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Modeling Scientific Problem Solving by DOP

Rens Bod (rens@science.uva.nl)
Institute for Logic, Language and Computation

University of Amsterdam, and
School of Computing, University of Leeds

Plantage Muidergracht 24, 1018 TV Amsterdam, NL

Abstract

This paper deals with the problem of derivational
redundancy in science, i.e. the problem that there can be
extremely many different explanatory derivations for a
phenomenon, while students and experts tend to come up
with only one derivation. Given the remarkable agreement
among humans in deriving phenomena, we need to have a
story of how to select from the space of possible
derivations of a phenomenon the derivation that humans
come up with. In this paper we argue that the problem of
derivational redundancy can be solved by a notion of
"shortest derivation", by which we mean the derivation
that can be constructed by the fewest (and therefore
largest) partial derivations of previously derived
phenomena that function as "exemplars". We show how a
model of exemplar-based reasoning, known as DOP, can
be used to select the shortest derivation. We evaluate
DOP on a corpus of phenomena from classical and fluid
mechanics that were derived by fourth-year physics
students, showing that the shortest derivation closely
corresponds to the derivations that humans construct.

Keywords: Problem Solving; Exemplar-Based Reasoning;
Derivational Redundancy; Case-Based Reasoning; Data-
Oriented Parsing; Philosophy of Science; Physics.

1  Introduction
This paper deals with the problem of derivational
redundancy, i.e. the problem that there can be extremely
many different explanatory derivations for a phenomenon
while students and experts tend to come up with only one
and the same derivation for a phenomenon. Given this
remarkable agreement among students, we need to have a
story of why humans focus on one derivation and not on
others. In this paper we shall argue that the problem of
derivational redundancy can be solved by a notion of
"shortest derivation". By the shortest derivation of a
phenomenon we mean the derivation that can be
constructed by the fewest (and therefore largest) partial
derivations of previously derived phenomena that function
as "exemplars".
   The idea that natural phenomena can be explained by
modeling them on exemplars is usually attributed to
Thomas Kuhn in his account on “normal science” (Kuhn
1970). Kuhn urges that exemplars are "concrete problem
solutions that students encounter from the start of their
scientific education" (ibid. p. 187) and that "scientists
solve puzzles by modeling them on previous puzzle-
solutions" (ibid. p. 189). Instead of explaining a
phenomenon from scratch, Kuhn contends that scientists
try to match the new phenomenon to one or more previous
phenomena-plus-explanations.
   In similar vein, Philip Kitcher argues that new
phenomena are derived by using the same patterns of
derivations ("argument patterns") as used in previously
explained phenomena: "Science advances our
understanding of nature by showing us how to derive

