under the alternative, after a changepoint, the underlying distribution
changes. The goal is to find this changepoint. The observations can be high-dimensional vec-
tors or even networks, with the latter bearing some resemblance with our first framework.
This can be viewed as clustering the observations into “past” and “future”. We remark
here that our graphon-estimation based clustering algorithm suggests an alternative method
for changepoint detection in networks, namely by looking at the second eigenvector of the
distance matrix between estimated graphons. This will be described more elaborately in
Chapter 5. Another related work is due to [30] which aims to extend the classical large
sample theory to model network-valued objects.

For comparing global properties of networks, there have been many interesting works
that featurize networks, see, for instance, [6]. In the Computer Science literature, graph
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kernels have gained much attention [79, 73]. In these works the goal is to efficiently compute
different types of kernel based similarity measures (exact or approximate) between networks.

4.3 A framework for clustering networks
Let G be a binary random network or graph with n nodes. Denote by A its adjacency
matrix, which is an n by n symmetric matrix with binary entries. That is, Aij = Aji ∈
{0, 1}, 1 ≤ i < j ≤ n, where Aij = 1 if there is an observed edge between nodes i and j, and
Aij = 0 otherwise. All the diagonal elements of A are structured to be zero (i.e. Aii = 0).
We assume the following random Bernoulli model with

Aij | Pij ∼ Bernoulli(Pij), i < j, (4.1)

where Pij = P (Aij = 1) is the probability of link formation between nodes i and j. We
denote the link probability matrix as P = ((Pij)). The edge probabilities are often modeled
using the so-called graphons. A graphon f is a nonnegative bounded, measurable symmetric
function f : [0, 1]2 → [0, 1]. Given such an f , one can use the model

Pij = f(ξi, ξj), (4.2)

where ξi, ξj are i.i.d. uniform random variables on (0, 1). In fact, any (infinite) exchangeable
network arises in this way (by Aldous-Hoover representation [5, 38]).

Our current work focuses on the problem of clustering networks. Unlike in a traditional
setup, where one observes a single network (with potentially growing number of nodes) and
the goal often is to cluster the nodes, here we observe multiple networks and are interested
in clustering these networks viewed as fundamental data units.

Node correspondence present
A simple and natural model for this is what we call the graphon mixture model for obvious
reasons: there are only K (fixed) underlying graphons f1, . . . , fK giving rise to link prob-
ability matrices Π1, . . . ,ΠK and we observe T networks sampled i.i.d. from the mixture
model

Pmix(A) =
K∑
i=1

qiPΠi(A), (4.3)

where the qi’s are the mixing proportions and PP (A) = ∏
u<v P

Auv
uv (1 − Puv)1−Auv is the

probability of observing the adjacency matrix A when the link probability matrix is given by
P . Consider n nodes, and T independent networks Ai, i ∈ [T ], which define edges between
these n nodes. We propose the following simple and general algorithm (Algorithm 8) for
clustering them.
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Algorithm 8 Network Clustering based on Graphon Estimates (NCGE)
1: Graphon estimation: Given A1, . . . , AT , estimate their corresponding link probability

matrices P1, . . . , PT using any one of the “blackbox” algorithms such as USVT ([25]),
the neighborhood smoothing approach by [86], etc. Call these estimates P̂1, . . . , P̂T .

2: Forming a distance matrix: Compute the T by T distance matrix D̂ with D̂ij =
‖P̂i − P̂j‖F , where ‖ · ‖F is the Frobenius norm.

3: Clustering: Apply the spectral clustering algorithm to the distance matrix D̂.

We will from now on denote the above algorithm with the different graphon estimation
(“blackbox”) approaches as follows: the algorithm with USVT as blackbox will be denoted by
CL-USVT and the one with the neighborhood smoothing method as blackbox will be denoted
by CL-NBS. We will compare these two algorithms with the CL-NAIVE method which does
not estimate the underlying graphon, but clusters vectorized adjacency matrices directly (in
the spirit of [26]).

Node correspondence absent
We use certain graph statistics to construct a feature vector. The basic statistics we choose
are the trace of powers of the adjacency matrix, suitably normalized and we call them graph
moments:

mk(A) = trace(A/n)k. (4.4)

These statistics are related to various path/subgraph counts. For example, m2(A) is the
normalized count of the total number of edges, m3(A) is the normalized triangle count of A.
Higher order moments are actually counts of closed walks (or directed circuits). Figure 4.1
shows the circuits corresponding to k = 4.

Figure 4.1: Circuits related to m4(A).

(A) (B) (C) (D)

The reason we use graph moments instead of subgraph counts is that the latter are quite
difficult to compute and present day algorithms work only for subgraphs up to size 5. On the
contrary, graph moments are easy to compute as they only involve matrix multiplication.
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While it may seem that this is essentially the same as comparing the eigenspectrum, it
is not clear how many eigenvalues one should use. Even if one could estimate the number of
large eigenvalues using an USVT type estimator, the length is different for different networks.
The trace takes into account the relative magnitudes of the eigenvalues naturally. In fact,
we tried (see Section 4.5) using the top few eigenvalues as the sole features, but the results
were not as satisfactory as using mk.

We now present our second algorithm (Algorithm 9). In step 2 below we take d to be
the standard Euclidean metric.

Algorithm 9 Network Clustering based on Log Moments (NCLM)
1: Moment calculation: For each network Ai, i ∈ [T ] and a positive integer J , compute

the feature vector gJ(Ai) := (logm1(Ai), logm2(Ai), . . . , logmJ(Ai)).
2: Forming a distance matrix: For some metric d, set D̂ij = d(gJ(Ai), gJ(Aj)).
3: Clustering: Apply the spectral clustering algorithm to the distance matrix D̂.

Note: The rationale behind taking a logarithm of the graph moments is that if we
have two graphs with the same degree density but different sizes, then the degree density
will not play any role in the the distance (which is necessary because the degree density
will subdue any other differences otherwise). The parameter J counts, in some sense, the
effective number of eigenvalues we are using.

4.4 Main Results
We will now mention our main results and discuss some of the consequences. All the proofs
and further details are relegated to Section 4.6.

Results on NCGE
We can think of D̂ij as estimating Dij = ‖Pi − Pj‖F .

Theorem 4.4.1. Suppose D = ((Dij)) has rank K. Let V (resp. V̂ ) be the T ×K matrix
whose columns correspond to the leading K eigenvectors (corresponding to the K largest-in-
magnitude eigenvalues) of D (resp. D̂). Let γ = γ(K,n, T ) be the K-th smallest eigenvalue
value of D in magnitude. Then there exists an orthogonal matrix Ô such that

‖V̂ Ô − V ‖2
F ≤

64T
γ2

∑
i

‖P̂i − Pi‖2
F .

Corollary 4.4.1. Assume for some absolute constants α, β > 0 the following holds for each
i ∈ [T ]:

‖P̂i − Pi‖2
F

n2 ≤ Cin
−α(log n)β, (4.5)
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either in expectation or with high probability (≥ 1 − εi,n). Then in expectation or with high
probability (≥ 1−∑i εi,n) we have that

‖V̂ Ô − V ‖2
F ≤

64CTT 2n2−α(log n)β
γ2 , (4.6)

where CT = maxi≤i≤T Ci.

If there are K (fixed, not growing with T ) underlying graphons, then the constant CT does
not depend on T . Table 4.1 reports values of α, β for various graphon estimation procedures
(under assumptions on the underlying graphons, that are described in Section 4.6).

Table 4.1: Values of α, β for various graphon estimation procedures.
Procedure USVT NBS Minimax rate

α 1/3 1/2 1
β 0 1/2 1

While it is hard to obtain an explicit lower bound on γ in general, let us consider a simple
equal weight mixture of two graphons to illustrate the relationship between γ and separation
between graphons. Let the distance between the population graphons be dn. Then we have

D = Z

(
0 dn
dn 0

)
ZT , where the i-th row of the binary matrix Z has a single one at position

l if network Ai is sampled from Πl. The nonzero eigenvalues of this matrix are Tnd/2 and
−Tnd/2. Thus, in this case, γ = Tnd/2. As a result (4.6) becomes

‖V̂ Ô − V ‖2
F ≤

256CTn−α(log n)β
d2 . (4.7)

Let us look at a more specific case of blockmodels with the same number (= m) of
clusters of equal sizes (= n/m) to gain some insight into d. Let C be a n × m binary
matrix of memberships such that Cib = 1 if node i within a blockmodel comes from cluster
b. Consider two blockmodels Π1 = CB1C

T with B1 = (p − q)Im + qEm and Π2 = CB2C
T

with B2 = (p′ − q′)Im + q′Em, where Im is the identity matrix of order m (here the only
difference between the models come from link formation probabilities within/between blocks,
the blocks remaining the same). In this case

d2 = ‖Π1 − Π2‖2
F

n2 = 1
m

(p− p′)2 +
(

1− 1
m

)
(q − q′)2.

The bound (4.6) can be turned into a bound on the proportion of “misclustered” networks,
defined appropriately. There are several ways to define misclustered nodes in the context
of community detection in stochastic blockmodels that are easy to analyze with spectral
clustering (see, e.g., [71, 43]). These definitions work in our context too. For example, if we
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use Definition 4 of [71] and denote by M the set of misclustered networks, then from the
proof of their Theorem 1, we have

|M| ≤ 8mT‖V̂ Ô − V ‖2
F ,

where mT = maxj=1,...,K(ZTZ)jj is the maximum number of networks coming from any of
the graphons.

Results on NCLM
We first establish concentration of trace(Ak). The proof uses Talagrand’s concentration in-
equality, which requires additional results on Lipschitz continuity and convexity. This is
obtained via decomposing A 7→ trace(Ak) into a linear combination of convex-Lipschitz
functions.

Theorem 4.4.2 (Concentration of moments). Let A be the adjacency matrix of a random
graph with link-probability matrix P . Then for any k. Let ψk(A) := n

k
√

2mk(A). Then

P(|ψk(A)− Eψk(A)| > t) ≤ 4 exp(−(t− 4
√

2)2/16).

As a consequence, gJ(A) concentrates around ḡJ(A) := (logEm2(A), . . . , logEmJ(A)).

Theorem 4.4.3 (Concentration of gJ(A)). Let EA = ρS, where ρ ∈ (0, 1), mini,j Sij = Ω(1),
and ∑

i,j Sij = n2. Then ‖ḡJ(A)‖ = Θ(J3/2 log(1/ρ)), and for any 0 < δ < 1 satisfying
δJ log(1/ρ) = Ω(1), we have

P(‖gJ(A)− ḡJ(A)‖ ≥ δJ3/2 log(1/ρ)) ≤ JC1e
−C2n2ρ2J

.

We expect that ḡJ will be a good population level summary for many models. In general,
it is hard to show an explicit separation result for ḡJ . However, in simple models, we can
do explicit computations to show separation. For example, in a two parameter blockmodel
B = (p−q)Im+qEm, with equal block sizes, we have Em2(A) = (p/m+(m−1)q/m)(1+o(1)),
Em3(A) = (p3/m2 + (m − 1)pq2/m2 + (m − 1)(m − 2)q3/6m2)(1 + o(1)) and so on. Thus
we see that if m = 2, then ḡ2 should be able to distinguish between such blockmodels (i.e.
different p, q).

Note: After this work was submitted, we came to know of a concurrent work [49] that
provides a topological/combinatorial perspective on the expected graph moments Emk(A).
Theorem 1 in [49] shows that under some mild assumptions on the model (satisfied, for
example, by generalized random graphs with bounded kernels as long as the average degree
grows to infinity), Etrace(Ak) = E(# of closed k-walks) will be asymptotic to E(# of closed
k-walks that trace out a k-cycle) plus 1{k even}E(# of closed k-walks that trace out a (k/2+1)-
tree). For even k, if the degree grows fast enough, k-cycles tend to dominate, whereas for
sparser graphs trees tend to dominate. From this and our concentration results, we can
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expect NCLM to be able to tell apart graphs which are different in terms the counts of these
simpler closed k-walks. Incidentally, the authors of [49] also show that the expected count of
closed non-backtracking walks of length k is dominated by walks tracing out k-cycles. Thus,
if one uses counts of closed non-backtracking k-walks (i.e. moments of the non-backtracking
matrix) instead of just closed k-walks as features, one would expect similar performance on
denser networks, but in sparser settings it may lead to improvements because of the absence
of the non-informative trees in lower order even moments.

4.5 Simulation study and data analysis
In this section, we describe the results of our experiments with simulated and real data
to evaluate the performance of NCGE and NCLM. We measure performance in terms of
clustering error which is the minimum normalized hamming distance between the estimated
label vector and all K! permutations of the true label assignment. Clustering accuracy is
one minus clustering error.

Node correspondence present: We provide two simulated data experiments∗ for cluster-
ing networks with node correspondence. In each experiment twenty 150-node networks were
generated from a mixture of two graphons, 13 networks from the first and the other 7 from
the second. We also used a scalar multiplier with the graphons to ensure that the networks
are not too dense. The average degree for all these experiments were around 20-25. We
report the average error bars from a few random runs.

