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Li+ ions, accelerated ﬁo energies between 1 and 20 keV, pass.through thick -
vapor targets of Mg, Sr, and Cs. The ions that emerge into a narrow, ’
forward—difécted cone are electrostétically separated into ﬁﬁfee charge-state
components: Li_,'Lio, and Li+. The principal results over this energy range
are (1) the negative fraction peaks at 5% near 5 keV for a Cs target, and is
less than 1% in Mg and Sr targets, (2) for Sr and Cs targeﬁs, the beam is
greater than 90% neutral, and (3) for a Mg target, the beam dées not

neutralize at the lowest energies studied, remaining mostly positive between 1

and 10 keV.
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I. Introduction
Describing the méchanismS‘for negative-ion formation in ion-atom collisions
at adiabatic enefgies'is an interesting challenge to our present gnderstanding
of the dynamics of quasi—moiecular systgms. Fgrthermore, the prodﬁction of
negative ion beams is of current practical interest to -the Magnetic Fusion
Energy program. An important moti;ation for tﬁis work on Li fqrmation is a
recent proé@éal to measure the spatial distribution of fusion product alpﬁa

particles through the double-electron-transfer reaction
Li® + He' 5 LT 4+ me®.
Thelmost efficient way to produce the high-energy neutral lithium atoms needed
for this diagnostic probe is by electron detachment of fast Li . Other uses
of fast Li atoms have been proposed for space applications. The choice of
target vapors used in the present experiment was suggested by_previous*work at

'LBL on D~ for:mation,3’4

in which negative-ion equilibrium fractions larger
than 30% were found in Cs and Sr targets. |

The detection of Li was first reported in 1947 by Sloane and Love,5 who
bombarded a Ni surface with Li+ ions from a lithium thermionic source and
analyzed the scattered ions with a mass spectrometer. The measured electron
affinity. 0.620(7),6 égrees with accurate values calculated7 for the 1522s2
configurétion. Li is one of only two negative ions known to possess a second
bbund state; radiation from the core-excited configuration 1s2$2p2 has been
observed8 with a 2.3 ns lifetimg. Since that state can autodetach and does
noﬁ live long enough to be detected in the present experiment, the results
presented below refer to production of ground-state Li .

The formation of negative ions of species heavier than hydrogen by cﬁarge

. 9 . . . .
transfer has recently been reviewed. This review summarizes data for species

as heavy as Cl.



II. Experimental Arrangement

A schematic diagram of thé apparatus is shown is Fig. 1. 7L'1+ ions.ére
formgd by surface ionization in an indirectly heated, isotopically purified,
B-eucryptite impregnated, porous tungsten plug.lo A very stable ion current
of about 1luA is extfacted from a Pierce electrode. The 1 to 20 keV
acceleration potential is obtained from a well—regulated‘dc power supply.
After eleétrostatic focusing and éteering the beam is 100-percent square-wave
modulated at 5‘50% duty cycle by a transverse electric field. Magnetic
analysis then directs the beam into one of two beam lines where it passes
through either a stainless—steel recirculating Cs-vapor heat-pipe target3 or a
differentialiy pumped iron oven4 containing Mg or Sr vapor. A chromel- alumel
thermocouple i# used to measure the temperature at the reservoir. That
temperature is used to estimate the target number density from a least-squares
fit to tempefature—vapor pressure data;ll Neutral atoms and ions.emerging
from the ﬁarget within approximately i3.5°Aof the forward direction pass
thrdugh'én eléctrostatic field which directs the positive and negative
components into magnetically suppressed Faraday cups and which allows the
néutral component to pass undeviated onto the face of a pyroelectric
detector.lz Both electrostatic and magnetic suppression ére used to prevént
secondary elecgrons_from the front surface of the pyroelectic detector from
reaching the Faraday cups; the small secondary-electron flux could mask the

small Li--signal; The two targets are coupled to identical analysis

3,4
chambers™’ which terminate each beam line.  Beam components travel

approximately 10 cm between the target and the analyzing field. The vacuum,
maintained by liquid-nitrogen-trapped oil diffusion pumps, is typically less
than 2x10_6 Torr in all beam lines and chambers, except inside and immediately

adjacent to the targets.



