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Abstract 12 

1: Randomized experiments have long been the gold standard in determining causal effects in 13 

ecological control-impact studies. However, it may be difficult to address many ecologically and 14 

policy-relevant control-impact questions-such as the effect of forest fragmentation or protected 15 

areas on biodiversity-through experimental manipulation due to scale, costs and ethical 16 

considerations. Yet, ecologists may still draw causal insights in observational control-impact 17 

settings by exploiting research designs that approximate the experimental ideal.   18 

2: Here we review the challenges of making causal inference in non-experimental control-impact 19 

scenarios as well as a suite of statistical tools specifically designed to overcome such challenges. 20 

These tools are widely used in fields where experimental research is more limited (i.e., medicine, 21 

economics), and could be applied by ecologists across numerous sub-disciplines.  22 



 

3: Using hypothetical examples, we discuss why bias is likely to plague observational control-23 

impact studies in ways that do not surface with experimental manipulations, why bias is 24 

generally the barrier to causal inference, and different methods to overcome this bias.  25 

4: Satellite-, survey- and citizen-science data hold great potential for advancing key questions in 26 

ecology that would otherwise be prohibitive to pursue experimentally. However, to harness such 27 

data to understand causal impacts of land, environmental and policy changes, we must expand 28 

our toolset such that we can improve inference and more confidently advance ecological 29 

understanding and science-informed policy.  30 

Keywords: before-after-control-impact, causal analyses, econometrics 31 

Introduction 32 

The methodological gold standard in ecology, as in many scientific disciplines, is the 33 

randomized control trial, also known as the control-impact experiment. The random assignment 34 

of subjects (or sites) into treatment (or impact) and control groups with pre-determined treatment 35 

levels has been used to uncover innumerable fundamental findings in ecology. For example, 36 

common garden experiments seek to compare the effect of a fixed treatment (fertilizer 37 

supplements, fungal inoculations, predator exclusions, genetic strains) using two or more groups 38 

that are otherwise exposed to the same environmental conditions. Since we cannot observe the 39 

exact same site both treated and not treated simultaneously, we must compare between sites to 40 

identify the effect of treatment. The key to valid comparison is to assign treatments to sites at 41 

random. In such randomized experiments, only the treatment should differ systematically 42 

between treatment subjects and control subjects; this allows researchers to interpret the average 43 

difference between treatment and control groups as the average causal effect of treatment at the 44 

population-level.  45 



 

Ecologists are increasingly interested in taking advantage of survey, remote-sensing and 46 

citizen-science data to address ecologically and policy-relevant questions in systems that do not 47 

easily lend themselves to experimental manipulation. For example, the placement of protected 48 

areas is rarely under the control of the researcher and they are generally not randomly placed on 49 

a landscape. In such cases, how can one identify the causal effect of protected areas on the 50 

abundance of, say, an economically or ecologically important species? To do so, the researcher 51 

must overcome the fundamental challenge present in non-experimental settings: the inability of 52 

researchers to have full control over treatment assignment (i.e. protected and not protected sites), 53 

which opens up the possibility that the outside forces that influence observed treatment are doing 54 

so in a non-random manner. Naively applying regression, anova or other statistical approaches 55 

without accounting for the non-experimental nature of observational data can lead to 56 

inappropriate conclusions due to overlooked bias from improper comparisons between areas 57 

chosen and not chosen for treatment. In other words, the common mantra of “correlation does 58 

not imply causation” applies. However, not all is lost. Ecologists can establish causal inference 59 

with observational data in a control-impact framework if we incorporate careful research design 60 

and rigorous statistical approaches expressly designed for the purpose.  61 

 Here we discuss the challenge and promise of inferring causality from non-experimental 62 

data in control-impacts studies. We begin by discussing frameworks for causal inference. We 63 

then expand on the nature of why observational data present specific challenges not encountered 64 

in randomized experiments, which provides paths forward. To that end, we review several 65 

statistical approaches often associated with econometrics that can potentially overcome bias in 66 

control-impact analyses with observational data. To the extent possible, we seek to build 67 

intuition rather than to delve into the technical details. We use hypothetical examples to do so, 68 



 

since few real data sets are amenable to all methods discussed and the true population parameter 69 

is indiscernible in real data. 70 

Frameworks of Causal Inference 71 

In control-impact studies, causal inference is achieved through explicit comparison across 72 

units that are treated and units that serve as controls. In such settings, the key concept is that of a 73 

counterfactual: what would outcomes for the treated units look like in the absence of the 74 

treatment? If control units differ from treated units in the absence of the treatment, then a causal 75 

interpretation is not feasible. 76 

There are several different frameworks for conceptualizing causal relationships in order 77 

to facilitate causal inference. Two of the most well-known are Pearl’s structural causal model 78 

(SCM; Pearl 2000, 2010) and Rubin’s potential outcomes model (PO; Rubin 2005). SCM is a 79 

powerful framework for assessing causal relationships between variables. It integrates nonlinear 80 

structural equation modeling (SEM), graphical representation of causal pathways, and potential 81 

outcomes analysis (Pearl 2010). SEM, first developed in the early decades of the 20th century 82 

(Wright 1921), has been used in ecological systems to generate and test complex hypotheses 83 

about direct and indirect species interactions and system processes (Grace et al. 2010; Fan et al. 84 

2016). SCM extended SEM to more flexible distributional assumptions, and links the equations 85 

embodied in the causal diagram (or directed acyclic graph, DAG) to the concept of 86 

counterfactuals.  87 

In contrast, the PO framework is based on a notion of causality which places an emphasis 88 

on what researchers can and cannot observe, and an emphasis on isolating the effect of usually a 89 

single explanatory variable of interest (i.e. treatment variable) on a single outcome rather than on 90 

disentangling complex relationships within a network. Thus, PO is a particularly amenable 91 