First we generate a mixture of graphons from two blockmodels, with probability matrices
(pi − qi)Im + qiEm with i ∈ {1, 2}. We use p2 = p1(1 + ε) and q2 = q1(1 + ε) and measure
clustering accuracy as the multiplicative error ε is increased from 0.05 to 0.15. We compare
CL-USVT, CL-NBS and CL-NAIVE and the results are summarized in Figure 4.2(A). We have
observed two things. First, CL-USVT and CL-NBS start distinguishing the graphons better
as ε increases (as the theory suggests). Second, the naive approach does not do a good job
even when ε increases.

In the second simulation, we generate the networks from two smooth graphons Π1 and
Π2, where Π2 = Π1(1 + ε) (here Π1 corresponds to the graphon 3 appearing in Table 1 of
[86]). As is seen from Figure 4.2(B), here also CL-USVT and CL-NBS outperform the naive
algorithm by a huge margin. Also, CL-NBS is consistently better than CL-USVT, which
shows that the accuracy of the graphon estimation procedure is important (for example,
USVT is known to perform worse as the network becomes sparser).

Node correspondence absent: We show the efficacy of our approach via two sets of
experiments. We compare our log-moment based method NCLM with three other methods.
The first is Graphlet Kernels [73] with 3, 4 and 5 graphlets, denoted by GK3, GK4 and

∗Code used in this chapter is publicly available at https://github.com/soumendu041/
clustering-network-valued-data.

https://github.com/soumendu041/clustering-network-valued-data
https://github.com/soumendu041/clustering-network-valued-data
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Figure 4.2: Behavior of CL-USVT, CL-NBS and CL-NAIVE when ε increases, and the under-
lying network is generated from (A) a blockmodel, and (B) a smooth graphon.

(A) (B)

GK5 respectively. In the second method, we use six different network-based statistics to
summarize each graph; these statistics are the algebraic connectivity, the local and global
clustering coefficients [59], the distance distribution [47] for 3 hops, the Pearson correlation
coefficient [58] and the rich-club metric [88]. We also compare against graphs summarized
by the top J eigenvalues of A/n (TopEig).

The algebraic connectivity is the second smallest eigenvalue of the Laplacian. However,
to make this metric free of the size of a graph, we use the second smallest eigenvalue of
the normalized Laplacian of the largest connected component of a graph. The need for
using the largest connected component is that most real graphs without any preprocessing
have isolated nodes, or small components. The global clustering coefficient measures the
ratio of the number of triangles to the number of connected triplets. In contrast, the local
clustering coefficient computes the average of the ratios of the number of triangles connected
to a node and the number of triplets centered at that node. The distance distribution for h
hops essentially calculates the fraction of all pairs of nodes that are within shortest path or
geodesic distance of h hops. Essentially this metric calculates how far a pair of nodes are in
a graph on average. The Pearson correlation coefficient of a graph measures the assortativity
by computing the correlation coefficient between the degrees of the endpoints of the edges in
the graph. Finally, the rich-club metric calculates the edge density of the subgraph induced
by nodes with degree above a given threshold. For this metric we chose to use the 0.8-th
quantile of the degree sequence of a graph.

For each distance matrix D̂ we compute with NCLM, GraphStats and TopEig, we calcu-
late a similarity matrix K = exp(−tD̂) where t is chosen as the value, within a range, which
maximizes the relative eigengap (λK(K) − λK+1(K))/λK+1(K). It would be interesting to
have a data dependent range for t.

For each matrix K we calculate the top few eigenvectors, say N many, and do K-means
on them to get the final clustering. We use N = K; however, for GK3, GK4, and GK5, we
had to use a smaller N which boosted their clustering accuracy.



CHAPTER 4. CLUSTERING NETWORK-VALUED OBJECTS 50

First we construct four sets of parameters for the two parameter blockmodel (also known
as the planted partition model): Θ1 = {p = 0.1, q = 0.05, K = 2, ρ = 0.6}, Θ2 = {p =
0.1, q = 0.05, K = 2, ρ = 1}, Θ3 = {p = 0.1, q = 0.05, K = 8, ρ = 0.6}, and Θ4 = {p =
0.2, q = 0.1, K = 8, ρ = 0.6}. Note that the first two settings differ only in the density
parameter ρ. The second two settings differ in the within and across cluster probabilities.
The first two and second two differ in K. For each parameter setting we generate two sets
of 20 graphs, one with n = 500 and the other with n = 1000.

For choosing J , we calculate the moments for a large J ; compute a kernel similarity
matrix for each choice of J and report the one with largest relative eigengap between the
Kth and (K + 1)th eigenvalue. See Figure 4.3.

Figure 4.3: Tuning for J in the simulated networks: we plot the separation (= (λK −
λK+1)/λK+1) found in the kernel matrix K against the value of J used in NCLM in our
simulation settings.

We see that the eigengap increases and levels off after a point. However, as J increases,
the computation time increases, so there is a trade-off. We report the accuracy of J = 5,
whereas J = 8 also returns the same in 48 seconds.

Table 4.2: Clustering error of six different methods on simulated networks.
NCLM (J = 5) GK3 GK4 GK5 GraphStats (J = 6) TopEig (J = 5)

Error 0 0.5 0.36 0.26 0.37 0.18
Time (s) 25 14 16 38 94 8
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We see that NCLM performs the best. For GK3, GK4 and GK5, if one uses the top
two eigenvectors, and clusters those into 4 groups (since there are four parameter settings),
the errors are respectively 0.08, 0.025 and 0.03. This means that, for clustering, one needs
to estimate the effective rank of the graphlet kernels as well. TopEig performs better than
GraphStats, which has trouble separating out Θ2 and Θ4.

Note: Intuitively one would expect that, if there is node correspondence between the graphs,
clustering based on graphon estimates would work better, because it aims to estimate the
underlying probabilistic model for comparison. However, in our experiments we found that
a properly tuned NCLM matched the performance of NCGE. This is probably because a
properly tuned NCLM captures the global features that distinguish two graphons. We leave
it for future work to compare their performance theoretically.

Real networks: We cluster about fifty real world networks. We use 11 co-authorship
networks between 15,000 researchers from the High Energy Physics corpus of the arXiv, 11
co-authorship networks with 21,000 nodes from Citeseer (which had Machine Learning in
their abstracts), 17 co-authorship networks (each with about 3000 nodes) from the NIPS
conference and finally 10 Facebook ego networks†. The average degrees vary between 0.2 to
0.4 for co-authorship networks and are around 10 for the ego networks. Each co-authorship
network is dynamic, i.e. a node corresponds to an author in that corpus and this node index
is preserved in the different networks over time. The ego networks are different in that sense,
since each network is the subgraph of Facebook induced by the neighbors of a given central
or “ego” node. The sizes of these networks vary between 350 to 4000.

Table 4.3: Clustering error of six different methods on a collection of real world networks
consisting of co-authorship networks from Citeseer, High Energy Physics (HEP-Th) corpus
of arXiv, NIPS and ego networks from Facebook.

NCLM (J = 8) GK3 GK4 GK5 GraphStats (J = 8) TopEig (J = 30)
Error 0.1 0.6 0.6 0.6 0.16 0.32

Time (s) 2.7 45 50 60 765 14

Table 4.3 summarizes the performance of different algorithms and their running time to
compute distance between the graphs. We use the different sources of networks as ground
truth labels, i.e. HEP-Th will be one cluster, etc. We explore different choices of J , and
see that the best performance is from NCLM, with J = 8, followed closely by GraphStats.
TopEig (J in this case is where the eigenspectra of the larger networks have a knee) and the
graph kernels do not perform very well. GraphStats take 765 seconds to complete, whereas
NCLM finishes in 2.7 seconds. This is because the networks are large but extremely sparse,
and so calculation of matrix powers is comparatively cheap.

In Figure 4.4, we plot the kernel similarity matrix obtained using NCLM on the real
networks (higher the value, more similar the points are). The first 11 networks are from

†https://snap.stanford.edu/data/egonets-Facebook.html



CHAPTER 4. CLUSTERING NETWORK-VALUED OBJECTS 52

Figure 4.4: Kernel matrix for NCLM on 49 real networks.

HEP-Th, whereas the next 11 are from Citeseer. The next 16 are from NIPS and the
remaining ones are the ego networks from Facebook. First note that {HEP-Th, Citeseer},
NIPS and Facebook are well separated. However, HEP-Th and Citeseer are hard to separate
out. This is also verified by the bad performance of TopEig in separating out the first
two (shown in Section 4.5). However, in Figure 4.4, we can see that the Citeseer networks
are different from HEP-Th in the sense that they are not as strongly connected inside as
HEP-Th.

4.6 Proofs and related discussions

Proofs of results on NCGE
Proposition 4.6.1. We have

‖D̂ −D‖2
F ≤ 4T

∑
i

‖P̂i − Pi‖2
F .

Proof. The proof is straightforward. By triangle inequality we have

|D̂ij −Dij| =
∣∣∣‖P̂i − P̂j‖F − ‖Pi − Pj‖F ∣∣∣ ≤ ‖P̂i − Pi‖F + ‖P̂j − Pj‖F .

Therefore

‖D̂ −D‖2
F =

∑
i,j

|D̂ij −Dij|2 ≤
∑
i,j

(‖P̂i − Pi‖F + ‖P̂j − Pj‖F )2

≤ 2
∑
i,j

(‖P̂i − Pi‖2
F + ‖P̂j − Pj‖2

F ) = 4T
∑
i

‖P̂i − Pi‖2
F .
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Proposition 4.6.2 (Davis-Kahan). Suppose D has rank K. Let V (resp. V̂ ) be the T ×K
matrix whose columns correspond to the leading K eigenvectors (corresponding to the K
largest-in-magnitude eigenvalues) of D (resp. D̂). Let γ = γ(K,n, T ) be the K-th smallest
eigenvalue value of D in magnitude. Then there exists an orthogonal matrix Ô such that

‖V̂ Ô − V ‖F ≤
4‖D̂ −D‖F

γ
.

Proof. This follows from a slight variant of Davis-Kahan theorem that appears in [83]. Since
D is a Euclidean distance matrix of rank K, its eigenvalues must be of the form

λ1 ≥ · · · ≥ λu > 0 = · · · = 0 > λv ≥ · · · ≥ λn,

with u + n − v + 1 = K. Applying Theorem 2 of [83] with r = 1, s = u we get that if V+
denotes matrix whose columns are the eigenvectors of D corresponding to λ1, . . . , λu and V̂+
denotes the corresponding matrix for D̂, then there exists an orthogonal matrix Ô+ such
that

‖V̂+Ô+ − V+‖F ≤
2
√

2‖D̂ −D‖F
λu

.

Similarly, considering the eigenvalues λv, . . . , λn, and applying Theorem 2 of [83] with r = v
and s = n we get that

‖V̂−Ô− − V−‖F ≤
2
√

2‖D̂ −D‖F
−λv

,

where V−, V̂− and Ô− are the relevant matrices. Set V = [V+ : V−], V̂ = [V̂+ : V̂−] and

Ô =
(
Ô+ 0
0 Ô−

)
. Then note that the columns of V are eigenvectors of D corresponding to

its K largest-in-magnitude eigenvalues, that O is orthogonal and also that γ = min{λu,−λv}.
Thus

‖V̂ Ô − V ‖2
F = ‖V̂+Ô+ − V+‖2

F + ‖V̂−Ô− − V−‖2
F

≤ 8‖D̂ −D‖2
F

λ2
u

+ 8‖D̂ −D‖2
F

λ2
v

≤ 16‖D̂ −D‖2
F

γ2 ,

which is the desired bound.

Proof of Theorem 4.4.1. Follows immediately from Propositions 4.6.1-4.6.2.

Proposition 4.6.3. Suppose there are K underlying graphons, as in the graphon mixture
model (4.3), and assume that in our sample there is at least one representative from each of
these. Then D has the form ZDZT where the ith row of the binary matrix Z has a single
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one at position l if network Ai is sampled from Πl, and D is the K ×K matrix of distances
between the Πl. As a consequence D is of rank K. Then there exists a T × K matrix V
whose columns are eigenvectors of D corresponding to the K nonzero eigenvalues, such that

Vi? = Vj? ⇔ Zi? = Zj?,

so that knowing V , one can recover the clusters perfectly.

Proof. The proof is standard. Note that ZTZ is positive definite. Consider the matrix
(ZTZ)1/2B(ZTZ)1/2 and let U∆UT be its spectral decomposition. Then the matrix V =
Z(ZTZ)−1/2U has the required properties.

USVT: Theorem 2.7 of [25] tells us that if the underlying graphons are Lipschitz then
E‖P̂i−Pi‖

2
F

n2 ≤ Cin
−1/3, where the constant Ci depends only on the Lipschitz constant of the

underlying graphon fi. So, the condition (4.5) of Corollary 4.4.1 is satisfied with α = 1/3,
β = 0.

Neighborhood smoothing: The authors of [86] work with a class Fδ,L of piecewise Lips-
chitz graphons, see Definition 2.1 of their paper. The proof of Theorem 2.2 of [86] reveals that
if fi ∈ Fδi,Li , then there exist a global constant C and constants Ci ≡ Ci(Li), such that for all
n ≥ Ni ≡ Ni(δi), with probability at least 1−n−C , we have ‖P̂i−Pi‖

2
F

n2 ≤ Ci
√

logn
n
. Thus the con-

dition (4.5) of Corollary 4.4.1 is satisfied with α = β = 1/2, for all n ≥ NT := max1≤i≤T Ni.

