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Abstract

Topics in Conditional Inference

by

Ka Kin Kenneth Hung

Doctor of Philosophy in Mathematics

University of California, Berkeley

Assistant Professor William Fithian, Co-chair

Professor Emeritus David Aldous, Co-chair

The modern data analysis process is rarely one-step, but instead paved with iterative
exploratory data analyses and choices. Often data analysts are tempted to peek at the
data before choosing the hypotheses to be tested. In other times, the vast amount of
data is screened and not all information is accessible to the analysts. In either case, data
analyses have to be carried post-selection, as a consequence of even the most innocuous
exploratory data analyses. A particular method to conduct post-selection inference is
conditional inference, with a few instances detailed in this work.

Chapter 2 � based on Hung and Fithian (2019a) � explores a scenario where the
choice of null hypothesis is dependent on the very same data used in the test. Using
conditional inference, we provide a test that adapts to the data, for whichever hypothesis
is most sensible. As a consequence of the adaptivity, our test is also much more powerful
than the classical approaches.

Chapter 3 � based on Hung and Fithian (2019b) � describes a meta-analysis
where the data itself has been selected, but meaningful inference is nonetheless desired.
Through conditional inference, we modi�ed classical methods to provide post-selection
inference.

Finally in Chapter 4, I present unpublished work investigating an optimal method
of combining information from a post-selection original experiment and a replication
experiment, a current common concern in experimental psychology.
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Chapter 1

Introduction

With the advancement in data storage and collection, datasets are rapidly growing in
both size and complexity. The traditional assumption of independence between the
hypothesis under test and the data is far from valid: exploratory data analysis is no
longer a simple prologue to the main data analysis, but a crucial part of the main analysis,
well integrated as an iterative process exploring a �garden of forking paths� (Gelman and
Loken, 2013). Such practice is not just common but also advisable � it is unwise to
construct a statistical model or choose a hypothesis without �rst checking with data to
ensure its appropriateness. However it violates the typical statistical assumption that
the hypotheses are independent of the data, necessitating a new framework that allows
repeated exploration of the data. Chapter 2 includes an instance of a data-dependent
hypothesis, with a formal statistical test that remains valid despite the adaptivity.

Furthermore, with the plentiful datasets available, it is unfeasible to attend to every
dataset. Analysts thus screen data and redirect their limited time and e�ort to the
datasets deemed promising; likewise, consumers of these analyses also dedicate their
limited attention to the stronger results. This nonetheless has a side e�ect � to screen
is to look at the data, once again violating the independence assumption mentioned
above. The datasets that passed the screening are a�ected by selection bias, and tend
to exaggerate any signals therein. Chapters 3 and 4 explore a speci�c scenario where
such screening and selection may arise in academic publications, and provide methods
to negate the e�ect of selection bias in hypothesis testing.

1.1 Conditional Inference

While data-dependent hypotheses may at �rst sound unusual, they are commonplace in
practice, for example when pilot studies are performed to generate hypotheses that are
tested later on with fresh data. There is no inherent conceptual problem with testing
these data-dependent hypotheses: intuitively, we understand that the test remains valid
because the type I error rate is controlled for whatever hypothesis is selected, conditional
on that hypothesis having been selected.

Conditional inference is well-established in the statistical literature as a means of con-
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structing valid con�dence intervals for parameters that were selected in a data-dependent
way (e.g. Sampson and Sill, 2005; Weinstein, Fithian, and Benjamini, 2013; Yekutieli,
2012; Zöllner and Pritchard, 2007). Fithian, Sun, and Taylor (2014) generalized the
intuition about pilot studies to argue that a test of a data-dependent hypothesis is valid,
so long as the type I error rate is controlled conditioned on the portion of the data that
generated the hypothesis. The idea is simple: roughly, if φ is a test (1 for rejection and 0
otherwise) that takes the data X, a data-dependent modelM and a data-dependent hy-
pothesis H, while controlling for the type I error rate conditional on the data-dependent
part, i.e.

P[φ(X,M, H) | M, H] ≤ α, where α is the signi�cance level,

then we have typical type I error rate control from the law of total expectation.
I demonstrate the applications of this method in Chapters 2 to 4, exemplifying its

capabilities in Chapter 2 and simplicity in Chapters 3 and 4.

1.2 Adaptive Hypothesis

Many statistical experiments involve comparing multiple population groups. For exam-
ple, a public opinion poll may ask which of several political candidates commands the
most support; a social scienti�c survey may report the most common of several responses
to a question; or, a clinical trial may compare binary patient outcomes under several
treatment conditions to determine the most e�ective treatment. Having observed the
�winner� (largest observed response) in a noisy experiment, it is natural to ask whether
that candidate, survey response, or treatment is actually the �best� (stochastically largest
response). Chapter 2 concerns the problem of rank veri�cation � post hoc signi�cance
tests of whether the orderings discovered in the data re�ect the population ranks. For
exponential family models, we show under mild conditions that an unadjusted two-tailed
pairwise test comparing the �rst two order statistics (i.e., comparing the �winner� to the
�runner-up�) is a valid test of whether the winner is truly the best. We extend our anal-
ysis to provide equally simple procedures to obtain lower con�dence bounds on the gap
between the winning population and the others, and to verify ranks beyond the �rst.

1.3 Selection Bias

Large-scale replication studies like the Reproducibility Project: Psychology (RP:P) pro-
vide invaluable systematic data on scienti�c replicability, but most analyses and inter-
pretations of the data fail to agree on the de�nition of �replicability� and disentangle
the inexorable consequences of known selection bias from competing explanations. We
discuss three concrete de�nitions of replicability based on (1) whether published �nd-
ings about the signs of e�ects are mostly correct, (2) how e�ective replication studies
are in reproducing whatever true e�ect size was present in the original experiment, and
(3) whether true e�ect sizes tend to diminish in replication. In Chapter 3, we apply tech-
niques from multiple testing and post-selection inference to develop new methods that
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answer these questions while explicitly accounting for selection bias. Re-analyzing the
RP:P data, we estimate that 22 out of 68 (32%) original directional claims were false (up-
per con�dence bound 47%); by comparison, we estimate that among claims signi�cant at
the stricter signi�cance threshold 0.005, only 2.2 out of 33 (7%) were directionally false
(upper con�dence bound 18%). In addition, we compute selection-adjusted con�dence
intervals for the di�erence in e�ect size between original and replication studies and, af-
ter adjusting for multiplicity, identify �ve (11%) which exclude zero (exact replication).
We estimate that the e�ect size declined by at least 20% in the replication study relative
to the original study in 16 of the 46 (35%) study pairs (lower con�dence bound 11%).
Our methods make no distributional assumptions about the true e�ect sizes.

Chapter 4 bases on the same setup as Chapter 3, but takes a di�erent direction. We
develop a uniformly most powerful unbiased test (UMPU) and a uniformly minimum
variance unbiased (UMVU) estimator for normally distributed measurements and sample
correlation coe�cients. We also demonstrate the performance gains in a simulation study.
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Chapter 2

Rank Veri�cation for Exponential

Families

2.1 Introduction

Motivating Example: Iowa Republican Caucus Poll

Table 2.1 shows the result of a Quinnipiac University poll asking 890 Iowa Republi-
cans their preferred candidate for the Republican presidential nomination (Quinnipiac
University Poll Institute, 2016). Donald Trump led with 31% of the vote, Ted Cruz
came second with 24%, Marco Rubio third with 17%, and ten other candidates including
�Don't know� trailed behind.

Rank Candidate Result Votes

1 * Trump 31% 276
2 * Cruz 24% 214
3 * Rubio 17% 151
4 * Carson 8% 71
5 Paul 4% 36
6 Bush 4% 36
7 Huckabee 3% 27
...

...
...

...

Table 2.1: Results from a February 1, 2016 Quinnipiac University poll
of 890 Iowa Republicans. To compute the last column (Votes), we make
the simplifying assumption that the reported percentages in the third
column (Result) are raw vote shares among survey respondents. The
asterisks indicate that the rank is veri�ed at level 0.05 by a stepwise
procedure.

Seeing that Trump leads this poll, several salient questions may occur to us: Is Trump
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really winning, and if so by how much? Furthermore, is Cruz really in second, is Rubio
really in third, and so on? Note that there is implicitly a problem of multiple comparisons
here, because if Cruz had led the poll instead, we would be asking a di�erent set of
questions (�Is Cruz really winning,� etc.). Indeed, the selection issue appears especially
pernicious due to the so-called �winner's curse�: given that Trump leads the poll, it more
likely than not overestimates his support.

Nevertheless, if we blithely ignore the selection issue, we might carry out the follow-
ing analyses to answer the questions we posed before at signi�cance level α = 0.05. We
assume for simplicity that the poll represents a simple random sample of Iowa Repub-
licans; i.e., that the data are a multinomial sample of size 890 and underlying proba-
bilities (πTrump, πCruz, . . .). (The reality is a bit more complicated: before releasing the
data, Quinnipiac has post-processed it to make the reported result more representative
of likely caucus-goers. The raw data is proprietary.)

1. Is Trump really winning? If Trump and Cruz were in fact tied, then Trump's share
of their combined 490 votes would be distributed as Binomial (490, 0.5). Because
the (two-tailed) p-value for this pairwise test is p = 0.006, we reject the null and
conclude that Trump is really winning.

2. By how much? Using an exact 95% interval for the same binomial model, we con-
clude Trump has at least 7.5% more support than Cruz (i.e., πTrump ≥ 1.075πCruz)
and also leads the other candidates by at least as much.

3. Is Cruz in second, Rubio in third, etc.? We can next compare Cruz to Rubio just
as we compared Trump to Cruz (again rejecting because 214 is signi�cantly more
than half of 365), then Rubio to Carson, and so on, continuing until we fail to
reject. The �rst four comparisons are all signi�cant at level 0.05, but Paul and
Bush are tied so we stop.

Perhaps surprisingly, all of the three procedures described above are statistically
valid despite their ostensibly ignoring the implicit multiple-comparisons issue. In other
words, Procedures 1 and 2 control the Type I error rate at level α and Procedure 3
controls the familywise error rate (FWER) at level α. The remainder of this chapter
is devoted to justifying these procedures for the multinomial family, and extending to
analogous procedures in other exponential family settings. While methods analogous to
Procedures 1 and 2 have been justi�ed previously for balanced independent samples from
log-concave location families (Gutmann and Maymin, 1987; Stefansson, Kim, and Hsu,
1988), they have not been justi�ed in exponential families before now.

Generic Problem Setting and Main Result

Generically, we will consider data drawn from an exponential family model with density

X ∼ exp (θ′x− ψ (θ)) g (x) , (2.1)

with respect to either the Lebesgue measure on Rn or counting measure on Zn. We
assume further that g (x) is symmetric with respect to permutation, and Schur concave,
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a mild technical condition de�ned in Section 2.2. In addition to the multinomial family,
model (2.1) also encompasses settings such as comparing independent binomial treatment
outcomes in a clinical trial, competing sports teams under a Bradley�Terry model, entries
of a Dirichlet distribution, and many more; see Section 2.2 for these and other examples.

We will generically use the term population to refer to the treatment group, sports
team, political candidate, etc. represented by a given random variable Xj. As we will
see, θj ≥ θk if and only if Xj is stochastically larger than Xk; thus, there is a well-
de�ned stochastic ordering of the populations that matches the ordering of the entries
of θ. We will refer to the population with maximal θj as the best, the population with
second largest θj as the second best, the one with maximal Xj as the winner, and the one
with the second-largest Xj as the runner-up, where ties between observations are broken
randomly to obtain a full ordering. Following the convention in the ranking and selection
literature, we assume that if there are multiple largest θj, then one is arbitrarily marked
as the best. Note that in cases where it is more interesting to ask which is the smallest
population (for example, if Xj is the number of patients on treatment j who su�er a
heart attack during a trial) we can change the variables to −X and the parameters to
−θ; this does not a�ect the Schur concavity assumption.

Write the order statistics of X as

X[1] ≥ X[2] ≥ · · · ≥ X[n],

where [j] will denote the random index for the j-th order statistic. Thus, θ[j] is the entry
of θ corresponding to the j-th order statistic of X (so θ[1] might not equal maxj θj, for
example).

In each of the above examples, there is a natural exact test we could apply to test
θj = θk for any two �xed populations j and k. In the multinomial case, we would apply
the conditional binomial test based on the combined total Xj + Xk as discussed in the
previous section. For the case of independent binomials we would apply Fisher's exact
test, again conditioning onXj+Xk. These are both examples of a generic UMPU pairwise
test in which we condition on the other n − 2 indices (notated X\{j,k}) and Xj + Xk,
and reject the null if Xj is outside the α/2 and 1− α/2 quantiles of the conditional law
Lθj=θk(Xj | Xj + Xk, X\{j,k}). Crucially, this null distribution does not depend on the
value of θ provided that θj = θk. We call this test the (two-tailed) unadjusted pairwise
test since it makes no explicit adjustment for selection. Similarly, inverting this test
for other values of θj − θk yields an unadjusted pairwise con�dence interval. (To avoid
trivialities in the discrete case, we assume these procedures are appropriately randomized
at the rejection thresholds to give exact level-α control.)