 

framework for conceptualizing randomized and non-randomized control-impact studies. A 92 

specific insight illustrated by the PO framework is that causal interpretations are stymied by the 93 

fundamental truth that a subject cannot be both treated and not treated simultaneously (Holland 94 

1986). As we will see below, randomization allows for the estimation of an average treatment 95 

effect in the population, while the absence of randomization requires additional understanding of 96 

the data-generating mechanism to develop a credible comparison. While part of the richness of 97 

SCM is the development of  a new mathematical language describing causal relationships 98 

without reliance on probability math, it is not our goal to summarize this for ecologists. We point 99 

the interested reader to Pearl (2010). Our goals are to first illustrate why statistical bias presents a 100 

particular challenge for observational studies and then introduce some practical tools from 101 

econometrics to improve causal inference in observational control-impact studies. As such, we 102 

build on the potential outcomes framework as a simple way to relate to ecology’s foundations in 103 

randomized experiments. Nonetheless, bias can also be described using the mathematical and 104 

graphical representations of SCM, which we include in our illustrations. Finally, we emphasize 105 

that by employing the specific control-impact notion of causality, this review will not cover the 106 

notion of causality found in coupled dynamical systems, such as those pertaining to models of 107 

coupled predator-prey interactions. That notion of causality, sometimes referred to as “Granger” 108 

causality (Granger 1969) in time-series econometrics and recently advanced for nonlinear 109 

dynamical settings (Sugihara et al. 2012), examines how several interacting time series variables 110 

may be coupled over time. Because our aim is to inform research in control-impact studies, this 111 

review will exclude this dynamical notion of causality. 112 

Potential Outcomes Framework 113 



 

To be concrete, take for example, a study that is interested in estimating the effect of 114 

forest thinning (e.g. through US Forest Service Collaborative Forest Landscape Restoration 115 

Program) on songbird abundance. Which forest stands are chosen for thinning treatment is not 116 

under the manipulation of the researcher where treatment and control sites could be assigned 117 

randomly at precisely known levels of treatment. Rather, as is common with observational data, 118 

the decision of where to thin is likely determined by a tangle of possibly unknown or unobserved 119 

environmental (e.g. climate, soil), social (e.g. land values) and policy factors that cannot be 120 

manipulated by the researcher. As such, here and throughout we model the treatment as a 121 

random, rather than fixed, variable. The implication of this distinction will become clear later on 122 

(see Treatment as a Random Variable below). 123 

The US Forest Service’s priorities often include improving ecosystem function and 124 

reducing fire risk, and thus we can imagine that more degraded sites or sites closer to human 125 

habitation are more likely to be given resources than intact forests far from the Wildland-Urban 126 

Interface. In that case, a survey of songbird abundance across thinned and unthinned sites is 127 

likely to find lower mean songbird abundance in thinned sites. A similar result might occur if 128 

there were different levels of thinning treatments based on proximity to surrounding 129 

development or fire risk. In both scenarios, we would be remiss to conclude that thinning reduces 130 

songbird abundance based on a simple comparison of means because sites chosen for treatment 131 

(or sites chosen for higher levels of treatment) differed systematically from those not chosen (or 132 

those chosen for lower levels of treatment). This systematic difference between the sites assigned 133 

treatment (or different treatment levels) results in inaccurate estimation of the effect of treatment. 134 

More formally, the mean or expected value of the estimated effect of the treatment, ![#$], is 135 

different from the true value, #. This is known as statistical bias. The challenge is therefore 136 



 

overcoming bias stemming from non-random treatment assignment so we can isolate the effect 137 

of the treatment on bird abundance.  138 

 For simplicity we start by formalizing the above scenario with a binary treatment 139 

(thinned, unthinned forest stands). For any site, there are two outcomes that can potentially be 140 

observed—songbird abundance if the site was selected for the thinning treatment and songbird 141 

abundance if the site was not selected for the thinning treatment. Formally, 142 

&'()*(+,-	'/(0'1) = 3
456	+7	86 = 1
4:6 	+7	86 = 0

, (1) 143 

where 4:6 is songbird abundance in site i had that site not been chosen for treatment (86 = 0), 144 

and 456 is songbird abundance in site i had it been chosen (86 = 1)1.  The observed outcome 46 145 

can be related to the potential outcomes by, 146 

46 = 4:6 + (456 − 4:6)86. (2)  147 

 The causal effect of thinning for site i is	456 − 4:6 . For many empirical applications, the 148 

question of interest, or estimand, is the population average treatment effect (ATE). Let E[] 149 

represent the expectation operator, or the population mean of a random variable. By the law of 150 

large numbers, the sample mean converges to the population mean so E[] can also be thought of 151 

as the sample average in very large samples. The ATE can be written as 152 

# = ![456] − ![4:6] = C
1

D
EF(456 − 4:6)

G

6H5

(3) 153 

where N is the population size.	# is the causal effect we would like to be able to estimate if it 154 

were possible to observe, for every site i, its outcome both when it is thinned (456)  and when it is 155 

                                                
1 The formal notation for potential outcomes was introduced by Neyman (1923, translated and reprinted in 1990) in 
the context of randomized experiments. It wasn’t until the work of Rubin (1974) that the potential outcomes 
framework was considered for observational data settings. The term “Rubin Causal Model” first appears in Holland 
(1986). 



