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Modeling Scientific Problem Solving by DOP

Rens Bod (rens@science.uva.nl)
Institute for Logic, Language and Computation
University of Amsterdam, and
School of Computing, University of Leeds
Plantage Muidergracht 24, 1018 TV Amsterdam, NL

Abstract descriptions of many phenomena, using the same pat
of derivation again and again" (Kitcher 1989, p. 43
Different from Kuhn, Kitcher proposes a rather concr
account of explanation, known as the "unificatior
view", which he still links to Kuhn's view by interpretir
exemplars as derivations (ibid. pp. 437-8). Yet, we )
argue in section 3 that Kitcher's account does not s

This paper deals with theroblem of derivational
redundancyin science, i.e. the problem that there can be
extremely many different explanatory derivations for a
phenomenon, while students and experts tend to come up
with only one derivation. Given the remarkable agreement

among humans in deriving phenomena, we need to have a the problem of derivational redundancy.

story of how to selectfrom the space of possible : ' ? )
derivations of a phenomenon the derivation that humans R;—;S%rrr:?]z ?Il\llci:;l?ess rzeolggesp ngjgsc\ggév.gtgsgja;%ssa(
come up with. In this paper we argue that the problem of  ~gpy"is“an artificial intelligence technique that star
derivational redundancy can be solved by a notion of = { "o hast 1o rule-based problem solving. Instead
o s o i SONING each’ new probiem from scratch, CER si
, = . . revious problem-solutions in memory as cases. W
largest) partial derivations ofpreviously derived pCBR begiels to solve a new problemy it retrieves fr
phedncimtfena thatlfunbcuondas "exe_mplalis“. WeDghF?w how a  emory a case whose problem is similar to the prok

model o1 exemplar-nased reasoning, Knoas , can f ' .
be used to select thehortest derivation. We evaluate being solved. It then adapts the example S, squtlpn
D . . thereby solves the problem. CBR has been instantiate
OPhon_acor:pus of pr(;en_omgng frc]gmssr:cal and Jlu'.d many different ways and has been used in vari

mechanics thatwere erive Yy ourt -year pnysics : . : : :
students,showing that the shortest derivation closely 3%2‘?2&?5@”0(& a%;st?sr?erllllnglbé%a}rr::lglgkeﬁﬁ;ﬁggpog[

corresponds to the derivations that humans construct. 1989- Kolodner 1993 Veloso and Carbonell 19

Keywords: Problem SolvingExemplar-Based Reasoning; VanLehn 1998). However, none of these instantiati

Derivational Redundancy; Case-Based ReasonDafa- specifically addresses the problem of mass
Oriented Parsing; Philosophy of Science; Physics. derivational redundancy.

) An instantiation of CBR that does address the prok

1 Introduction of derivational redundancy, albeit in a different dome

is Data-Oriented Parsing (DOP). DOP is a naft
nguage processing technique that provides
ternative to rule-based language processing. It anal
ew sentences by modeling them on analysis-tree
revious sentences (Bod 1998; Scha et al. 1999; Cc
d Duffy 2002). DOP operates by decomposing the g
rées into “subtrees” and recomposing those piece
uild new trees. When a sentence has more than
ossible analysis or interpretation -- which is the typi
ase in natural language -- DOP selects the analysis
hat is constructed by the “shortest derivation”, whict
e tree consisting of the fewest (and therefore larc
ubtrees from previous trees (Bod 2000). DOP has |
ighly successful in solving syntactic and semait
; : dundanc “ambiguity”) in natural langua¢

The idea that natural phenomena can be explained iy re e ((see Magnni%/g)and Schiitze 1999: Bod ¢
modeling them on exemplars is usually attributed t02003) In Scha et al. (1999) it is shown how DOP car
Thomas Kuhn in his account on “normal science” (Kuhn y ;

1970). Kuhn urges that exemplars are "concrete problerﬂenned as an instantiation of CBR.

/ . In the current paper we argue that DOP can als¢
solutions that students encounter from the start of thei N L : - :
scientific education” (ibid. p. 187) and that "scientistsﬁsed for solving derivational redundancy in physics.