Generalizing the procedures described in Section 2.1 we obtain the following:

1. Is the winner really the best? To test the hypothesis H : θ[1] ≤ maxj 6=[1] θj: Carry
out the unadjusted pairwise test comparing the winner to the runner-up. If the
test rejects at level α, reject H and declare that the winner is really the best.

2. By how much? To construct a lower con�dence bound for θ[1] −maxj 6=[1] θj: Con-
struct the unadjusted pairwise con�dence interval comparing the winner to the
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runner-up, and report the lower con�dence bound obtained for θ[1] − θ[2] if it is
nonnegative, report −∞ otherwise.

3. Is the runner-up really the second best, etc.? Continue by comparing the runner-up
to the second runner-up, again using the unadjusted pairwise test, and so on down
the list comparing adjacent values. Stop the �rst time the test does not reject; if
there are j rejections, declare that

θ[1] > θ[2] > · · · > θ[j] > max
k>j

θ[j]

Procedures 2 and 3 are conservative stand-ins for exact, but slightly more involved,
conditional inference procedures. In particular, as we will see, reporting−∞ in Procedure
2 is typically much more conservative than is necessary.

We now state our main theorem: under a mild technical assumption, Procedures 1�3
described above are statistically valid, even accounting for the selection.

Theorem 1. Assume the model (2.1) holds and g (x) is a Schur-concave function. Then:

1. Procedure 1 has exact level α conditional on H being true (conditional on the best
population not winning), and marginally has level α · P(H is true) ≤ α

(
1− 1

n

)
.

2. Procedure 2 gives a conservative 1−α lower con�dence bound for θ[1]−maxj 6=[1] θj.

3. Procedure 3 is a conservative stepwise procedure with FWER no larger than α.

Note that Theorem 1 implies that we could actually replace α with n
n−1α to obtain a

more powerful version of Procedure 1 when n is not too large.
We de�ne Schur-concavity and discuss its properties in Section 2.2. Because any

log-concave and symmetric function is Schur-concave, Theorem 1 applies to all of the
cases discussed above. The proof combines the conditional selective-inference framework
of Fithian, Sun, and Taylor (2014) with classical multiple-testing methods, as well as
new technical tools involving majorization and Schur-concavity.

Note that these procedures make an implicit adjustment for selection because they
use two-tailed, rather than one-tailed, unadjusted tests. If we instead based our tests
on an independent realization X∗ = (X∗1 , . . . , X

∗
n) then, for example, Procedure 1 could

use a right-tailed version of the unadjusted pairwise test. In the case n = 2, Procedure
1 amounts to a simple two-tailed test of the null hypothesis θ1 = θ2, and it is intuitively
clear that a one-tailed test would be too liberal. More surprising is that, no matter how
large n is, Procedures 1�3 require no further adjustment beyond what is required when
n = 2.

Related work

Rank veri�cation has been studied extensively in the ranking and selection literature.
See Gupta and Panchapakesan (1971, 1985) for surveys of the subset selection literature.
The two main formulations of ranking and selection are closely related to procedures for
multiple comparisons with the best treatment (Edwards and Hsu, 1983; Hsu, 1984), but
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more powerful methods are available in some cases for procedures involving only the �rst
sample rank, the problem of comparisons with the sample best; see Hsu (1996) for an
overview and discussion of the relationships between these problems.

Comparisons with the sample best have been especially well-studied and the validity
of Procedures 1 and 2 have been established in a di�erent setting: balanced indepen-
dent samples from log-concave location families. Gutmann and Maymin (1987) prove
the validity of Procedure 1 in this setting, and Bo�nger (1991), Karnnan and Pancha-
pakesan (2009), and Maymin and Gutmann (1992) give similar results for other models
including scale and location-scale families. Stefansson, Kim, and Hsu (1988) provide an
alternative proof for the validity of Procedure 1 in the same setting, leading to a lower
con�dence bound analogous to that of Procedure 2; interestingly, the proof involves a
very early application of the partitioning principle, later developed into fundamental
technique in multiple comparisons (Finner and Strassburger, 2002). These results use
very di�erent technical tools than the ones we use here, require independence between the
di�erent groups (ruling out, for example, the multinomial family), and do not address
the exponential family case. Because most exponential families are not location-scale
families (the Gaussian being a notable exception), and because our results involve more
general dependence structures, both our proof techniques and our technical results are
complementary to the techniques and results in the above works.

For the multinomial case, Gupta and Nagel (1967), discussed in Section 2.3, remain
the state of the art in �nite-sample tests; Gupta and Wong (1976) discuss related ap-
proaches for Poisson models. Berger (1980) mentions an alternative, simpler rule which
performs a binomial test on each population, but its power does not necessarily increase
as the size m of observations increases in cases like Multinomial(m; 2/3, 1/3, 0, . . . , 0).
Nettleton (2009) proves validity for an asymptotic version of the winner-versus-runner-
up test, and Gupta and Liang (1989) consider an empirical Bayes approach for selecting
the best binomial population wherein a parametric prior distribution is assumed for the
success probabilities for the di�erent populations. Ng and Panchapakesan (2007) discuss
an exact test for a modi�ed problem in which the maximum count is �xed instead of
the total count; that is, we sample until the leading candidate has at least m votes. As
Section 2.3 shows, our test can be much more powerful than the one in Gupta and Nagel
(1967), especially if there are many candidates, because of the way our critical rejection
threshold for X[1] − X[2] adapts to the data. Thus, our work closes a signi�cant gap
in the ranking and selection literature, extending the result of Gutmann and Maymin
(1987) and others to new families like the multinomial, independent binomials, and many
others.

Outline

Section 2.2 de�nes Schur concavity, and gives several examples satisfying this condition.
Section 2.3 justi�es Procedure 1 and compares its power to that of Gupta and Nagel
(1967). Sections 2.4 and 2.5 justify Procedures 2 and 3 respectively, and Section 2.6
concludes.
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2.2 Majorization and Schur concavity

De�nitions and basic properties

We start by reviewing the notion of majorization, de�ned on both Rn and Zn.

De�nition 1. For two vectors a and b in Rn (or Zn), suppose sorting the two vectors
in descending order gives a(1) ≥ · · · ≥ a(n) and b(1) ≥ · · · ≥ b(n). We say that a � b (a
majorizes b) if for 1 ≤ i < n,

a(1) + · · ·+ a(i) ≥ b(1) + · · ·+ b(i), and

a(1) + · · ·+ a(n) = b(1) + · · ·+ b(n).

This forms a partial order in Rn (or Zn).

Intuitively, majorization is a partial order that monitors the evenness of a vector: the
more even a vector is, the �smaller� it is. There are two properties of majorization that
we will use in the proofs.

Lemma 2.

1. Suppose (x1, x2, x3, . . .) and (x1, y2, y3, . . .) are two vectors in Rn. Then

(x1, x2, x3, . . .) � (x1, y2, y3, . . .) if and only if (x2, x3, . . .) � (y2, y3, . . .) .

2. (Principle of transfer) If x1 > x2 and t ≥ 0, then

(x1 + t, x2, x3, . . .) � (x1, x2 + t, x3, . . .) .

If t ≤ 0, the majorization is reversed.

Proof.

1. The property follows from an equivalent formulation of majorization listed in Mar-
shall, Olkin, and Arnold (2010), where x � y if and only if

n∑
j=1

xn =
n∑
j=1

yn and
n∑
j=1

(xj − a)+ ≥
n∑
j=1

(yj − a)+ for all a ∈ R.

2. Proved in Marshall, Olkin, and Arnold (2010).

De�nition 2. A function g is Schur-concave if x � y implies g (x) ≤ g (y).

A Schur-concave function is symmetric by default since a � b and b � a if and
only if b is a permutation of the coordinates of a. Conversely a symmetric and log-
concave function is Schur-concave (Marshall, Olkin, and Arnold, 2010). Interestingly,
Gupta, Huang, and Panchapakesan (1984) also show that, in the context of independent
location families, Schur concavity of the probability density is equivalent to monotone
likelihood ratio.
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Examples

Many common exponential family models have Schur-concave carrier densities. Below
we give a few examples:

Example 1 (Independent binomial treatment outcomes in a clinical trial). If each of
n di�erent treatments are applied to m patients independently, the number of positive
outcomes Xj for treatment j is Binomial (m, pj). The best treatment would be the
treatment with the highest success probability pj. The joint distribution of X is given
by

p (x) ∝ exp

(∑
j

xj log
pj

1− pj

)
1

x1! (m− x1)! · · ·xn! (m− xn)!

The carrier measure above is Schur-concave. The unadjusted pairwise test in this family
is Fisher's exact test.

Example 2 (Competitive sports under the Bradley�Terry model). Suppose n players
compete in a round robin tournament, where player j has ability θj, and the probability
of player j winning against player k is

eθj−θk

1 + eθj−θk
=

e(θj−θk)/2

e(θj−θk)/2 + e(θk−θj)/2
.

Let Yjk be an indicator for the match between player j and k, where we take Yjk = 1
if j beats k and Yjk = 0 if k beats j. For symmetry, we will also adopt the convention
that Yjk + Ykj = 1. Thus the joint distribution of Y = (Yjk)j 6=k is

p (y) ∝ exp

(∑
j

2θj
∑
k 6=j

yjk

)
= exp (2θ′x) ,

where xj =
∑

k 6=j yjk. In other words, if Xj is the number of wins by player j, then
X = (X1, . . . , Xn) is a su�cient statistic with distribution

p (x) = exp (2θ′x) g (x) ,

where g (x) is a function that counts the number of possible tournament results giving
the net win vector x. A bijection proof shows that x is indeed Schur-concave. Therefore,
we can use Procedures 1�3 to compare player qualities.

After conditioning on U(X) = (X1+X2, X3, . . . , Xn), and under the assumption θ1 =
θ2, every feasible con�guration of Y is equally likely. If n is not too large (say, no more
than 40 players), we can �nd the conditional distribution of X1 by enumerating over the
con�gurations; for larger n, computation might pose a more serious problem, requiring us
for example to compute the p-value using Markov Chain Monte Carlo techniques (Besag
and Cli�ord, 1989).
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Example 3 (Comparing the variances of di�erent normal populations). Suppose there
are n normal populations with laws N(µj, σ

2
j ) and m independent observations from

each of them. The sample variance for population j can be denoted as Rj. By Cochran's
theorem, (m− 1)Rj ∼ σ2

jχ
2
m−1, and thus the joint distribution of R is

r ∼
n∏
j=1

(
(m− 1) rj

σ2
j

)(m−3)/2

e−(m−1)rj/2σ
2
j 1{rj>0}

∝ exp

(
−m− 1

2σ2
1

r1 − · · · −
m− 1

2σ2
n

rn

) n∏
j=1

r
(m−3)/2
j 1{r>0}.

The carrier measure is
∏n

j=1 r
(m−3)/2
j 1{r>0}, which is Schur-concave. Thus, we can use

Procedures 1�3 to �nd populations with the smallest or largest variances. In this exam-
ple, the distribution of X1/(X1 +X2) conditional on (X1 +X2, X3, . . . , X4) is distributed
as Beta(m/2,m/2) under the null, or equivalently X1/X2 is conditionally distributed as
Fm,m; hence a (two-tailed) F -test is valid for comparing the top two populations.

2.3 Verifying the Winner: Is the Winner Really the

Best?

First, we justify the notion that the population with largest θj is also the largest popu-
lation in stochastic order:

Theorem 3. For a multivariate exponential family with a symmetric carrier distribution,
X1 ≥ X2 in stochastic order if and only if θ1 ≥ θ2.

Proof. It su�ces to prove the �if� part, as the �only if� part can be follows from swapping
the role of θ1 and θ2. For any �xed a, and x1 ≥ a and x2 < a, we have x1 > x2 and

exp (θ1x1 + θ2x2 + · · ·+ θnxn − ψ (θ)) g (x) ≥ exp (θ1x2 + θ2x1 + · · ·+ θnxn − ψ (θ)) g (x) .

Integrating both sides over the region {x : x1 ≥ a, x2 < a} gives

P [X1 ≥ a,X2 < a] ≥ P [X1 < a,X2 ≥ a] .

Now adding P [X1 ≥ a,X2 ≥ a] to both probabilities gives

P [X1 ≥ a] ≥ P [X2 ≥ a] ,

meaning that X1 is greater than X2 in stochastic order.

Before proving our main result for Procedure 1, we give the following lemmas, the
�rst of which clari�es a key idea in the proof, and the second is needed for a sharper
bound in (2.2).
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Lemma 4 (Berger, 1982). If pj are valid p-values for testing null hypothesis H0j, then
p∗ = maxj pj is a valid p-value for the union null (i.e. disjunction null) hypothesis
H0 =

⋃
j H0j.