‘The signals from the two Faraday cups are amplified by electrometers whose
outputs are digitized, integrated, énd fecorded by a microcomputer.

‘The pyroelectric detector is insensitive to the charge of the particles
impinging on its front surface, so it is calibrated by comparing its output to
the output of a Faraday cﬁp when the Li+ beam is switched back and forth. -
between the two. The output of the pyroelectric detéetor is rectified and
amplified with a lock-in amplifiet that is syncronized to the ~ 1l-Hz beam

. modulator. The output of the lock-in amplifier is also digitized, integrated,
and recorded by the,computef. Sinée charge—state fractions are ﬁeasured, but
not the beam intensity incident on the target, transmission'through the target
is estimated by assuming constant i.ncident'Li+ intensity.

Typical beaﬁ currents reaching the Faraday cups are 200 nA for the Cs
heat-pipe target, and 20 nA for the alkaline-earth oven, which requires a more
highly collimated beam. At equilibrium thickness the beams are attentuafed
from these_values by 10% to 90% depending upon the beam energy, target

geometry, and target:material.

III. Experimental ?rocedure

Growﬁh curves were taken for each target at the lowest and highest beam
energies in order to-determine the target thickness required for equilibrium.
An example is shown in Fig. 2, for 4-keV Li+ in c¢esium vapor. The target
temﬁerature was freely rising (i.e., driven at a constant power level), and
the.temperature changé between points is typically five degrees C. Charge- »
state fractions are calculated from the integrated signals and from the
pyroelectric-detector calibration constant, subject to the condition that the

three charge-state fractions sum to unity. Therdensitiés that label the



abscissa of Fig. 2 are the densities estimated at the center of the heat pipe

target, whose length is about 5.3 + 0.7 cm.3 Once the temperature

corfesponding to equilibrium thickness is determined for a given target and
fér each of the three charge-state fractions, the target is maintained at the
fixed temperature and the fractions are measured as a function of beam energy.
Various systematic checks were performed to verify correct behavior of the
apparatus. The measured equilibrium charge-state fractions are found to be
insensitive to the polarity of the analyzing field and to small variations in
the magnitude of the field. Likewise, the pyroelectric-detector calibration
is found to be insensitive to tﬁe polarity of the analyzing field, the
position of the beam on its 2.2-cm-diameter face, and the position at which
the charged beams strike the Faraday cups. The calibration constant is foupd

to vary linearly with beam energy, as expected.

IV. Results and Discussion
s s ' . ® @ ®
The equilibrium charge-state fractions f_, fo and.f+ were measured for

+
incident Li ions over the energy range 1 to 20 keV in targets of magnesium
(Z=12), strontium (2;38) and cesium (Z=55) vapor. No previous experiments
have measured Li charge-state fractions for this energy range in either Mg or
Sr vapor targets. One previous report13 has results for equilibrium fractions

in Cs vapor for energies between 5 and 40 keV, while another14 reports

conversion efficiencies between 2 and 20 keV. Conversion efficiences cannot
be directly compared with equilibrium fractions, since the former are

apparatus dependent. Measurements in Na vapor have also been reported.

Results for each target are described below and are shown in Figs. 3-5 and in

Table 1.



A. Magnesium-vapor target

The equilibrium fractions for 1 to 20 keV Li+ in magne#ium vapor are shown
in Figure 3l. The f: and f: curves join smoothly with the results of an older,
higher-energy experiment16 which did not report measuring a negative component.

Previous.s.tudies17 in a Mg-vapor target suggest that beams of elements |
from columns 6A and 7A of the periodic table tend to have relatively sm#ll
neutral equilibrium fractions k< 65%) for energiés‘between 10 and 100 kevV,
while elements ﬁo the left in-the periodic table tend to have relatively large
neut;al fractions (> 70%) for the same energies. The resultﬁ reported here
for Li (f: < 60%) do not fit into that trend.