 

not thinned (4:6).  Since this is impossible, we must learn about the effect of forest thinning 156 

through comparisons across untreated units that can serve as valid counterfactuals.  157 

If we took the simple observed differences in mean songbird abundance between treated 158 

and untreated sites, we may capture more than we intended. The simple difference in means 159 

between sites that were and were not treated is equivalent to 160 

![46|86 = 1] − ![46|86 = 0]	161 

= 	![456|86 = 1] − 	![4:6|86 = 0]	162 

= 	![456|86 = 1] − 	![4:6|86 = 1] + ![4:6|86 = 1] − ![4:6|86 = 0]. (4)	163 

  164 

The first composite term on the right-hand side of equation (4) represents the average 165 

effect of treatment on sites that were thinned (“average treatment on the treated”, ATT). The 166 

second term captures the systematic difference between sites that are and are not treated in the 167 

absence of treatment (e.g., if the thinning program was cancelled after site selection but before 168 

thinning occurred, would average bird abundance differ between selected and not selected 169 

sites?). Thus, the second term captures the “selection” bias stemming from non-random 170 

treatment assignment. Selection bias would arise if sites chosen for thinning were less isolated or  171 

otherwise in less pristine condition than sites not chosen. In that situation the estimated effect of 172 

thinning would capture both the true effect of the thinning treatment on bird abundance and the 173 

pre-treatment difference in site quality. Quasi-experimental approaches including BACI designs 174 

seek to remove selection bias so we can isolate the causal effect of the treatment from observed 175 

differences in outcomes between treatment and control groups.  176 

A key assumption   177 

  

Average treatment effect on the treated (ATT) 
 

Selection bias 



 

Regardless of whether treatment is randomly assigned, deriving causal inference based on 178 

counterfactuals invokes the assumption that there is no treatment spillover or interference 179 

between sites. This is known as the Stable Unit Treatment Value Assumption (SUTVA; Rubin 180 

1980; 2005). SUTVA also assumes there are not different versions of the same treatment. This 181 

would be violated if, for example, some sites are only treated on paper, but action never happens 182 

on the ground.  183 

SUTVA is required for potential outcomes to be well defined and is built into the 184 

potential outcomes definition in equation (1). However, one can envision conditions in 185 

ecological systems that violate SUTVA. For example, if population growth in a non-treated site 186 

is so high that there is net dispersal away from the site and into a treatment site, there would be 187 

treatment spillover, which would obfuscate the effect of the treatment alone. Treatment spillover 188 

would generally occur with spatial dependence between outcomes, where treatment of one site 189 

caused higher abundance at a nearby site. However, spatial correlation of the standard errors (a 190 

common feature of ecological data) would not violate SUTVA.   191 

At first glance, SUTVA seems overly restrictive. However, studies can often be designed 192 

such that SUTVA is reasonable. For example, researchers can aggregate to larger units (e.g. 193 

individual to population, patch to landscape; Imbens & Wooldridge 2009). Lack of interference 194 

between observations underlies many statistical analyses trying to ascertain treatment effects in 195 

randomized trials as well as observation studies. If one is to relax SUTVA, additional 196 

information is needed to specify the exact extent and intensity of interactions across individuals 197 

(e.g. Deschenes and Meng, 2018). This is an active area of research (e.g. Manski 2013). 198 

Randomized Experiments 199 



 

If we are willing to make the SUTVA, causal inference becomes a problem associated 200 

with assignment of treatment. If treatment status, 86, is independent of potential outcomes as it 201 

theoretically would be in a random experiment, the second composite term of equation (4) drops 202 

out since ![4:6|86 = 0] = ![4:6|86 = 1]. Further, the conditional expectation simplifies to the 203 

unconditional expectation in the first term, ![456|86 = 1] − ![4:6|86 = 1] = ![456] − ![4:6] 204 

because potential outcomes are independent of treatment status (456, 4:6 ⊥ 86, where ⊥ denotes 205 

statistical independence). Thus, the simple difference in population means, the left-hand side of 206 

equation (4), is equal to ATE, equation (3), if treatment status is randomly assigned. This 207 

highlights why experimental manipulations are the gold standard for causal inference. Replacing 208 

the population means with the corresponding sample analogs results in a consistent estimate of 209 

the ATE.  210 

In observational analyses, we must remove selection bias associated with non-random 211 

assignment of treatment as bias precludes the identification of causal relationships. How we do 212 

so depends on what we know about how treatment is assigned and whether we can observe 213 

relevant covariates that determine treatment assignment. Below we transition from potential 214 

outcomes to regression, and from there to different regression-based methods for deriving 215 

causality for treatment selection based on observable and unobservable characteristics. See SI for 216 

example code and table 1 for a summary of data requirements and key assumptions for each 217 

method.  218 

Regression Analysis 219 

 Equation (2) can be rewritten in terms of a regression model. To build intuition in the 220 

most straightforward manner, we omit covariates for now. For simplicity, we also assume that 221 



 

treated sites respond the same way to thinning (i.e. constant treatment effects) and the model is 222 

linear in parameters. In this case, we can write equation (2) as,  223 

46 = M + #86 + N6, (5) 224 

where M = ![4:6], # = 456 − 4:6  is the treatment effect, and N6 is the site-specific random error 225 

term. 226 

 Evaluating equation (5) for treated and untreated sites yields, 227 

![46|86 = 1] − ![46|86 = 0] = 228 

= (M + # + ![N6|T6 = 1]) − (M + ![N6|T6 = 0]) (6) 229 

= # + ![N6|T6 = 1] − ![N6|T6 = 0] (7) 230 

This illustrates that the bias that prevents us from isolating the causal effect (#) from the 231 

simple difference in the treatment and control sites (![46|86 = 1] − ![46|86 = 0]) stems from a 232 

correlation of the treatment with the error term. In other words, if the site-specific, random error 233 

term were not related to treatment status, ![N6|86 = 1] = ![N6|86 = 0], the average treatment 234 

effect, β, is all that remains. Though we used the population regression for ease of illustration, by 235 

the law of large numbers, the sample regression coefficients are a consistent estimate of the 236 

population coefficients.  237 

Treatment as a Random Variable 238 

It is worth noting that throughout, we have been considering the treatment as a random, 239 

rather than a fixed, variable. This distinction, which is less essential in the context of randomized 240 

experiments, is the basis for why bias may arise in observational data settings.  241 