Proof. Under H0, one of the H0j is true; without loss of generality assume it is H01.
Then,

P [p∗ ≤ α] ≤ P [p1 ≤ α] ≤ α.

Therefore p∗ is a valid p-value for the union null hypothesis.

Lemma 5. If θ1 ≥ maxj 6=1 θj, then P [1 wins] ≥ 1
n
.

Proof. We can prove so with a coupling argument: for any sequence x1, x2, . . . , xn, de�ne
τ (x) = {τ (xj)}j=1,...,n, obtained by swapping x1 with the largest value in the sequence
x. Hence

exp (θ1τ (x1) + · · ·+ θnτ (xn)− ψ (θ)) g (X) ≥ exp (θ1x1 + · · ·+ θnxn − ψ (θ)) g (X) .

If we integrating both sides over Rn (or Zn in the case of counting measure), the right
hand side gives 1. Since τ is an n-to-1 mapping, the left hand side is n times the integral
over {x1 ≥ maxj>1 xj}. In other words,

nP [1 wins] ≥ 1

as desired.
In the case of counting measure, the above argument follows if a subscript is attached

to identical observations uniformly to ensure strict ordering.

We are now ready to prove our result for Procedure 1, restated here for reference.

Part 1 of Theorem 1. Assume the model (2.1) holds and g (x) is a Schur-concave
function. Procedure 1 (the unadjusted pairwise test) has level α conditional on the best
population not winning.

Proof. Let j∗ denote the (�xed) index of the best population, so θj∗ ≥ maxj 6=j∗ θj. The
type I error � the probability of incorrectly declaring any other j to be the best � is

P

[⋃
j 6=j∗

declare j best

]
≤
∑
j 6=j∗

P [declare j best | j wins]P [j wins] ,

recalling that ties are broken randomly, so there is only one winner in any realization.
Thus, it is enough to bound Pθ [declare j best | j wins] ≤ α, for each j 6= j∗, and for all
θ with j∗ ∈ arg maxj θj. Then we will have

P

[⋃
j 6=j∗

declare j best

]
≤
∑
j 6=j∗

α · P [j wins] = αP [j∗ does not win] ≤ n− 1

n
α, (2.2)
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where the last inequality follows from Lemma 5.
We start by assuming that we are working with the Lebesgue measure rather than

the counting measure (eliminating the possibility of ties). The necessary modi�cation of
the proof for the counting measure case is provided at the end of this proof.

To minimize notational clutter, we consider only the case where the winner is 1,
i.e. X1 ≥ maxj>1Xj. Furthermore, we will denote the runner-up with 2. This is not
necessarily true, but we will use it as a shorthand to simplify our notation. For other
cases, the following proof remains valid under relabeling and can thus be applied. In this
case, we will test the null hypothesis H01 : θ1 ≤ maxj>1 θj, which is the union of the null
hypotheses H01j : θ1 ≤ θj for j ≥ 2. For each of these we can construct an exact p-value
p1j, which is valid under H01j conditional on A1, the event that X1 is the winner. Hence
by Lemma 4, a test that rejects when p1∗ = maxj p1j ≤ α is valid for H01 conditional on
A1. Procedure 1 performs an unadjusted pairwise test comparing X1 to X2. Hence it
is su�cient to show that p12 = p1∗ and that rejecting when p12 ≤ α coincides with the
unadjusted pairwise test.

Our proof has three main parts: (1) deriving p1j for each j ≥ 2, (2) showing that
p12 ≥ p1j for each j ≥ 2, and (3) showing that p12 is an unadjusted pairwise p-value.

Derivation of p1j Following the framework in Fithian, Sun, and Taylor (2014), we
�rst construct the p-values by conditioning on the selection event where the winner is 1:

A1 =

{
X1 ≥ max

j>1
Xj

}
.

For convenience, we let

Djk =
Xj −Xk

2
and Mjk =

Xj +Xk

2
.

We then re-parametrize to replace X1 and Xj with D1j and M1j. The distribution is
now an exponential family with su�cient statistics D1j,M1j, X\{1,j} and corresponding
natural parameters θ1 − θj, θ1 + θj, θ\{1,j}. We now consider

Lθ1−θj=0

(
D1j

∣∣M1j, X\{1,j}, A1

)
. (2.3)

We can rewrite the selection event in terms of our new parameterization as

A1 = {X1 ≥ Xj} ∩
{
X1 ≥ max

k 6=1,j
Xk

}
= {D1j ≥ 0} ∩

{
D1j ≥ max

k 6=1,j
Xk −M1j

}
.

The conditional law of D1j in (2.3), in particular, is a truncated distribution.

p
(
d1j |M1j, X\{1,j}, A1

)
∝ exp ((θ1 − θj) d1j + θ2X2 + · · ·+ (θ1 + θj)M1j + · · ·+ θnXn)

g (M1j + dij, X2, . . . ,Mij − dij, . . . Xn) 1A1

(a)
∝ g (M1j + d1j, X2, . . . ,M1j − d1j, . . . Xn) 1A1 ,
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where at step (a), conditioning on X\{1,j} and M1j removes dependence on θ\{1,j} and
θ1 + θj respectively, while θ1 − θj is taken to be 0 under our null hypothesis. Note that
we consider this as a one-dimensional distribution of D1j on R, where M1j and X\{1,j}
are treated as �xed.

The p-value for H01j is thus

p1j =

∫∞
D1j

g (M1j + z,X2, . . . ,M1j − z, . . . , Xn) dz∫∞
max{X2−M1j ,0} g (M1j + z,X2, . . . ,M1j − z, . . . , Xn) dz

. (2.4)

Finally, by construction, p1j satis�es

PH01j

[
p1j < α

∣∣M1j, X\{1,j}, A1

]
≤ α a.s.,

Marginalizing over M1j, X\{1,j},

PH01j
[p1j < α | A1] ≤ α.

Therefore these p1j are indeed valid p-values.

Demonstration that p1∗ = p12 We now proceed to show that p12, the p-value com-
paring the winner to the runner-up, is the largest of all p1j. Without loss of generality,
it is su�cient to show that p12 ≥ p13.

From the �rst part of this proof, both p-values are constructed by conditioning on
X\{1,2,3}. Upon conditioning these, (X1, X2, X3) follows an exponential family distribu-
tion, with carrier distribution

gX4,...,Xn (X1, X2, X3) = g (X1, . . . , Xn) ,

here X4, . . . , Xn are used in the subscript as they are conditioned on and no longer
considered as variables. The �rst point in Lemma 2 says that the function gX4,...,Xn is
Schur-concave as well. We have reduced the problem to the case when n = 3: we can
apply the result for n = 3 to gX4,...,Xn to yield p12 ≥ p13 for n > 3.

We have reduced to the case when n = 3. The p-values thus are

p12 =

∫∞
D12

g (M12 + z,M12 − z,X3) dz∫∞
0
g (M12 + z,M12 − z,X3) dz

,

p13 =

∫∞
D13

g (M13 + z,X2,M13 − z) dz∫∞
max{X2−M13,0} g (M13 + z,X2,M13 − z) dz

The maximum in the denominator of p13 prompts us to consider two separate cases.
First, we suppose X2 < M13. Changing variables such that the lower limits of both
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integrals in the numerator are 0, we can re-parametrize the integrals above to give

p12 =

∫∞
0
g (X1 + z,X2 − z,X3) dz∫∞

0
g (M12 + z,M12 − z,X3) dz

=

∫∞
0
g (X1 + z,X2 − z,X3) dz∫∞

−D12
g (X1 + z,X2 − z,X3) dz

,

p13 =

∫∞
0
g (X1 + z,X2, X3 − z) dz∫∞

0
g (M13 + z,X2,M13 − z) dz

=

∫∞
0
g (X1 + z,X2, X3 − z) dz∫∞

−D13
g (X1 + z,X2, X3 − z) dz

.

To help see the re-parametrization, each of these integrals can be thought of in terms
of integrals along segments and rays. For example p12 can be represented in terms of
integrals A and B in Figure 2.1. Speci�cally,

p12 =
B

A+B

A1

A

B

(M12,M12, X3)

(X1, X2, X3)

(
X = X1+X2+X3

3
, X,X

)
+(1, 0, 0)

+ (0, 1, 0)

+ (0, 0, 1)

Figure 2.1: The p-value p12 can be written in terms of integral A along
the segment and B along the ray. The diagram is drawn a level set of
x1 + x2 + x3. The green region represents the selection event A1.

Figure 2.2 has both the p-values shown on the same diagram. Proving p12 ≥ p13 is
the same as proving

B

A+B
≥ D

C +D
⇐⇒ B

A
≥ D

C
.

We will prove so by extending A to include Ã on the diagram. We denote the sum A+ Ã
as A′. Formally,

A′ =

∫ 0

−D13

g (X1 + z,X2 − z,X3) dz ≥
∫ 0

−D12

g (X1 + z,X2 − z,X3) dz = A. (2.5)
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It is thus su�cient to show that B ≥ D and C ≥ A′.

A1

A

B

(M12,M12, X3)

(X1, X2, X3)

C

(M13, X2,M13)

DÃ

(M13, X2 +D13, X3)

� � �

Figure 2.2: The p-value p12 can be written in terms of integral A along
the segment and B along the ray; and p13 in terms of C and D. A′

would refer to the sum of A with the dashed line portion labeled as
Ã, formally explained in Equation (2.5). The majorization relation is
indicated by the dotted line.

Indeed from the second point in Lemma 2 we have

(X1 + z,X2 − z,X3) � (X1 + z,X2, X3 − z)

for z ≤ 0 and the majorization reversed for z ≥ 0. This majorization relation is indicated
as the dotted line in Figure 2.2. So Schur-concavity shows that

g (X1 + z,X2 − z,X3) ≤ g (X1 + z,X2, X3 − z)

for z ≤ 0, and the inequality reversed for z ≥ 0. Taking integrals on both sides yields
the desired inequality.

For the second case where X2 ≥M13, the segment C will reach the line x1 = x2 �rst
before it reaches x1 = x3, ending at (X2, X2, X1 −X2 +X3) instead. But we can still
extend A by Ã to (X2, X1, X3). The rest of the proof follows. In either cases, p12 ≥ p13,
or in generality, p12 ≥ p1j for j > 1. In other words, p12 = p1∗.

p12 is an unadjusted pairwise p-value Before conditioning on A1, the distribution
in (2.3) is symmetric around 0 under θ1 = θj. Since the denominator of p12 integrates
over half of this symmetric distribution, it is always equal to 1/2. Thus, the one-sided
conditional test at level α is equivalent to the one-sided unadjusted test at level α/2, or
equivalently the two-sided unadjusted pairwise test at level α.
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Modi�cation for counting measure Now suppose the exponential family is de�ned
on the counting measure instead. If ties are broken independently and randomly, the end
points on the rays can be considered as �half an atom� if the coordinates are integers (or
a smaller fraction of an atom in case of a multi-way tie). The number of atoms on each
ray is the same (after the extension Ã) and the atoms on each ray can be paired up in
exactly the same way as illustrated in Figure 2.2, with the inequalities above still holding
for each pair of the atoms. Summing these inequalities yields our desired result.

Power Comparison in the Multinomial Case

As the construction of this test follows Fithian, Sun, and Taylor (2014), it uses UMPU
selective level-α tests for the pairwise p-values. This section compares the power of
our procedure to the best previously known method for verifying multinomial ranks,
by Gupta and Nagel (1967). They devise a rule to select a subset that includes the
maximum πj. In other words, if the selected subset is J (X), it guarantees

P
[
arg max

j
πj ∈ J (X)

]
≥ 1− α. (2.6)

This is achieved by �nding an integer d, as a function on m, n and α, and selecting the
subset

J (X) =
{
j : Xj ≥ max

k
Xk − d

}
.

We take d(m,n, α) to be the smallest integer such that (2.6) holds for any π; Gupta and
Nagel (1967) provide an algorithm for determining d.

Subset selection is closely related to testing whether the winner is the best. In
particular, we can de�ne a test that declares j the best whenever J (X) = {j}. If J (X)
satis�es (2.6), this test is valid at level α. We next compare the power of the resulting test
against the power of our Procedure 1 in a multinomial example with π ∝

(
eδ, 1, . . . , 1

)
,

for several combinations of m and n.
Figure 2.3 gives the power curves for Multinomial (m,π) and

π ∝
(
eδ, 1, . . . , 1

)
,

for various combinations of m and n. For their method, we use α = 0.05; but in light
of the extra factor of n−1

n
in (2.2), we will apply the selective procedure with n

n−1α such
that the marginal type I error rate of both procedures are controlled at α. Their test
coincides with our test at n = 2; however as n grows, the selective test shows signi�cantly
more power than Gupta and Nagel's test.

