
UCLA
Papers

Title
Kairos: A Macro-Programming System for Wireless Sensor Networks

Permalink
https://escholarship.org/uc/item/401090d7

Authors
Gummadi, Ramakrishna
Kothari, Nupur
Millstein, Todd
et al.

Publication Date
2005

DOI
10.1145/1095810.1118600

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/401090d7
https://escholarship.org/uc/item/401090d7#author
https://escholarship.org
http://www.cdlib.org/

Kairos: A Macro-Programming System for Wireless Sensor
Networks

Ramakrishna Gummadi∗ Nupur Kothari† Ramesh Govindan‡ Todd Millstein§

http://kairos.usc.edu

Wireless sensor networks research has, till date, made im-
pressive advances in platforms and software services. Re-
search in the area has moved on to consider an essential
piece of sensor network technology—support for program-
ming wireless sensor network applications and systems com-
ponents at a suitably high level of abstraction. Two broad
classes of programming models are currently being inves-
tigated by the community. One class focuses on providing
higher-level abstractions for specifying a node’s local behav-
ior in a distributed computation. Examples of this approach
include the recent work on node-local or region-based ab-
stractions. By contrast, a second and less-explored class
of research considers programming a sensor network in the
large called macroprogramming.

This poster is devoted to understanding and evaluating the
abstractions and mechanisms necessary to develop a macro-
programming environment that is not SQL-restricted, and
which enables a developer to specify the global behavior of
a distributed computation in sensor networks. For example,
a simple global specification of a distributed computation
that builds a shortest path tree rooted at node N in a sensor
network could be stated in words as:

for each node n, its parent is that neighbor whose
distance to N is shortest.

We contend that such a global specification can be eas-
ily encapsulated within a single, centralized imperative pro-
gram that presents a simple sequential execution model and
a centralized memory model of node state of the distributed
sensors. The system translates the centralized program cap-
turing this specification into a decentralized and localized
program specialized by a sensor node state. Copies of such
a compiled program execute on each sensor node, along with
some additional runtime support. In our example, the result-
ing distributed program might, for instance, cause a node
to repeatedly invoke its runtime to query the node’s current
neighbors about their current distance to N, process the re-
ceived distances, and pick that neighbor whose distance to N
was smallest.
∗University of Southern California. gummadi@usc.edu
†University of Southern California. nkothari@usc.edu
‡University of Southern California. ramesh@usc.edu
§University of California, Los Angeles. todd@cs.ucla.edu

The main motivation for such a programming methodol-
ogy is that programmers and systems designers are often
able to clearly describe (and reason about the correctness
of) a sequential, centralized version of a distributed compu-
tation, but often find it difficult to implement (or understand
the correctness of) a node-local program that realizes a de-
sired global behavior using a low-level explicitly distributed
message-oriented programming model.

The crux of our approach, called Kairos, is to provide a
small set of programming primitives (only four) which ex-
tend a programmer’s favorite programming language, and
which enable a programmer to completely capture the nec-
essary distributed control flow and data consistency seman-
tics in the form of central, sequential, and synchronous reads
and writes of sensor states. These four abstractions are a) the
notion of a node type and an iterator on a node set as first
class language objects, the ability to b) centrally read and
write data and c) invoke local functions at arbitrary nodes,
and d) a temporal abstraction of actions. Kairos involves a
compiler that translates the centralized program using these
primitives into a node-specific distributed version that cod-
ifies them into the necessary local interactions in the form
of explicit inter-node control co-ordination and data coher-
ence logic. At execution time, this synthesized logic is then
enforced, optimized for network economy and energy ef-
ficiency, and implemented using explicit messages by the
Kairos runtime—that constitutes the second half of Kairos—
that exists at every node.

We have designed and implemented a first version of Kairos
that extends Python and runs on the popular sensornet hard-
ware platform of Stargates nodes and Mica2 motes. In this
poster, we describe our implementation of the language ex-
tensions and the runtime system, and our evaluation of three
distributed computations that exemplify system services and
signal processing tasks encountered in current sensor net-
works: constructing a shortest path data routing tree, local-
izing a given set of nodes, and vehicle tracking. We demon-
strate that Kairos’ level of abstraction does not sacrifice per-
formance, yet enables compact and flexible realizations of
these fairly sophisticated algorithms. We also sketch facili-
ties for automated failure recovery that we are currently in-
vestigating.