At the highest energiés used here, the neutral fraction dominates. In
most beam-target systems, the neutral fraction becomes larger as the energy is
lowered. An unexpected finding is that the neutral fraction decreases in
favor of the positive fraction asigﬁelenergy is lowered from 20 keV. For
energies below about 12 keV and extending tq the lowest energy measured to
this experiment, thevbeamvdoes not neut:alize to avhigh degree, and the
positive fraction dominates.

The probable reason for this observation is that the electron-capture
cross section for Li+ + Mg 4 Li + Hg+ is very smél} beléw 10 keV. Such
behavio; is expected if recent calculations18 on the similér Li+ + Ca -

Li + Ca+ system are scaled to the endoergicities AE of the respective
reactions. The AE for Li* + Ca electron capture is 0.72 eV, while thgt for
Li+ + Mg is 2.26 eV. for Li+ + Ca, the ﬁaximum cross section is realized18 at
E = 10 keV. Using the adiabatic criterion19 which predicts that the velocity

at the maximum in the cross section will scale inversely with AE,



+ o '
one is lead to predict the Li + Mg electron-capture cross section will not
maximize until the energy is above those studied here. Thus, our observations

of a small neutral fraction are in accord with theorgtical predictioné. It
should be noted that the heavier alkaline earths, such as Sr, where AE = 0.30
eV, will necessarily have large electroﬁ—capture cross sections at low
energies and will not exhibit behavior similar to that of Mg.

An estimate of,the'electron—detachhent cross section o, can be made from

(] B
f° when the electron-capture cross section o is known, if the negative

+0
fraction is sufficiently small for a two-component model to be valid. 1In this

model the neutral fraction is

® .
fo = o+o/(d+o + a°+). (1L
Cross sections c+° for electron capture have recently been measured by

Coggiola, Bae, and Peterson.zo These values combined with present measurments
of f: provide an estimate of the electron—detaéhmént cross section d°¥, which.

-15 - .
lies between 1.0 x 10 1 and 1.2 x 10 15 cm2 over the energy range 4-10 keV.

B. Strontium-vapor targe£
Figure 4 summarizes the energy dependence of fj and f:Ain strontium
, . ~ 4 - . .
vapor. Previous measurements of the D charge-state fraction in Sr vapor

showed a peak at about 50% for a D energy near 0.5 keV. Note in the figure

that there is a small peak at about 2.5 keV, with a broad shoulder at higher.
energies. This is quaiitatively similar to the b- yield in the same target at
the same velocities, although the maximum Li~ yield of 1% is very small

compared to 50% for D .



C. Cesium-vapor target

The largest negative fraction (5.4%t) observed for the three targets
studied was for a cesium—vaporAtarget, This result is shown in Fig. 5. The
negative fraction also exceeds the positive fraction at energies less than
10 keV. Our observations confifm a trend noted.earlier13 for other alkali-
metal projectiles in cesium vapor; the negative-ion fraction peaks at a
projectile veloﬁity of about 0.17 a.u. As with the Sr target, but unlike the
Mg target, the positive-ion fraction is mondtoniéally decreasing as the energy

is reduced.

D. Scaftering

The incidgnt beam is not tightly collimated in this experiment, nor is it
continuously monitored, hence little can be said about scattering. The
collimation of the beam after the target is designed so that only ions and
atoms that scatter into a cone of half-angle approximately 3.5° about the
forward direction enter the analysis chamber. For the_cesium target the
following quantitative statements can be made. At equilibrium, by definition,
almostiall of the ions undergo more-than one collision that is close enough-
for an electron to be captufed or lost. We fiﬁdvthét at least 80t of the beam
reaches the analysis qhambgr; it thus follows that most of the iohs are not
scattéred by:more than 3.50. For the Mg and Sr targets, because the target
collimation is tighter. scattering loss ié much greater within the target, and
the‘downbeaﬁ collimation does not determihe an upper bound for ;he scattering