In theory, a randomized experiment enables the researcher to fully manipulate which 242 

units are assigned to treatment or control, and for non-binary treatments, to determine the 243 

specific levels of treatment. The ability to fully manipulate treatment means that the researcher 244 



 

may be willing to assume, as Sokal & Rohlf (2012) describe in their seminal Biometry text (p 245 

475), “the independent variable X is measured without error. We therefore say that the X’s are 246 

“fixed,” which means that whereas the dependent variable	Y is a random variable, X does not 247 

vary at random, but rather is under the control of the investigator”.  If X is assumed to be fixed, 248 

the correlation between the treatment variable and the error that we have been discussing at 249 

length is zero, by assumption2.  This point is not often emphasized because in a perfectly 250 

executed randomized experiment, treatment (as a random variable) is uncorrelated with the 251 

errors anyway. Of course, in practice, assuming X is obtained without error may not hold due to 252 

naturally occurring variation, and randomization may not inherently provide bias-free estimates 253 

if randomization is incomplete (e.g. due to unknown individual variation in study units).  254 

Yet, in observational data there is a clear distinction with regard to the treatment variable. 255 

By definition, treatment (e.g. location and extent of deforestation, protected areas, hunting 256 

pressure etc.) is determined by “outside” and potentially unknown forces that are beyond a 257 

researcher’s control. Treating explanatory variables as random variables acknowledges the 258 

possibility of a correlation between the treatment variable and the unmodeled determinants of the 259 

outcome (i.e. model errors), and thus various sources of bias that preclude causal interpretations 260 

of correlations. We next discuss these sources of bias before turning to various research designs 261 

that potentially enable causal inference with observational data.  262 

Sources of Bias  263 

                                                
2 Mathematically, this stems from the “exogeneity assumption” required for unbiased estimators. Exogeneity implies 
zero correlation between the treatment and the true model error, ![86N6] = 0. If treatment is considered fixed, it can 
be removed from the expectation such that ![86N6] = 	86 ∗ ![N6]. Since the latter term equals zero by assumption, 
assuming treatment is fixed implicitly assumes away any potential correlation between the explanatory variables and 
the error term, and thus the possibility of many forms of statistical bias. 



 

 Bias implies that the expected value of the sample estimator does not reflect the true 264 

population parameter, ![#$] ≠ # (Fig. 1a). While the correlation between the hypothetical model 265 

errors and treatment (![86N6] ≠ 0) is broadly referred to as endogeneity bias, there are a couple 266 

of specific scenarios that are widely observed in observational studies.  267 

 Any covariate that is excluded from the model ends up in the error term. Thus, any 268 

variable that is correlated with the treatment and drives the outcome would result in a correlation 269 

between the errors and the treatment if not explicitly included in the model. For example, if 270 

forest stand age was correlated with the treatment (e.g. thinning) and bird abundance (e.g. 271 

through habitat availability), omitting forest age as a covariate would induce a correlation 272 

between the errors and the treatment and result in a biased estimator of the effect of thinning on 273 

bird abundance due to the selection bias problem illustrated earlier (which is also referred to as 274 

omitted variable bias and can be illustrated via a DAG, fig. 2). This contrasts with variables that 275 

drive the outcome but are not correlated with the treatment. Failing to control for these variables 276 

adds noise (i.e. increases the standard error of the parameter estimate) but does bias regression 277 

coefficients.  278 

The second major source of endogeneity bias occurs when there is a feedback between 279 

the outcome variable back to explanatory variables, known as reverse causality. In other words, 280 

if thinned sites were chosen to avoid areas with high bird abundance, then abundance drives 281 

thinning and thinning drives abundance. In this case, it is impossible to estimate either 282 

directional relationship without addressing the feedback because of the induced correlation 283 

between the errors and the treatment going in either direction (bird abundance à thinning, 284 

thinning à bird abundance).  285 



 

 Lastly, a persistent challenge for observational studies is the presence of measurement 286 

error in the explanatory variables. While measurement error of the outcome variable results in 287 

noise, it does not cause bias unless the measurement error is correlated with the explanatory 288 

variables. In contrast, measurement error in the explanatory variables causes what is known as 289 

Classical Errors-in-Variables, which biases the slope estimates towards zero.  290 

Methodological Approaches  291 

This section details five empirical approaches that, under different statistical assumptions, enable 292 

causal interpretations when examining observational data.  293 

1. Difference-in-Difference (DiD): In the absence of experimental manipulation, it is difficult to 294 

parse apart the effect of the treatment from background changes in environmental conditions. 295 

Luckily, many survey data sources are collected over multiple years. When “panel” (or 296 

“longitudinal”) data are available, the analyst can sometimes leverage repeated observations over 297 

time to address bias due to omitted, time invariant confounders.  298 

Like BACI paired (Stewart-Oaten et al. 1986), DiD is a paired design where treatment 299 

and control sites are observed at the same time before and after the treatment occurs (Angrist & 300 

Pischke 2009). We introduce the basic DiD despite its similarities to BACI to introduce readers 301 

to another methodological literature and as an entryway to the panel data models discussed 302 

below.  303 

With repeated observations of the same groups over time a DiD is estimated using the 304 

below model, 305 

46UV = M + W5(X),(U + WY,7()XV + #Z(X),(U ∗ ,7()XV[ + N6UV (8) 306 

where i denotes an individual observation, g denotes group, and t denotes the time period. Here  307 

“treat” is a dummy variable that is equal to one for sites that eventually received treatment 308 



 