descriptions of many phenomena, using the same patterns
of derivation again and again" (Kitcher 1989, p. 432).
Different from Kuhn, Kitcher proposes a rather concrete
account of explanation, known as the "unificationist
view", which he still links to Kuhn's view by interpreting
exemplars as derivations (ibid. pp. 437-8). Yet, we will
argue in section 3 that Kitcher’s account does not solve
the problem of derivational redundancy.
   Thomas Nickles relates Kuhn's view to Case-Based
Reasoning (Nickles 2003, p. 161). Case-Based Reasoning
(CBR) is an artificial intelligence technique that stands
in contrast to rule-based problem solving. Instead of
solving each new problem from scratch, CBR stores
previous problem-solutions in memory as cases. When
CBR begins to solve a new problem, it retrieves from
memory a case whose problem is similar to the problem
being solved. It then adapts the example's solution and
thereby solves the problem. CBR has been instantiated in
many different ways and has been used in various
applications such as reasoning, learning, perception and
understanding (cf. Carbonell 1986; Falkenhainer et al.
1989; Kolodner 1993; Veloso and Carbonell 1993;
VanLehn 1998). However, none of these instantiations
specifically addresses the problem of massive
derivational redundancy.
   An instantiation of CBR that does address the problem
of derivational redundancy, albeit in a different domain,
is Data-Oriented Parsing (DOP). DOP is a natural
language processing technique that provides an
alternative to rule-based language processing. It analyzes
new sentences by modeling them on analysis-trees of
previous sentences (Bod 1998; Scha et al. 1999; Collins
and Duffy 2002). DOP operates by decomposing the given
trees into “subtrees” and recomposing those pieces to
build new trees. When a sentence has more than one
possible analysis or interpretation -- which is the typical
case in natural language -- DOP selects the analysis-tree
that is constructed by the “shortest derivation”, which is
the tree consisting of the fewest (and therefore largest)
subtrees from previous trees (Bod 2000). DOP has been
highly successful in solving syntactic and semantic
redundancy (“ambiguity”) in natural language
understanding (see Manning and Schütze 1999; Bod et al.
2003). In Scha et al. (1999) it is shown how DOP can be
defined as an instantiation of CBR.
   In the current paper we argue that DOP can also be
used for solving derivational redundancy in physics. The
DOP approach may be particularly suitable to tackle the
redundancy problem because of the analogy between
explanatory derivations in physics and tree structures in
linguistics and logic. If we can convert explanatory
derivations into trees, we can directly apply the DOP
approach to the redundancy problem. That is, when a
phenomenon has more than one derivation tree, DOP
proposes to select the tree that can be constructed by the
fewest subtrees from trees of previously derived
phenomena.
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   In order to do so, we will first show in section 2 how
derivations in physics can be interpreted as trees, and
how explanations of new phenomena can be constructed
by combining subtrees from previously explained
phenomena. In section 3 we give an in-depth exploration
of the problem of derivational redundancy and argue that
DOP’s notion of shortest derivation can solve this
problem. The resulting DOP model, which we may term
“data-oriented physics”, is evaluated in section 4 on a
corpus of phenomena from classical and fluid mechanics
that were derived by fourth-year physics students. It turns
out that there is a very close correspondence between the
derivations constructed by humans and DOP’s notion of
shortest derivation.

2  Extending DOP to Scientific Explanation
What do derivational explanations in physics look like?
Let’s start with a simple textbook example. Consider the
following derivation of the Earth's mass from the Moon's
orbit in the textbook by Alonso and Finn (1996, p. 247):

Suppose that a satellite of mass m describes, with
a period P, a circular orbit of radius r  around a
planet of mass M. The force of attraction between
the planet and the satellite is F = GMm/r2. This
force must be equal to m times the centripetal
acceleration v2/r = 4π2r/P2 of the satellite. Thus,

4π2mr/P2 = GMm/r2

Canceling the common factor m and solving for M
gives

M = 4π2r3/GP2.

By substituting the data for the Moon, r = 3.84  108 m and
P = 2.36  106 s, Alonso and Finn compute the mass of the
Earth: M = 5.98  1024 kg. In doing so, Alonso and Finn
abstract from many features of the actual Earth-Moon
system, such as the gravitational forces of the Sun and
other planets, the magnetic fields, the solar wind, etc.
Albeit heavily idealized, the derivation provides a
concrete problem solution on which various other
(idealized) phenomena can be modeled. In fact, Alonso
and Finn reuse parts of this derivation to solve problems
such as the velocity of a satellite and the escape velocity
from the Earth.
   In order to create a DOP model for derivational
explanation, we first need to represent derivations of the
type above by tree structures. Analogous to proof trees in
formal logic, a tree structure of a natural phenomenon
indicates how a mathematical description of the
phenomenon is compositionally derived from laws,
antecedent conditions and other knowledge. Figure 1
shows how the derivation for the Earth's mass above may
be turned into a tree. This tree represents the various
derivation steps (insofar as they are mentioned in the
example above) from general laws to an equation of the
mass M. We will refer to such a tree as a derivation tree.
A derivation tree is a labeled tree in which each node is
annotated with a formula; the boxes are only meant as
convenient representations of these labels. The formulas
at the top of each "vee" (i.e. each pair of binary branches)
in the tree can be viewed as premises, and the formula at
the bottom of each "vee" can be viewed as a conclusion
which is arrived at by simple term substitution. The last
derivation step in the tree is not formed by a "vee" but

consists in a unary branch which solves the directly
preceding formula for a certain variable (in the tree
above, for the mass M). Thus, in general, a unary branch
refers to a mathematical derivation step that solves an
equation for a variable, while a binary branch refers to a
physical derivation step which introduces and combines
physical laws or conditions (or other knowledge such as
phenomenological corrections and coefficients).