To interpret, e.g., the upper right panel of Figure 2.3, suppose that in a poll of
m = 50 respondents, one candidate enjoys 30% support and the other n − 1 = 9 split
the remainder (δ = log 0.3

0.7/9
≈ 1.35). Then our procedure has power approximately 0.3

to detect the best candidate, while Gupta and Nagel's procedure has power around 0.1.
To understand why our method is more powerful, note that both procedures operate

by comparing X[1] − X[2] to some threshold, but the two methods di�er in how that
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Figure 2.3: Power curves as a function of δ. The plots in the �rst row
all have m = 50 and the second row m = 250. The solid line and the
dashed line are the power for the selective test and Gupta and Nagel's
test, respectively.

threshold is determined. The threshold from Gupta and Nagel (1967) is �xed and de-
pends on m and n alone, whereas in our procedure the threshold depends on X[1] +X[2],
a data-adaptive choice.

The di�erence between the two methods is ampli�ed when n is large and π(1) � 1/2.
In that case, d from Gupta and Nagel is usually computed based on the worst-case
scenario π =

(
1
2
, 1
2
, 0, . . . , 0

)
; i.e. d is the upper α quantile of

X1 −X2 ∼ m− 2 · Binomial

(
m,

1

2

)
≈ Normal (0,m) .

Thus d ≈
√
mzα, where zα is the upper α quantile of a standard Gaussian. On the other

hand, our method de�nes a threshold based on the upper n
n−1 ·

α
2
quantile of

X1 −X2 | X1 +X2 ∼ X1 +X2 − 2 · Binomial

(
X1 +X2,

1

2

)
,

which is approximately
√
X1 +X2zα/2. If π(1) � 1/2 then with high probability X1 +

X2 � m, making our test much more liberal.
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2.4 Con�dence Bounds on Di�erences: By How

Much?

By generalizing the above, we can construct a lower con�dence bound for θ[1]−maxj 6=[1] θj.
Here we provide a more powerful Procedure 2' �rst. We will proceed by inverting a
statistical test of the hypothesis Hδ

0[1] : θ[1] −maxj 6=[1] θj ≤ δ, which can be written as a
union of null hypotheses:

Hδ
0[1] =

⋃
j 6=[1]

H0[1]j : θ[1] − θj ≤ δ.

By Lemma 4, we can construct selective exact one-tailed p-values pδ[1]j for each of these
by conditioning on A[1], M[1]j and X\{[1],j}, giving us an exact test for H0[1] by rejecting
whenever maxj 6=[1] p

δ
[1]j < α.

Theorem 6. The p-values constructed above satisfy pδ[1][2] ≥ pδ[1]j for any j 6= [1].

Proof. Again we start with assuming X1 ≥ X2 ≥ maxj>2Xj for convenience. The
p-values in question are derived from the conditional law

Lθ1−θj=δ (D1j |M1j, X2, . . . , Xn, A) ,

which is the truncated distribution

p (d1j) ∝ exp ((θ1 − θj) d1j + θ2X2 + · · ·+ (θ1 + θj)M1j + · · ·+ θnXn)

g (M1j + d1j, X2, . . . ,M1j − d1j, . . . Xn) 1A1

∝ exp (δd1j) g (M1j + d1j, X2, . . . ,M1j − d1j, . . . Xn) 1A1 .

The p-values thus are

pδ1j =

∫∞
D1j

exp (δz) g (M1j + z,X2, . . . ,M1j − z, . . . , Xn) dz∫∞
max{X2−M1j ,0} exp (δz) g (M1j + z,X2, . . . ,M1j − z, . . . , Xn) dz

.

As before in Part 1 of Theorem 1, the conditioning reduces to the case where n = 3.
Once again it is su�cient to show that p12 ≥ p13. We have the same two cases. If
X2 < M13, then

pδ12 =

∫∞
0

exp (δ (z +D12)) g (X1 + z,X2 − z,X3) dz∫∞
−D12

exp (δ (z +D12)) g (X1 + z,X2 − z,X3) dz

=

∫∞
0

exp (δz) g (X1 + z,X2 − z,X3) dz∫∞
−D12

exp (δz) g (X1 + z,X2 − z,X3) dz

pδ13 =

∫∞
0

exp (δ (z +D13)) g (X1 + z,X2, X3 − z) dz∫∞
−D13

exp (δ (z +D13)) g (X1 + z,X2, X3 − z) dz

=

∫∞
0

exp (δz) g (X1 + z,X2, X3 − z) dz∫∞
−D13

exp (δz) g (X1 + z,X2, X3 − z) dz
.
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The same argument in Figure 2.2 shows that pδ12 ≥ pδ13. This is again true for the
case where X2 ≥M13 as well.

In other words, Procedure 2' can be summarized as: Find the minimum δ such that
pδ[1][2] ≤ α. And by construction, Procedure 2' gives exact 1 − α con�dence bound for
θ[1] −maxj 6=[1] θj.

Part 2 of Theorem 1. Assume the model (2.1) holds and g (x) is a Schur-concave
function. Procedure 2 (the lower bound of unadjusted pairwise con�dence interval) gives
a conservative 1− α lower con�dence bound for θ[1] −maxj 6=[1] θj.

Proof. When Procedure 2 reports −∞ as a con�dence lower bound, it is de�nitely valid
and conservative. It remains to show that when Procedure 2 reports a �nite con�dence
lower bound, it is smaller than the con�dence lower bound reported by Procedure 2'.

If Procedure 2 reports a �nite con�dence lower bound δ∗, then δ∗ ≥ 0. Also

α

2
=

∫∞
D12

exp (δ∗z) g (M12 + z,X2, . . . ,M12 − z, . . . , Xn) dz∫∞
−∞ exp (δ∗z) g (M12 + z,X2, . . . ,M12 − z, . . . , Xn) dz

(2.7)

as Procedure 2 is constructed from an unadjusted two-tail pairwise con�dence interval.
However, as δ∗ ≥ 0, we have∫ 0

−∞ exp (δ∗z) g (M12 + z,X2, . . . ,M12 − z, . . . , Xn) dz∫∞
0

exp (δ∗z) g (M12 + z,X2, . . . ,M12 − z, . . . , Xn) dz
≤ 1∫∞

−∞ exp (δ∗z) g (M12 + z,X2, . . . ,M12 − z, . . . , Xn) dz∫∞
0

exp (δ∗z) g (M12 + z,X2, . . . ,M12 − z, . . . , Xn) dz
≤ 2.

Multiplying this to (2.7), we have

α ≥
∫∞
D12

exp (δ∗z) g (M12 + z,X2, . . . ,M12 − z, . . . , Xn) dz∫∞
0

exp (δ∗z) g (M12 + z,X2, . . . ,M12 − z, . . . , Xn) dz
,

indicating that δ∗ is smaller than the con�dence bound that Procedure 2' would report.
Hence δ∗ is a valid and conservative.

Note that Procedure 2 reporting −∞ in case of δ∗ ≤ 0 is rather extreme. In reality,
we can always just adopt Procedure 2' in the case when Procedure 1 rejects. In fact,
by Procedure 2', the multinomial example for polling in Section 2.1 can give a stronger
lower con�dence bound, that πTrump/maxj 6=Trump πj ≥ 1.108 (Trump leads the �eld by
at least 10.8%).

2.5 Verifying Other Ranks: Is the Runner-Up Really

the Second Best, etc.?

Often we will be interested in verifying ranks beyond the winner. More generally, we
could imagine declaring that the �rst j populations are all in the correct order, that is

θ[1] > · · · > θ[j] > max
k>j

θ[k]. (2.8)
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Let j0 denote the largest j for which (2.8) is true. Note that j0 is both random
and unknown, because it depends on both the data and population ranks. Procedure 3
declares that j0 ≥ j if the unadjusted pairwise tests between X[k] and X[k+1], reject at
level α for all of k = 1, . . . , j.

In terms of the Iowa polling example of Section 2.1, we would like to produce a
statement of the form �Trump has the most support, Cruz has the second-most, and
Rubio has the third-most.� Procedure 3 performs unadjusted pairwise tests to ask if
Cruz is really the runner-up upon verifying that Trump is the best, and if Rubio is really
the second runner-up upon verifying that Cruz is the runner-up, etc., until we can no
longer infer that a certain population really holds its rank.

While we aim to declare more populations to be in the correct order, declaring too
many populations, i.e. out-of-place populations, to be in the right order is undesirable.
It is possible to consider false discovery rate (the expected portion of out-of-place popu-
lations declared) here, but we restrict our derivation to FWER (the probability of having
any out-of-place populations declared).

Formally, let ĵ0 denote the number of ranks validated by a procedure (the number of
rejections). Then the FWER of ĵ0 is the probability that too many rejections are made;

i.e. P
[
ĵ0 > j0

]
. For example, suppose that the top three data ranks and population

ranks coincide, but not the fourth (j0 = 3). Then we will have made a Type I error if
we declare that the top �ve ranks are correct (ĵ0 = 5), but not if we declare that the top
two are correct (ĵ0 = 2). In other words, ĵ0 is a lower con�dence bound for j0.

To show that Procedure 3 is valid, we will prove the validity of a more liberal Pro-
cedure 3', described in Algorithm 1. Procedure 3 is equivalent to Procedure 3' for the
most part, except that Procedure 3 conditions on a larger event

{
X[j] ≥ maxk>j X[k]

}
in

Line 7.

Theorem 7. Procedure 3' is a stepwise procedure that an estimate ĵ0 of j0 at the FWER
controlled at α, where j0 is given by

j0 = max
j

{
θ[1] > · · · > θ[j] > max

k>j
θ[k]

}
.

Proof. We will �rst show that Procedure 3' falls into the sequential goodness-of-�t test-
ing framework proposed by Fithian, Taylor, and Tibshirani (2015). We thus analyze
Procedure 3' as a special case of the BasicStop procedure on random hypothesis, de-
scribed in the same paper. This enables us to construct valid selective p-values and
derive Procedure 3'.

Application of the sequential goodness-of-�t testing framework Upon observ-
ing X[1] ≥ · · · ≥ X[n], we can set up a sequence of nested models

M1 (X) ⊆ · · · ⊆ Mn (X) , whereMj (X)c =

{
θ : θ[1] > · · · > θ[j] > max

k>j
θ[k]

}
.
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Algorithm 1. Procedure 3', a more liberal version of Procedure 3

input : X1, . . . , Xn

output: ĵ0, an estimate for j0
# Initialization

1 τj ← [j];
# Consider τj as part of the observation and the fixed realization

of the random index [j]
2 Xτ0 ←∞;
3 j ← 0;
4 rejected ← true;
5 while rejected do

6 j ← j + 1;
7 Dτj ← Xτj −Xτj+1

;
8 Set up the distribution of Dτjτj+1

, conditioned on
• the variables Xτ1 , . . . , Xτj−1

, Xτj+2
, . . . , Xτn], and

• the event
{
Xτj−1

≥ Xτj ≥ maxk>j Xτk)

}
;

# The distribution of Dτjτj+1
depends only on θτj − θτj+1

now

9 test H0 : θτj − θτj+1
≤ 0 against H1 : θτj − θτj+1

> 0 according to the
distribution of Dτjτj+1

;
Set rejected as the output of the test;

10 end

11 ĵ0 ← j − 1;

If we de�ne the j-th null hypothesis as

H̃0j : θ[j] ≤ max
k>j

θ[k],

then H̃01, . . . , H̃0j are all false if and only if θ /∈Mj(X).
In other words, Mj (X) is a family of distributions that does not have all �rst j

ranks correct. As we will see later, each step in Procedure 3' is similar to testing H̃0j,
stating that without the �rst j ranks correct, it is hard to explain the observations. Thus,
returning ĵ0 = j amounts to rejecting H̃01, . . . , H̃0j, or equivalently determining that the
modelsM1(X), . . . ,Mj(X) do not �t the data.

While the null hypotheses H̃0j provided intuition in the setting up the nested models,
they are rather cumbersome to work with. Inspired by Fithian, Taylor, and Tibshirani
(2015), we will instead consider another sequence of random hypothesis that are more
closely related to the nest models,

H0j : θ ∈Mj (X) ,

or equivalently, that θ[1], . . . , θ[j] are not the best j parameters in order.
Adapting this notation, the FWER can be viewed as P

[
reject H0(j0+1)

]
.
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Special case of the BasicStop procedure While impractical, Procedure 3' can
be thought of as performing all n tests �rst, producing a sequence of p-values pj, and
returning

ĵ0 = min {j : pj > α} − 1. (2.9)

This is a special case of the BasicStop procedure. Instead of simply checking that Pro-
cedure 3' �ts all the requirement for FWER control in BasicStop, we will give the con-
struction of Procedure 3', assuming that we are to estimate j0 with BasicStop.