(treatment group) and “after” is a dummy variable that is equal to one “after” the treatment 309 

occurs. By conditioning on these dummy variables in an ordinary least squares (OLS) 310 

framework, the average differences between treatment and control (before treatment) and 311 

average differences between pre-treatment control sites and post-treatment control sites are 312 

removed. Thus, the coefficient on the interaction term, #, indicates the change in outcome due to 313 

the treatment after differencing away persistent difference between groups and shared time 314 

trends. Normality of the errors is not required for  OLS to be unbiased. While the basic model 315 

could be estimated with a repeated measure ANOVA if normality of the errors is assumed, a 316 

regression approach is advantageous with complex models, missing or unbalanced data, and 317 

when assuming normality or homoscedasticity of the errors is overly restrictive. 318 

The simplest setup is when outcomes are observed in two periods for both groups where 319 

one group’s treatment status changes from the first period to the next.  However, the fundamental 320 

assumption of DiD (and other BACI designs) is that if not for the treatment, the two groups 321 

would have parallel time trends (Angrist & Pischke 2009). As an indirect test of this assumption, 322 

one can see if there are common time trends across groups before the treatment by using 323 

additional pre-treatment time periods, when available. DiD can be extended to include 324 

covariates, different timing of treatment (“staggered” DiD) and an additional control group 325 

(“triple difference”).  326 

2. Within-estimator Panel Data Model: The within-estimator panel data model is a generalization 327 

of DiD models to multiple groups and time periods.  328 

 Let us say we are again interested in song bird abundance, but this time as a function of 329 

forest fragmentation. With repeated observation of the same sites over time, we can exploit year-330 

to-year deviations from the mean forest fragmentation of a site to estimate how fragmentation 331 



 

affects bird abundance, under certain conditions, even if we do not have measurements of all the 332 

covariates. 333 

 The within-estimator (also called the least-squares dummy variable model) is often and 334 

confusingly termed a “fixed effects” panel data model, but we continue with “within-estimator” 335 

to avoid confusion with “fixed effects”, as defined in biostatistics (i.e. a non-random variable). 336 

The within-estimator model could be represented as follows, 337 

46V = M + #]X,^1)*(,(+'*6V + 06 +	_V + N6V (9) 338 

where 46V indicates bird abundance in site i and time t, M is the intercept, # is the coefficient of 339 

interest, and N6V is the random error term. As elsewhere in this manuscript, we ignore covariates 340 

for notational convenience. 341 

 Here 06 represents unobserved heterogeneity that is unique to each site i but time 342 

invariant over the study period (e.g. climate, soil quality) and _V  represents unobserved 343 

heterogeneity that is unique to each year (e.g. weather, technology) that is shared by all sites. If 344 

either 06 or _V is ignored, it ends up in the error term, potentially creating endogeneity as 345 

described above. Ecologists are familiar with using site or year random effects in mixed effects 346 

models. Random effects models, such as random intercept models, assume that the unobserved 347 

site- or year-specific heterogeneity is uncorrelated with the treatment (Wooldridge 2002). In 348 

many cases this is a strong assumption. For example, climate, soil quality, proximity to urban 349 

centers are all likely to be correlated with fragmentation. If these variables were measured and 350 

included directly, there would be no issue. However, if they are not, a site random effect would 351 

not avoid omitted variable bias because, although the correlation of observations at the same site 352 

is modeled, the correlation between covariate (fragmentation) and the error term is not removed. 353 

Instead, the within-estimator can be used. The effect of the within-estimator is that observations 354 



 

are differenced from their site-specific mean and thus identified by “within” site (or year) 355 

variation. If the site-specific (time-specific) unobserved heterogeneity is correlated with 356 

fragmentation does not matter because it is effectively removed from the model in the 357 

differencing. In the case where the site-specific (time-specific) heterogeneity was indeed 358 

uncorrelated with the covariates (the random effects assumption), the within-estimator would 359 

remain unbiased but would be less statistically efficient, or in other words have a larger variance, 360 

than the random effects estimator (Fig. 1). However, if the site-specific (time-specific) 361 

heterogeneity was correlated with the observed covariates, only the within-estimator model 362 

would remain unbiased. Though we only discuss site and year above, the same logic and applies 363 

to other group characteristics as well. We point the reader to Larsen & Noack (2017) for an 364 

example of using the within-estimator to understand how crop diversity affects agricultural 365 

pesticide use, after controlling for year-specific, crop-specific and region-specific unobserved 366 

heterogeneity. 367 

3. Instrumental Variables: The within-estimator requires panel data and generally does not solve 368 

reverse causality bias (Table S1; for an exception see Larsen et al. 2014). However, the 369 

instrumental variables (IV) approach can jointly solve selection bias, measurement error, and 370 

reverse causality, provided certain assumptions are met. To isolate causal effects of a treatment 371 

on an outcome, the IV approach requires the researcher to select an “instrument” that (1) is 372 

sufficiently correlated with the endogenous treatment variable and (2) does not affect other 373 

determinants of the outcome (i.e. does not belong in the main regression). These two 374 

assumptions ensure that the variation in the treatment variable driven by the instrumental 375 

variable is also uncorrelated with other determinants of the outcome, thus removing the source of 376 

endogeneity bias.  377 



 

 As an illustration of how IV works, consider predator-prey relationships which are classic 378 

examples of reverse causality as predator abundance drives prey abundance, but the reverse is 379 

also true (Kendall 2015). If we were, for example, interested in estimating the effect of wolf 380 

abundance on moose abundance using a linear regression, our linear coefficients may instead 381 

capture the reverse effect. To estimate the effect of wolf on moose abundance, we need to sever 382 

the reverse causality pathway by isolating a driver of wolf abundance that has no direct effect on 383 

moose abundance. One possible instrument would be the prevalence of canine distemper, which 384 

drives wolf abundance, but should not affect moose abundance (except through changes in wolf 385 

abundance). Note, we are assuming here that this predator-prey system is not closely coupled. If 386 

it were closely coupled such that there were offset boom-and-bust cycles, our estimates of the 387 

causal effect using cross-sectional data at any point in time would fail to capture the cyclical 388 

nature of the relationship (e.g. Sugihara et al. 2012).  389 

Turning to how an IV approach would work in this setting, we can use the exogenous 390 

change in wolf abundance due to canine distemper to estimate the effect of wolf abundance on 391 

moose abundance. Conceptually, an IV approach occurs over a two-stage regression process. 392 