Remark 4.6.1. In the case of the graphon mixture model (4.3), the constants CT and NT

will be free of T as there are only K (fixed) underlying graphons. Also, if each fi ∈ Fδ,Li,
then NT will not depend on T and if the Lipschitz constants are the same for each graphon,
then CT will not depend on T .

Remark 4.6.2. There are combinatorial algorithms that can achieve the minimax rate,
n−1 log n, of graphon estimation [28]. Albeit impractical, these algorithms can be used to
achieve the optimal bound of 4CTn−1 log n in Proposition 4.6.1.

Remark 4.6.3. We do not expect CL-NAIVE to perform well simply because A is not a good
estimate of P in Frobenius norm in general. Indeed,

1
n2E‖A− P‖

2
F = 1

n2

∑
i,j

E(Aij − Pij)2 = 1
n2

∑
i 6=j

Pij(1− Pij) + 1
n2

∑
i

P 2
ii ≤

1
4(1 + o(1)),

with equality, for example, when each Pij = 1
2 + o(1).

Proofs of results on NCLM
Proposition 4.6.4 (Lipschitz continuity). Suppose A and A+ U are matrices with entries
in [−1, 1], then
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1. |trace((A+ U)k+)− trace(Ak+)| ≤ knk−1‖U‖F ,

2. |trace((A+ U)k−)− trace(Ak−)| ≤ knk−1‖U‖F ,

i.e. the map φ+,k : Sn×n[−1,1] → [0,∞) defined on the space Sn×n[−1,1] of symmetric matrices with
entries in [−1, 1] by φ+,k(A) = trace(Ak+) is Lipschitz with constant knk−1. Note that this
implies that the map φ̃+,k : [0, 1]n(n−1)/2 → [0,∞) defined by

φ̃+,k((aij)1≤i<j≤n) = trace(Ak+),

where Aij = Aji = aij, for 1 ≤ i < j ≤ n and Aii = 0, is Lipschitz with constant
√

2knk−1.
The same statements hold for analogously defined φ−,k and φ̃−,k.

Proof. Let λ1 ≥ · · · ≥ λn be the ordered eigenvalues of A + U , whereas ν1 ≥ · · · ≥ νn be
the ordered eigenvalues of A. Let σ1 ≥ · · · ≥ σn be the ordered eigenvalues of U . First note
that since these matrices have entries in [−1, 1], their Frobenius norm is at most n. Thus all
their eigenvalues are in [−n, n].

We now compute the derivative of traceAk with respect to a particular variable Aij. We
claim that

d

dAij
traceAk = 2kAk−1

ij .

To do this we shall work with the linear map interpretation of derivative (in this case mul-
tiplication by a number). First consider the map f : Rn×n → Rn×n defined as f(A) = Ak.
Then consider the map g : Rn×n → R defined by g(A) = trace(A). Finally consider the map
h : R→ Rn×n defined as h(x) = A+(x−Aij)eieTj +(x−Aij)ejeTi . Now we view the function
traceAk for A symmetric as a function of Aij as g ◦ f ◦ h(Aij). Therefore, by the chain rule

d

dAij
traceAk(u) = Df◦h(Aij)g ◦Dh(Aij)f ◦DAijh(u).

Now g is a linear function. Therefore DAg = g. On the other hand, it is easy to see
that DAijh(u) = ueie

T
j + ueje

T
i . Finally f can be viewed as the composition of two maps

α(A1, . . . , Ak) = A1A2 · · ·Ak and β(A) = (A, . . . , A). Notice that D(A1,...,Ak)α(H1, . . . , Hk) =
H1A2 · · ·Ak + A1H2 · · ·Ak + . . .+ A1A2 · · ·Hk), and DAβ = β. Thus

DAf(H) = Dβ(A)α ◦DAβ(H) = Dβ(A)α(H, . . . , H) = HAk−1 + · · ·+HAk−1 = kHAk−1.

Therefore
d

dAij
traceAk(u) = g ◦Dh(Aij)f(ueieTj + ueje

T
i ).

Noting that h(Aij) = A we get

d

dAij
traceAk(u) = g(k(ueieTj + ueje

T
i )Ak−1) = 2kAk−1

ij u.
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Therefore the map φ̃k : Rn(n−1)/2 → R defined by φ̃k((Aij)i<j) ≡ φ̃k(A) = trace(Ak) has
gradient 2k(Ak−1

ij )i<j.
Therefore

|φ̃k(A)− φ̃k(B)| ≤ ‖∇φ̃k‖2‖(Aij)− (Bij)‖2.

But ‖∇φ̃k‖2 =
√

2k‖Ak−1‖F ≤
√

2knk−1 (by repeated application of the inequality ‖XY ‖F ≤
‖X‖F‖Y ‖op and noting that ‖A‖F ≤ n), and ‖(Aij)− (Bij)‖2 = ‖A−B‖F/

√
2. Therefore

|φ̃k(A)− φ̃k(B)| ≤ knk−1‖A−B‖F .

Also as before

|trace(A+ U)k+ − traceAk+| = |φ̃k((A+ U)+)− φ̃k(A+)|
≤ knk−1‖(A+ U)+ − A+‖F
≤ knk−1‖U‖F ,

where in the last step we have used the fact that A 7→ A+ is projection onto the PSD cone
and hence non-expansive (i.e. 1-Lipschitz). Part 2. may now be obtained easily by noting
that A− = (−A)+.

Proposition 4.6.5 (Convexity). The functions φ±,k and φ̃±,k are convex on their respective
domains.

Proof. We recall the standard result that if a continuous map t 7→ f(t) is convex, so is
A 7→ tracef(A) on the space of Hermitian matrices, and it is strictly convex if f is strictly
convex (See, for example, Theorem 2.10 of [23]). To use this we note that x 7→ xk+ is
continuous and convex, and so is x 7→ xk−. This establishes convexity of φ±,k. Convexity of
φ̃±,k is an immediate consequence.

Proof of Theorem 4.4.2. The idea is to use Talagrand’s concentration inequality for convex-
Lipschitz functions (cf. [19], Theorem 7.12). First note that for k even, we have

ψk(A) = ψ+,k(A) + ψ−,k(A)

and for k odd
ψk(A) = ψ+,k(A)− ψ−,k(A),

where
ψ±,k(A) = 1√

2knk−1
φ̃±,k(A).

Viewed as a map from [0, 1]n(n−1)/2 to [0,∞), both ψ±,k are convex, 1-Lipschitz. Therefore,
by Talagrand’s inequality,

P(|ψ±,k(A)−Mψ±,k(A)| > t) ≤ 2 exp(−t2/4),
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where Mψ±,k(A) is a median of ψ±,k(A). By Exercise 2.2 of [19], we have

|Mψ±,k(A)− Eψ±,k(A)| ≤ 2
√

2,

which implies that

P(|ψ±,k(A)− Eψ±,k(A)| > t) ≤ 2 exp(−(t− 2
√

2)2/4).

Therefore

P(|ψk(A)− Eψk(A)| > t) ≤ P(|ψ+,k(A)− Eψ+,k(A)| > t/2) + P(|ψ−,k(A)− Eψ−,k(A)| > t/2)
≤ 4 exp(−(t− 4

√
2)2/16),

as desired.

Proposition 4.6.6 (Order of expectation). Let EA = P = ρS, where ρ ∈ (0, 1), mini,j Sij =
Ω(1), and ∑i,j Sij = n2. Then,

ρk � Emk(A) � ρk−1.

Proof. Note that
trace(Ak) =

∑
i1,i2,...,ik

Ai1i2Ai2i3 · · ·Aiki1 .

Since Aij’s are Bernoulli random variables, Letting P? := minij Pij and P# := maxPij, we
see that

P `
? ≤ EAi1i2Ai2i3 · · ·Aiki1 ≤ P `

#,

where 1 ≤ ` ≤ k is the number of distinct sets among {i1, i2}, {i2, i3}, . . . , {ik, i1}. We call `
the weight of the sequence i1, . . . , ik. We can easily see that the total number of sequences
is bounded by nk, and the number of sequences with weight `, call it N(`; k, n), is bounded
above by n`+1. In fact,

N(k; k, n) = n(n− 1)(n− 2)k−3(n− 3) � nk.

We thus have
k∑
`=1

N(`; k, n)P `
? ≤ Etrace(Ak) ≤

k∑
`=1

N(`; k, n)P `
#.

This gives us trivial upper and lower bounds (C1, C2 > 0 are absolute constants whose values
are adjusted as necessary)

C1n
kρk ≤ C1n

kP k
? ≤ N(k; k, n) ≤ Etrace(Ak) ≤

k−1∑
`=1

n`+1P `
# + nkP k

#

= n
(nP#)k − (nP#)

nP# − 1 + nkP k
#

≤ C2n
kP#

k−1 ≤ C2n
kρk−1.

This completes the proof.
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In the following, we will again use C1, C2 > 0 as absolute constants whose values may
change from line to line.

Proof of Theorem 4.4.3. First of all, by Proposition 4.6.6 we have

| logEmk(A)| = Θ(k log(1/ρ)),

from which we conclude that ‖ḡJ(A)‖ = Θ(J3/2 log(1/ρ)).
Writing µk = Emk(A), and using Theorem 4.4.2, we get

P(| logmk(A)− log µk| > t) = P(mk

µk
− 1 > et − 1) + P(mk

µk
− 1 < −(1− e−t))

≤ P(|mk − µk| > (et − 1)µk) + P(|mk − µk| > (1− e−t)µk)

≤ C1e
−C2

n2µ2
k

(et−1)2

k2 + C1e
−C2

n2µ2
k

(1−e−t)2

k2

≤ C1e
−C2

n2ρ2k(et−1)2

k2 + C1e
−C2

n2ρ2k(1−e−t)2

k2 ,

where in the last line we have used Proposition 4.6.6. Using this along with an union bound,
we get

P(‖gJ(A)− ḡJ(A)‖ ≥ t) ≤
J∑
k=2

P(| logmk(A)− logEmk(A)| > t√
J

)

≤
J∑
k=2

C1e
−C2

n2ρ2k(et/
√
J−1)2

k2 + C1e
−C2

n2ρ2k(1−e−t/
√
J )2

k2 .

Choosing t = δJ3/2 log(1/ρ), where δJ log(1/ρ) = Ω(1), we see that et/
√
J − 1 = ρ−δJ − 1 =

Ω(ρ−δJ) and 1− e−t/
√
J = 1−ρδJ = Ω(1). Also note that ρ2k/k2 ≥ ρ2J/4. Therefore we have

P(‖gJ(A)− ḡJ(A)‖ ≥ δJ3/2 log(1/ρ)) ≤ J(C1e
−C2n2ρ2Jρ−2δJ + C1e

−C2n2ρ2J )
≤ JC1e

−C2n2ρ2J
,

which completes the proof.

4.7 Discussion
We consider the problem of clustering network-valued data for two settings, both of which
are prevalent in practice. In the first setting, different network objects have node correspon-
dence. This includes clustering brain networks obtained from FMRI data where each node
corresponds to a specific region in the brain, or co-authorship networks between a set of
authors where the connections vary from one year to another. In the second setting, node
correspondence is not present, e.g., when one wishes to compare different types of networks:
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co-authorship networks, Facebook ego networks, etc. One may be interested in seeing if
co-authorship networks are more “similar” to each other than ego or friendship networks.

We present two algorithms for these two settings based on a simple general theme: sum-
marize a network into a possibly high dimensional feature vector and then cluster these
feature vectors. In the first setting, we propose NCGE, where each network is represented
using its graphon-estimate. We can use a variety of graphon estimation algorithms for this
purpose. We show that if the graphon estimation is consistent, then NCGE can cluster net-
works generated from a finite mixture of graphons in a consistent way, if those graphons
are sufficiently different. In the second setting, we propose to represent a network using
an easy-to-compute summary statistic, namely the vector of the log-traces of the first few
powers of a suitably normalized version of the adjacency matrix. We call this method NCLM
and show that the summary statistic concentrates around its expectation, and argue that
this expectation should be able to separate networks generated from different models. Using
simulated and real data experiments we show that NCGE is vastly superior to the naive
but often-used method of comparing adjacency matrices directly, and NCLM outperforms
most computationally expensive alternatives for differentiating networks without node cor-
respondence. In conclusion, we believe that these methods will provide practitioners with
a powerful and computationally tractable tool for comparing network-structured data in a
range of disciplines.
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Chapter 5

Changepoint detection

5.1 Introduction
In this chapter, we tackle the problem of changepoint detection in temporal network data,
that is one observes a series of networks indexed by time and wishes the check if there is a
timepoint (so-called changepoint) when there is a significant change in the structure of these
networks. Potential applications are in, for instance, brain imaging, where one has brain
scans of individuals collected over time and is looking for abnormalities, ecological networks
observed over time, where one wonders if there is a structural change, and so on.

Note: We stress here that we observe the whole time series ahead of our analysis, this is
thus an offline or a posteriori changepoint problem. We will not discuss the online version
of the problem here, which is also quite interesting.