: : DOP approach may be particularly suitable to tackle
solve puzzles by modeling them on previous puzzle-
solutio%s" (ibid.y . 189)9 Instead oFf) explain?ng aredundancy problem because of the analogy betv

phenomenon from scratch, Kuhn contends that scientisﬁ?xmanatory derivations in physics and tree structure

This paper deals with the problem of derivational
redundancy, i.e. the problem that there can be extreme |
many different explanatory derivations for a phenomeno
while students and experts tend to come up with only on
and the same derivation for a phenomenon. Given thi
remarkable agreement among students, we need to hav
story of why humans focus on one derivation and not o
others. In this paper we shall argue that the problem o
derivational redundancy can be solved by a notion o
"shortest derivation”. By the shortest derivation of a
phenomenon we mean the derivation that can b
constructed by the fewest (and therefore largest) parti
derivations of previously derived phenomena that functio
as "exemplars".

-~ Ilhguistics and logic. If we can convert explanatc
try to match the new phenomenon to one or more previoug %" = : :
phenomena-plus-explanations. erivations into trees, we can directly apply the D

o . b : approach to the redundancy problem. That is, whe
h'” similar vein, Philip Kitcher r?rgues that new anomenon has more tha>r/1 F())ne derivation tree, I
g enomena are derived by using the s%m_e patte_rnsl oposes to select the tree that can be constructed b
erivations (“argument patterns’) as used in previously, o™ s htrees from trees of previously deri
explained phenomena: "Science advances ou henomena
understanding of nature by showing us how to deriv ’
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In order to do so, we will first show in section 2 how consists in a unary branch which solves the dire
derivations in physics can be interpreted as trees, angreceding formula for a certain variable (in the ti
how explanations of new phenomena can be constructeabove, for the mashl). Thus, in general, a unary bran
by combining subtrees from previously explainedrefers to a mathematical derivation step that solves
phenomena. In section 3 we give an in-depth exploratioequation for a variable, while a binary branch refers 1
of the problem of derivational redundancy and argue thaphysical derivation step which introduces and combi
DOP’s notion of shortest derivation can solve thisphysical laws or conditions (or other knowledge suck
problem. The resulting DOP model, which we may termphenomenological corrections and coefficients).
“data-oriented physics”, is evaluated in section 4 on a

corpus of phenomena from classical and fluid mechanics Fme
that were derived by fourth-year physics students. It turns
out that there is a very close correspondence between the
derivations constructed by humans and DOP’s notion of [ F=ma| [v=2mp|
shortest derivation.
[ F=ami| [ F=omme |

2 Extending DOP to Scientific Explanation

What do derivational explanations in physics look like?
Let's start with a simple textbook example. Consider the
following derivation of the Earth's mass from the Moon's
orbit in the textbook by Alonso and Finn (1996, p. 247):

| 4m2mr/P2 = GMm/r2 |
| M = 41%3/GP? |

Figure 1: Derivation tree for the Earth's mass

Suppose that a satellite of mamasdescribes, with
a periodP, a circular orbit of radius around a
planet of mas#l. The force of attraction_between
the planet and the satellite 5= GMn/r2. This
force must be equal tm times the centripetal
accelerationv/r = 4r2r/P2 of the satellite. Thus,

412mr/P2 = GMm/r2

Note that a derivation tree corresponds to the notiol
deductive-nomological (D-N) explanation of Hempel &
Oppenheim (1948). In the D-N account, a phenomenc
explained by deducing it from general laws a
antecedent conditions. D-N explanations usually focus
the initial premises (laws and conditions) and the fi
conclusion (the phenomenon). But they can just as
represent the intermediate steps as derivation tree:
For every derivation tree there is a corresponding |
explanation and vice versa. Although the D-N accour
known to suffer from various shortcomings and

Canceling the common facton and solving fotM
gives

M = 4rer3/GP2.

By substituting the data for the Moonz= 3.84 108 m and
P'=2.36 100
Earth: M = 5.98 1024 kg. In doing so, Alonso and Finn

abstract from many features of the actual Earth-Moo
system, such as the gravitational forces of the Sun an
other planets, the magnetic fields, the solar wind, etc
Albeit heavily idealized, the derivation provides a
concrete problem solution on which various othe
(idealized) phenomena can be modeled. In fact, Alons
and Finn reuse parts of this derivation to solve problem
such as the velocity of a satellite and the escape veloci

from the Earth.

