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Abstract

As hinguistic competence so clearly illustrates, processing
sequences of events is a fundamental aspect of human cognition.
For this reason perhaps, sequence learning behavior currently
attracts considerable attention in both cognitive psychology
and computational theory. In typical sequence learning
situations, participants are asked to react to each element of
sequentially structured visual sequences of events. An important
issue in this context is to determine whether essentially
associative processes are sufficient to understand human
performance, or whether more powerful learning mechanisms
are necessary. To address this issue, we explore how well human
participants and connectionist models are capable of learning
sequential material that involves complex, disjoint, long-
distance contingencies. We show that the popular Simple
Recurrent Network model (Elman, 1990), which has otherwise
been shown to account for a variety of empirical findings
(Cleercmans, 1993), fails to account for human performance in
several experimental situations meant to test the model’s
specific predictions. In previous research (Cleeremans, 1993)
briefly described in this paper, the structure of center-embedded
sequential structures was manipulated to be strictly identical or
probabilistically different as a function of the elements
surrounding the embedding. While the SRN could only leam in
the second case, human subjects were found to be insensitive to
the manipulation. In the new experiment described in this
paper, we tested the idea that performance benefits from
“starting small effects” (Elman, 1993) by contrasting two
conditions in which the training regimen was either incremental
or not. Again, while the SRN is only capable of learning in the
first case, human subjects were able to learn in both. We suggest
an alternative model based on Maskara & Noetzel's (1991)
Auto-Associative Recurrent Network as a way to overcome the
SRN model’s failure to account for the empirical findings.

Introduction

Over the past few years, sequence learning has become one
of the major paradigms through which to study elementary
learning processes, particularly in the context of implicit
learning research (see Berry & Dienes, 1993; Cleeremans,
1993 for reviews). In typical sequence learning situations,
participants are asked to react to each element of sequentially
structured visual sequences of events (e.g., Nissen &
Bullemer, 1987). There is now a large literature showing
that human subjects can exhibit very detailed sensitivity to

the sequential constraints present in the material through the
differences in their reaction time to stimuli that are or are
not predictable based on the temporal context set by
previous elements of the sequence,

An important issue in this context is to determine whether
essentially associative processes are sufficient to understand
human performance, or whether more powerful learmning
mechanisms are necessary. This issue has been typically
approached by exposing participants to complex material
that involves disjoint temporal contingencies, that is,
contingencies between elements of a sequence that are
separated by a number of other irrelevant elements. For
instance, Reed and Johnson (1994) trained their participants
on so-called second-order conditional sequences in which
each element 7 of the sequence can only be predicted based on
the identity of both elements ¢ - 2 and ¢+ /. Other research
has focused specifically on the question of determining
whether human participants can maintain information about
long-distance contingencies over embedded material, as
illustrated by the following two natural language
expressions:

The dog - that chased the car - is playful
The dogs - that chased the cat - are playful

Both expressions share an embedding that i1s completely
irrelevant in determining the number of the verb. When
processing such expressions, information about the number
of the head (dog vs. dogs) therefore has to be maintained in
memory until processing of the embedding information has
been completed.

Such expressions present interesting challenges for
popular sequential connectionist architectures such as the
Simple Recurrent Network (henceforth, SRN). The SRN,
first proposed by Elman (1990), and subsequently adapted by
Cleeremans & McClelland (1991) to simulate sequential
effects in reaction time tasks, is shown in Figure 1. The
network uses back-propagation to learn to predict the next
element of a sequence based only on the current element and
on a representation of the temporal context that the network
has claborated itself. To do so, it uses information provided
by so-called context units which, on every step, contain a
copy of the network’s hidden unit activation vector at the
previous time step. Over training, the relative activation of
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Figure 4: The simple recurrent network (SRN). See
text for details.

the output units representing each possible successor come
to approximate the optimal conditional probabilities
associated with their appearance in the current context, and
can thus be interpreted as representing implicit preparation
for the next event when the network is used as a model of
human sequence learning performance. Previous work (see
Cleeremans & McClelland, 1991; Cleeremans, 1993) has
shown that the SRN is able to account for about 80% of the
variance in sequential choice reaction time data.