5.2 Related work
Changepoint detection is a classical problem in statistics going all the way back to the early
days of statistical quality control [65, 66, 31]. There is a huge literature on the univariate
changepoint problem. An excellent treatment can be found in the book [20].

The multivariate versions of the problem are significantly more complex. Some notable
works are [84, 74, 76, 39] in the parametric setting, and [35, 46, 26] in the non-parametric
setting.

There has been some recent works on the problem of network changepoints. For example,
[68] postulate a hierarchical random graph model and use a Bayesian procedure to detect
changepoints. [67] use local graph statistics for changepoint and/or anomaly detection in
dynamic networks. For a survey of techniques used in the related problem of anomaly
detection in graphs, see [70]. Most two sample graph tests can be used for the changepoint
problem viewed as a multiple testing problem. For example, an eigenvalue based test for the
ER vs SBM problem is worked out in [22]. Although much empirical work has been done,
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not much theory can be found, and most theoretical results focus on particular structures
or specialized models. An exception is [72], where the authors model networks as a Markov
random field and estimate the changepoint using a penalized pseudo-likelihood and prove
its consistency at a near classical (i.e. fixed dimensional) rate under a restricted strong
convexity type assumption on the log-pseudo-likelihood. Although their results are in a
high-dimensional setting, and allow more complicated node interaction than random graphs
with independent edges, the role of network sparsity in their setup is not clear.

The classical CUSUM statistic [66] for univariate changepoint problems can be used
in the network problem as well, and provides a unified way of constructing estimates of
changepoints. It is also amenable to theoretical analysis because of the averaging structure
present. In this chapter, we will investigate its theoretical properties in a quite general setup.

5.3 Setup and methodology

Single changepoint
Suppose we observe T networks A1, . . . , AT over time on the same set of nodes 1, . . . , n,
where the edges in Ai are independent and EAi = Pi

†. A natural problem is whether we
can tell if structural properties of these networks change over time. Let ξi = ξ(Pi) denote
a (population level) property of interest of the i-th network, e.g., the expected number of
copies of a subgraph of certain type, the average connectivity, or the full distribution itself.
We wish to test if the ξi’s change over time. The simplest such problem would be to test
against a single changepoint alternative

H0 : ξi = ξ, 1 ≤ i ≤ T,

versus

H1 : ∃ 1 ≤ τ ≤ T − 1 such that ξi =

ξ1 1 ≤ i ≤ τ

ξ2 τ + 1 ≤ i ≤ T.

We now discuss some natural statistics for this problem. The excellent monograph [20]
contains a thorough overview of the first two in the univariate changepoint setting. We will
not deal with the testing problem here, and focus on estimating τ under the alternative.

CUSUM statistic

A natural statistic to consider under our single changepoint alternative is based on the
cumulative averages of estimates of the property of interest. Such CUSUM statistics are

†As for the mutual dependence of the Ai’s, we will assume their independence to prove concentration
bounds, this can possibly be relaxed to include, e.g., Markovian or martingale type dependence (results other
than the concentration bounds do not require any assumption on the mutual dependence of these networks).
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very widely used in changepoint problems. Let ξ̂i = ξ̂i(Ai) be an estimate of the property ξi
based on the observed network Ai. Define, for 0 ≤ ζ ≤ 1 and 1 ≤ t ≤ T − 1,

Gt = Gζ
t :=

(
t(T − t)
T 2

)ζ(1
t

t∑
i=1

ξ̂i −
1

T − t

T∑
i=t+1

ξ̂i

)
.

If there is a changepoint at 1 ≤ a ≤ τ ≤ b ≤ T −1, one expects that Za,b := maxa≤t≤b θn‖Gt‖
would be large and the maximizer would be close to τ . Here ‖ · ‖ is some appropriate norm
and θn is a scalar parameter whose purpose is to normalize the statistic according to size of
the ξi’s. In this work, we will take ζ = 0 for simplicity of exposition, the general case only
differs in terms of constants and may be handled similarly. We mention in passing that if the
ξ̂i were i.i.d. N (θ, 1) where θ = θ011≤i≤τ +θ11τ+1≤i≤T , then arg max1≤t≤T−1(G1/2

t )2 would be
the maximum likelihood estimator (MLE) of τ . In many univariate settings, such CUSUM
statistics are minimax optimal (see, e.g., [20]).

Likelihood ratio (LR) statistic

Another widely used statistic in the univariate changepoint literature is the likelihood ratio
(LR) statistic. When we test for a changepoint at t, this amounts to calculating

Lt =
supP∈PH1

LP(Ai, 1 ≤ i ≤ T )
supP∈PH0

LP(Ai, 1 ≤ i ≤ T ) , (5.1)

where P = (P1, . . . , PT ), and PHi denotes the parameter space for H0 and H1. For testing
against an unknown changepoint, one then would look at supa≤t≤b Lt. For our graph problem,
however, it is quite difficult to even compute the LR statistic, as the alternative involves a
multitude of parameters Pij, Qij, whose maximum likelihood estimates are all linked together
by τ . Thus optimization of the profile likelihood (i.e. likelihood after maximizing over P,Q)
over τ (which would then produce the maximum likelihood estimator of τ) is not an easy
task and hence will not be considered here.

A method inspired by the clustering problem of Chapter 4

Under the single changepoint hypothesis, there are two clusters of values: pre-change and
post-change. So we can cluster the ξ̂i using some off-the-shelf clustering algorithm and then
look at the clusters to pinpoint the location of the change. Spectral clustering is a natural
choice here, because the second eigenvector of the kernel matrix will reveal if there is a
changepoint or not. More elaborately, let K be a kernel matrix computed from the ξ̂i, e.g.,
Kij = exp(−cθn‖ξ̂i− ξ̂j‖2). Then in absence of any changepoint the second eigenvector of the
corresponding Laplacian matrix is expected to be flat, while under the single changepoint
model, it is expected to be a step function with a jump at the value of the changepoint. If
v is the second eigenvector, then one can use univariate changepoint detection methods on
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v to locate the changepoint. A naive estimator of τ would be

τ̂ = arg max
1≤i≤T−1

|vi − vi+1|.

Theoretical investigation of this estimator is, however, not easy, as it would require quite
accurate estimates for the second eigenvector of a kernel random matrix. We leave this as a
direction for future work.

Differences from usual univariate changepoint detection

If one is interested in testing changes in an univariate statistic ξ(P ) (such as density of
triangles), one can certainly use univariate changepoint detection methods. However, there
is a significant difference between such a graph statistic and, say, a normal mean. This
should be intuitively clear, because a graph has about n2 independent observations, and
often possesses low rank structures (e.g., communities), and thus a single realization of a
graph alone can produce very good estimates of the underlying parameters, which can hardly
be said about a univariate normal mean. This phenomenon can be helpful in mitigating edge
effects, and can significantly reduce requirements on the minimum separation of the pre and
post change distributions necessary for univariate changepoint detection. To give a very
simplistic example, if we know that our networks are all Erdös-Rényi, then the corresponding
parameter p can be estimated consistently from a single observation of the network, and so
we can detect changes even in a series of two networks. Thus it seems worthwhile to derive
asymptotics involving both the network sizes (and sparsity) and the length of the time series.

Multiple changepoints
If we believe that there are multiple changepoints, a local version of a single changepoint
detection method may be put to use. Fixing a width parameter γ, we may scan intervals of
length γ for changepoints, i.e. we may maximize

Gγ,t,t+s := 1
s

t+s∑
i=t+1

ξ̂i −
1

γ − s

t+γ∑
i=t+s+1

ξ̂i,

over s ∈ [t, t+ γ], for a range of values of t. A number of issues arise, such us how to choose
γ in a data dependent way, how to choose the range of t and so on. Again we leave these for
future work.

Nodes are changing or node correspondence not available
If nodes are changing, then we cannot use the graph based method as described above. Also,
we must make it clear what do we mean by Ai ∼ M0 in this case. Perhaps in this case,
we would be more interested in finding out whether some characteristic (such as normalized
subgraph counts) changes over time. Another statistic of interest is the vector of a certain
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number of normalized traces of powers of the adjacency matrix, which we used for NCLM in
Chapter 4.

5.4 Main results
Consider the property ξ(P ) = P , i.e. the distribution itself. The CUSUM estimate of τ is

τ̂ = arg max
a≤t≤b

θn‖Gt‖,

where ‖ · ‖ is some appropriate matrix norm (such as the Frobenius norm or the operator
norm; if we use the Frobenius norm, we will denote the resulting estimate as τ̂F , and as
τ̂op, for the operator norm), θn � ‖Pi‖−1 � (nρn)−1, and 1 ≤ a ≤ b ≤ T − 1 are some
known lower and upper bounds on the changepoint. As for P̂i, we may use Ai itself, or
compute some estimate from Ai (for example, neighborhood smoothing [86], blockmodel
approximation [2], USVT [25], etc.). Here ρn is a measure of the sparsity of the network
in that nρn scales like the average degree. We will assume that all the networks are in the
same scale of sparsity, because otherwise comparisons can be made just on the basis of the
average degree. Moreover, we will assume that the expected degrees of vertices are uniform,
i.e. mink,l(Pi)kl � maxk,l(Pi)kl � ρn. Our goal will be to prove consistency of τ̂ and obtain
asymptotics in n, ρn, and T . In practice, ρn is not known, but we can estimate nρn by the
average of the average degrees of all networks.

In the following, we assume that a = α0T , b = α1T , for known 0 < α0 < α1 < 1, and
τ = dαT e, for some α ∈ [α0, α1]. Let γ = γ(α0, α1) := min{α0, 1 − α1}. This is a measure
of the edge effect. Let P denote the expected adjacency matrix before time τ , and let Q
denote the expected adjacency matrix post time τ . Define the population version of Gt as

Ḡt :=


T−τ
T−t (P −Q) if t ≤ τ,
τ
t
(P −Q) if t > τ.

,

Let φ(t) = (nρn)−1‖Gt‖ and let φ̄(t) = (nρn)−1‖Ḡt‖. Clearly, if P 6= Q, then φ̄(t) attains its
unique maximum at t = τ. Thus φ̄(τ) is a measure of the signal present in the problem: the
smaller its value, the harder it is to detect the changepoint.

We will now present our main results. The proofs will be deferred to Section 5.6. There
are two regimes of interest:

1. nρn is not large enough so that a single graph alone is not sufficient to estimate the
underlying network structure. In this case, we can exploit the averaging present in
the CUSUM statistic. Note also that, in very sparse cases, it is usually not possible
to estimate the whole matrix P consistently, but one may be able to use some other
graph statistic, such as subgraph counts, for identifying changepoints. For example, in
Section 5.5, we will see that for the MIT reality mining data, the degree density itself
is a good measure for changepoint detection.
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2. nρn is large enough so that each graph alone is sufficient to estimate the underlying
network structure.

Theorem 5.4.1 (Consistency of τ̂ , Regime 1). Assume that for any fixed β ∈ (α0, α1)∪ (1−
α1, 1− α0), we have

P( 1
nρn
‖ 1
βT

βT∑
i=1

(P̂i − P i)‖ > ε) ≤ δα0,α1(n, T, ε), (5.2)

for some function δα0,α1(n, T, ε), where the Pi’s are all equal. Then

P(|τ̂ − τ | ≥ ηT ) ≤ 6Tδα0,α1(n, T, γηφ̄(τ)
8 ). (5.3)

Remark 5.4.1. The extra factor of T in the error probability in (5.3) comes from a union
bound and above can be avoided if, in place of (5.2), we could prove a uniform deviation
result like

P( 1
nρn

sup
β∈(α0,α1)∪(1−α1,1−α0)

‖ 1
βT

βT∑
i=1

(P̂i − Pi)‖ > ε) ≤ δα0,α1(n, T, ε), (5.4)

but this is, naturally, harder to obtain.

Remark 5.4.2. Notice the presence of the factor γ = min{α0, 1− α1}. If nρn is small, we
can not hope to prove a uniform concentration result including t very near the edges of the
series, because then one of the two averages in Gt will be a poor estimate of the underlying
structure. This edge effect is a characteristic of all fixed dimensional changepoint problems.

We can prove concentration results like (5.2), with P̂ = A, to derive explicit rates.

Theorem 5.4.2 (Operator norm). Assume that the Ai’s are independent. Let τ̂op be CUSUM
estimate of τ with P̂ = A and ‖ · ‖ = ‖ · ‖op. Then

|τ̂op − τ |
T

= O

(
1

γφ̄(τ)
√
nρnT

)
,

with probability at least 1 − O(nT exp(−C
√
nρn/T )), which goes to 1, as long as nρn

T
=

Ω((log(nT ))2).