In general, the FWER for BasicStop can be rewritten as P [pj0+1 ≤ α]. This is however
di�cult to analyze, as j0 itself is random and dependent on X, thus we break the FWER
down as follows:

P [pj0+1 ≤ α] =
∑
j

P [pj0+1 ≤ α | j0 = j]P [j0 = j]

=
∑
j

P [pj+1 ≤ α | j0 = j]P [j0 = j]

=
∑
j

P [pj+1 ≤ α | θ ∈Mj+1 (X) \Mj (X)]P [j0 = j] .

We emphasize here that θ is not random, butMj+1 is. Thus it su�ces to construct the
p-values such that

P [pj ≤ α | θ ∈Mj (X) \Mj−1 (X)] ≤ α for all j. (2.10)

Considerations for conditioning By smoothing, we are free to condition on addi-
tional variables in (2.10). A logical choice that simpli�ed (2.10) is conditioning on the
variablesMj−1 (X) andMj (X). Note that the choice of the modelMj (X), once again,
based solely on the random indices [1], . . . , [j], so conditioning on both Mj−1 (X) and
Mj (X) is equivalent to conditioning on the random indices [1], . . . , [j], which in turns
is equivalent to conditioning on the σ-�eld generated by the partition of the observation
space X{{

Xτ1 ≥ · · · ≥ Xτj ≥ max
k>j

Xτk

}
: τ is any permutation of (1, . . . , n)

}
,

or colloquially, the set of all possible choices of [1], . . . , [j]. Within each set in this parti-
tion, the event {θ ∈Mj (X) \Mj−1 (X)} is simply

{
θτ1 > · · · > θτj and θτj ≤ maxk>j θτk

}
,

a trivial event.
As a brief summary, we want to construct p-values pj such that

P θτ1>···>θτj
θτj≤maxk>j θτk

[
pj ≤ α

∣∣∣∣ Xτ1 ≥ · · · ≥ Xτj ≥ max
k>j

Xτk

]
.
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Construction of the p-values To avoid the clutter in the subscripts, we will drop
the τ in the subscript. Hence our goal is now

P θ1>···>θj
θj≤maxk>j θk

[
pj ≤ α

∣∣∣∣ X1 ≥ · · · ≥ Xj ≥ max
k>j

Xk

]
Construction of pj for other permutations τ can be obtained similarly.

There are many valid options for pj (such as constant α). We will follow the idea in
the proof of Part 1 of Theorem 1 here. pj is intended to test H0j : θ ∈Mj (X), which is
equivalent to the union of the null hypotheses:

1. θk ≤ θk+1 for k = 1, . . . , j − 1, and

2. θj ≤ θk for k = j + 1, . . . , n. (The union of these null hypotheses is H̃0j.)

Since the joint distribution of X, restricted to {X1 ≥ · · · ≥ Xj ≥ maxk>j Xk}, re-
mains in the exponential family, we can construct the p-values for each of the hypotheses
above by conditioning on the variables corresponding to the nuisance parameters here,
similar to the proof of Part 1 of Theorem 1. Then we can take pj as the maximum of
such p-values.

For the hypothesis H0jk : θj ≤ θk, we can construct pjk, by considering the survival
function of the conditional law

Lθj=θk
(
Djk

∣∣∣∣ {X1 ≥ · · · ≥ Xj ≥ max
`>j

X`

}
, X\{j,k},Mjk

)

= Lθj=θk

Djk

∣∣∣∣∣∣
Xj−1 ≥ Xj ≥ max

`>j
`6=k

X` and Xj ≥Mjk

 , X\{j,k},Mjk


Once again, Xj+1 = max`>j X` is simply shorthand for simplifying our notation. Now

the p-values are similar to the ones in Equation (2.4), for k > j:

pjk =

∫ Xj−1

Djk
g (X1, . . . ,Mjk + z, . . . ,Mjk − z, . . . , Xn) dz∫ Xj−1

max{Xj+1−Mjk,0} g (X1, . . . ,Mjk + z, . . . ,Mjk − z, . . . , Xn) dz
.

We can graphically represent pjk in Figure 2.4, a diagram analogous to Figure 2.2.
We have pj(j+1) ≥ maxk>j pjk by Section 2.3: the upper truncation for Xj can be

represented by cropping Figure 2.2 along a vertical line, shown in Figure 2.4. Considering
pj(j+1) is su�cient in rejecting all the H0jk. We will take pj∗ = pj(j+1), noting that this
is the p-value that Procedure 3' would produce. In fact, pj∗ is also the p-value we would

have constructed if we were to reject only H̃0j.
Upon constructing pj, one should realize that the p-values for testing θk ≤ θk+1

would have been constructed in earlier iterations of BasicStop, as pk∗. In other words,
pj = maxk≤j pk∗ is the sequence of p-values that works with BasicStop. However, from
(2.9),

ĵ0 = min

{
j : max

k≤j
pk∗ > α

}
− 1 = min {j : pj∗ > α} − 1,
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Figure 2.4: The two p-values constructed corresponds to taking inte-
grals of g along these segments, that lie on a level set of xj +xj+1 +xk.
The dashed line corresponds to extension in (2.5). The dotted line on
the far right is the truncation that enforces Xj < Xj−1.

so it is safe to apply BasicStop to pj∗ directly, yielding Procedure 3'.

Part 3 of Theorem 1. Assume the model (2.1) holds and g (x) is a Schur-concave
function. Procedure 3 is a conservative stepwise procedure with FWER no larger than α.

Proof. The p-values pj(j+1) obtained in Procedure 3' are always smaller than their coun-
terpart in Procedure 3, as the upper truncation at Xj−1 is on the upper tail. Therefore
Procedure 3 is conservative and de�nitely valid.

2.6 Discussion

Combining ideas from conditional inference and multiple testing, we have proven the va-
lidity of several very simple and seemingly �naive� procedures for signi�cance testing of
sample ranks. In particular, we have shown that an unadjusted pairwise test comparing
the winner with the runner-up is a valid signi�cance test for the �rst rank. Our result
complements and extends pre-exisiting analogous results for location and location-scale
families with independence between observations. Our approach is considerably more
powerful than previously known solutions. We provide similarly straightforward conser-
vative methods for producing a lower con�dence bound for the di�erence between the
winner and runner up, and for verifying ranks beyond the �rst.

Claims reporting the �winner� are commonly made in the scienti�c literature, usually
with no signi�cance level reported or an incorrect method applied. For example, Uhls and
Green�eld (2012) asked n = 20 elementary and middle school students which of seven
personal values they most hoped to embody as adults, with �Fame� (8 responses) being
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the most commonly selected, with �Benevolence� (5 responses) second. The authors'
main �nding � which appeared in the abstract, the �rst paragraph of the paper, and
later a CNN.com headline (Alikhani, 2011) � was that �Fame� was the most likely
response, accompanied by a signi�cance level of 0.006, which the authors computed by
testing whether the probability of selecting �Fame� was larger than 1/7. The obvious
error in the authors' reasoning could have been avoided if they had performed an equally
straightforward two-tailed binomial test of �Fame� vs. �Benevolence,� which would have
produced a p-value of 0.58.

Reproducibility

A git repository containing with the code generating the image in this chapter is available
at https://github.com/kenhungkk/verifying-winner.

https://github.com/kenhungkk/verifying-winner
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Chapter 3

Replicability Assessment

3.1 Introduction

Replicability crisis

Growing concerns about selection bias, p-hacking, and other questionable research prac-
tices (QRPs) have raised urgent questions about the reliability of scienti�c �ndings.
While concerns about replicability cut across scienti�c disciplines, psychologists have led
large-scale e�orts to assess the replicability of their own �eld. The largest and most
systematic of these e�orts has been the Reproducibility Project: Psychology (RP:P),1 a
major collaboration by several hundred psychologists to replicate a representative sample
of 100 studies published in 2008 in three top psychology journals, Psychological Science,
Journal of Personality and Social Psychology, and Journal of Experimental Psychology:
Learning, Memory, and Cognition.2

While the RP:P dataset is an invaluable resource, scientists disagree on how to quan-
tify or measure replicability (Amrhein, Korner-Nievergelt, and Roth, 2017; Goodman,
Fanelli, and Ioannidis, 2016). Open Science Collaboration (OSC; 2015) reported three
main metrics: it found that 64% (= 1 − 36%) of the replication studies did not �nd
statistically signi�cant results in the same direction as the original studies, that 53%
(= 1 − 47%) of 95% con�dence intervals for the replication studies do not contain the
point estimates for their corresponding original studies, and that 83% of the e�ect size
estimates declined from original studies to replications. All three summary statistics
were widely reported as indicating a dire crisis for the credibility of experimental psy-
chology research. For example, the Washington Post reported that RP:P �a�rms that
the skepticism [of published results] was warranted� (Achenbach, 2015); the Economist
noted that OSC �managed to replicate satisfactorily the results of only 39% of the stud-
ies investigated� (2016); and the New York Times reported that �more than half of the

1In some parts of the literature, �reproducibility� has taken on a computational connotation, meaning
only that other scientists can repeat the analysis using the original study's data; we will lean toward
the more unambiguous term �replicability.�

2The test statistics, e�ect sizes and most pertinent information are all publicly available on at the
Open Science Foundation website at https://osf.io/ezcuj/.

https://osf.io/ezcuj/
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�ndings did not hold up when retested� (Carey, 2015).
This negative gloss was challenged in a comment by Gilbert et al. (2016b), who

criticized both the �delity of some of the replications' experimental designs and the
aptness of the metrics reported by Open Science Collaboration (2015). In particular,
Gilbert et al. pointed out that, because there is sampling error in the replication point
estimates, we should not expect 95% of the estimates to fall into the replication con�dence
intervals even under ideal conditions. Moreover, any small or large variations in the true
e�ect sizes between the original and replication studies could further de�ate the expected
fraction of �successful replications,� as measured in this way. Gilbert et al. concluded that
�OSC seriously underestimated the reproducibility of psychological science,� sparking
further debate between defenders of OSC's conclusions (Anderson et al., 2016; Nosek
and Gilbert, 2016; Srivastava, 2016) and the critics (Gilbert et al., 2016a,c).3

To determine whether OSC truly underestimated replicability, we must �rst pin down
the rather slippery question of what �replicability� actually is. Although the three met-
rics used by OSC are simply descriptive statistics that do not purport to estimate any
explicitly de�ned underlying quantity, we can loosely characterize the 64%, 53% and 83%
numbers respectively as qualitative answers to three questions:

False directional claims. What fraction of the original studies were erroneous in claim-
ing that the true e�ect was nonzero, in the claimed direction (positive or negative)?
Gelman and Tuerlinckx (2000) called such mistakes type S errors.

E�ect shift. How much do the e�ect sizes shift from the original study to the replication
study? We call the discrepancy between the original and replication e�ect e�ect
shift.

E�ect decline. What fraction of the e�ect sizes decline? More precisely, what fraction
of the true e�ect sizes shift in a direction opposite to the original claims when the
studies were replicated, and by how much?

The �rst question concerns a type of false discovery rate (FDR) of the statistical hy-
potheses, viewing the �eld of social psychology as a collective enterprise in large-scale
multiple testing: it quanti�es the fraction of �ndings that would be con�rmed if the
exact same studies could be carried out again with much larger samples from the same
populations. The second question concerns a basic form of repeatability: whether scien-
tists are typically successful in closely replicating each others' experimental conditions,
so that the true e�ect being measured is stable across di�erent experiments. The third
question builds upon the second question: whether true e�ect sizes tend systematically
to attenuate in replications. An overall trend of declining true e�ects could suggest var-
ious interpretations, including systematic biases in the original experiments or failures
by the replication teams to reproduce key experimental conditions that produced the
original e�ects.

3While much of the ensuing discussion focused on the question of whether the con�dence interval
metric 53% is too pessimistic, analogous criticisms apply to the �signi�cant replications� metric of 64%
as well: the replication studies could be underpowered even when a true e�ect is present.
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As we will see, however, none of the three reported metrics can be taken at face
value as estimates of the answers to the corresponding questions, due to the confound-
ing factor of pervasive selection bias. By using techniques from multiple testing and
post-selection inference, we will develop methods to rigorously address these questions
without assuming a model for the prior distribution of e�ect sizes. For the RP:P data we
estimate the rate of false directional claims at roughly 32% among studies with p < 0.05,
which would be considered unacceptably high in most multiple testing applications. By
contrast, among studies with p < 0.005, a lower threshold proposed by Benjamin et al.
(2018), our estimate drops to 7%, with an upper con�dence bound of 18%. We also com-
pute con�dence intervals for the e�ect shift in each individual study pair and �nd that,
after adjusting for multiplicity, about 11% of the intervals exclude zero, an idealized null
hypothesis of perfect replication. For e�ect decline, we �nd in aggregate that 35% of the
true e�ects declined, and 35% declined by at least 20%.