F = ma

F = GMm/r2

a = v2/r

F = mv2/r  v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2

M = 4π2r3/GP2

Figure 1: Derivation tree for the Earth's mass

Note that a derivation tree corresponds to the notion of
deductive-nomological (D-N) explanation of Hempel and
Oppenheim (1948). In the D-N account, a phenomenon is
explained by deducing it from general laws and
antecedent conditions. D-N explanations usually focus on
the initial premises (laws and conditions) and the final
conclusion (the phenomenon). But they can just as well
represent the intermediate steps as derivation trees do.
For every derivation tree there is a corresponding D-N
explanation and vice versa. Although the D-N account is
known to suffer from various shortcomings and is
nowadays superseded by other approaches (cf. Friedman
1974; Kitcher 1989), most derivations in textbooks
basically follow this scheme. In this paper, we will focus
on fully fleshed-out derivations that describe the various
steps from premises to conclusion, because that’s the kind
of derivations humans construct (see section 4). Our main
reason for representing derivations by trees is of course
that we can then apply the DOP approach to the problem
of derivational redundancy, as we shall see in the next
section.
   But before we can do this, we will need to demonstrate
how DOP builds new explanations out of previous ones
(since our solution to the redundancy problem is defined
in terms of subtrees of previous trees). Consider the
following subtree in figure 2 which is obtained from the
derivation tree in figure 1 by leaving out the last
derivation step (i.e. the solution for the mass M).

F = ma

F = GMm/r2

a = v2/r

F = mv2/r  v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2
 

Figure 2: A subtree from the tree in figure 1
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This subtree can be applied to various other situations.
For instance, in deriving the regularity known as Kepler's
third law (which states that r 3/P2 is constant for all
planets orbiting around the Sun, or satellites around the
Earth if you wish) the subtree in figure 2 needs only to be
extended with a mathematical derivation step that solves
the last equation for r3/P2, as represented in figure 3.

F = ma

F = GMm/r2

a = v2/r

F = mv2/r  v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2

r3/P2 = GM/4π2

Figure 3: Derivation tree for Kepler's third law

In a similar way we can also derive the distance of a
geostationary satellite, namely by solving the subtree in
figure 2 for r  and taking P as the rotation period of the
Earth.
   It is of course not typically the case that derivations
involve only one subtree. In deriving the velocity of a
satellite at a certain distance from a planet, we cannot
directly use the large subtree in figure 2. Instead,
analogous to DOP models for natural language, we
decompose the tree in figure 1 into two smaller subtrees
and recompose them by term substitution (represented by
the operation "°") and finally solve for the velocity v in
figure 4.

F = ma a = v2/r

F = mv2/r  

F = GMm/r2 F = ma a = v2/r

F = mv2/r  F = GMm/r2

o =

mv2/r = GMm/r2

<=>

F = ma a = v2/r

F = mv2/r   F = GMm/r2

mv2/r = GMm/r2

v = √(GM/r)

Figure 4: Deriving a phenomenon by combining subtrees

Figure 4 shows that we can create new derivation trees by
combining subtrees from previous derivation trees. Note
that subtrees can be of arbitrary size: from single
equations to combinations of laws, up to entire
derivations.
   The notion of term substitution, though widely used in
rewriting systems, may need some further specification.
The term-substitution operation "°" is a partial function on
pairs of labeled trees; its range is the set of labeled trees.