Theorem 5.4.3 (Frobenius norm). Assume that the Ai’s are independent. Let τ̂F be CUSUM
estimate of τ with P̂ = A and ‖ · ‖ = ‖ · ‖F . Then

|τ̂F − τ |
T

= O

(
1

γφ̄(τ)
√
Tρn

)
,

with probability at least 1−O(T exp(−Cn2ρ2
n)), which goes to 1, as long as nρn = Ω(

√
log T ).
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These results may be compared with the classical fixed dimensional changepoint problem
(see, e.g., [10]), where the minimax rate is T−1|τ̂ − τ | = OP (1/T ), achieved by the maximum
likelihood estimator. Note that, by Theorem 5.4.2, with high probability,

|τ̂op − τ |
T

� 1
T
,

as long as nρn = Ω(T log(nT )). Therefore, in this high dimensional case, our estimation
error rate is better than the classical rate of 1

T
. We also see that using the operator norm is

better, although it requires a larger value of nρn compared to T . In the next section, we will
see from our simulations that the operator norm is much more tolerant to the edge effect
than the Frobenius norm.

If we are unable to prove a deviation result like (5.2), but nρn is large enough so that
we can estimate P from just one instance of A, in that case we can still derive some weaker
consistency results.

Theorem 5.4.4 (Consistency of τ̂ , Regime 2). Assume that the smoothing procedure produces
P̂i such that

P( 1
nρn
‖P̂i − Pi‖ ≥ ε) ≤ δ(n, ε), (5.5)

for some function δ(n, ε). Then we have

P(|τ̂ − τ | ≥ ηT ) ≤ 2Tδ(n, η4 φ̄(τ)). (5.6)

Remark 5.4.3. Again, the extra factor of T in the error probability in (5.6) comes from
a crude union bound for max1≤i≤T

1
nρn
‖P̂i − Pi‖ (and hence requires no assumptions on the

mutual dependence of the Ai’s) and in some cases one may be able to use a more refined
concentration result (by possibly exploiting the mutual dependence structure of the Ai’s) in
order to avoid it.

Remark 5.4.4. Note the absence of γ in (5.6). Indeed, if we can get very good estimates
of P just from a single instance of A, then the edge effect disappears, we can even detect a
changepoint in a time series of length two (which can be thought of as testing difference of
two graphs).

For dense graphs, we can use graphon estimation techniques to estimate P .

Example 5.4.1. As mentioned in Section 4.6, the neighborhood smoothing (NBS) estimate
of P due to [86] satisfies (for P coming from piecewise L-Lipschitz graphons, see Definition
2.1 of [86]), with probability at least 1− n−C,

‖P̂ − P‖2
F

n2 ≤ CL

√
log n
n

,

for some global constant C > 0 and a constant CL that depends on the Lipschitz constant L.
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Example 5.4.2. As mentioned in Section 4.6, the USVT estimate of P due to [25] satisfies
(for P coming from L-Lipschitz graphons)

E
‖P̂ − P‖2

F

n2 ≤ CLn
−1/3,

for some constant CL > 0 depending on the Lipschitz constant L. Therefore, for any µ ∈
(0, 1/3), with probability at least 1− n−µ, we have

‖P̂ − P‖2
F

n2 ≤ CLn
−(1/3−µ).

We can use these results in conjunction with Theorem 5.4.4 to get explicit concentration
bounds for τ̂ . For instance, if we use the NBS estimate, then, with probability at least
1−O(Tn−C), we have

|τ̂F − τ |
T

= O

(
1

φ̄(τ)

√
log n
n

)
.

Therefore, as long as nC � T , we have, with high probability, that

|τ̂F − τ |
T

� 1
φ̄(τ)

√
log n
T

1
2C
.

5.5 Simulations and real data analysis

Simulations
We provide two sets of simulations, one in a dense setting, the other sparse. In both cases,
we generate T = 100 networks of size n = 500 each from the ER model with p = κ logn

n
. We

also generate the 100 networks from a simple balanced two parameter stochastic blockmodel
with block probability matrix B = (1 − r)pI + rpJ , where r = 0.1. Finally, we consider a
sequence of 100 networks, where the first 60 are from the ER model and the last 40 are from
the SBM.

In the dense setting, we set κ = 10 (average degree of the blockmodel graphs becomes
≈ 34). See Figures 5.1-5.2. We use the naive estimate A as well as the USVT estimate in
this simulation. We see that the USVT version is much less prone to edge effects. Also, if we
use A, the operator norm is preferable. This is reasonable because A is not a good estimate
of P in the Frobenius norm in general (see Remark 4.6.3), so that near the edges we do not
get good estimates from the averages. On the other hand, A concentrates around P in the
operator norm as long as the network has average degree growing like log n.

In the sparse setting, we set κ = 1 (average degree of the blockmodel graphs becomes
≈ 3.4). See Figure 5.3. We use the naive estimate A as USVT does not work in such
extremely sparse cases. We see a good separation only when we use the operator norm.
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Figure 5.1: Dense setting: simulation with a single changepoint that marks a transition from
an ER model to an SBM. In the left column, we have used A as an estimate of P , whereas
in the right column, USVT is used to get an estimate of P . We have used the Frobenius
norm here.

●

●

●

●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●

●

●

●

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

P̂ = A

ER model

n−1
||G

||

●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

P̂ = P̂USVT

ER model

n−1
||G

||

●

●

●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

SBM

n−1
||G

||

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

SBM

n−1
||G

||

●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

ER −−> SBM

n−1
||G

||

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

ER −−> SBM

n−1
||G

||



CHAPTER 5. CHANGEPOINT DETECTION 69

Figure 5.2: Dense setting: simulation with a single changepoint that marks a transition from
an ER model to an SBM. In the left column, we have used A as an estimate of P , whereas
in the right column, USVT is used to get an estimate of P . We have used the operator norm
here.
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Figure 5.3: Sparse setting: simulation with a single changepoint that marks a transition
from an ER model to an SBM.
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Real Data
MIT reality mining data

We use the MIT reality mining data [27] to construct a series of networks involving 90
individuals (staff and students at the university). The data consists of call logs between
these individuals from 20th July 2004 to 14th June 2005. We construct 48 weekly networks,
where in the i-th network, an edge is put between two vertices if they had been in at least
one call during week i. These networks are extremely sparse, with the maximum average
degree being barely over 1. The first three, and the last six weeks had especially low average
degree (< 0.12) compared to the rest, so we discard these. On the remaining time series, our
(Frobenius norm based) CUSUM estimate is week number 21, which roughly corresponds
to the beginning of the winter break. [26] also found a changepoint at around this time.
We use a conservative choice of a = 12, b = 30 to eliminate edge effects. See Figure 5.4.
Due to the extreme sparsity of these networks, the average degree itself is a good measure
to detect changes, and standard univariate changepoint algorithms run on the sequence of
average degrees detect changepoints at week numbers 9, 22, and 42.

Figure 5.4: MIT reality mining caller-callee networks, the peak at t = 21 in the left panel,
corresponds roughly to the beginning of the winter break. We have used A as an estimate of
P , and the Frobenius norm version of the CUSUM estimate. The average degrees of these
networks are plotted in the right panel, we see a sharp change at t = 22.
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US senate roll call data

We use the US senate roll call data (1979 - 2012) [44] for another illustration of our change-
point detection method. Each state has 2 senate seats, so the networks have size 100, the
votes are “yay/nay”, and sometimes missing/present, such cases are imputed by taking the
majority stand in the respective party, or if that is not possible, taking the winning majority
stand. We discard roll calls wherein the majority ≥ 75, because such unanimous roll calls
do not reveal much structure. This results in T = 7863 roll calls. We convert these to
networks by putting an edge between seats that take the same stand on the proposed bill.
Our (Frobenius norm based) CUSUM estimate is Dec 1, 1994. See Figure 5.5. There are
possibly other changepoints in this data. We use the conservative lower and upper bounds
of a = 2000, b = 4500, which correspond respectively to 18th March, 1986 and 23rd July,
1996.

The detected changepoint is close to the November 1994 election when the Republican
Party took over the House of Representatives for the first time after 1956. The Markov ran-
dom field method of [72] found a changepoint on January 17, 1995, which is also close to the
November 1994 elections. To quote the authors of [72], “As discussed in the political science
literature, the 1994 election marked the end of the “Conservative Coalition”, a bipartisan
coalition of conservative oriented Republicans and Democrats on President RooseveltâĂŹs
“New Deal” policies, which had often managed to control Congressional outcomes since the
“New Deal” era.” Other analyses, such as [52], also indicate a significant change happening
after the November 1994 election.

Figure 5.5: US senate roll call data, the peak at t = 3863 corresponds to a roll call on Dec 1,
1994. We have used A as an estimate of P , and the Frobenius norm version of the CUSUM
estimate. Using USVT and/or operator norm results in the same estimate.
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5.6 Proofs
As τ̂ is obtained as a maximizer of a criterion, the consistency proofs will bear similarities
with the consistency proof for M -estimators. To prove consistency of τ̂ , it suffices to show
uniform concentration of φ around φ̄. We begin with a preliminary result.

Lemma 5.6.1. For any η ∈ (0, 1), we have

P(|τ̂ − τ | ≥ ηT ) ≤ 2P( max
t∈[α0T,α1T ]

|φ(t)− φ̄(t)| ≥ η

4 φ̄(τ)).

Proof. We have

P(|τ̂ − τ | ≥ ηT ) = P(τ̂ ≥ τ + ηT ) + P(τ̂ ≤ τ − ηT )
≤ P(φ̄(τ̂) ≤ φ̄(τ + ηT )) + P(φ̄(τ̂) ≤ φ̄(τ − ηT ))
= P(φ̄(τ)− φ̄(τ̂) ≥ φ̄(τ)− φ̄(τ − ηT ))

+ P(φ̄(τ)− φ̄(τ̂) ≥ φ̄(τ)− φ̄(τ − ηT ))

= P(φ̄(τ)− φ̄(τ̂) ≥ ηT

τ + ηT
φ̄(τ)) + P(φ̄(τ)− φ̄(τ̂) ≥ ηT

T − τ + ηT
φ̄(τ))

≤ 2P(φ̄(τ)− φ̄(τ̂) ≥ η

2 φ̄(τ)).

Now observe that

φ̄(τ)− φ̄(τ̂) = φ̄(τ)− φ(τ) + φ(τ̂)− φ̄(τ̂) + φ(τ)− φ(τ̂)︸ ︷︷ ︸
≤0

≤ 2 max
t∈[α0T,α1T ]

|φ(t)− φ̄(t)|.

Therefore

P(|τ̂ − τ | ≥ ηT ) ≤ 2P(φ̄(τ)− φ̄(τ̂) ≥ η

2 φ̄(τ)) ≤ 2P( max
t∈[α0T,α1T ]

|φ(t)− φ̄(t)| ≥ η

4 φ̄(τ)),

and we are done.

To prove uniform concentration, we may use the averaging structure present in the
CUSUM estimate.

Lemma 5.6.2 (Uniform concentration of φ(t) around φ̄(t)). Assume (5.2). Then, with
probability at least 1− 3Tδα0,α1(n, T, ε), we have

max
t∈[α0T,α1T ]

|φ(t)− φ̄(t)| ≤ 2ε
γ
,

where γ = γ(α0, α1) := min{α0, 1− α1}.
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Proof. Note first that nρn|φ(t)− φ̄(t)| ≤ ‖Gt − Ḡt‖. Now we have, for any t ∈ [α0T, α1T ] ,
with t < τ ,

‖Gt − Ḡt‖ =
∥∥∥∥∥1
t

t∑
i=1

(P̂i − Pi)−
1

T − t

T∑
i=t+1

(P̂i − Pi)
∥∥∥∥∥

=
∥∥∥∥∥1
t

t∑
i=1

(P̂i − Pi)−
1

T − t

[
τ∑
i=1

(P̂i − Pi) +
T∑

i=τ+1
(P̂i − Pi)−

t∑
i=1

(P̂i − Pi)
]∥∥∥∥∥

≤
∥∥∥∥∥1
t

t∑
i=1

(P̂i − Pi)
∥∥∥∥∥+ τ

T − t

∥∥∥∥∥1
τ

τ∑
i=1

(P̂i − Pi)
∥∥∥∥∥

+ T − τ
T − t

∥∥∥∥∥ 1
T − τ

T∑
i=τ+1

(P̂i − Pi)
∥∥∥∥∥+ t

T − t

∥∥∥∥∥1
t

t∑
i=1

(P̂i − Pi)
∥∥∥∥∥

= T

T − t

∥∥∥∥∥1
t

t∑
i=1

(P̂i − Pi)
∥∥∥∥∥+ τ

T − t

∥∥∥∥∥1
τ

τ∑
i=1

(P̂i − Pi)
∥∥∥∥∥

+ T − τ
T − t

∥∥∥∥∥ 1
T − τ

T∑
i=τ+1

(P̂i − Pi)
∥∥∥∥∥.