The SRN, however, also suffers from an important
limitation in its ability to learn sequential material. Indeed,
one key aspect of leaming in the SRN is that the material
need to be “prediction-relevant” at every step for its
representation to be maintained in the context layer (see
Servan-Schreiber, Cleeremans & McClelland, 1991). In
other words. each element of the sequence has to be useful in
predicting the next one, even if only probabilistically so.
This specific limitation is not shared by other architectures
of similar complexity, such as the Jordan network (Jordan,
1986) or buffer networks (see Cleeremans, 1993). How well
human participants perform with such material therefore has
interesting diagnostic value in determining which model is
best fit to account for human sequence learning performance.

This is the issue we focus on in the rest of this paper. We
start by reviewing existing data in light of previous research
on the SRN. Next, we report on an experiment meant to
compare human and simulated performance in conditions
where the SRN is known to fail.

Overcoming SRN limitations

Previous research on this issue has revealed a number of
important facts about the SRN’s limitations. In particular,
several authors have attempted to show that the SRN'’s
sensitivity to prediction-relevance can be overcome by
changing features of the stimulus environment to which the
network is exposed during training. Two arguments have
been developed. First, one may argue that natural language
situations seldom correspond to the artificially hard situation
described above. The following example illustrates this
naturalistic argument by showing that embedded structures
are in fact often dependent on the information conveyed by
the head, if only in subtle ways:

The dog - that chased its tail - is playful
The dogs - that chased each other - are playful
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In these sentences, the embeddings can no longer be
switched between the two expressions because the number of
the head constraints to some extent which embeddings can
follow. Hence the gist of this argument is that completely
independent embeddings are the exception rather than the
rule: Typical embeddings do contain (syntaxic or semantic)
information that is relevant for the processing of subsequent
information.

Based on this idea, Servan-Schreiber, Cleeremans and
McClelland (1991) trained an SRN on sequential material
generated from a finite-state grammar producing center-
embedded structures of the following form:

T E*-T
P-E*-P

In these expressions, the last element (T or P) is contingent
on the first one (the head), from which it is separated by a
number of embedded elements E. In the symmetrical
condition of Servan-Schreiber et al.’s simulations, the
embedding was always identical regardless of which head had
occurred. In the other, asymmetrical condition, the
probability of occurrence of some embedded elements varied
as a function of which head had been presented. In both
conditions, the SRN was assessed on how well it could
predict the tail after neutral embeddings. Servan-Schreiber et
al. found that the SRN could only master the material in the
asymmetrical condition. The SRN can therefore maintain
information across irrelevant embedded elements, but only
when the embedding as a whole is probabilistically
dependent on the head.

Cleeremans (1993) tested human subjects in a choice-
reaction time task using the same design as described above
but with the grammar illustrated in Figure 2, which can
generate center-embedded structures similar to the ones
described in the previous paragraphs. He found that subjects
were able to successfully anticipate which tail was most
likely to occur after a given head in both conditions. In
contrast, the SRN was only able to encode the long-distance
contingencics between the outer eclements in the
asymmetrical condition, that is, when the embeddings were
probabilistically dependent on the head.

Overall, these results therefore suggest that while the
SRN’s limitations can be overcome by changing the
probability structure of the stimulus environment it is
exposed to, human participants do not appear to suffer from
these limitations at all.

A second way to overcome the SRN’s limitations was
proposed by Elman (1993). Elman found that the SRN was
able to learn the kind of complex and hierarchically
organized information that typically occurs in natural
language when training is incremental, that is, when the
network is only progressively exposed to the more complex
sequential contingencies contained in the stimulus material.
To quote Elman (1993): “The network fails to learn the task
when the entire data set is presented all at once [but] when
the training data were selected such that simple sentences
were presented first, the network succeeded not only in
mastering these, but then going on to master the complex
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Figure 2: Finite-state grammar used to generate the
stimulus material. See text for details.

sentences as well” (p. 74). Elman (1993) also found that
directly manipulating the network’s memory by forcing the
activations of the context units to be reset at progressively
larger intervals over training produced equivalent beneficial
effects — a result that prompted Elman to frame his
argument in terms of development, based on the observation
that the capacity of children’s short-term memory also
increases with age.