The combination of tree t and tree u, written as t ° u, is
defined iff the equation at the root node of u can be
substituted in the equation at the root node of t (i.e. iff the
lefthandside of the equation at the root node of u literally
appears in the equation at the root node of t). If t ° u is
defined, it yields a tree that expands the root nodes of
copies of t  and u  to a new root node where the
righthandside of the equation at the root node of u is
substituted in the equation at the root node of t. Note that
the substitution operation can be iteratively applied to a
sequence of trees, with the convention that ° is left-
associative.
   We now have the basic ingredients for a DOP model of
derivational explanation, which we may term “data-
oriented physics”. This DOP model employs (1) a corpus
of derivation trees representing exemplars and (2) a
matching procedure that combines subtrees from the
corpus into new derivation trees. This brings us to the
following definition for an explanation of a phenomenon
with respect to a corpus.

Definition 1 Given a corpus C of derivation trees T1,
T2,..,Tn representing exemplars and a term substitution
operation °, an explanation of a phenomenon P with
respect to C is a derivation tree T such that (1) there are
subtrees t1, t2,..,tk in T1, T2,..,Tn for which t1 ° t2 °  ... ° tk
= T, (2) the root node of T is mathematically equivalent
to P and (3) the leaf nodes of T are either laws or
antecedent conditions or equations that cannot be derived
from higher-level equations.

In our examples above, the mathematical derivation steps
all occur at the end of a derivation (figures 1, 3 and 4).
But they may of course just as well occur in the course of
a derivation between two subtrees. We will come back to
this in section 4, where we discuss an evaluation of our
DOP model.

3  The Redundancy Problem
Now that we have extended the DOP model to
derivational explanation, we can go into the main
problem of this paper, and show how DOP may solve it.
This is the problem that there can be many, often
extremely many, different derivations for the same
phenomenon, even if they are subsumed under the same
general laws and even if they do not contain spurious
laws that are non-explanatory or irrelevant. In the worst
case, the number of derivation trees grows exponentially
with the number of terms in the description of the
phenomenon. In other words, derivational explanation is
massively redundant.
   In order to show this, we will first enlarge our tiny
corpus used in section 2 (which consisted only of the
derivation in figure 1) with another derivation from
Alonso and Finn's textbook. This derivation again
provides an exemplary problem solution for the Earth's
mass but this time by computing it from the acceleration
of an object at the Earth's surface (Alonso and Finn 1996,
p. 246). This second exemplar can be represented by the
derivation tree in figure 6.
   By substituting the values for g (the acceleration at the
Earth's surface), R (the Earth's radius) and G ( t he
gravitational constant) in figure 6, Alonso and Finn obtain
roughly the same value for the Earth's mass as in the
previous derivation in figure 1. They argue that this
agreement is "a proof of the consistency of the theory"
(ibid. p. 247). (Note that the derivation is again idealized:

294



no centrifugal force is taken into account, let alone
influences from the Sun or other planets.) Thus the simple
problem of the Earth's mass is derivationally redundant in
that it can be solved in at least two different ways. And
both derivations are used in Alonso and Finn's textbook as
exemplars for deriving other phenomena.

F = ma F = GMm/r2

ma = GMm/r2

M = ar2/G
a = g

r = R

M = gR2/G

Figure 6: A additional exemplar in the corpus

When we add the tree in figure 6 to our corpus, we can
model Kepler's regularity also on this exemplar, resulting
in an alternative derivation tree which is constructed by
using a large subtree from figure 6 in combination with
two small subtrees from the exemplar in figure 1, the
result of which is shown in figure 7. (And it easy to see
that there are many more trees: by combining subtrees
from the exemplars in figures 1 and 6 in different ways,
we get an explosion of different derivation trees for
Kepler's regularity.)