In order to create a DOP model for derivationa
explanation, we first need to represent derivations of the
type above by tree structures. Analogous to proof trees i
formal logic, a tree structure of a natural phenomeno
description of the

indicates how a mathematical

s, Alonso and Finn compute the mass of the

nowadays superseded by other approaches (cf. Frie
1974; Kitcher 1989), most derivations in textboc

n fully fleshed-out derivations that describe the vari
eps from premises to conclusion, because that’s the
of derivations humans construct (see section 4). Our 1
reason for representing derivations by trees is of co

’gasically follow this scheme. In this paper, we will foc

f derivational redundancy, as we shall see in the |
ection.
But before we can do this, we will need to demonst

gat we can then apply the DOP approach to the prol

Ihow DOP builds new explanations out of previous o

since our solution to the redundancy problem is defi
terms of subtrees of previous trees). Consider
llowing subtree in figure 2 which is obtained from t
erivation tree in figure 1 by leaving out the I

derivation step (i.e. the solution for the masgs

phenomenon is compositionally derived from laws,
antecedent conditions and other knowledge. Figure 1
shows how the derivation for the Earth's mass above may
be turned into a tree. This tree represents the various
derivation steps (insofar as they are mentioned in the
example above) from general laws to an equation of the
massM. We will refer to such a tree asdarivation tree

A derivation tree is a labeled tree in which each node is

annotated with a formula; the boxes are only meant as
convenient representations of these labels. The formulas
at the top of each "vee" (i.e. each pair of binary branches)
in the tree can be viewed as premises, and the formula at
the bottom of each "vee" can be viewed as a conclusion
which is arrived at by simple term substitution. The last

derivation step in the tree is not formed by a "vee" but

o

| F=mar| | v=2mwPr |

| F = 418mr/P | | k= GMm/r2|

4m2mr/R2 = GMm/2

Figure 2: A subtree from the tree in figure 1
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This subtree can be applied to various other situationsThe combination of tre¢ and treeu, written ast o u, is
For instance, in deriving the regularity known as Kepler'sdefined iff the equation at the root node wfcan be
third law (which states that3/P2 is constant for all substituted in the equation at the root node @fe. iff the
planets orbiting around the Sun, or satellites around th&efthandside of the equation at the root nodes diterally
Earth if you wish) the subtree in figure 2 needs only to beappears in the equation at the root nodd)off t o u is
extended with a mathematical derivation step that solvedefined, it yields a tree that expands the root node
the last equation far3/P2, as represented in figure 3. copies oft andu to a new root node where tt
righthandside of the equation at the root nodeuds
substituted in the equation at the root node. ddote that
the substitution operation can be iteratively applied t
sequence of trees, with the convention thais left-
associative.

We now have the basic ingredients for a DOP mode
derivational explanation, which we may term “da
oriented physics”. This DOP model employs (1¢@pus
of derivation treesrepresenting exemplars and (2)
matching procedurethat combines subtrees from tl
corpus into new derivation trees. This brings us to
following definition for an explanation of a phenomen
with respect to a corpus.

] ]

| F:m\?/rl | v:2r[r/P|

| F = 4m2mr/F | [ F=cmme]

| 4n2mr/P2:GMm/r2|
| 3/ = GM/4n2|

Figure 3: Derivation tree for Kepler's third law

Definition 1 Given a corpusC of derivation treesl,
To,..,Tn representing exemplars and a term substitu
operation ¢, an explanation of a phenomenéh with
In a similar way we can also derive the distance of despect toC is a derivation tred such that (1) there ar
geostationary satellite, namely by solving the subtree igubtreeds, ta,..tx in Tq, Tp,... Ty for whichty e tao ... ot
figure 2 forr and takingP as the rotation period of the =T, (2) the root node of is mathematically equivaler
Earth. to P and (3) the leaf nodes of are either laws ol
It is of course not typically the case that derivationsantecedent conditions or equations that cannot be de!
involve only one subtree. In deriving the velocity of afrom higher-level equations.
satellite at a certain distance from a planet, we cannot ) o
directly use the large subtree in figure 2. Instead|n our examples above, the mathematical derivation s
analogous to DOP models for natural language, well occur at the end of a derivation (figures 1, 3 and
decomposehe tree in figure 1 into two smaller subtreesBut they may of course just as well occur in the cours
andrecomposethem by term substitution (represented bya@ derivation between two subtrees. We will come bac

the operation ¢") and finally solve for the velocity in
figure 4.