In this paper, we propose to explore this idea in the context
of sequence learning situations. We report on an experiment
designed to test the effects of the training regimen in a six-
choice sequential reaction time task. We contrasted two
conditions that involved the same stimulus material but that
used two different training regimens: an incremental one, and
a non-incremental one. We detail this experiment in the next
section.

Experimental Design

Method

The experiment consisted of 10 training sessions during
which subjects were exposed to a serial six-choice RT task.
Each session consisted of 20 blocks of 150 trials each, for a
total of 30,000 trials. On each trial, a stimulus appeared at
one of six positions arranged horizontally on a computer
screen, and subjects were to press as fast and as accurately as
possible on the corresponding key.

The sequential structure of the material was manipulated
by generating the sequence based on the finite-state grammar
illustrated in Figure 2, as described below. The sequences
contained three different long-distance contingencies, the
elements of which (i.e., the head and the tail) were separated
by a varying number of embedded elements. To determine
whether the training regimen has an impact on performance,
we contrasted two conditions. In the Flar training condition,
the distribution of embedding lengths was the same
throughout training. Subjects were therefore exposed to the
most complex material right from the start. By contrast, in
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the /ncremental training condition, training started with
mostly short embeddings, and the proportion of long
embeddings was increased only progressively during
training.

Subjects

Twelve subjects were randomly assigned to either condition.
Subjects were paid about $50 for their participation in the
experiment and could earn an additional bonus of $10 to $20
based on performance.

Apparatus and Display

The experiment was run on PowerPC Macintosh computers.
The display consisted of six dots arranged in a horizontal
line on the computer’s screen and separated by intervals of 3
cm. Each screen position corresponded to a key on the
computer’s keyboard. The spatial configuration of the keys
was fully compatible with the screen positions. The
stimulus was a small black circle 0.35 cm high that
appeared on a white screen background, centered 1 cm below
one of the six dots. The RSI was 120 msec.

Procedure

The procedure used in this experiment followed very closely
the design described in Jiménez, Méndez and Cleeremans
(1996). Subjects were exposed to two sessions each day for
5 consecutive days. All subjects were kept unaware of the
fact that the material contained sequential contingencies, and
were merely told that the experiment was about the effects of
prolonged practice on motor performance. The instructions
stressed both accuracy and speed. Short user-controlled rest
breaks occurred between any two experimental blocks.
During these breaks, subjects were given feedback about
their performance and informed about how much bonus
money they had eamed so far. This amount was computed
for each block based both on accuracy and speed.

Stimulus material

Stimuli were generated based on the finite-state grammar
illustrated in Figure 2. On each of the 30,000 trials,
stimulus generation proceeded in two phases. First, an arc
coming out of the current node was randomly selected, and
its label recorded. The current node was initialized randomly
at the start of each block, and was updated on each trial to be
the node pointed to by the selected arc. Next, the recorded
label was used to determine the screen position at which the
stimulus would appear by following a 6 x 6 Latin square
design, so that each label corresponded to each screen
position for exactly one of the six subjects in each
condition.

The grammar generates sequences that all share the
following form:

H-E*-T

where H designates a head element, E designates a embedded
element, and T designates a tail element. The tail element of
any such sequence also served as head for the next sequence.
In our grammar, both heads and tails were instantiated by the



Frequency
1250

B Flat

@ Incremental

1000~

750 1
500 -
2504

2
Embedding Length

3

Figure 3: Initial frequency distribution of embeddings
containing up to four elements in the Flat and Incremental
conditions.

labels *A’, ‘B’, and ‘C’, which we subsequently refer to as
the outer elements. The grammar was designed so that any
particular head could be followed (after at least one element
of the embedding) by the other two outer elements, and so
that each head tended to be more strongly associated with
one of the two legal tails than with the other. Thus for
instance, if “A’ appears as the head of a given sequence, ‘A’
itself can not appear as the tail of this sequence, ‘B’ will
tend to appear as the tail element in 80% of the cases, and
‘C’ in the remaining 20% of the cases. This difference in tail
likelihood provides us with a simple way of assessing
whether subjects are sensitive to the regularities contained in
the material. Indeed, any difference in the reactions times
elicited by likely vs. unlikely tails would clearly indicate
that participants have encoded information about the head
element. because only the head provides information about
the distribution of tails.