M = 4π2r3/GP2

F = ma F = GMm/r2

ma = GMm/r2

M = ar2/G a = v2/r

M = v  r/G2 v = 2πr/P

r 3/P2 = GM/4π2

Figure 7: An alternative tree for Kepler's regularity

There is nothing wrong with this alternative derivation
tree: there are no spurious non-explanatory laws that are
irrelevant (as would be e.g. Hooke's or Boyle's law). The
main difference is that the derivation in figure 7 is
modeled on a different exemplar than the derivation in
figure 3. In fact, the alternative derivation in figure 7 is
even insightful as it refers to the conceptual equivalence
between terrestrial and celestial mechanics in Newtonian
dynamics. The fact that Kepler's regularity can be derived
from figure 6 suggests that if we bring a satellite down to
the Earth's surface it still follows the same regularity.
   Yet, it turns out that no physics student comes up with
the derivation tree in figure 7. Why? Apart from the fact
that the derivation tree in figure 3 is smaller, the tree in
figure 3 is more "derivationally similar" to an exemplar in
the corpus. That is, the tree in figure 3 can be constructed
by just one large subtree from the corpus – i.e. from the
exemplar in figure 1 – whereas the tree in figure 7 needs
at least 3 subtrees to be constructed from the corpus – one

from the exemplar in figure 6 and two from figure 1. Of
course, for another phenomenon it may be the exemplar
in figure 6 rather than in figure 1 which can derive the
phenomenon in one go. For example, to derive a formula
for the gravitational acceleration at the Earth’s surface we
can use one large subtree from figure 6 and not from
figure 1. Thus different problems may be modeled on
different exemplars.
   Thus in solving the problem of derivational redundancy,
it seems that we need to determine on which exemplar a
phenomenon can best be modeled. Note that Kitcher’s
account of explanation does not help us here. According
to Kitcher (1989, p. 432), “Science advances our
understanding of nature by showing us how to derive
descriptions of many phenomena, using the same patterns
of derivation again and again”. But his “unificationist”
account does not tell us whether humans model a
phenomenon like the gravitational acceleration at a
planet’s surface on the exemplar in figure 1 or on the
exemplar in figure 6. This is what should perhaps be
called “Kuhn’s problem”, i.e. the problem of how we
know on which exemplar a phenomenon can be modeled.
DOP’s answer is: the exemplar from which the largest
possible subtree can be reused. This finally brings us to
our notion of “shortest derivation” and to a solution of the
problem of derivational redundancy.
   Let’s get more concrete. We have seen that there can
be different derivation trees for a phenomenon. A
distinctive feature between different derivation trees is
that some trees are more similar to exemplars than others.
The larger the partial match between a derivation tree
and an exemplar, in terms of their largest common
subtree, the more "derivationally similar" they are. Since
students learn physics not just by memorizing laws, but
also by studying exemplary problem solutions, they try to
derive a phenomenon by maximizing derivational
similarity with previously derived phenomena, or
equivalently, by minimizing derivation length where the
length of a derivation is defined as the number of corpus-
subtrees it consists of. We will refer to the derivation of
minimal length as the "shortest derivation". Since
subtrees in DOP can be of arbitrary size, the shortest
derivation corresponds to the derivation tree which
consists of largest partial match(es) with previous
derivation trees in the corpus. This brings us to the
following definition of the "best derivation tree" for a
phenomenon derived by DOP:

Definition 2 Let L(d) be the length of derivation d in
terms of its number of subtrees, that is, if d = t1°...°tk then
L(d) = k. Let dT be a derivation which results in tree T.
Then the best tree, Tbest, derived by DOP is the tree
which is produced by a derivation of minimal length:

Tbest  =  argmin L(dT)
         T

It is important to understand the difference between a tree
produced by the smallest number of subtrees and an
absolute smallest tree. While the tree in figure 3 is
produced by the shortest possible combination of corpus-
subtrees, it does not correspond to the smallest possible
tree, i.e. the tree with the smallest possible number of
nodes (or labels). There exists a smaller tree that simply
applies all laws at once to arrive at the formula for
Kepler's regularity. However, it turns out that no student
constructs such minimal derivations, and we therefore
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believe that our notion of shortest derivation consisting of
the smallest number of (corpus-)subtrees is more
appropriate than a notion of shortest derivation defined as
the smallest number of nodes. Only in case our notion of
shortest derivation does not lead to a unique result, i.e. if
a phenomenon can be derived by the same smallest
number of subtrees, it seems reasonable to choose the
tree with the fewest nodes from among the shortest
derivations, reflecting a preference for economy if DOP
does not break ties.