Similarly, for any t ∈ [α0T, α1T ], with t ≥ τ , we have

‖Gt − Ḡt‖ = ‖1
t

t∑
i=1

(P̂i − Pi)−
1

T − t

T∑
i=t+1

(P̂i − Pi)‖

=
∥∥∥∥∥1
t

[
τ∑
i=1

(P̂i − Pi) +
T∑

i=τ+1
(P̂i − Pi)−

T∑
i=t+1

(P̂i − Pi)
]
− 1
T − t

T∑
i=t+1

(P̂i − Pi)
∥∥∥∥∥

≤ τ

t

∥∥∥∥∥1
τ

τ∑
i=1

(P̂i − Pi)
∥∥∥∥∥+ T − τ

t

∥∥∥∥∥ 1
T − τ

T∑
i=τ+1

(P̂i − Pi)
∥∥∥∥∥

+ T − t
t

∥∥∥∥∥ 1
T − t

T∑
i=t+1

(P̂i − Pi)
∥∥∥∥∥+

∥∥∥∥∥ 1
T − t

T∑
i=t+1

(P̂i − Pi)
∥∥∥∥∥

= τ

t

∥∥∥∥∥1
τ

τ∑
i=1

(P̂i − Pi)
∥∥∥∥∥+ T − τ

t

∥∥∥∥∥ 1
T − τ

T∑
i=τ+1

(P̂i − Pi)
∥∥∥∥∥

+ T

t

∥∥∥∥∥ 1
T − t

T∑
i=t+1

(P̂i − Pi)
∥∥∥∥∥.

Therefore, in either case, we have, by using (5.2) for any t ∈ [α0T, α1T ], that

|φ(t)− φ̄(t)| ≤ 2ε
min{α0, 1− α1}

,

with probability at least 1−3δα0,α1(n, T, ε). Taking an union bound over t, we get the desired
uniform concentration.
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Proof of Theorem 5.4.1. This is an immediate consequence of Lemmas 5.6.1 and 5.6.2.

Now we derive a couple of concentration results like (5.2), when P̂ = A.

Proposition 5.6.1 (Concentration in operator norm). Suppose that the Ai’s are i.i.d.
Bernoulli random matrices with E(Ai) = P . Then

P
(

1
nρn
‖1
t

t∑
i=1

(Ai − P )‖op > ε

)
≤ 2n exp

(
−Cnρntε2

1 + εt

)
, (5.7)

where C > 0 is a universal constant.

Proof. We imitate the proof of Theorem 3.1 of [64]. Note that we can decompose

1
t

t∑
i

(Ai − P ) =
∑
k≤l

Xkl,

where Xkl = (1
t

∑t
i=1(Ai)kl − Pkl)Ekl, with

Eij =

eke>l + ele
>
k for k 6= l

eke
T
k for k = l.

Then ‖Xkl‖op ≤ ‖Ekl‖op ≤ 1, and a quick calculation reveals that

∑
k≤l

EX2
kl ≤ max

k
(
∑
l

Pkl)/t = O

(
nρn
t

)
.

Therefore, using matrix Bernstein inequality (e.g., Corollary 7.1 of [64]), we conclude that

P
(
‖1
t

t∑
i=1

(Ai − P )‖op > ε′
)
≤ 2n exp

(
− Cε′2

nρn
t

+ ε′

)
,

for some absolute constant C > 0. Now choosing ε′ = nρnε gives the desired bound.

Proof of Theorem 5.4.2. This follows from Proposition 5.6.1 and Theorem 5.4.1.

Proposition 5.6.2 (Concentration in Frobenius norm). Suppose that the Ai’s are i.i.d.
Bernoulli random matrices with E(Ai) = P . Then

P
(

1
n2ρ2

n

‖1
t

t∑
i=1

(Ai − P )‖2
F >

c

tρn

)
≤ 2 exp(−Cn2ρ2

n), (5.8)

where c, C > 0 are universal constants.
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Proof. Let ∆kl = 1
t

∑t
i=1(Ai−P )kl. Note that ∆kl is a centered sub-Gaussian random variable

with variance proxy 1
4t . Therefore ∆2

kl is sub-exponential with sub-exponential norm � 1
t
.

Note that
‖1
t

t∑
i=1

(Ai − P )‖2
F = 2

∑
k<l

∆2
kl.

Now, by sub-exponential concentration (see, e.g., Proposition 5.16 of [78]), we have

P(|
∑
k<l

(∆2
kl − E∆2

kl)| > ε) ≤ 2 exp(−C min(ε
2t2

n2 , εt)).

Note that ∑
k<l

E∆2
kl =

∑
k<l

Pkl(1− Pkl)
t

≤ cn2ρn
2t ,

for some global constant c > 0. Therefore

P(|
∑
k<l

∆2
kl| >

cn2ρn
2t + ε) ≤ 2 exp(−C min(ε

2t2

n2 , εt)).

Choosing ε′ = cn2ρn
2t we get,

P
(

1
n2ρ2

n

|
∑
k<l

∆2
kl| >

c

tρn

)
≤ 2 exp(−Cn2ρ2

n),

which is equivalent to the desired bound.

Proof of Theorem 5.4.3. This follows from Proposition 5.6.2 and Theorem 5.4.1.

We will now prove an analogue of Lemma 5.6.2 in Regime 2.

Lemma 5.6.3 (Uniform concentration of φ(t) around φ̄(t)). Assume (5.5). Then we have

P( max
1≤t≤T−1

|φ(t)− φ̄(t)| > ε) ≤ Tδ(n, ε).

Proof. We note that

|φ(t)− φ̄(t)| ≤ 1
nρn
‖Gt − Ḡt‖

= 1
nρn

∥∥∥∥∥1
t

t∑
i=1

(P̂i − Pi)−
1

T − t

T∑
i=t+1

(P̂i − Pi)
∥∥∥∥∥

≤ 1
nρn

[
1
t

t∑
i=1
‖P̂i − Pi‖+ 1

T − t

T∑
i=t+1

‖P̂i − Pi‖
]

≤ max
1≤i≤T

1
nρn
‖P̂i − Pi‖.

From this the desired result follows by union bound.

Proof of Theorem 5.4.4. This is immediate from Lemmas 5.6.1 and 5.6.3.
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5.7 Discussion
To summarize, we have considered the offline changepoint detection problem in the context
of network data. We have theoretically analyzed the CUSUM statistic under the single
changepoint model, and established consistency of the resulting estimate by establishing
concentration bounds involving as parameters the number of networks, the (common) size
of the networks and their (common) sparsity. We have shown that in this high dimensional
problem one can beat the classical rate of estimation in fixed dimensional problems. We
have analyzed the MIT reality mining data and the US senate roll call data as applications.
There are many directions for future work — the most important ones are (i) deriving
concentration bounds for dependent time series of networks to extend our analysis, (ii)
analyzing the multiple changepoint case, (iii) proving optimality results, (iv) deriving second
order asymptotics to calibrate tests for changepoints, and (v) tackling the online version of
the problem.
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Appendix A

Appendix to Chapter 2

A.1 PACE-corollaries

Quantitative versions of Corollary 2.3.3
We first consider (1 + ε)-approximate adjacency spectral clustering (ASP) of [43] as A. We
quote a slightly modified version of Corollary 3.2 of [43].

Lemma A.1.1 ([43]). Let c0, ε, r > 0. Consider an adjacency matrix A generated from the
simple blockmodel (2.8) where αn ≥ c0 log n/n. If Ẑ is the output of the (1 + ε)-approximate
adjacency spectral clustering algorithm applied to A, then there exists an absolute constant
c = c(c0, r) such that with probability at least 1− n−r,

1
2δ(Ẑ, Z) ≤ min

{
c−1(2 + ε) K

λ2αn

πmax

π2
minn

, 1
}
. (A.1)

Corollary A.1.1 ((1+ε)-approximate adjacency spectral clustering with randomm-subgraphs).
Assume the setting of Lemma A.1.1. Let r, r′ > 0. We have

Eδ̃(Ĉ, C) ≤ 8m
θ(m− 1)

[
min

{
c−1(2 + ε) K

λ2αn

πmax

π2
minm

Cn,m,r′ , 1
}

+ 2K
nr′

+ 1
mr

]
+ πmax × e−(1−θ)2Tp/2. (A.2)

Here the quantity Cn,m,r′ → 1, if π2
minm

πmax logn →∞.

The proof of Corollary A.1.1 follows from Corollary 2.3.1 and an estimate for Eδ(ẐS, ZS)
given in (A.13), which is obtained using Lemma A.1.1. In order for the first term of (A.2)
to go to zero we need Kπmax

λ2mαnπ2
min

= o(1), i.e. m � Kπmax
λ2αnπ2

min
. Thus, for balanced block sizes

(i.e. πmax, πmin � 1
K

), we need to have m � K2

λ2αn
. So, qualitatively, for large K or small



APPENDIX A. APPENDIX TO CHAPTER 2 79

αn or a small separation between the blocks, m has to be large, which is natural to expect.
In particular, for fixed K and λ, this shows that we need subgraphs of size m� nd−1

n , and
T � n2

m2 many of them to achieve consistency (here the average degree dn � nαn). Let
T = n2

m2 rn and m = n
dn
sn, where both rn, sn → ∞. Let us see what computational gain

we get from this. Spectral clustering on the full graph has complexity O(n3), while the
complexity of PACE with spectral clustering is

O(Tm3) = O

(
n2

m2 rnm
3
)

= O
(
n2mrn

)
= O

(
n3

dn
rnsn

)
.

So if dn = Θ(nα), then the complexity would be O(n3−αrnsn), which is essentially O(n3−α).
When dn = Θ(log n) the gain is small.

Note, however, that for a parallel implementation, with Nc processor cores, we may get
a significant boost in running time, at least in terms of constants; the running time would
be O

(
n3

Ncdn
rnsn

)
.

Corollary A.1.2 ((1 + ε)-approximate adjacency spectral clustering with ego subgraphs).
Assume the setting of Lemma A.1.1. Let r, r′ > 0. We have

Eδ̃(Ĉ, C) ≤ 32(1 + θ)2

λ2

[
min

{
c−1(2 + ε) K

λ4α2
n

πmax

π2
minn

Dn,B,r′ , 1
}

+ 2K
nr′

+ 16
nλ2αn

+
(

4
nλαn

)r]
+ ∆, (A.3)

where

∆ ≤ 4
λ2α2

n

× exp
(
−nλ

2αn
16

)
+ 4
n2λ2α2

n

× exp
(
−θ

2nαn
6

)

+πmax ×
[
2 exp

(
−nλ

4α2
n

16

)
+ exp

(
−Tλ

2α2
n

16

)]
.

Here the quantity Dn,B,r′ → 1, if π2
minλ

2nαn
πmax logn →∞.

Corollary A.1.2 follows from Corollary 2.3.2 and an estimate for Eδ(ẐS, ZS)1(|S|≥m?) given
in (A.14), which is obtained using Lemma A.1.1. For the right hand side in (A.3) to go to zero
(assuming K fixed, balanced block sizes), we need min{nα2

n, Tα
2
n} → ∞. In terms of average

degree this means that we need dn �
√
n, and T � n2

d2
n
. That with ego neighborhoods we

can not go down to dn = Θ(log n) is not surprising, since these ego networks are rather
sparse in this case. One needs to use larger neighborhoods. Anyway, writing dn =

√
nrn,

T = n2

d2
n
sn, where both rn, sn → ∞, the complexity of adjacency spectral clustering, in this

case becomes O(Td3
n) = O(n2dnrnsn) and with Nc processing units gets further down to

O(n2dn
Nc

rnsn).
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We conclude this section with an illustration of PACE with random m-subgraphs using
SDP as the algorithm A. We shall use the setting of Theorem 1.3 of [34] for the illustration,
stated here with slightly different notation. Let SDP-GV denote the following SDP [34, SDP
(1.10)]

maximize 〈A,X〉
subject to X � 0, X ≥ 0, diag(X) = In,1>X1 = 1>C1.

Lemma A.1.2 ([34], Theorem 1.3). Consider an SBM with mink Bkk ≥ a/n, maxk 6=k′ Bkk′ ≤
b/n, where a > b. Also let the expected variance of all edges 2

n(n−1)
∑

1≤k≤k′≤K Bkk′(1 −
Bkk′)nkk′ = g

n
, where nkk′ denotes the number of pairs of vertices, one from community k,

the other from community k′. Fix an accuracy ε > 0. If g ≥ 9 and (a− b)2 ≥ 484ε−2g, then
any solution X̂ of SDP-GV satisfies

1
n2‖X̂ − C‖

2
F ≤ ε.

Corollary A.1.3 (SDP with random m-subgraphs). Consider the setting of Lemma A.1.2.
Let c > 1 > c′ > 0. and set ḡ1 = c1(n−1)g

m−1 and ḡ2 = c2mg
n

, where c1 = c2
(
1− n−cm

cm(nπmin−1)

)
and

c2 = (c′)2
(
1− n−c′m

c′m(nπmax−1)

)
. Fix an accuracy ε > 0. Assume that (a − b)2 ≥ 484ε−2ḡ1, and

that ḡ2 ≥ 9. Then we have

Eδ̃(Ĉ, C) ≤ 4m
θ(m− 1) × (ε+ e35−m +Ke−(1−c′)2mπmin/4

+Ke−(c−1)2mπmin/4) + 1
2 × e

−(1−θ)2Tp/2. (A.4)

For the simple two parameter blockmodel B = 1
n
((a− b)I+ b11>) with equal community

sizes, we have g � a+(K−1)b
K

� dn, the average degree of the nodes (note that dn = a+(K−1)b
K

−
a
n
). The assumptions of Corollary A.1.3 are satisfied when

m = Ω
(

max
{
n

dn
,

ndn
ε2(a− b)2

})
.