The first stage regression relates canine distemper prevalence to wolf abundance via,  393 

&X)abc/*a,*0)6 = W + _d+e()1f)X6 + /6. (10) 394 

In the second stage regression, moose abundance is then regressed on the wolf abundance 395 

predicted by canine distemper from the first stage,  396 

&X)gbc/*a,*0)6 = M + #&X)abc/*a,*0)h
6 + N6 (11) 397 

= 	M + #ZW$ + _id+e()1f)X6[ + N6	. (12) 398 

As equations 10-12 show, the variation in wolf abundance used to estimate the effect on moose 399 

abundance comes only from canine distemper. Provided that canine distemper is not correlated 400 



 

with other drivers of moose abundance, contained in the error term N6, then an IV model 401 

estimates a causal effect.  402 

In practice, the IV approach entails two further details. First, IV is usually implemented 403 

with two-stage least squares, where equations 10 and 11 are jointly estimated. This is to account 404 

for sampling variability in the predicted endogenous variable. Second, as a diagnostic of whether 405 

the instrumental variable is strongly correlated with the endogenous variable, one often examines 406 

variants of the F-statistic from the first-stage regression in equation 10. Such tests reveal whether 407 

there is a  “weak instrument” problem, the presence of which introduces a bias in the IV estimate 408 

that can be as large as the endogeneity bias in the initial linear regression model (Bound et al. 409 

1995). For a more in-depth discussion of IV in an ecological context, we direct the reader to 410 

Kendall (2015). For an ecological application which uses the IV approach to the effect of forest 411 

fragmentation on Lyme disease incidence, we direct the reader to MacDonald et al. (2018).  412 

 4. Regression Discontinuity: In some settings, the assignment of treatment may depend on an 413 

arbitrary rule arising from policy or institutional features. Modifying our earlier land-use 414 

example, let’s say forest stands were eligible for thinning if they were within 15 km of at least 415 

one developed area and were at least 3 ha in size. As is often the case with such cutoff rules, both 416 

the 15 km distance and 3 ha size criteria may have been arbitrarily specified by some policy. 417 

However, it may not be desirable to implement a difference-in-difference method if finding 418 

control units that satisfy these criteria requires a researcher to expand the data setting into places 419 

that are unlikely to be similar. For example, a forest stand in Minnesota is unlikely to be a valid 420 

control for a forest parcel in California even if both have the same distance to a developed area 421 

and size. Similarly, using instrumental variables may not be feasible in some cases due to a lack 422 

of a satisfactory instrument. 423 



 

In such settings, a researcher may exploit the arbitrary nature of the cutoff rule. Here, one 424 

can try to compare stands above 3 ha in size that are just less than 15 km from a developed area 425 

(treatment) with similarly sized stands that are just more than 15 km from a developed area 426 

(control). Alternatively, for all parcels that are less than 15 km from a developed area, one can 427 

compare stands that are just above 3 ha in size (treatment) with those that are just below 3 ha 428 

(control). Such comparisons implement the regression discontinuity (RD) design. Specifically, 429 

the RD method exploits a discontinuity in treatment assignment around some threshold value of 430 

a “forcing” variable, which in our example would be either distance to a developed area or parcel 431 

size.  432 

The key statistical assumption for the RD method to be valid is that only the probability 433 

of receiving the treatment jumps discontinuously as the forcing variable crosses the threshold. 434 

All other factors that determine the outcome must be continuous around the threshold. That is, 435 

going back to our example, only thinning eligibility changes at the 15 km distance threshold so 436 

that any outcome differences across the threshold can be attributed solely to thinning eligibility. 437 

Under these conditions, the RD method estimates the local average treatment effect only for the 438 

subpopulation close to the threshold. In practice, this means that the RD method is very data 439 

demanding, and requires a sufficient density of observations within narrow bandwidths around 440 

the threshold of the forcing variable. Interested readers can learn more about this issue and many 441 

other RD implementation considerations in Lee and Lemieux (2010). 442 

5. Propensity score. Finally, in some settings, it may be argued that a researcher can observe all 443 

known determinants of an outcome that is correlated with the treatment of interest. In that case, 444 

known as “selection on observables”, simply controlling for those covariates in a standard 445 

regression setting would enable a causal interpretation. However, for many ecosystems, the list 446 



 

of covariates may number in the hundreds, with possible combinations of covariates observed for 447 

a treated unit not appearing for a control unit.  448 

Propensity scores avoid this high-dimensionality problem by matching or weighting the 449 

probability that a site receives treatment based on a function of observable characteristics. The 450 

propensity score is the probability a site receives treatment given its baseline characteristics, 451 

f(j6) = &X(86 = 	1|	j6) where 0 < f(j6) < 1. It follows from the treatment ignorability 452 

assumption that 86 ⊥ (4:6, 456)|f(j6) (Rosenbaum & Rubin 1983). Thus, conditional on the 453 

propensity score, treatment is independent of potential outcomes. Rosenbaum & Rubin (1983) 454 

also show that treatment and control observations with the same value of the propensity score 455 

balance in the distribution of baseline characteristics.  456 

Propensity scores are estimated using a regression model for binary outcome variables 457 

(e.g. logit or probit) where probability of treatment is estimated as a function of baseline 458 

characteristics with highly flexible functional form. The specification should balance the 459 

distribution of baseline characteristics across the distribution of propensity scores.  460 