In addressing each question, we de�ne our estimands in terms of the true e�ects
present in the statistical populations actually sampled in each study. Because some
studies may be biased or lack external validity � for example, because of �aws in the
study design, or because survey participants are unrepresentative of the broader popula-
tion of scienti�c interest � these e�ect sizes may not re�ect the latent scienti�c quantities
the experiments purport to measure. Uncovering such discrepancies is beyond the reach
of data analysis alone, but we should keep them in mind as we interpret the results.

The role of selection bias

The RP:P data shows unmistakable signs of selection for statistically signi�cant �ndings
in the original experiments: 91 of the 100 results replicated by OSC were statistically
signi�cant at the 0.05 level in the original study and four of the others had �marginally
signi�cant� p-values between 0.05 and 0.06. This is due partly to publication bias (that
the studies might not have been published, or the results discussed, if the p-values had
not been signi�cant), but also partly to OSC's method for choosing which results to
replicate. Each OSC replication team selected a �key result� from the last experiment
presented in the original paper, and evidently most teams chose a signi�cant �nding as
the key result (justi�ably so, since positive results usually draw the most attention from
journal readers and the outside world). Figure 3.1 shows the empirical distribution of
p-values from the original and replication studies.

The resulting selection bias in the original studies leads to many well-known and pre-
dictable pathologies, such as systematically in�ated e�ect size estimates, undercoverage
of (unadjusted) con�dence intervals, and misleading answers from unadjusted meta-
analyses. Indeed, most of the phenomena reported by OSC, including the three metrics
discussed above, could easily be produced by selection bias alone. This would be true
even if there are few false directional claims, all replications are exact, and true e�ects
do not decline, as illustrated in the following simulation study.

Example 4. Consider a stylized setting where all experiments (both original and repli-
cation) have an identical e�ect size θ, producing an unbiased Gaussian estimate with
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Figure 3.1: The empirical distribution of the original and replication
p-values. Nearly all of the original p-values (in red) are smaller than
0.05.

standard error 1. Assume, however, that we observe only study pairs for which the
original study is signi�cant at level 0.05.

Figure 3.2a shows the expected fraction of replication studies which are not statisti-
cally signi�cant in the same direction as the corresponding original studies, as a function
of e�ect size θ, along with the true proportion of false directional claims; or type S er-
rors. Even when the true error rate is low, e.g. at θ = 1 as shown in Figure 3.2b, the
proportion of replications reporting the same directional �ndings as the original studies
can remain low.

Likewise, we simulate the expected fraction of 95% replication con�dence intervals
that fail to cover their original point estimates in Figure 3.3 and the expected fraction
of e�ect sizes that decline in Figure 3.4. In both cases, we see that selection bias is more
than su�cient to produce the metrics in RP:P, even in our idealized simulation with
exact replications and relatively few type S errors.

Because selection bias could, in principle, provide a su�cient explanation for the met-
rics reported in RP:P, those metrics do not, in and of themselves, provide any evidence
of any other problems. In particular, they shed no light on whether the FDR is actually
high, or how much the e�ect sizes shifted, or whether e�ect sizes tend to decline. Nor do
they provide evidence for any competing accounts of the replication crisis, such as QRPs
like p-hacking, high between-study variability in e�ect sizes, or systematic biases in the
original studies. To discern anything about other explanations, we must adjust for the
pervasive e�ects of selection bias.
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RP:P rate = 64%

0%

25%

50%

75%

100%

0.0 0.5 1.0 1.5 2.0
θ

R
at

e 
(lo

w
er

 is
 b

et
te

r)

original claim is false original claim not confirmed

(a) The expected fraction of replications that do not con-

�rm (at level 0.05) the original directional claim (red),

and the proportion of false directional claims in the orig-

inal studies (blue), as a function of e�ect size θ. For

small θ, the fraction of replications that do not con�rm

the claims in the original studies may dramatically over-

estimate the fraction of false original claims.
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Figure 3.2

RP:P non−coverage = 53%
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(a) Expected fraction of original point estimates falling

outside the replication con�dence interval, as a function

of e�ect size θ. For small θ, the fraction of original point

estimates falling outside the replication 95% con�dence

intervals can easily exceed the RP:P reported metric of

53%, even when all replications are perfectly exact.
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(b) θ = 0.5. The gray region is un-

observed. For points in the red re-

gion, the original point estimate dif-

fers from the replication estimate by

more than zα/2 and hence the origi-

nal point estimate falls outside in the

replication 95% con�dence interval.

Figure 3.3



CHAPTER 3. REPLICABILITY ASSESSMENT 32

RP:P fraction = 83%

80.0%

90.0%

100.0%

0.0 0.5 1.0 1.5 2.0
θ

F
ra

ct
io

n 
(lo

w
er

 is
 b

et
te

r)

Fraction of effect sizes declined

(a) Expected fraction of e�ect size point estimates that

declined toward zero in replication, as a function of ef-

fect size of θ. For small θ, the fraction of e�ect size

estimates declining from original to replication studies

can easily exceed the RP:P reported metric of 83%, even

when there is no decline in the true e�ect sizes.

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●
● ●

●●

●

+

− zα 2

0

θ

zα 2

− zα 2 0 θ zα 2

original effect size estimate

re
pl

ic
at

io
n 

ef
fe

ct
 s

iz
e 

es
tim

at
e

(b) θ = 0.5. The gray region is

unobserved. Points in the red re-

gion represent declining point esti-

mates in replications. When the orig-

inal point estimate is positive, a de-

cline is marked by a smaller replica-

tion estimate; on the other hand, if

the original estimate is negative, a de-

cline is indicated by a larger replica-

tion estimate.

Figure 3.4

Another good reason to disentangle selection bias from other sources of error is that
the former is, in some sense, the most innocuous explanation for the phenomena ob-
served by OSC while the others present much deeper scienti�c issues. The technical
issues of selection bias can be addressed either retrospectively by statistical adjustments
(e.g. Andrews and Kasy, 2018; Duval and Tweedie, 2000; Fithian, Sun, and Taylor,
2014; Hedges, 1992; Simonsohn, Nelson, and Simmons, 2014b), or prospectively with
more preregistration or larger sample sizes. By contrast, it would be deeply worrying
if psychologists were systematically unable to repeat their colleagues' experiments, or if
most published claims about e�ect sizes were directionally incorrect.

Formalizing replicability

We now introduce a simple formal model for replication studies with selection bias. For
study i = 1, . . . ,m, let θi,O and θi,R denote the true e�ect sizes in the original and the
replication studies, respectively. Abstracting away experimental design details, assume
that each study pair produces two normally distributed e�ect size estimators θ̂i,O and

θ̂i,R. Assume additionally that for the study pair to appear in our replication data, θ̂i,O
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must be statistically signi�cant at level α = 0.05;4 then for some signi�cance threshold
c > 0 we have

θ̂i,O ∼ N
(
θi,O, σ

2
i,O

)
1{|θ̂i,O|>c} and θ̂i,R ∼ N

(
θi,R, σ

2
i,R

)
, (3.1)

with all estimates assumed to be independent of each other. The indicator 1{|θ̂i,O|>c}
beside the normal distribution in (3.1) means that the distribution of θ̂i,O has been

truncated to the event where |θ̂i,O| > c and renormalized so that it integrates to 1.
For the moment, we assume that the variances σ2

i,O and σ2
i,R are known; in that case

c = z0.05/2 σi,O. We will relax this assumption in Section 3.2.

False directional claims To formalize false directional claims in terms of the param-
eters of model (3.1), we note that a type S error occurs when a statistically signi�cant
�nding gets the sign of the parameter wrong:

HS,O
i : sign(θi,O) 6= sign(θ̂i,O), where sign(x) =


+1, x > 0

−1, x < 0

0, x = 0

.

Note that |θ̂i,O| is always larger than c, so sign(θ̂i,O) ∈ {−1,+1}. Letting Si = sign(θ̂i,O),
we can rewrite the hypothesis as

HS,O
i : Si · θi,O ≤ 0.

Here HS,O
i is fundamentally data-dependent as it is determined by Si. Nonetheless it is a

meaningful hypothesis: when Si = +1, we want to test the null that θi,O ≤ 0; otherwise
we want to test the null that θi,O ≥ 0. Our strategy is to condition on the value of Si,
since the null hypothesis is �xed again once we know Si. We defer the discussion of valid
testing of data-dependent hypotheses for now.

The question of false directional claims, then, boils down to asking how many HS,O
i

are true: a multiple testing problem. Our estimand, the proportion of type S errors
that occurred, is V/R, where V is the number of type S errors and R is the number of
�discoveries,� i.e. rejections. If we classify the hypotheses by whether HS,O

i is true and
whether the test for HS,O

i is signi�cant, then V and R correspond to the cell counts in
Table 3.1.

In the multiple testing literature, V/R is called the directional false discovery propor-
tion (directional FDP, or FDPdir), the type S error analog of false discovery proportion
(FDP; Benjamini and Hochberg, 2000). In addition to an estimate, we also provide an
upper con�dence bound for the directional FDP in Section 3.2. Both the estimator and
the con�dence bound are based on a �p-curve� analysis, i.e. an analysis of the distribu-
tion of signi�cant p-values (Simonsohn, Nelson, and Simmons, 2014a). We further modify
these methods to evaluate the proposal to lower the statistical signi�cance threshold by
Benjamin et al. (2018).

4We relax this assumption in Section 3.2.
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Original p-value HS,O
i is true HS,O

i is false Total

Signi�cant V ∗ R
Not-signi�cant ∗ ∗ ∗
Total ∗ ∗ ∗

Table 3.1: Classi�cation of the hypotheses, in the style of Benjamini
and Hochberg (1995). Only R is observed and we wish to infer on V .

Although θ̂i,R is irrelevant to testing HS,O
i , it is informative for the closely related

question of whether θ̂i,O incorrectly predicts the direction of the e�ect in a replication
study, i.e.

HS,R
i : Si · θi,R ≤ 0.

Note that Si is computed from the original study, so this hypothesis is a measure of
external validity as to the (claimed) directions of e�ects. If an experimental result has
external validity, then any directional claim about the true e�ect should apply not only to
the original study, but also to direct replications thereof. We provide analogous methods
for multiple testing of the hypotheses HS,R

i .

E�ect shift To assess the e�ect shift in a speci�c replication attempt, we can test the
hypothesis HE

i : θi,O = θi,R (an exact replication). As Anderson et al. (2016) noted,
�there is no such thing as exact replication�; nevertheless, exactness serves usefully as an
idealized null hypothesis. By inverting a test for HE

i we can obtain a predictive interval
for θ̂i,R. Furthermore, by inverting tests for a related hypothesis HE,δ

i : θi,O − θi,R = δ,
we obtain a con�dence interval for θi,O − θi,R, the e�ect shift in study i. Our methods

explicitly take into account the truncation of θ̂i,O.

E�ect size decline The null hypothesis for e�ect size decline is closely related to e�ect
shift, and can be formalized as the null hypothesis where the true e�ect size has declined
by no more than a fraction ρ ∈ [0, 1]:

HD,ρ
i : Si · θi,R ≥ Si · (1− ρ)θi,O.

If Si = +1 and ρ = 0.2, for example, rejecting HD,ρ
i amounts to an assertion that

θi,R < 0.8 θi,O, i.e. the true e�ect declined by more than 20%, or is negative.

In particular, if ρ = 0 then HD,0
i is a one-sided version of HE

i , and when ρ = 1,
HD,1
i is equivalent to HS,R

i . We can subsequently ask how many of HD,ρ
i are false:

another multiple testing problem. We provide two estimators (one overestimate and one
underestimate) and con�dence interval for the proportion of false HD,ρ

i .

Data-dependent hypotheses and conditional inference

Our hypotheses above,HS,O
i ,HS,R

i andHD,ρ
i , are all innately data-dependent. Recall that

a test of a data-dependent hypothesis is valid, so long as the type I error rate is controlled
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conditioned on the portion of the data that generated the hypothesis. For our hypotheses
here, Si is the part of the data that determines the hypothesis: in e�ect, we can imagine
ourselves in the position of having observed the signs of all the original estimators, but
knowing nothing else about the data. At that stage, it is valid to formulate a hypothesis
that depends on Si, and plan to test it using the still-unobserved data: namely, |θ̂i,O|
and θ̂i,R.

After conditioning on Si, each hypothesis discussed above amounts to testing a �xed
linear hypotheses about (θi,R, θi,O), the natural parameter of the truncated bivariate
normal model (3.1); as a result, they are all amenable to post-selection inference using
the selective z-test built on the work of Lee et al. (2016). Section 3.2 discusses the
methodology in detail.

Related work

There has been much commentary on how to de�ne replicability for scienti�c experi-
ments. Valentine et al. (2011) pointed out that the de�nition should depend on the
scienti�c context. For example, sometimes one may wish to test the robustness of con-
clusions to subpopulation di�erences, but in other times, to changes in experimental
conditions. Goodman, Fanelli, and Ioannidis (2016) expanded on this, and gave a few
useful de�nitions for what replicability is, such as methods reproducibility, results repro-
ducibility, inferential reproducibility, etc., but stopped short of an operational statistical
criterion for replicability. False directional claims and e�ect shift can be loosely inter-
preted as inferential and results reproducibility, respectively.