| F=m] [ a=@| o [ F=omme| = | F=m| [ a=v| <>
[Fr=mer] [ F=cmme]
| F=mar| [ F=cmmel
"

mr = GMm/r2
v =V(GM/)

Figure 4: Deriving a phenomenon by combining subtrees
Figure 4 shows that we can create new derivation trees an object at the Earth's surface (Alonso and Finn 1
combining subtrees from previous derivation trees. Not

that subtrees can be of arbitrary size: from single
up to entire

equations to combinations of laws,
derivations.

The notion of term substitution, though widely used in
rewriting systems, may need some further specification

The term-substitution operation

294

is a partial function on
pairs of labeled trees; its range is the set of labeled tree

this in section 4, where we discuss an evaluation of
DOP model.

3 The Redundancy Problem

Now that we have extended the DOP model
derivational explanation, we can go into the m
problem of this paper, and show how DOP may solvt
This is the problem that there can be many, of
extremely many, different derivations for the sa
phenomenon, even if they are subsumed under the
general laws and even if they do not contain spuri
laws that are non-explanatory or irrelevant. In the w
case, the number of derivation trees grows exponent
with the number of terms in the description of t
phenomenon. In other words, derivational explanatiol
massively redundant

In order to show this, we will first enlarge our ti
corpus used in section 2 (which consisted only of
derivation in figure 1) with another derivation fro
Alonso and Finn's textbook. This derivation agi
provides an exemplary problem solution for the Ear
mass but this time by computing it from the accelera

. 246). This second exemplar can be represented b
erivation tree in figure 6.
By substituting the values fay (the acceleration at th
Earth's surface),R (the Earth's radius) an& (the
gravitational constant) in figure 6, Alonso and Finn obt
roughly the same value for the Earth's mass as in
previous derivation in figure 1. They argue that t
greement is "a proof of the consistency of the the:
bid. p. 247). (Note that the derivation is again idealiz



no centrifugal force is taken into account, let alonefrom the exemplar in figure 6 and two from figure 1.
influences from the Sun or other planets.) Thus the simpleourse, for another phenomenon it may be the exen
problem of the Earth's mass is derivationally redundant ifn figure 6 rather than in figure 1 which can derive
that it can be solved in at least two different ways. Andphenomenon in one go. For example, to derive a forr
both derivations are used in Alonso and Finn's textbook aor the gravitational acceleration at the Earth’s surface

exemplars for deriving other phenomena. can use one large subtree from figure 6 and not f
figure 1. Thus different problems may be modeled
[ F=ma| [ F=cmmp?] different exemplars.

Thus in solving the problem of derivational redundar
it seems that we need to determine on which exemp
ma = GMm/2 phenomenon can best be modeled. Note that Kitct
account of explanation does not help us here. Accor

— a=g to Kitcher (1989, p. 432), “Science advances
| M ar/(;l r=R . .

understanding of nature by showing us how to de

descriptions of many phenomena, using the same pat

of derivation again and again”. But his “unificationis

account does not tell us whether humans mode

planet’s surface on the exemplar in figure 1 or on

When we add the tree in figure 6 to our corpus, we ca§X€mplar in figure 6. This is what should perhaps
model Kepler's regularity also on this exemplar, resulting-@lléd “Kuhn’s problem”, i.e. the problem of how v
in an alternative derivation tree which is constructed by<n"oW on which exemplar a phenomenon can be modk
using a large subtree from figure 6 in combination withDOP’S answer is: the exemplar from which the larc
two small subtrees from the exemplar in figure 1, thePOSsible subtree can be reused. This finally brings u
result of which is shown in figure 7. (And it easy to seeQUr notion of “shortest derivation” and to a solution of
that there are many more trees: by combining subtregd’oblem of derivational redundancy.