 There are several ways propensity scores can be used including matching on propensity 461 

scores, inverse probability weighting the estimator, using propensity scores in a weighted 462 

regression, and using propensity scores as a covariate adjustment in linear regressions. A 463 

thorough discussion of different methods can be found elsewhere (Austin 2011). We simulate 464 

propensity score matching and propensity scores as a covariate adjustment in a linear regression 465 

(SI), and point the reader to Pearson et al. (2016) for an ecological application focused on 466 

agricultural land cover and aquatic ecosystem impacts.   467 

Discussion 468 



 

A multitude of environmental and ecological challenges facing natural systems in the 469 

coming decades can be informed by observational data. Leveraging the data-rich landscape of 470 

the twenty-first century for impact studies necessitates incorporating statistical tools specifically 471 

developed for disentangling causal relationships in the absence of randomized experiments. Here 472 

we discussed how observational data differ from experimental data, why this difference is of 473 

crucial statistical importance, and introduced some assumptions and approaches that can be used 474 

to recover a causal interpretation of treatment effects in the absence of randomly assigned 475 

treatment. 476 

  In particular, we emphasized the fundamental importance of zero correlation between the 477 

covariate of interest and a model’s error term. The presence of such a correlation leads to what is 478 

known as endogeneity bias and thus, incorrect coefficient estimates. Though we avoided 479 

discussing specific estimation methods, all common regression methods (ordinary least squares, 480 

maximum likelihood, generalized least squares, etc.) will generally produce biased estimates of 481 

the causal effect in the presence of endogeneity bias.  482 

The symptoms of endogeneity bias can present as spatial or temporal autocorrelation in 483 

the residuals. However, if autocorrelation is due to omitted variables that are spatially or 484 

temporally correlated (e.g. climate, soil quality) and correlated with the treatment variable, 485 

methods that only adjust for autocorrelation of the errors will fail to produce unbiased slope 486 

estimates for the treatment of interest. Similarly adding random effects of site or year may not 487 

reduce bias. If site characteristics are correlated with the covariate of interest, random effects 488 

estimators will remain biased. Rather, recognizing and applying methods to overcome the 489 

underlying source of endogeneity bias are fundamental to reliable point estimates.   490 



 

This paper’s main contribution is to provide basic intuition for developing causal 491 

inference using observational data for different types of control-impact analyses. We necessarily 492 

could not provide a full treatment of such approaches, nor comprehensive treatment of causality 493 

in all observational settings. For instance, our maintained assumption throughout this manuscript 494 

that a random sample could be drawn from the population (at least in the cross-section 495 

dimension; Wooldridge 2002), extends to more complicated sampling designs such as stratified 496 

or clustered sampling (Wooldridge 2002). Further, we ignored concerns regarding the efficiency 497 

of estimators. Lastly, our focus on control-impact analyses does not include all notions of 498 

causality relevant to ecologists. In particular, while many of the methods discussed can be 499 

extended to nonlinear models where the marginal effect of the treatment variable is not constant 500 

over its entire range (e.g. logistic regressions), we excluded discussion of dynamic notions of 501 

causality involving coupled variables (e.g. Granger 1969; Sugihara et al. 2012). For coupled 502 

systems such as coupled predator-prey cycles, the methods discussed here would misspecify the 503 

nature of relationship as such systems cycle among positive, negative and neutral correlation 504 

between predator and prey. As observational data expand to provide sufficiently expansive 505 

species-specific time series observations, dynamic forms of causality will become increasingly 506 

relevant.  507 

Nevertheless, many global environmental challenges of today and tomorrow will take the 508 

form of control-impact studies, where treatment evaluation is of primary interest. It is for those 509 

questions that a focus on unbiased statistical estimates of the treatment effect will be invaluable 510 

for addressing important ecological questions. Though we relied on hypothetical examples to 511 

streamline discussion, these methods discussed herein are not entirely new to ecologists. We 512 

point the reader to Gross & Rosenheim (2011), Bonds et al. (2012), Larsen (2013), Larsen and 513 



 

Noack (2017), and MacDonald et al. (2018) for empirical ecological studies using these 514 

methods, to Kendall (2015) and Butsic et al. (2017) for additional methodological discussion 515 

aimed at the ecology audience, and to Wooldridge (2002) or Angrist & Pischke (2009) for 516 

advanced and introductory texts, respectively, on econometric methods. Ecologists have a strong 517 

tradition of causal inference in experimental research. Here we encourage a similarly strong 518 

interest in causality in observational control-impact studies such that we can better leverage 519 

novel data sources to inform ecological understanding and environmental policy.  520 
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Table 1. Data requirements and key assumptions of different methodology discussed.  607 
Method Addresses Situation Data requirements Key Assumptions 

Difference-
in-difference 

Selection bias 
stemming from 
which group gets 
treatment. 

Time trends and 
group specific 
averages differ 
between treatment 
and control groups.  

At least two periods of 
data, before and after, 
observed for both a 
treatment and control 
group.  

Parallel time trends 
between the 
treatment and 
control group prior 
to treatment. 

Within-
estimator  

Selection bias 
stemming from 
unobserved or not 
included variables 
that are correlated 
with the covariate 
of interest and the 
outcome.  

Time shocks shared 
by all observations 
(time dummies), time-
invariant 
characteristics unique 
to individual 
observations or 
groups (individual, 
group dummies) 

Panel data where 
covariates of interest 
and outcome variable 
vary over time and/or 
within individuals (i.e. 
within the dummy 
variable group(s)). 

Strict exogeneity.  

Instrumental 
Variables 

Reverse causality. 
Can also be used 
to address other 
endogeneity bias. 

There exists a 
feedback between the 
magnitude of outcome 
variable and the 
treatment variable  

Requires an 
“instrumental” variable 
that is correlated with 
the endogeneously 
determined treatment 
variable, but otherwise 
does not drive the 
outcome.    

Instrument is 
“relevant” (i.e. 
correlated with 
endogeneous 
variable) and 
uncorrelated with 
the errors. 