Kairos: A Macroprogramming Model for Wireless Sensor NetworksKairos: A Macroprogramming Model for Wireless Sensor Networks
Ramakrishna Gummadi, Nupur Kothari, Ramesh Govindan, Todd Millstein

UCLA – UCR – Caltech – USC – CSU – JPL – UC MercedUCLA – UCR – Caltech – USC – CSU – JPL – UC Merced

Center for Embedded Networked SensingCenter for Embedded Networked Sensing

• Macroprogramming: Allow all nodes to be
programmed as a single unit

• Global program behavior captured as a
single sequential task on a centralized
memory model

• No need for explicit parallelization or
synchronization code

• Challenge is designing the compiler and
runtime components that generate and
implement an equivalent concurrent
distributed version …

• … and optimize resulting distributed
execution at various levels (programmer-
level, compiler-level, compiler-network
level, and network-level) for the primary
constraint of traffic economy in WSNs

• Python based implementation of Kairos on
Stargates, with motes as radio interfaces.

• Uses Python’s extensibility and embedding
APIs to execute a source-level Python script
at every node.

• 24 node test-bed of 16 Stargate motes + 8
Mica2Dots hanging off a multi-port PC serial
card

•Emstar for E2E routing, topology
management, and reliability

• Logical multi-hops over a single physical
hop, using S-MAC as the MAC layer.

• Three representative programs: Data
Routing Tree, Localization and Vehicle
Tracking

Implementation

Motivation Mechanisms

Results
• For the Data Routing Tree application, the
displayed compact program with an
unoptimized Kairos implementation correctly
found a routing tree of better quality with only
twice the byte overhead and 30% more
convergence time than the default hand-coded
One Phase Pull scheme in Directed Diffusion

• In the Vehicle Tracking application, loose
synchrony (a form of eventual consistency)
provided by Kairos alone is insufficient

- we use a stronger notion (Program Consistency)
in the form of loop-level synchrony
- the time_queue abstraction permits a clean
expression of this tighter consistency

• Four main programming primitives in Kairos:

- first-class datatypes: node, node_list
(iterator on nodes) for topology independent
programming

- get_neighbors(node) to obtain current one-
hop neighbors of a node

- var@node to synchronously access node-local
data

- a time_queue abstraction for temporal actions

• Kairos compiler translates the centralized
sequential program into a node-localized
version specialized at runtime by a node’s state.

• Kairos runtime present at every node enforces
inter-node control coordination and data
coherence using explicit messages

- Kairos compiler and runtime optimize these
messages for network economy

• Eventual Consistency (and other forms of
relaxed consistency) semantics can be exploited

• Mote implementation: A Kairos compiler which can output nesC + Kairos runtime for motes

• Generic Failure Recovery: Automated recovery mechanisms in presence of various classes of failures

• Various levels of performance optimizations

• Exploiting Heterogeneity, Hierarchy, and User-level Energy/Resource Management

http://kairos.usc.edu

void build_tree (node root=0) {
 node n, n';
 node_list avail_n=get_available_nodes();
 node_local node parent=NULL; //node_local variables denote…
 node_local uint dist_from_root=INF;//…state at each node
 dist_from_root@root=0; parent@root=root;
 for (;;) {//eventually converges; can also use…

//…a stricter termination condition
 for (n=get_first(avail_n); n!=NULL;

 n=get_next(avail_n)) {
 node_list neigh_n=get_neighbors(n);
 for (n'=get_first(neigh_n); n'!=NULL;

 n'=get_next(neigh_n)) {
 if (dist_from_root@n' < dist_from_root@n+1) {
 parent@n=n';
 dist_from_root@n = dist_from_root@n'+1;
}}}}}

Ongoing and Future Work

 Procedural Code for Shortest-Path Data Routing Tree

Testbed Setup

Program Kairos runtime

Thread
of

Control

Sync
Read/Write

Cached Vars

Exported Vars

Queue Manager

Requests Replies

Sensor Node

Python Interpreter Comm Layer (C/EmStar)

Runtime (C)

Python Script

Architecture
Organization

Kairos Implementation

Data Routing Tree Performance

Need for Tighter Control-Flow Synchrony

Multihop wireless network

Centralized Program Localized Binary
Kairos Compiler

Program Kairos Runtime

Thread
of

control

Sync
Read/Write

Cached Variables

Managed Variables

Queue Manager

Requests Replies

Sensor Node

Link + Distribute
to Runtime

Program Kairos Runtime
Thread

of
control

sync
read/write

Queue Manager

Requests Replies

Sensor Node

Link + Distribute
to Runtime

Link + Distribute
to Runtime

Exported to Remote Nodes
by Kairos Runtime

Copies of Remote
Variables

Kairos Architecture

Cached Variables

Managed Variables

Localized Program

Native Language

Compiler