from the exemplars in figures 1 and 6 in different ways, Le€t's get more concrete. We have seen that there

we get an explosion of different derivation trees forb€ different derivation trees for a phenomenon.
Kepler's regularity.) distinctive feature between different derivation trees

thatsome trees armore similar to exemplars than other
The larger the partial match between a derivation
and an exemplar, in terms of their largest comn
subtree, the more "derivationally similar" they are. Si
Z students learn physics not just by memorizing laws,
also by studying exemplary problem solutions, they tr
derive a phenomenon by maximizing derivatiol
[ Mm=ac| | a=wr| similarity with previously derived phenomena,
\/ equivalently, byminimizing derivation lengttwhere the
length of a derivation is defined as the number of corj
subtrees it consists of. We will refer to the derivation
minimal length as the "shortest derivation". Sir
subtrees in DOP can be of arbitrary sitlee shortest
derivation corresponds to the derivation tree whi
consists of largest partial match(es) with previc
derivation treedn the corpus This brings us to the
following definition of the "best derivation tree" for
phenomenon derived by DOP:

| F:mzl | |—:(5Mm/r2|

| M:vzr/Gl | v:2rr/P|

Figure 7: An alternative tree for Kepler's regularity

There is nothing wrong with this alternative derivation g?%g'%??tsznb;tblégdgf 25&?;&%%? ig fflnvaittll?:jhg;]

tree: there are no spurious non-explanatory laws that aIE(d) = k. Letdt be a derivation which results in trde

irrelevant (as would be e.g. Hooke's or Boyle's law). Therhan the best treeTpes; derived by DOP is the tre

main difference is that the derivation in figure 7 is , hi~ph i At o .
modeled on aifferent exemplar than the derivation in which is produced by a derivation of minimal length:

figure 3. In fact, the alternative derivation in figure 7 is
even insightful as it refers to the conceptual equivalence
between terrestrial and celestial mechanics in Newtonian
dynamics. The fact that Kepler's regularity can be deriveg;
from figure 6 suggests that if we bring a satellite down t
the Earth's surface it still follows the same regularity. a
Yet, it turns out that no physics student comes up Wiﬂb

the derivation tree in figure 7. Why? Apart from the factgpirees, it does not correspond to the smallest pos
that the derivation tree in figure 3 is smaller, the tree ifge j o’ the tree with the smallest possible numbe
figure 3 is more "derivationally similar” to an exemplar in \5qes™ (or |abels). There exists a smaller tree that sii
the corpus. That is, the tree in figure 3 can be constructe plies all laws at once to arrive at the formula
by just one large subtree from the corpus — i.e. from thgpiers regularity. However, it turns out that no stud

exemplar in figure 1 — whereas the tree in figure 7 needs nstructs such minimal derivations. and we there:
at least 3 subtrees to be constructed from the corpus — one ’

Tphest = argminL(dy)
T

is important to understand the difference between a
Qroduced by the smallest number of subtrees anc
bsolute smallest tree. While the tree in figure 3
roduced by the shortest possible combination of cor
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believe that our notion of shortest derivation consisting obf derivation tree, especially on the difference betw
the smallest number of (corpusdbtreesis more binary branches in a tree (used for combining la
appropriate than a notion of shortest derivation defined asonditions etc.), and unary branches (used
the smallest number afodes Only in case our notion of mathematical derivation steps). The students were
shortest derivation does not lead to a unique result, i.e. that the exact order of combining laws in a tree was
a phenomenon can be derived by the same smalleghportant as long as these laws could be prop
number of subtrees, it seems reasonable to choose tkkembined by term substitution to solve the problem. W
tree with the fewest nodes from among the shortestvas important was to represent in the tree the deriva
derivations, reflecting a preference for economy if DOPsteps they had used to get from laws to the phenome
does not break ties. so we told them. Thus we did not distinguish betw
] trees whose only difference was the order of the apg
4 Evaluating DOP

laws, as we found out in a pilot experiment that this
How can we evaluate our DOP model? Since we propo either done by the students. We will see below that «
o ! ith this abstraction there were still many differe
DOP to be a cognitive model of human problem solving, erivations. After this brief tutorial, the students wx
it seems appropriate to evaluate the model agam? y !
derivations constructed by humans. To this end, w

sked to draw derivation trees for their problem solutio
developed aest corpusof manually solved problems by constructed by the students: on average 91.4% (SD:-

There was a high agreement among the derivation
fourth-year physics students andtraining corpusof

exemplary problem solutions taken from textbooks. Next
implementation of DOP which
computed Tpest for each test problem by means of th
subtrees from the training corpus. The performance o
DOP on the test problems was compared with th

we developed an

derivations provided by the students.