Propensity 
Scores 

Selection bias, if 
selection is 
determined by 
observable 
characteristics. 

Reduces the high 
dimensionality 
problem associated 
with including all 
variables that could 
determine treatment 
vs control status. 

Data on variables that 
determine selection 
into treatment and 
control groups. 

Treatment 
ignorability 
assumption.  
Common support 
between treatment 
and control groups. 
Additional 
assumptions 
depending on how 
p-scores are used. 

Regression  
Discontinuity 

Selection bias  Discrete treatment 
assignment as a 
function of some 
threshold in a 
“forcing” variable.   

Because treatment is 
assumed to be as 
good as random only 
near the threshold, 
there needs to be 
sufficient mass of data 
within narrow 
bandwidths of the 
forcing variable on 
either side of the 
threshold. 

Assignment of 
treatment is as good 
as random across 
the threshold of the 
forcing variable. 
Units are unable to 
sort across the 
threshold. 

	608 
	609 
	610 
	611 



 

Figure Legends 612 
 613 
Figure 1. Properties of Linear Estimators. The desirable properties of linear estimators are that 614 

the estimator is unbiased (A,1), consistent (B) and efficient (C). Unbiasedness is a finite sample 615 

property. An estimator is unbiased, if the average (or expected value) of the sampling 616 

distribution is equal to the true parameter value (B, gray line). If there is a correlation between 617 

the model errors and treatment variables, the estimator will generally be biased (A,2). 618 

Consistency, like unbiasedness, is related to identification of the true relationship (i.e. the 619 

frequency distribution of estimated coefficients is centered on the true value, b) . However, 620 

consistency is an asymptotic property. We focus on unbiasedness, which is most relevant to 621 

finite samples, however, instrumental variables, due to its two step process, is a consistent but 622 

biased estimator. Efficiency is related to the spread of the distribution of the estimator. An 623 

efficient estimator has the minimum variance of all estimators in its class of estimators (e.g. 624 

linear estimators).  625 

	626 
Figure 2.  Causal diagram or Directed Acyclic Graph. Nodes represent variables, arrows 627 

represent possible causal effects in the direction of the arrow (a drives b, a à b),  bi-directional 628 

arcs represent possible confounding relationships, and solid and dashed lines represent observed 629 

and unobserved variables, respectively. Importantly, causal assumptions are represented by the 630 

lack of connections, thus (A) assumes model 1 is correct, that there is no omitted variable 631 

confounding the estimate of the causal effect of thinning. If there was and it was unobserved (B), 632 

estimating model 1 would produce biased estimates of the effect of thinning on bird abundance 633 

due to the correlation between the errors (which include the unobserved confounding variable) 634 

and the treatment. If the researcher knew and could measure the confounding variable (C), the 635 



 

researcher could find unbiased estimate for the effect of thinning on bird abundance by modeling 636 

it explicitly; estimating model 2 rather than model 1. 	637 







Supplementary Information 
 

To illustrate how selection bias and reverse causality bias influence common estimators, 
we compare the OLS, within- and IV estimators under different scenarios. In each case, the true 
relationship is !"#$%&$'()* = 2 + 1 ∗ 01&23($4&456$)* + 1 ∗ %574&$'() + #)*. We simulate 
panel data with 100 units, each observed four times.  

First, we estimate the above model for OLS to illustrate that if there are no omitted 
variables and no feedbacks, the OLS will be unbiased. For the selection bias example, we 
imagine the researcher does not measure distance to nearest development, but that there is a 
correlation between distance and fragmentation. The OLS is a biased estimator in this case 
(Table S1). However, if we use the within estimator to remove time-invariant characteristics 
unique to a site through de-meaning, we see our coefficient estimates are close to the true slope. 
If we instrument for fragmentation, we see the coefficients are greatly improved relative to OLS, 
but are not as close to the true slope as for the within-estimator. This reflects the notion that IV is 
biased, but approaches the true slope as the sample size increases towards infinity.  

For simultaneous causality, we now imagine the researcher includes distance, but that 
there is a feedback between songbird abundance and fragmentation. Note, distance, being time 
invariant, is dropped during the estimation process for the within estimator. In the case of reverse 
causality, both the OLS and within estimator yield coefficients that are far from the true slope, 
while estimated coefficients using IV remain close. 
 

 
 
  Selection Bias Reverse Causality Bias 

 
Correctly 

specified OLS 
OLS Within 

estimator 
IV OLS Within 

estimator 
IV 

Fragmentation        

100 iterations 1.003 1.459 1.010 1.052 1.370 1.356 1.010 
 (0.050) (0.110) (0.063) (0.107) (0.107) (0.138) (0.114) 
500 iterations 1.001 1.455 1.000 1.049 1.375 1.367 1.001 
 (0.049) (0.110) (0.063) (0.107) (0.107) (0.136) (0.112) 
1000 iterations 1.001 1.459 1.000 1.052 1.383 1.354 1.000 
 (0.050) (0.110) (0.064) (0.106) (0.106) (0.138) (0.113) 

  True slope = 1.0    
        
Site dummy 
variable 

N N Y N N Y N 

Time periods (t) 4 4 4 4 4 4 4 
Observations (t*n) 400 400 400 400 400 400 400 
        

Table S1. Outcome from simulated code where the true slope is 1.0. With omitted variable bias 
stemming from time-invariant site-specific characteristics (e.g. distance, patch size), either the 
within-estimator or IV estimator can substantially reduce bias relative to OLS. However, if there 
is a feedback between the outcome and covariates, the within estimator will generally fail to 
reduce bias. Rather instrumental variables can be used in cases of reverse causality. See 
SimulatedBias.do for the simulation code for this table and RSimulationCode.R or 
StataSimulationCode.do for basic example code for the methods described in the text.  