angle{

-8 -



E. Uncertainties

The systematic errors associated with the data in Figs. 3-5 are estimated -

to be equal to or smaller than the plotting symbols except.where noted by
error bars. These uncertainties are a measuré of the repeatability of the
charge-state fractions over a period of time, and arise mainly from variations
in the neutral—aﬁom,detector. Additionai uncertainties occur for very small
fractions,. where instrument drift and various baékgrounds increase the
uncertainty of‘the charge-state-fraction measurements. Typical uncertainty
for an equilibrium yield is + 5%. Charge-state fractions are, of course,
determined at equilibrium thickness, so there is no error associated with
target temperatﬁre measurement or target density determination. The error
associated with the ion'energy and q/h is determined by the stability and
.calibration of the acceleratof and magnet power supplies, which are well

enough regulated so that those errors are negligible.



V. Conclusion

The equilibrium charge-state fractions ofrlithium ions passing through
vapors of Mg, Sr, and Cs show quite different treﬁds, as seen in Fig. 6. The
maximum negative-ion fraétion occurs near 5 keV in Qs vapor, and for energies
beléw 10 kev, the emergent Li beam has a net negative charge. While negative-
ion formation is extremely small in a Mg target, interesting béhavio; is
observed, indic#ting an-inhibition‘of neutralization at low projectile
energies, so that the emergent beam has a net positive charge.- In éontrast to
production of D at coﬁpatable velocities, very little Li is produced in Sr

vapor.
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Table 1. Equilibrium charge-state fractions f.1 for Li in Mg, Sr, and Cs vapors

(in %). Uncertainty is 5% or less unless otherwise indicated.

Mg ' o Sr , Cs

- - - - - - - - -
E(keV) £, £ £ £, £ £, £, £ £
1 0.19° 99.5  0.34° 99.3  0.62°
1.5 0.83° 98.6 o0.61°
2 1.3 97.8  o0.88° 0.10° 8.5 1.3%
3 - 2.5° 96.5 0.99° o0.s8° 96.8 2.8°
4 872 12.8° 0.0096% 3.3 96.0 0.76> 0.85° 94.5 4.6
5 82.4 17.6> 0.0126® 3.8 95.5  0.68 1.3* 935 5.2
6 74.3 25.7 0.017 -~ 4.5 94.8  0.68 1.6 93.5 4.9
7 67.3 32.6 0.021 5.1° 94.2 0.68° 1.9 93.7 4.4
8 62.8 37.2  0.025 5.6 93.7  0.68 2.2 94.1 3.7
9 59.1 40.8  0.027 6.2 93.1  0.66 2.5 94.4 3.1
10 57.3 42.6 0.030 6.7 92.7  0.61 3.0 94.4 2.6
11  54.8 45.2  0.032 7.2  92.2  0.56 3.4 94.4 2.2
12 51.8 48.1 0.034 7.8 91.7  0.49 4.0 94.2 1.8
13 49.0%50.0 0.036 8.3 91.2  0.44 4.6 93.8  1.56
14  47.8 S2.2  0.038 9.2  90.4  0.39 5.2 93.4  1.36
15 46.1 53.9 0.041 9.8  89.9  0.34 6.0 92.8  1.22
16  44.7 55.3  0.044 10.3 89.4 0.32 6.7 92.2  1.09°
‘17 43.5 S56.5  0.047 10.8 88.9  0.29 7.4 91.6  1.05°
18 42.2 57.7 0.050 11.3  88.4 = 0.28° 8.2 91.8  0.97°
19 41.4 58.5  0.054 11.8 87.9  0.27° . 9.0 9.1 o0.91°
20 40.7 59.2  0.058 12.4 87.4  0.26° 9.7 89.4  0.84°
a) + 10%
b) + 20%
c) + 30%
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Fig.

Fig.
Fig.
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Fig.

Figure Caﬁtions

Schematic diagram of the apparatus

Charge-state fractions as a function of target thickness for 4-keV
o . '

Li 1in cesium vapor.

Equilibrium charge-state fractions: Li in Mg vapor.

Equilibrium charge-state fractions: Li in Sr vapor.

Equilibrium Charge-state fractions: Li in Cs vapor.

Summary of ff for Li ions in metal vapors.
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