This is exactly similar to what we saw for spectral clustering (take a = nαn, and b =
nαn(1−λ)). In particular, when the average degree dn = Θ(nα), and a−b = Θ(nα), we need
m = Ω(n1−α/ε2) and T � n2α/ε4 for PACE to succeed. However, in the bounded degree
regime, the advantage is negligible, only from a potentially smaller constant, because we
need m = Ω(n). Again, from our numerical results, we expect that with h-hop subgraphs,
PACE will perform much better.

A.2 GALE-corollaries
We will now illustrate Theorem 2.3.2 with several algorithms A. We begin with a result on
(1 + ε)-approximate adjacency spectral clustering.
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Corollary A.2.1 ((1 + ε)-approximate adjacency spectral clustering with GALE). Assume
the setting of Lemma A.1.1. Let 0 < θ < 1. Let r, r′, r′′, r′′′ > 0. Let m = Ωr,r′,θ

(√
n logn
πmin

)
,

T = Ωr,r′,θ(n log n/m), and τ = θTm
n

. Then we have, with probability at least 1− T
mr′′
− 2TK

nr′′′
−

O
(

1
nr′

)
, that

max
T

max
(x1,...,xJ )

δ(ẐGALE
T ,(x1,...,xJ ), Z)

≤2
θ

[
min

{
c−1(2 + ε) K

λ2αn

πmax

π2
minm

Cn,m,r′′′ , 1
}]

+O
( 1
nr

)
, (A.5)

where the constant Cn,m,r′′′ is the same as in Corollary 2.3.1

We see that the first term is exactly same as the first term in Corollary 2.3.1. This,
for balanced graphs, again imposes the condition m � K2

λ2αn
. In particular, if K = Θ(1)

and we are in a dense well separated regime, with λ = Θ(1), αn = Ω(1/
√
n), then we need

m = Ω(
√
n log n). If K = Θ(1), λ = Θ(1) and αn = Θ(log n/n), then we need m� n/ log n.

In both cases, we need T = Ω(n log n/m). Thus, in the regime where average degree is like
log n, there is still some computational advantage for very large networks (also factoring
in parallelizability); however, for moderately sized networks, GALE may not lead to much
computational advantage.

Now we present an exact recovery result with SDP as the base algorithm A. We shall use
a (slightly rephrased) result† from [82] on an SDP which they call SDP-λ. Let κ := πmax/πmin.
Also let π denote the vector of the cluster proportions (π1, . . . , πK).

Lemma A.2.1 (Theorem 2 of [82]). Let r > 0. Then the optimal solution of the SDP-λ is
given by Z diag(nπ)−1Z>, with probability at least 1−O((nπmin)−r), if

min
k

(Bkk −max
6̀=k

Bk`) = Ω̃r

κmax
k

√
max(Bkk, K max` 6=k Bk`)

nπk

 . (A.6)

Assuming that any subsequent clustering of the exactly recovered scaled clustering matrix
Z diag(nπ)−1Z> gives the exact clustering Z back (for example, our distance based naive
algorithm NaiveCluster‡ will do this), we have the following corollary.

Corollary A.2.2 (SDP with GALE, exact recovery). Assume the setting of Lemma A.2.1.
Let 0 < θ < 1. Let r, r′, r′′, r′′′ > 0. Let m = Ωr,r′,θ

(√
n logn
πmin

)
, T = Ωr,r′,θ(n log n/m), and

τ = θTm
n

. Then, as long as the separation condition in (A.6) holds with m replacing n, we
have, with probability at least 1−O

(
T

(mπmin)r′′ + TK
nr′′′

+ 1
nr′

)
, that

max
T

max
(x1,...,xJ )

δ(ẐGALE
T ,(x1,...,xJ ), Z) = O

( 1
nr

)
, (A.7)

†We are not using Lemma A.1.2 as it only shows that the solution of SDP-GV has small norm difference
from the ideal clustering matrix, but does not relate this directly to misclustering error.

‡detailed in Section A.3
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Note that, in the above bound r can taken to be greater than 1. This means that, with
high probability, the proportion of misclustered nodes is less than 1/n and hence zero, leading
to exact recovery. As for computational complexity, note that the separation condition
(A.6), with n replaced by m, restricts how small m can be. Consider the simple SBM (2.8)
with balanced block sizes for concreteness. In this case, the separation condition essentially
dictates, as in the case of spectral clustering, that m� K2

λ2αn
. Thus the remarks made earlier

on how large m or T should be chosen apply here as well.
As discussed earlier in Section 2.2, even a naive implementation of GALE will only result

in an O(n3/2) running time in addition to the time (ηm,T ) required to cluster the T random
m-subgraphs, whereas a more careful implementation will only add a time to ηm,T that is
nearly linear in T . Since SDPs are notoriously time intensive to solve, this gives us a big
saving.

A.3 Details of DGCluster
Here we detail our distance based greedy algorithm DGCluster. The idea behind DGCluster
is to note that, if i and j are in the same community, then ‖Ci? − Cj?‖ = 0, and otherwise
‖Ci?−Cj?‖ =

√
|σ(i)|+ |σ(j)| = Θ(

√
2n/K) (when the communities are balanced). Thus we

expect to be able to cluster the vertices using dij = ‖Ĉproj,i? − Ĉproj,j?‖, namely by starting
with a root vertex r1 and for some threshold γ putting all vertices j satisfying dr1j ≤ γ in
the same cluster as r1, and then picking another root vertex r2 from the remaining set, and
putting all vertices j in the remaining set that satisfy dr2j ≤ γ in the same cluster as r2, and
so on. Here a root vertex ri may be chosen as one of the vertices with the highest degree
in the remaining set (or according to a degree-weighted random sampling scheme), to give
importance to highly connected vertices. We also note that depending on the threshold γ
the number of blocks we get can vary. In practice, we will start with small γ (yielding a large
number of communities), and stop at the smallest γ that gives us ≥ K blocks. If we get
more than K blocks, we merge, in succession, pairs of blocks having the largest intersection
in Ĉ (relative to their sizes) until we get exactly K blocks. A rule of thumb would be to
start with γ = c

√
2n/K with c small and then gradually increase c.
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Algorithm 10 A distance based greedy clustering algorithm: DGCluster
1: Input: C, C ′, K. Output: σ = DGCluster(C,C ′, K), a clustering based on distances

between the rows of C ′, with merging guidance from C, if necessary.
2: Set θ =

√
2n/K. c = cmin = 0, δ = 0.01.

3: Set Know = n;
4: while flag = TRUE do
5: c← c+ δ.
6: σtemp ← NaiveCluster(C ′, cθ).
7: Know = maxi σtemp(i).
8: if Know ≥ K then
9: flag ← TRUE.

10: σ ← σtemp.
11: else
12: flag ← FALSE.
13: Know ← maxi σ(i).
14: while Know > K do
15: Let Γi = σ−1({i}), i = 1, . . . , Know.
16: Compute the (upper triangle of the) matrix R, where

Rij ←
∑
k∈Γi,l∈Γj Ckl

|Γi||Γj|
.

17: Pick (i?, j?) ∈ arg maxi,j Rij.
18: σ ← Merge(σ, i?, j?).

Algorithm 10 in turn makes use of the following two algorithms.

Algorithm 11 A naive clustering algorithm: NaiveCluster
1: Input: C, γ : a threshold. Output: σ = NaiveCluster(C, γ), a clustering based on

distances between the rows of C.
2: Set Unassigned = {1, . . . , n}, b = 1, σ ≡ 0.
3: while Unassigned 6= ∅ do
4: i← a random (uniform or degree-weighted, etc.) index in Unassigned.
5: σ(i)← b.
6: Unassigned ← Unassigned \ {i}.
7: for j ∈ Unassigned do
8: Compute dij = ‖Ĉi? − Ĉj?‖
9: if dij ≤ γ then

10: σ(j)← b
11: Unassigned ← Unassigned \ {j}.
12: b← b+ 1.
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Algorithm 12 Merge
1: Input: σ, a, b. Output: σ = Merge(σ, a, b), a clustering with blocks a and b merged
2: u← min{a, b}, v ← max{a, b}
3: for i = 1, . . . , n do
4: if σ(i) = v then
5: σ(i)← u.
6: else if σ(i) > v then
7: σ(i)← σ(i)− 1.

A.4 Miscellaneous proofs
Proof of Proposition 2.3.1. Since both Z,Z ′ are 0, 1-valued, we can safely replace the count
by Frobenius norm squared, i.e.

δ(Z,Z ′) = inf
Q perm.

1
n
‖ZQ− Z ′‖2

F .

Now, note that (ZQ)(ZQ)> = ZZ> for all permutation matrices Q. Thus

‖C − C ′‖F = ‖(ZQ)(ZQ)> − Z ′Z ′>‖F
= ‖(ZQ− Z ′)(ZQ)> + Z ′((ZQ)> − Z ′>‖F
≤ ‖(ZQ− Z ′)(ZQ)>‖F + ‖Z ′((ZQ)> − Z ′>‖F
≤ ‖ZQ− Z ′‖F‖ZQ>‖2 + ‖Z ′‖2‖(ZQ)> − Z ′>‖F .

But ‖Z ′‖2
2 is the maximum eigenvalue of Z ′>Z ′ which is diagonal with its maximum diagonal

entry being the size of the largest cluster under Z ′. Thus ‖Z ′‖2
2 equals the size of the largest

cluster under Z ′ and so is trivially upper bounded by n. Same goes for ‖ZQ>‖2
2. Therefore

we get
‖C − C ′‖F ≤ 2

√
n‖ZQ− Z ′‖F .

Squaring this, and taking infimum over all permutation matrices Q in the right hand side,
we obtain the claimed inequality.

Lemma A.4.1 (Thresholding PACE). Let Ĉη := [Ĉ > η]. We have

Eδ̃(Ĉη, C) ≤ Eδ̃(Ĉη, C)
min{η2, (1− η)2}

. (A.8)

In particular, for η = 1/2, we have

Eδ̃(Ĉ1/2, C) ≤ 4Eδ̃(Ĉ, C).
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Proof. Note that |(Ĉη)ij − Cij| ∼ Ber(qij), where

qij = CijP(Ĉij ≤ η) + (1− Cij)P(Ĉij > η).

Thus E((Ĉη)ij − Cij)2 = qij. Now

E(Ĉij − Cij)2 = E(Ĉij − Cij)21{Ĉij≤η} + E(Ĉij − Cij)21{Ĉij≤η}.

Therefore

E(Ĉij − Cij)2 ≥

(1− η)2P(Ĉij ≤ η) = (1− η)2qij, if Cij = 1
η2P(Ĉij > η) = η2qij, if Cij = 0.

This means
E((Ĉη)ij − Cij)2 ≤ E(Ĉij − Cij)2

min{η2, (1− η)2}
,

which, on summing over i, j, gives us the desired bound.

A similar thresholding result is true for GALE.

Lemma A.4.2 (Rounding GALE). Consider an estimated cluster membership matrix Ẑ ∈
[0, 1]n×K and the true cluster membership matrix Z ∈ {0, 1}n×K. Then ‖round(Ẑ)− Z‖1 ≤
2‖Ẑ − Z‖1.

Proof. Let S := {(i, k) ∈ [n] × [K] : |Ẑik − Zik| ≥ 1/2}. Then by Markov’s inequality, we
have |S| ≤ 2‖Ẑ − Z‖1. Note that for (i, k) ∈ [n]× [K] \ S, round(Ẑik) = Zik. Thus

‖round(Ẑ)− Z‖1 =
∑

(i,k)∈S
|round(Ẑik)− Zik| ≤ |S| ≤ 2‖Ẑ − Z‖1

We shall need the following Bernstein-type concentration result for hypergeometric ran-
dom variables.

Lemma A.4.3 (Corollary 1 of [33] (restated here using slightly different notation)). Con-
sider a Hypergeometric(k, `, L) random variable H. Let µ = `/L, σ2 = µ(1 − µ), f =
(k − 1)/(L− 1). Then for λ > 0,

P
(√

k
(
H

k
− µ

)
> λ

)
≤ exp

− λ2/2
σ2(1− f) + λ

3
√
k

 .
Let us deduce from this two convenient Chernoff type bounds on the upper and lower

tail of a hypergeometric variable.
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Lemma A.4.4. Consider a random variable H ∼ Hypergeometric(k, `, L). Then for 0 < ε <
1, we have

max{P (H < (1− ε)EH) ,P (H > (1 + ε)EH)} ≤ exp
(
− ε2EH

2(1 + ε/3)

)

≤ exp
(
−ε

2EH
4

)
.

Proof. Note that k −H ∼ Hypergeometric(k, L− `, L). Using Lemma A.4.3 we get

P
(
H

k
− `

L
< − λ√

k

)
= P

(√
k

(
k −H
k
− L− `

L

)
> λ

)

≤ exp
− λ2/2

`
L

+ λ
3
√
k

 .
Taking λ√

k
= `

L
ε, we get

P
(
H <

k`

L
(1− ε)

)
≤ exp

(
− `3kε2/(2L2)

(1 + ε/3)`/(L)

)
= exp

(
− ε2k`

2(1 + ε/3)L

)
.

This gives us the desired bound for the lower tail, the upper tail can be handled similarly.