Method and procedure

of the derivation trees per problem matched (modulo
order). Only the most frequent derivation tree for e
problem was put in the test corpus. It is important

rees for their problem solutions, and there were
uestions during this task. This suggests that derive
trees are suitable structures for representing prot
solutions by humans.
Next, the students were asked to draw derivation t

gention that the students had no difficulties with draw

We paid 19 third-year physics students to solve &or 9 exemplary problem solutions that are used
elementary problems from classical mechanics and ®&xemplars in the textbooks by Alonso and Finn (1€
elementary problems from fluid mechanics. The studentshapter 11) and Douglas and Matthews (1996, chapte
had previously followed courses in classical mechanic§he three example problems in figures 1, 5 and 6 v
and fluid mechanics. The 11 problems given to themamong these exemplars. It should be said, however,
consisted in deriving a phenomenon from laws, initialnone of the students derivéeemv2/r from F=ma and
conditions and, in the case of fluid mechanics, empiricah=v2/r, as we did in figure 1. Instead, all students u
coefficients. The students were given no other instructionthe equation for centripetal forde=mv2/r directly as a
than that they should solve the problems by paper anthw. The agreement among the derivation trees for
pencil in class. The first two and the last two of theexemplary solutions was very high: 97.7% (SD=0.3). °

problems are given below.

Problem nr. 1

Show that the period of the Earth's rotation for
which an object at the equator would become
weightless is given by = 2rv(R/g) whereR is the
Earth's radius andg is the gravitational
acceleration at the Earth's surface.

Problem nr. 2

Show that the theoretical velocity which an object
attains in free fall from height is given byv =
Vv(2gh) whereg is the gravitational acceleration at
the Earth's surface.

Problem nr. 10

When water flows through a right-angled V-notch,
show that the discharge is given @y= KH>/2 in
which K is a constant antl is the height of the

surface of the water above the bottom of the notch.

Problem nr. 11

Show that the theoretical rate of flow through a
rectangular notch is given by = (2/3)3\/(29)H3/
where B is the width of the notch anHl is the
height of the water level above the bottom of the
notch.

most frequent tree for each exemplary solution was pt
the training corpus.

All test problems could be solved out of subtrees fi
the training corpus, but this fact was not told to
students: they first had to solve the test problems :
which they were asked to draw trees for the exemp
problem solutions from the textbooks. Each stud
accomplished the task in less than 2.5 hours (inclus
the tutorial).

The goal for DOP was to construidestfor each of the
11 problems from the test corpus by means of the sub
from the training corpus of 9 exemplars. To accomp
this, we implemented DOP by usingK Solver as a
backbone (release 5.0, Universal Technical Systems |
TK solves an equation given a list of other equation
provided that there is a solution. To maki& suitable for
DOP, we programmed a shell aroum& (written in C)
which first converted each derivation tree from 1
training corpus into all its subtrees and next extracted
equations from the subtree-roots. Each equation
indexed to remember the subtree it was extracted fi
This resulted in a list of 148 equations. For each te
problem, TK derived a set of solutiorgiven the listL. All
problems received more than 60 different solutions, €
after abstracting from the order of the equations use
the solution, which gives an idea of the derivatio
redundancy if we do not have any mechanism to bi
ties.

After the students had solved the problems on paper, they From TK's output, our program selected the shor
were given a short, fifteen-minutes tutorial on the concepsolution for each problem that used the fewest equati
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The equations of the shortest solution were convertedelecting the shortest derivation consisting of the fey
back to their corresponding subtrees, which werepartial derivations of previously derived phenomena
combined into the derivation trék,est Note that in this preliminary investigation with a corpus of phenome
way Tpest consisted of the largest partial matches withfrom classical and fluid mechanics showed that D
trees in the training corpus. In caBgestwas not unique accurately predicts the derivations humans come up \
the program chose the tree with fewest nodes among thEo the best of our knowledge, this paper provides the
best trees. A major advantage BK is that it hides the concrete proposal to tackle the problem of mas:
algebra, which is good as this was also asked from thderivational redundancy in scientific explanation.
students and which corresponds to our use of unary

branches in trees. Acknowledgments
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