Operationally, Valentine et al. (2011) and Nosek and Errington (2017) proposed the
metrics used in RP:P and Camerer et al. (2018), a similar replication e�ort in experi-
mental economics. These metrics however su�er the shortcomings discussed earlier, in
that they do not answer a concrete statistical question and cannot disentangle selection
bias from other explanations.

In this chapter, our de�nitions of replicability are inspired primarily by the statistical
literature on multiple testing and meta-analysis, such as the estimator in Storey (2002),
the FDP and directional FDP from Benjamini and Hochberg (2000) and Benjamini and
Yekutieli (2005), and the partial conjunction testing framework of Benjamini and Heller
(2008) and Heller et al. (2007). Related error rates have also been estimated before:
Jager and Leek (2013) have modeled the p-value distributions under alternatives and the
selection for statistical signi�cance to estimate the FDR in the medical literature, accom-
panied by useful discussions from Gelman and O'Rourke (2013), Goodman (2013), and
Ioannidis (2013); in addition, Camerer et al. (2018) used Bayesian methods to estimate
the false positive rate, instead of the FDR, for published social science results in Nature
and Science.

Furthermore, there are many past e�orts to model and quantify selection bias, speci�-
cally using the RP:P dataset. For instance, Johnson et al. (2017) considered a publication
bias model where the probability of publication is a step function of the p-value, which is
generalized nonparametrically in Andrews and Kasy (2018). The two analyses estimated
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that a statistically signi�cant result was 200 (Johnson et al., 2017) or 30 (Andrews and
Kasy, 2018) times as likely to be published as a statistically insigni�cant one.

Adjusting for selection, van Aert and van Assen (2017, 2018) have combined the
evidences from both the original and replication experiments to provide estimates for
the e�ect sizes. Speci�cally with a truncated Gaussian model, Etz and Vandekerckhove
(2016) have also analyzed the RP:P dataset from a Bayesian perspective, and investigated
the discrepancies between the original and replication studies. Our analysis provides a
complementary point of view with frequentist hypothesis testing without any prior on
the e�ect sizes, with the help of recent advances in post-selection inference, including
primarily the selective z-test framework of Lee et al. (2016).

Outline

Section 3.2 details the methodology and assumptions used in this analysis, and is some-
what technical. Section 3.3 applies the developed methodology to the RP:P dataset,
summarizes and interprets the results. Section 3.4 concludes.

3.2 Methodology

In this section we will construct an estimator for directional FDP, a test for the e�ect
shift in replication i and an estimator for the proportion of e�ect sizes that declined.
We also use X ≥st Y to denote that X is stochastically larger than Y . The index i is
suppressed when there is no risk of ambiguity.

Since we need a well-de�ned notion of direction to consider the proportion of false
directional claims, we restrict our attention to univariate tests, namely z-, t-, F (1, ·)-
tests or correlations. Thus, studies that are not univariate or have p-values greater than
α0 = 0.05 are discarded: our estimates and analyses below consider only the m = 68
remaining studies with univariate structure and conventionally signi�cant original p-
values.

Selection bias model

Model (3.1) assumes that results are only published if they achieved statistical signif-
icance at some conventional threshold level α0, which is 0.05 in our data. While this
assumption is not literally true in the case of RP:P since some original p-values are above
0.05, we note that the model can be relaxed to the following milder assumption:

Assumption 1. pO < α0 is �signi�cant enough�: that is, not all results with signi�cant
p-values are necessarily published, but a result with pO < α0 would have been equally
likely to be published (or selected for replication), had the p-value taken on some other
statistically signi�cant value.
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If Assumption 1 holds, then we can model the original test statistics as following
their theoretical distribution, truncated to the event where the corresponding p-values
are below α0, as in Model 3.1.

Note that Assumption 1 contemplates a fairly straightforward mechanism for selection
on statistical signi�cance, which may not be adequate to describe the e�ects of more
complex and di�cult-to-model QRPs. In particular, p-hacking � the iterative tweaking
of an analysis until the p-value drops below the researcher's desired signi�cance level
α0 � is commonly suspected to produce a pileup of p-values just below the signi�cance
threshold (see e.g. Simonsohn, Nelson, and Simmons, 2014a). Because p-hacking is such
a vaguely de�ned practice, it is unclear how we might incorporate it into our model, but
in any case there is no evidence of a pileup just below 0.05 in the original RP:P studies
(see Figure 3.6a).

False directional claims

We will adapt the method in Storey (2002) to estimate the directional FDP while account-
ing for selection bias. Furthermore, if we believe the chosen studies are representative
of the publications in the journal or discipline (e.g. Stroebe, 2016), then this estimator
can also be regarded as an estimator for the journal-wide or discipline-wide directional
false discovery rate (FDRdir), the expectation of the directional FDP (Benjamini and
Yekutieli, 2005).

Adjusting for selection bias While dividing a post-selection p-value by α0 intuitively
adjusts for selection, it is not immediately valid when the null is one-sided with a true
e�ect not on the boundary. We demonstrate below that this adjustment typically remains
valid even in this case.

Recall that a valid p-value is a random variable that is stochastically larger than
Uniform[0, 1] (i.e. superuniform) under the null hypothesis. If we only observe the original
p-value when it is signi�cant, it is not superuniform after selection under HS,O, and it
is therefore not valid for testing the hypothesis of a false directional claim. To adjust
these p-values for selection, we follow the principle in Fithian, Sun, and Taylor (2014)
by conditioning on the event that the p-values are selected, and also on the variable
S = sign(θ̂O) which determines the hypothesis HS,O that we test. We consider two
cases: when the original study is a one-sided test and when it is a two-sided test. As we
will see, the adjustment in either case is to divide by α0.

First we consider the case where the original study was a one-sided test. Assume
pO is a p-value for a test of the hypothesis H0 : θO ≤ 0, in which case S = +1
deterministically (the opposite case with H0 : θO ≥ 0, and S = −1 deterministically, is
directly analogous). Suppose pO is the original p-value, which we observe only when it
is signi�cant at the conventional threshold, i.e. when pO < α0. Under mild assumptions
satis�ed by both z-tests and t-tests,5 pO ≥st Uniform[0, α0] under H

S,O, in which case
pO/α0 ≥st Uniform[0, 1].

5namely, that the test statistic has monotone likelihood ratio in the parameter
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Next we consider the case where pO is a p-value for a two-sided test of H0 : θO = 0,
and where S = +1 (the case with S = −1 is analogous). If p+O was the original one-sided
p-value for H0 : θO ≤ 0, then pO = 2p+O when S = +1 (pO = 2 − 2p+O if S = −1). In
our truncated model, under the same assumptions as above and conditional on S = +1,
p+O ≥st Uniform[0, α0/2] and therefore pO/α0 = 2p+O/α0 ≥st Uniform[0, 1] under HS,O.
We write p′O = pO/α0 for the adjusted p-value.

Inference on FDP: estimate and upper con�dence bound Using the adjusted
original p-values, we can estimate the directional FDP in the original studies. Recall
from Table 3.1 that

R = #{pi,O ≤ α0} = m,

V = #{pi,O ≤ α0 and H
S,O
i is true}.

Since all of the studies were deemed discoveries, R = m is the total number of studies
here. Table 3.2 classi�es the m conventionally signi�cant studies according to whether
HS,O
i is true and whether the adjusted p-value is larger than some �xed value λ in (0, 1),

e.g. λ = 0.5.

Adjusted p-value HS,O
i is true HS,O

i is false Total

p′i,O < λ ∗ ∗ ∗
p′i,O ≥ λ U ∗ B
Total V ∗ R = m

Table 3.2: Classi�cation of the R = m signi�cant original studies. Here
only R and B are observed, and we wish to infer on V .

Note that B = #{λα0 ≤ pi,O < α0} from Table 3.2 is observable, while V and U are
not. Under the one-sided null, the p-value is superuniform, and so

B ≥st U ≥st Binomial(V, 1− λ). (3.2)

As a result, E[B] ≥ (1 − λ)V and a conservative (upwardly biased) estimator of the
directional FDP is

F̂DPdir =
B

(1− λ)R
.

This estimate is conservative in the sense that it overestimates the type I error, and is
equivalent to the estimator π̂0 of the true null proportion in Storey (2002). Using λ = 0.5
and α0 = 0.05, the estimate boils down to

F̂DPdir =
2

m
·#{0.025 ≤ pi,O < 0.05}.

While the above is formally an estimator for the number of directional errors, it can
be interpreted practically as an estimate of the fraction of directional claims where either
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the direction is wrong or the e�ect has a negligible magnitude, cf. type M error from
Gelman and Carlin (2014). This is because p-values whose e�ect sizes are very close to
zero are nearly uniform and contribute to our estimator similarly as if the true e�ect
were exactly zero.

Additionally, we can exploit (3.2) to obtain an upper con�dence bound for the di-
rectional FDP, by testing the hypothesis H0 : V ≥ v0, a partial conjunction hypothesis
investigated in Heller et al. (2007). Here we combine only the coarse information of
whether each p-value is greater than λ,6 and reject for small values of B. We can com-
pute the largest v0 such that the test still accepts, which gives an upper con�dence bound
of V . Dividing this bound by R gives an upper con�dence bound for the directional FDP.

Directional FDP at smaller thresholds One proposal to address the replicability
crisis is to lower the conventional signi�cance threshold from α0 = 0.05 to some smaller
value α, such as 0.005 (Benjamin et al., 2018). As suggested by Goodman (2013), an
empirical method to evaluate the hypothetical scenario with a smaller threshold can be
helpful. We now discuss methods for inference on the directional FDP for those studies
with pO < α < α0, based on comparing the number of adjusted p-values below α with
the number above λα0, for some λ > α/α0. We call this method the external comparison
method in contrast to the earlier internal comparison method. This method will be less
conservative as we are not constrained to only using the p-values in [0, α).

Let N ≤ m denote the total number of original p-values in [0, α) ∪ [λα0, α0) (or
equivalently, the number of adjusted p-values in [0, α′)∪ [λ, 1) for α′ = α/α0). Table 3.3
classi�es these N studies according to whether HS,O

i is true and whether the adjusted
p-value is larger than λ or smaller than α′. The numbers of false directional claims
and all directional claims under the hypothetical threshold are Vα and Rα, respectively.
Auxiliary counts, Tα and W , are de�ned according to Table 3.3 as well. The directional
FDP, Vα/Rα, remains as our quantity of interest.

Adjusted p-value HS,O
i is true HS,O

i is false Total

Small (p′i,O < α′) Vα Tα Rα

Big (p′i,O ≥ λ) U W B
Total N0 ∗ N

Table 3.3: Classi�cation of the N ≤ m original studies with adjusted
p-values in [0, α′] ∪ [λ, 1]. Only Rα, B and N are observed. Auxiliary
unobserved quantities, N0, Tα and Rα, are de�ned accordingly. Our
goal is to infer on Vα.

Our method is inspired by the following stochastic inequality.

6More precisely, we count number of p-values that are greater than λ and consider its distribution
under the partial conjunction null hypothesis
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Lemma 8. Conditional on N , Tα and W , we have

B | N, Tα,W ≥st Binomial(N − Tα, β). (3.3)

Proof. All adjusted p-values are independent, and are either small (p ≤ α′) or big (p ≥ λ).
The adjusted p-values corresponding to a true null are big with probability at least β =

1−λ
1−λ+α′ . We proceed to condition on Tα andW , so they are now considered deterministic.
So the total number of big adjusted p-values, B, satis�es

B = U +W ≥st Binomial(N −N0, β) +W ≥st Binomial(N − Tα, β).

With (3.3), we can estimate N−Tα conservatively with B/β. Since Vα = N−Tα−B,
a reasonable estimator for the directional FDP is

F̂DPdir =
1− β
β
· B
Rα

.

Furthermore (3.3) gives us a 95% upper con�dence bound for the directional FDP:

FDP∗dir =
Q−B
Rα

, where Q = max{q : P[Binomial(q, β) ≥ B] ≥ 0.95}.

Proposition 9. The expectation of F̂DPdir is at least the expectation of the true direc-
tional FDP, and FDP∗

dir
is greater than the true directional FDP, with probability at least

95%.