4  Evaluating DOP
How can we evaluate our DOP model? Since we propose
DOP to be a cognitive model of human problem solving,
it seems appropriate to evaluate the model against
derivations constructed by humans. To this end, we
developed a test corpus of manually solved problems by
fourth-year physics students and a training corpus of
exemplary problem solutions taken from textbooks. Next,
we developed an implementation of DOP which
computed Tbest for each test problem by means of the
subtrees from the training corpus. The performance of
DOP on the test problems was compared with the
derivations provided by the students.

Method and procedure
We paid 19 third-year physics students to solve 6
elementary problems from classical mechanics and 5
elementary problems from fluid mechanics. The students
had previously followed courses in classical mechanics
and fluid mechanics. The 11 problems given to them
consisted in deriving a phenomenon from laws, initial
conditions and, in the case of fluid mechanics, empirical
coefficients. The students were given no other instructions
than that they should solve the problems by paper and
pencil in class. The first two and the last two of the
problems are given below.

Problem nr. 1
Show that the period of the Earth's rotation for
which an object at the equator would become
weightless is given by P = 2π√(R/g) where R is the
Earth's radius and g  is the gravitational
acceleration at the Earth's surface.

Problem nr. 2
Show that the theoretical velocity which an object
attains in free fall from height h is given by v =
√(2gh) where g is the gravitational acceleration at
the Earth's surface.

Problem nr. 10
When water flows through a right-angled V-notch,
show that the discharge is given by Q = KH5/2 in
which K  is a constant and H  is the height of the
surface of the water above the bottom of the notch.

Problem nr. 11
Show that the theoretical rate of flow through a
rectangular notch is given by Q = (2/3)B√(2g)H3/2

where B is the width of the notch and H  is the
height of the water level above the bottom of the
notch.

After the students had solved the problems on paper, they
were given a short, fifteen-minutes tutorial on the concept

of derivation tree, especially on the difference between
binary branches in a tree (used for combining laws,
conditions etc.), and unary branches (used for
mathematical derivation steps). The students were told
that the exact order of combining laws in a tree was not
important as long as these laws could be properly
combined by term substitution to solve the problem. What
was important was to represent in the tree the derivation
steps they had used to get from laws to the phenomenon,
so we told them. Thus we did not distinguish between
trees whose only difference was the order of the applied
laws, as we found out in a pilot experiment that this was
neither done by the students. We will see below that even
with this abstraction there were still many different
derivations. After this brief tutorial, the students were
asked to draw derivation trees for their problem solutions.
   There was a high agreement among the derivation trees
constructed by the students: on average 91.4% (SD=1.2)
of the derivation trees per problem matched (modulo law
order). Only the most frequent derivation tree for each
problem was put in the test corpus. It is important to
mention that the students had no difficulties with drawing
trees for their problem solutions, and there were no
questions during this task. This suggests that derivation
trees are suitable structures for representing problem
solutions by humans.
   Next, the students were asked to draw derivation trees
for 9 exemplary problem solutions that are used as
exemplars in the textbooks by Alonso and Finn (1996,
chapter 11) and Douglas and Matthews (1996, chapter 7).
The three example problems in figures 1, 5 and 6 were
among these exemplars. It should be said, however, that
none of the students derived F=mv2/r  from F=ma and
a=v2/r , as we did in figure 1. Instead, all students used
the equation for centripetal force F=mv2/r  directly as a
law. The agreement among the derivation trees for the
exemplary solutions was very high: 97.7% (SD=0.3). The
most frequent tree for each exemplary solution was put in
the training corpus.
   All test problems could be solved out of subtrees from
the training corpus, but this fact was not told to the
students: they first had to solve the test problems after
which they were asked to draw trees for the exemplary
problem solutions from the textbooks. Each student
accomplished the task in less than 2.5 hours (including
the tutorial).
   The goal for DOP was to construct Tbest for each of the
11 problems from the test corpus by means of the subtrees
from the training corpus of 9 exemplars. To accomplish
this, we implemented DOP by using TK Solver as a
backbone (release 5.0, Universal Technical Systems Inc.).
TK solves an equation given a list of other equations --
provided that there is a solution. To make TK suitable for
DOP, we programmed a shell around TK (written in C)
which first converted each derivation tree from the
training corpus into all its subtrees and next extracted the
equations from the subtree-roots. Each equation was
indexed to remember the subtree it was extracted from.
This resulted in a list L of 148 equations. For each test
problem, TK derived a set of solutions given the list L. All
problems received more than 60 different solutions, even
after abstracting from the order of the equations used in
the solution, which gives an idea of the derivational
redundancy if we do not have any mechanism to break
ties.
   From TK's output, our program selected the shortest
solution for each problem that used the fewest equations.
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The equations of the shortest solution were converted
back to their corresponding subtrees, which were
combined into the derivation tree Tbest. Note that in this
way Tbest consisted of the largest partial matches with
trees in the training corpus. In case Tbest was not unique
the program chose the tree with fewest nodes among the
best trees. A major advantage of TK is that it hides the
algebra, which is good as this was also asked from the
students and which corresponds to our use of unary
branches in trees.