As Figure 2 illustrates, heads and tails were always
separated by an embedding. The embedding was instantiated
by three different tokens (not representd in Figure 2): the
labels ‘X’,”Y’, and ‘Z’. The grammar was designed so that
one element was mandatory. Subsequent elements of the
embedding were chosen at random with the constraint that
direct repetitions of any element were forbidden. Embedded
elements are therefore totally irrelevant with respect to the
task of predicting the tail. A random number of additional
embedded elements could appear with probability / on each
of the three loops of the grammar. In the Flat condition, /
was set to 0.666 during the entire experiment. This means
that each embedded element had a 0.666 chance of being
followed by another embedded element. In the Incremental
condition, by contrast, the probability to stay in the loop
increased from 0.22 to 0.66 in steps of 0.11 every four
sessions. Figure 3 shows the initial frequency distribution of
embeddings up to length 4. One can see that short
embeddings are much more frequent in the Incremental
condition than in the Flat condition, and that this
distribution reverses for embeddings of length 3 and higher.
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The distributions of each condition progressively converged
over training and were identical for sessions 9 and 10.

Results

Subjects were exposed to a six-choice reaction time task
involving complex sequential contingencies presented either
incrementally (Incremental condition) or not (Flat
condition). We first report the results of the corresponding
simulation work based on the SRN model.

Simulation Results

To assess how well the SRN was able to account for RT
performance in this experiment, we trained the model on the
same material as human subjects and for the same number of
trials, with the parameters and architecture used by
Cleeremans and McClelland (1991). We used an SRN with
15 hidden units and local representations on both the input
and output pools (i.e., each unit corresponded to one of the 6
stimuli). To account for short-term priming effects, the
network used dual connection weights, as described in
Cleeremans and McClelland (1991). The network was trained
to predict each element of a continuous sequence of stimuli
generated in exactly the same conditions as for human
subjects. On each step, a label was generated from the
grammar and presented to the network by setting the
activation of the corresponding input unit to 1.0. Activation
was then allowed to spread to the other units of the network,
and the error between its response and the actual successor of
the current stimulus was then used to modify the weights.
During training, the running average activation of each
output unit was recorded on every trial and transformed into
Luce ratios to normalize the responses. For the purpose of
comparing simulated and observed responses, we assumed
(1) that the normalized activations of the output units
represent response tendencies, and (2) that there is a linear
reduction in RT proportional to the relative strength of the
unit corresponding to the correct response. The network’s
responses were subtracted from 1.0 to make increases in
response strength compatible with reduction in RT, and were
finally transformed into zscores for easy comparison with
human data.

The results are illustrated in the left panels of Figure 4.
The data represent differences in the response strengths
associated to either likely or unlikely tails of sequences
containing up to three embedded elements, for the Flat
condition (top panel) or the Incremental condition (bottom
panel). The figure makes it clear that the SRN is incapable
of learning even the shortest contingencies in the Flat
condition: There are no differences between its responses to
likely and unlikely tails regardless of the length of the
embedding. The network simply fails to learn.

In contrast, the model appears capable of successfully
predicting the tail element of sequences containing a single
embedded element in the Incremental condition, producing
responses that are about 5% stronger when the tail is likely
to occur (given the head) vs. when it is not, at the end of
training.

As predicted, the model is therefore quite sensitive to the
difference between the training regimens used to present the
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Figure 4: Human and simulated data (i.e., average difference scores between responses to likely and unlikely tail
elements) for the SRN model (left panels), human subjects (middle panels) and for the AARN (right panels),
plotted separately for embeddings of length 1 (L1, squares), 2 (L2, circles), and 3 (L3, triangles). Top panels: Flat
condition. Bottom panels: Incremental condition. All data have been separately transformed into zscores based on
the data obtained for each source over the two conditions. See the text for additional details.

stimulus material. Are human participants similarly
sensitive to this difference? This is the focus of the next
section.