Analysis of PACE under stochastic blockmodel
Recall that we need to know how an algorithm performs on a randomly selected subgraph
under our subgraph selection procedure. Here we will discuss how one can obtain such
guarantees under the stochastic blockmodel. This will require us to understand the behavior
of sizes of different communities in a (randomly) chosen subgraph.

Community sizes in random m-subgraphs

(The results of this subsection do not depend on any modeling assumption.) Let S be a
random m-subgraph, and set m/n = q. Then if (n(S)

1 , . . . , n
(S)
K ) is the cluster size vector for

ZS, then clearly n(S)
k ∼ Hypergeometric(m,nk, n) and therefore, by Lemma A.4.4,

P(n(S)
k ≤ nminq −∆) ≤ exp

(
−((nk − nmin)q + ∆)2

4nkq

)

≤ exp
(
− ∆2

4nmaxq

)
.
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Therefore, by union bound,

P(n(S)
min ≤ nminq −∆) ≤

∑
k

P(n(S)
k ≤ nminq −∆)

≤ K exp
(
− ∆2

4nmaxq

)
.

Choosing ∆ =
√

4r′nmaxq log n, where r′ > 0, we see that with probability at least 1 − K
nr′

we have
n

(S)
min ≥ nminq −

√
4r′nmaxq log n. (A.9)

Similarly, we can show that

P(n(S)
max ≥ nmaxq + ∆) ≤ K exp

(
− ∆2

4nmaxq

)
,

and then, taking ∆ =
√

4r′nmaxq log n, conclude that with probability at least 1− K
nr′

n(S)
max ≤ nmaxq +

√
4r′nmaxq log n. (A.10)

Community sizes in 1-hop ego neighborhoods

Let now S be a randomly chosen 1-hop ego neighborhood. Note that the size of the k-th
block in this neighborhood satisfies

n
(S)
k =

∑
j :σ(j)=k

Xj,

where Xj = 1{j∈S}.
Now it is not hard to see that the Xj’s are independent conditional R, the root of S. We

also have that E(Xj |R) = Bσ(j)σ(R)1(j 6= R). It follows that

E(n(S)
k |R) =

∑
j :σ(j)=k

E(Xj |R) =
∑

j :σ(j)=k
Bσ(j)σ(R)1{j 6=R},

which means that

(nmin − 1)B∗ ≤ (nk − 1)B? ≤ E(n(S)
k |R) ≤ nkB# ≤ nmaxB#.

Therefore, by Chernoff’s inequality,

P(n(S)
k ≤ (nmin − 1)B? −∆ |R) ≤ exp

−(E(n(S)
k |R)− nminB? + ∆)2

2E(n(S)
k |S)


≤ exp

(
− ∆2

2nmaxB#

)
.
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Since the right hand side does not depend on R, we can take expectations of both sides with
respect to R to get

P(n(S)
k ≤ (nmin − 1)B? −∆) ≤ exp

(
− ∆2

2nmaxB#

)
.

This implies, by an application of the union bound, that

P(n(S)
min ≤ (nmin − 1)B? −∆) ≤ K exp

(
− ∆2

2nmaxB#

)
.

Choosing, ∆ =
√

2r′nmaxB# log n we conclude, with probability at least 1− K
nr′

, that

n
(S)
min ≥ (nmin − 1)B? −

√
2r′nmaxB# log n. (A.11)

One can prove similarly that

P(n(S)
max ≥ nmaxB# + ∆) ≤ K exp

(
− ∆2

3nmaxB#

)
,

and then, taking ∆ =
√

3r′nmaxB# log n, conclude, with probability at least 1− K
nr′

, that

n(S)
max ≤ nmaxB# +

√
3r′nmaxB# log n. (A.12)

Analysis of adjacency spectral clustering

We shall use the community size estimates from the previous subsection along with Lemma A.1.1.
Random m-subgraphs: From (A.9) and (A.10) we have, with probability at least 1− 2K

nr′
,

that
n(S)

max

(n(S)
min)2

≤ nmaxq +
√

4r′nmaxq log n
(nminq −

√
4r′nmaxq log n)2 ≤

nmax

n2
minq

Cn,m,r′ ,

where

Cn,m,r′ =
(

1 +
√

4r′ log n
nmaxq

)(
1−

√
4r′nmax log n

n2
minq

)−2

.

Note that Cn,m,r′ stays bounded, e.g., by 6, if n2
minq

nmax logn ≥ 16r′. In fact, it approaches 1 as
n2

minq

nmax logn →∞. Thus, from (A.1), with probability at least 1− 2K
nr′

over randomness in S and
with probability at least 1− 1

mr
over randomness in AS, we have

1
2δ(ẐS, ZS) ≤ min

{
c−1(2 + ε) K

λ2αn

nmax

n2
minq

Cn,m,r′ , 1
}
.
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We conclude that

1
2Eδ(ẐS, ZS) ≤ min

{
c−1(2 + ε) K

λ2αn

nmax

n2
minq

Cn,m,r′ , 1
}

+ 2K
nr′

+ 1
mr

. (A.13)

1-hop ego neighborhoods: By (A.1), given S (non-empty), with probability at least 1− 1
|S|r

over the randomness in AS, we have

1
2δ(ẐS, ZS) ≤ min

{
c−1(2 + ε) K

λ2αn

n(S)
max

(n(S)
min)2

, 1
}

=: JS.

So
1
2E[δ(ẐS, ZS) |S] ≤ JS + 1

|S|r
.

Therefore
1
2Eδ(ẐS, ZS)1(|S|≥m?) ≤ EJS1(|S|≥m?) + E

(
1(|S|≥m?)

|S|r

)
.

From (A.11) and (A.12) we have, with probability at least 1− 2K
nr′

, that

n(S)
max

(n(S)
min)2

≤
nmaxB# +

√
3r′nmaxB# log n

((nmin − 1)B? −
√

2r′nmaxB# log n)2

≤ nmaxB#

n2
minB

2
?

Dn,B,r′ = nmax

n2
minλ

2αn
Dn,B,r′ ,

where

Dn,B,r′ =
1 +

√√√√3r′ log n
nmaxB#

(1− 1
nmin

−
√

2r′nmaxB# log n
n2

minB
2
?

)−2

=
1 +

√
3r′ log n
nmaxαn

(1− 1
nmin

−
√

2r′nmax log n
n2

minλ
2αn

)−2

.

Note that Dn,B,r′ stays bounded, e.g., by 16(1+
√

3
8), if n2

minλ
2αn

nmax logn ≥ 8r′. In fact, it approaches
1 as n2

minλ
2αn

nmax logn →∞. Thus

EJS1(|S|≥m?) ≤ min
{
c−1(2 + ε) K

λ4α2
n

nmax

n2
min

Dn,B,r′ , 1
}

+ 2K
nr′

.
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On the other hand,

E
(

1(|S|≥m?)

|S|r

)
≤ E

(
1(|S|≥1)

|S|r

)

= E
(1( (n−1)B?

2 >|S|≥1)

|S|r

)
+ E

(1(|S|≥ (n−1)B?
2 )

|S|r

)

≤ P
(
|S| < (n− 1)B?

2

)
+
(

2
(n− 1)B?

)r

≤ exp
(
− nB2

?

16B#

)
+
(

2
(n− 1)B?

)r
(by (2.17))

≤ 16B#

nB2
?

+
( 4
nB?

)r
= 16
nλ2αn

+
( 4
nλαn

)r
.

So, finally, we have

1
2Eδ(ẐS, ZS)1(|S|≥m?) ≤min

{
c−1 K

λ4α2
n

nmax

n2
min

Dn,B,r′ , 1
}

+ 2K
nr′

+ 16
nλ2αn

+
( 4
nλαn

)r
. (A.14)

Analysis of SDP

In the setting of Corollary A.1.3, for a random m-subgraph S we have mink Bkk ≥ a
n

=
ã
m
,maxk 6=k′ Bkk′ ≤ b

n
= b̃

m
where ã = am

n
, b̃ = bm

n
. Let n(S)

kk′ denote the number of pairs of
vertices in the subgraph S such that one of them is from community k and the other is from
community k′. Now, by Lemma A.4.4,

P(n(S)
k ≥ cnkm/n) ≤ e−(c−1)2mπmin/4.

So, with probability at least 1−Ke−(c−1)2mπmin/4, we have, for all 1 ≤ k ≤ k′ ≤ K, that

n
(S)
kk′ =

n
(S)
k n

(S)
k′ ≤

c2nkn
′
km

2

n2 ≤ c1nkk′m
2

n2 , for k < k′,
1
2n

(S)
k (n(S)

k − 1) ≤ cnkm
2n ( cnkm

n
− 1) ≤ c1nkkm

2

n2 , for k = k′,

where c1 = c2
(

1 +
cm
n
−1

cm
n

(nπmin−1)

)
. Similarly, we can show, with probability at least 1 −

Ke−(1−c′)2mπmin/4, that

n
(S)
kk′ ≥


c2nkk′m

2

n2 , for k < k′,
c2nkkm

2

n2 , for k = k′,

where c2 = (c′)2
(

1 +
c′m
n
−1

c′m
n

(nπmax−1)

)
. Let

G = {S | c2nkk′m
2/n2 ≤ n

(S)
kk′ ≤ c1nkk′m

2/n2, for all 1 ≤ k ≤ k′ ≤ K}.
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Given S, the expected variance of edges in S is 2
m(m−1)

∑
1≤k≤k′≤K Bkk′(1 − Bkk′)n(S)

kk′ =: g̃
m

,
say. Then, if S ∈ G, we have

c2g

n
≤ c2m(n− 1)

(m− 1)n ×
g

n
≤ g̃

m
≤ c1m(n− 1)

(m− 1)n ×
g

n
= m

n2 × ḡ.

and so, using our assumptions on a, b, g, we get that g̃ ≥ 9 and ã, b̃ satisfy (ã − b̃)2 ≥
484ε−2m2

n2 ḡ ≥ 484ε−2g̃. Therefore, using Lemma A.1.2 on the subgraph S, we conclude that,
given S ∈ G, we have

1
m2‖Ĉ

(S) − Ĉ(S)‖2
F ≤ ε,

with probability at least 1− e35−m, where Ĉ(S) is a solution of SDP-GV on the subgraph S.
As P(S /∈ G) ≤ Ke−(c−1)2mπmin/4 +Ke−(1−c′)2mπmin/4, we conclude that

Eδ̃(Ĉ(S), C(S)) ≤ ε+ e35−m +Ke−(c−1)2mπmin/4 +Ke−(1−c′)2mπmin/4.

Proofs of some results for GALE
In this section we collect the proofs of the auxiliary results we presented in Section 2.5.

Proof of Lemma 2.5.3. Note that the Ni’s are i.i.d. Binomial(T ;m/n) random variables and
hence, by Chernoff’s inequality, we have,

P(Ni < τ) ≤ e−(1−θ)2Tm/2n. (A.15)

Another use of Chernoff gives, for δ > 0,

P
(∑

i

1{Ni<τ} > nP(N1 < τ)(1 + δ)
)
≤ exp(−δ2nP(N1 < τ)/3).

Setting δ =
√

3r logn
nP(N1<τ) , we conclude that with probability at least 1− 1

nr
,

∑
i

1{Ni<τ} ≤ nP(N1 < τ) +
√

3rnP(N1 < τ) log n

≤ ne−(1−θ)2Tm/2n

1 +
√

3r log n
ne−(1−θ)2Tm/2n

 .

Proof of Lemma 2.5.4. We will first show that for three different nodes a, b, c in Sm,T the
overlap variables Yab and Yac are independent. This is an immediate consequence of the
following two facts:
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(i) Yab and y(a) are independent which follows from the observation that for any m-subset
S of [n], Yab | y(a) = 1S ∼ Hypergeometric(m,m, n).

(ii) Given y(a), the overlaps Yab and Yac are independent, which follows from the fact that
y(b) and y(c) are independent.

From the discussion above, Yab ∼ Hypergeometric(m,m, n). Using Lemma A.4.4 we get,
with ε = 1/2, we get that

P(a ∼ b) = P
(
Yab ≥

⌈
m2

2n

⌉)
≥ 1− exp

(
−m

2

16n

)
.

Proof of Lemma 2.5.6. Note first that n(S)
k | Yab ∼ Hypergeometric(Yab, nπk, n), which follows

from the fact that given Yab, Sa ∩ Sb is distributed as a uniform Yab-subset of [n]∗. Now,
Lemma A.4.4 gives us

P

n(S)
k < Yabπk

1−
√

4r log n
Yabπk

 ∣∣∣Yab
 ≤ 1

nr
.

Therefore the same bound holds for the unconditional probability. Another application of
Lemma A.4.4 for Yab ∼ Hypergeometric(m,m, n) gives us

P

Yab < m2

n

1−
√

4rn log n
m2

 ≤ 1
nr
.

Using these two bounds, we conclude that with probability at least 1− 2
nr

, we have that

n
(S)
k ≥

m2πk
n

1−O
√n log n

m2πk

 ,
as long as m2πk

n logn is large enough ( m2πk
n logn ≥ 20r suffices to make the RHS above ≥ 0).

∗Thanks to Satyaki Mukherjee for this observation, which makes the proof considerably shorter than our
original approach based on concentration inequalities for sums of dependent Bernoulli random variables.
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