Results
The best trees computed by DOP were compared with the
derivation trees constructed by the students in the test
corpus. Abstracting from the order of the laws in the trees,
the accuracy of DOP was 91%. That is, for 10 out of 11
phenomena, the derivation trees predicted by DOP
matched (modulo law order) the derivation trees assigned
by (the vast majority of) the students.
   To put our 91% accuracy into perspective, we also
computed the accuracy by choosing a random derivation
tree, Trandom, from among all  possible trees that were
constructed by DOP (i.e. trees that did not necessarily
correspond to the shortest derivation but that could be
constructed from TK's output). In this case, the accuracy
was only 9% (again, modulo law order). Although our test
set consists of only 11 trees, the difference between 91%
accuracy obtained by Tbest and the 9% accuracy obtained
by Trandom -- which is however still a "correct" derivation
-- suggests that Tbest mimics human problem solving
more closely than Trandom. We also computed the
accuracy by choosing the abso lu te smallest tree
containing fewest nodes among all proposed trees in TK's
output. This resulted in 18% accuracy (2 out of 11).
  These results suggest that if we want to predict the
derivations that humans construct for phenomena, we
should not search for the smallest tree in terms of nodes,
let alone take a random tree, but search for the tree which
consists of the fewest subtrees from previous derivations,
as generated by our notion of shortest derivation. Further
research, with larger corpora and more complex problems,
will be needed to support these results.
   One may claim that our results are not very surprising
since they reconfirm Kuhn’s insight that scientists explain
phenomena by modeling them on previously explained
phenomena with only minimal recourse to additional
derivation steps (Kuhn 1970, p. 189). However, Kuhn does
not provide an exact procedure that tells us on which
exemplar a new phenomenon can be modeled. DOP does
provide such a procedure, albeit indirectly by solving the
problem of derivational redundancy. In doing so, DOP
also suggests a precise notion of similarity between a
phenomenon and a set of exemplars: the most similar
exemplar is the one from which the largest subtree can be
reused to derive the phenomenon. Moreover, even when
we know on which exemplar a phenomenon can be
modeled, there may still  be several different derivations
for the phenomenon, also if we abstract from the order of
law application. Thus we need an additional notion to
break ties, as given by DOP’s shortest derivation.

5  Conclusion
This paper proposed a solution to the problem of
derivational redundancy in physics. We showed that the
DOP model provides a way to reduce the combinatorial
explosion of different derivations of a phenomenon by

selecting the shortest derivation consisting of the fewest
partial derivations of previously derived phenomena. A
preliminary investigation with a corpus of phenomena
from classical and fluid mechanics showed that DOP
accurately predicts the derivations humans come up with.
To the best of our knowledge, this paper provides the first
concrete proposal to tackle the problem of massive
derivational redundancy in scientific explanation.
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