Human performance

The human data are illustrated in the middle panels of Figure
4. One can see that subjects appear to leamn in both the Flat
condition and the Incremental condition. To determine how
well participants were able to discriminate between likely
and unlikely tails after embeddings of different lengths, we
conducted an ANOVA on the data obtained over the last two
sessions of the experiment. These data are represented in
Figure 5. The figure indicates (1) that participants appear to
be sensitive to the likelihood of tails occurring after
embeddings up to length 2, and (2) that performance appears
to be quite similar in the two conditions. Averaging over
both conditions, likely tails had a 52 msec advantage over
unlikely tails when the embedding had a length of 1, and a
28 msec advantage when the embedding was of length 2.
These impressions were confirmed by the results of a
mixed-measures ANOVA with condition as a between-
subjects factor [Flat vs. Incremental condition) and session
[2 levels], embedding length [4 levels], and tail probability
[likely vs. unlikely], as repeated measures factors. Condition
and session both failed to reach significance. The analysis
revealed a significant effect of tail probability, F(1, 10) =
10.37, Mse = 2560.62, p < 0.01, thereby indicating that

participants indeed tended to produce faster responses when
reacting to a likely tail as compared with their responses to
unlikely tails. As suggested by the data shown in Figure 4,
however, this sensitivity to tail likelihood interacted
significantly with embedding length, F(3, 30) = 8.81, Mse =
624.03, p < .001. Contrasts conducted separately for the
different levels of embedding length showed that participants
exhibited significant differences between their responses to
likely and unlikely tails after embeddings up to length 2, but
not for embeddings involving 3 or more elements.

Overall then, in contrast with the SRN data, participants
appear to learn the material equally well in both conditions.

Discussion

How do we learn about disjoint temporal contingencies? Is
such learning influenced by the training regimen? In this
paper, we addressed these issues by exploring human and
simulated performance in an experiment meant to test
whether a specific prediction of the SRN model of sequence
processing was borne out empirically. The experiment
involved assessing reaction time performance on complex
sequential material containing center-embedded elements and
presented either incrementally or not. Following up on
Elman’s (1993) work, we first showed that the SRN could
only learn the material when its more complex instances
were introduced progressively during training. In contrast,
the human data showed that participants could leam the
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Figure 5: Reaction time differences between responses
to likely and unlikely tails averaged over the last two
sessions of the experiment, and for sequences containing
embeddings of length 1 to 3.

material in both conditions, up to instances containing two
embedded elements.

Overall, these results, when combined with the research
we described in the introduction, suggest (1) that the SRN
exhibits specific limitations that human participants are not
sensitive to, and (2) that human participants are generally
capable of mastering sequential material that the SRN is
unable to learn. This does not necessarily make the SRN an
inadequate model of human performance in sequential choice
reaction time tasks, in that the model clearly captures many
central aspects of performance in such situations (see
Cleeremans, 1993, for a review), but it should prompt us to
look for alternative architectures that build on the SRN’s
strengths while also overcoming its limitations. One such
architecture has recently been proposed by Maskara and
Noetzel (1992). Their Auto-Associative Recurrent Network
(henceforth, AARN) is illustrated in Figure 6. As its name
suggests, this network is essentially an SRN that is also
required to act as an encoder on both the current element and
the context information. On each time step, the network is
thus required to produce the current element and the context

(SRN CONTEXT )@URRENT ELEMENa (NEXT ELEMENT)

HIDDEN

( SRN CONTEXT J (CURHENT ELEMENT)

Figure 6: The auto-associative recurrent network (AARN).
See text for details.

information in addition to predicting the next element of the
sequence. This requirement forces the network to maintain
information about the previously presented sequence
elements that would tend to be “forgotten” by a standard
SRN performing only the prediction task. Maskara and
Noetzel showed that the AARN is capable of mastering
languages that the SRN cannot master. When applied to our
data, the AARN produces the pattern of results shown in the
right panels of Figure 5. One can see that the network is
successful in reproducing the most important aspect of
human performance, that is, to leamm in both conditions,
albeit the model does not learn as well as human participants
do. Likewise, when applied to the experiment involving
symmetrical vs. asymmetrical embeddings (Cleeremans,
1993) described in the introduction, the AARN also learns
where the SRN fails. Thus, even though further research is
clearly necessary, such results encourage us to continue to
explore the properties of the AARN as a model of sequence
learning in choice reaction time tasks. Importantly, this
model, just as the SRN, only involves elementary
associative learning mechanisms.
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