Proof. For the estimator, we start by taking the expectation of F̂DPdir−FDPdir, condi-
tional on N , Tα and W :

E[F̂DPdir − FDPdir | N, Tα,W ] = E

[
1−β
β
B − Vα
Rα

∣∣∣∣∣N, Tα,W
]

≥ E

[
1−β
β

(N0 − Vα)− Vα
Vα + Tα

∣∣∣∣∣N, Tα,W
]

= E
[

(1− β)N0 − Vα
β(Vα + Tα)

∣∣∣∣N, Tα,W]
≥ (1− β)N0 − E[Vα | N, Tα,W ]

β(E[Vα | N, Tα,W ] + Tα)
(3.4)

≥ 0, (3.5)

where (3.4) follows from applying Jensen's inequality to the convex function f(x) =
(1−β)N0−x
β(x+Tα)

, and (3.5) follows from Vα | N, Tα,W ≤st Binomial(N0, 1− β). Taking expec-
tation on both sides completes the proof.
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For FDP∗dir, we can directly compute the probability that it is greater than FDPdir,
conditional on N , Tα and W :

P[FDP∗dir ≥ FDPdir | N, Tα,W ] = P
[
Q−B
Rα

≥ Vα
Rα

∣∣∣∣N, Tα,W]
= P[Q ≥ B + Vα | N, Tα,W ]

= P[Q ≥ N − Tα | N, Tα,W ]

≥ 0.95,

from the construction of Q. Taking expectation on both sides hence yields the desired
marginal coverage.

Remark. This proof of conservativeness actually shows something stronger than marginal
guarantees: the estimator and con�dence upper bound are both conservative condition-
ally, even when we condition on the signs Si.

Methods using replication p-values As mentioned in Section 3.1, we can use the
replication p-values in lieu of the adjusted original p-values above, providing an estimate
and con�dence bound for the frequency of when the θ̂O incorrectly predicts the replication
e�ect direction. While this approach requires potentially costly replications in future
applications, it provides valuable additional information. In particular, the replication
p-values are more likely to be free of QRPs or p-hacking that may violate our assumption
that adjusted p-values are superuniform under the null, providing more robust evidence
regarding replicability. The corresponding estimator for unadjusted replication p-values
with λ = 0.5 is

F̂DPdir =
2

m
·#{pi,R ≥ 0.5}.

E�ect shift

We will derive a test for the hypothesis HE : θO = θR at level 0.05. Our test is based
on a normal distribution, so we start by demonstrating that the e�ect size estimates
of the univariate studies can be reasonably modeled by our truncated bivariate normal
distribution in model (3.1). We classify these studies into two categories and provide a
rough rationale in our de�nition of e�ect size in each category: (1) t-tests and F (1, ·)
ANOVAs, where all independent variables are categorical; and, (2) correlations and
regressions, where one or more independent variables are continuous.

For a t-test or F (1, ·) ANOVA, we can de�ne the e�ect size as the noncentrality
parameter, scaled for cell sizes. In other words, the t-statistic is distributed as T ∼
tdf (kθ), for some real constant k chosen based on the study design. For example, k =

√
n

for a one-sample t-test. When df is su�ciently large, the t-statistic is approximated well
by a z-statistic, and distributed approximately as

T ∼ N(kθ, 1).
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For our analysis, we consider studies where the original and replication degrees of freedom
are at least 30.7

For a (partial) correlation coe�cient estimate, R, we can apply Fisher transformation
(1921; 1924) to convert it into a z-statistic, which approximately follows√

n− 3− p tanh−1(R) ∼ N(
√
n− 3− p θ, 1),

where p is the number of controlled covariates and θ is a quantity that can be taken as
the e�ect size.

In either case, the test statistic in 46 studies can be transformed to an approximate
z-score Z ∼ N(kθ, 1) for some real constant k. Additional considerations in certain
studies are detailed in the supplement.

Adjusting for selection bias We turn next to address the issue of post-selection
inference. Again, we condition on the event where the z-scores are observed, but we do
not need to condition on S as the hypothesis HE is no longer random. Since the statistic
is only observed if it is statistically signi�cant, the original and replication z-statistics
follow a truncated bivariate normal joint distribution:[

ZO
ZR

]
∼ N

([
kOθO
kRθR

]
,

[
1 0
0 1

])
1{ZO∈A}.

Here A is the selection event, which contains the statistically signi�cant values of ZO.
We are interested in testing HE : θO = θR and more generally the null hypothesis
HE,δ : θO − θR = δ, which can be inverted to yield a con�dence interval.

We cast this as a more general testing problem here to bene�t later derivations on
e�ect decline. Suppose we have a truncated bivariate distribution

Z =

[
Z1

Z2

]
∼ N

(
µ,

[
1 0
0 1

])
1{Z1∈A}, where µ =

[
µ1

µ2

]
,

and we want to test η′µ = δ for some constant vector η = (η1, η2) with η1 > 0. Test for
HE and HE,δ are special cases where η = (1/kO,−1/kR).

We can perform this general testing problem with the selective z-test, based on the
framework in Lee et al. (2016).

De�nition 3 (Selective z-test). Let η⊥ = (η2,−η1), D = η′Z and M = η′⊥Z. We now
consider M as a constant and test η′µ = δ using the test statistic D against the null
distribution

N(δ, ‖η‖2)1{
D∈ ‖η‖

2A−η2M
η1

}.
Speci�cally, we reject η′µ = δ when D is below the 0.05

2
-quantile or over the (1 − 0.05

2
)-

quantile of this null distribution.

7The choice of 30 complies with the analysis in Andrews and Kasy (2018). Further discussion on
the approximation in available in Appendix A.
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We proceed to show that this is a valid test by construction.

Proposition 10. The selective z-test de�ned in De�nition 3 has level 0.05.

Proof. Leveraging the fact that η′η⊥ = 0, we reparametrize the joint distribution of
(Z1, Z2) under the null such that δ is a parameter, i.e.[

D
M

]
=

[
η′µ
η′⊥µ

]
∼ N

([
δ
η′⊥µ

]
,

[
‖η‖2 0

0 ‖η‖2
])

1{Z1∈A}.

In particular, the event Z1 ∈ A can be rewritten as

D ∈ ‖η‖
2A− η2M
η1

.

And so the distribution of D conditional on M under Hδ
0 is a truncated Gaussian distri-

bution,
[D |M ] ∼ N

(
δ, ‖η‖2

)
1{

D∈ ‖η‖
2A−η2M
η1

}
and we obtain a valid test by rejecting when D is smaller than the 0.05

2
-quantile or larger

than the
(
1− 0.05

2

)
-quantile.

The construction above is represented graphically in Figure 3.5, in the style of Lee
et al. (2016). We can represent the observation (Z1, Z2) as a point in R2. Conditioning
on M is equivalent to conditioning on M/‖η⊥‖, which means we are now considering
the conditional distribution on the truncated line `. The test statistic D, or equivalently
D/‖η‖, indicates the position on `. Under the null that η′µ = δ, the conditional distri-
bution on ` is known and a valid p-value can be obtained, yielding the selective z-test.

Remark. It is not necessary to use 0.05
2
- and (1− 0.05

2
)-quantiles of the null distribution,

as long as the desired signi�cance level is achieved under the null distribution. For
example, a uniformly most powerful unbiased test can be used in lieu of a test with equal
tail cuto�s. Furthermore, if we are interested in a one-sided hypothesis, e.g. η′µ ≤ 0, we
can reject on one tail only. This will be particularly useful for derivations about e�ect
decline later.

Interval estimation Given a valid test φ(ZO, ZR) for testing HE,δ : θO − θR = δ, we
can obtain two intervals: a predictive interval for the replication e�ect size estimate, and
a con�dence interval for e�ect shifts.

Under the null hypothesis HE : θO = θR, P[φ(ZO, ZR) rejects] = 0.05, or equivalently,

P[{zR : φ(ZO, zR) accepts} 3 ZR] = 0.95.

Hence {zR : φ(ZO, zR) accepts} is a predictive interval for ZR, which translates to a
predictive interval for the point estimate θ̂R of the replication e�ect size.

By the duality of hypothesis testing and con�dence set, the set

{δ : HE,δ is rejected}
covers the di�erence of the original and replication e�ect sizes with probability 95%.
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z2

z1

(Z1, Z2)

η

M/‖η⊥‖

`

D/‖η‖

Figure 3.5: Graphical representation of the selective z-test. The ob-
servation (Z1, Z2) is a point and the truncation on Z1 means that the
shaded area is the support of the joint distribution (Z1, Z2). Condition-
ing on M is the same as conditioning on M/‖η⊥‖, so we now consider
the conditional distribution on the truncated line `. The test statis-
tic D indicates the position on `. Under the null HE,δ : θ1 − θ2 = δ,
the conditional distribution on ` is known and a valid p-value can be
obtained, yielding the selective z-test.

E�ect decline

We will estimate the proportion of e�ect sizes that declined by at least a fraction of ρ.
Our procedure consists of two parts: (1) for each study i, test and produce a p-value for
the hypothesis HD,ρ

i , and (2) adapt the method for the directional FDP to estimate the
proportion of HD,ρ

i that are false.

Adjusting for selection bias As with the exactness test, we condition not only on
the event where the z-scores are observed, but also on S = sign(θ̂O) as our hypothesis
HD,ρ is determined by this random variable. In other words, we consider the z-statistic
ZO to be drawn from the set A+, where A is the selection event from our test for e�ect
shift and

A+ = A ∩ R+ = {zO : zO is statistically signi�cant} ∩ R+.

Putting ZO and ZR together, they follow a truncated bivariate normal joint distribution:[
ZO
ZR

]
∼ N

([
kOθO
kRθR

]
,

[
1 0
0 1

])
1{ZO∈A+}.

By convention RP:P chose θ̂O > 0 so the hypothesis HD,ρ reduces to θi,R ≥ (1− ρ)θi,O,
or equivalently θi,R − (1− ρ)θi,O ≥ 0. This can be tested using the selective z-test with
η = (1/kO,−1/(1− ρ)kR) and rejecting on one tail only.
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Inference on e�ect decline: estimates and con�dence bounds With the result-
ing p-values, our earlier methods on directional FDP can provide an overestimate and a
upper con�dence bound for the proportion of true HD,ρ. Subtracting these from 1 yields
an underestimate and a lower con�dence bound for the proportion of false HD,ρ. On the
other hand, by considering the complement of the hypothesis HD,ρ, we can also provide
an overestimate and an upper con�dence bound for the proportion of false HD,ρ. These
estimators and bounds together provide an overestimate, an underestimate and a 90%
con�dence interval for the proportion of e�ect sizes that at least declined by a fraction
of ρ.

3.3 Re-analysis of RP:P

False directional claims

We implemented our method with λ = 0.5 to estimate the number of one-sided nulls and
the directional FDP.8 The adjusted original p-values and replication p-values are given
in Figures 3.6a and 3.6b respectively. Using the original p-values, we estimate that 22
of the 68 (32%) original directional claims are false, with a 95% upper con�dence bound
of 47%. Using the replication p-values, we estimate that 32 of the 68 (47%) original
directional claims incorrectly predict the direction of the replication e�ect, with a 95%
upper con�dence bound of 63%. In particular both of our FDP estimates are much
lower than the 64% which could be suggested by a naive reading of RP:P (e.g. Baker,
2015). These numbers are summarized again in Table 3.4 later. Furthermore, while we
can compute a lower con�dence bound, it will always be 0% as the data is obviously
consistent with many null hypotheses being slightly false.

We proceeded to evaluate the proposal to reduce the statistical signi�cance threshold
(Benjamin et al., 2018). We considered three candidates for the new threshold, 0.001,
0.005 and 0.01, using the external comparison method. The directional FDP estimates
and upper con�dence bounds are given in Table 3.4.

These estimates corroborate Benjamin et al. (2018)'s suggestion that reducing the
statistical signi�cance threshold may improve replicability, at least regarding the direc-
tional FDP of the original statistical hypotheses (of course, there is no way to account for
potential change in researcher's behavior in response to the lowered threshold). Shall this
be of interest, this method provides an empirical way to determine a better signi�cance
threshold, as no replications are needed. Nonetheless, potential e�ect heterogeneity is
often a bigger concern. In this case, we are more concerned about the directional FDP
for replications, which remains unacceptably high and requires replication experiments.
Note, however, that a replication with low power could contribute to our estimates, even
if there were no type S error.

8Choosing λ = 0.5 follows the convention in the multiple testing literature for a bias-variance trade
o�: if λ is too small, many true discoveries are counted as false; if λ is too big, the estimator can have
large variance.
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(a) Histogram of the adjusted original p-values.
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(b) Histogram of the replication p-values.

Figure 3.6: Histograms of p-values. We estimate the expected number
of true nulls in each bin by the method from Storey (2002), shown by
the horizontal red line. A net excess of p-values above this line means
false directional claims.

α
Adjusted original Replication

Est. U.C.B. Est. U.C.B.

0.001 0.4/22 = 2%† 2/22 = 9%† 6/22 = 27% 12/22 = 55%
0.005 2.2/33 = 7%† 6/33 = 18%† 12/33 = 36% 20/33 = 61%
0.01 4.4/41 = 11%† 9/41 = 22%† 16/41 = 39% 25/41 = 61%
0.05 22/68 = 32% 32/68 = 47% 32/68 = 47% 43/68 = 63%

Table 3.4: The directional FDP estimates and 95% upper con�dence
bounds, using the adjusted original and replication p-values. The sta-
tistical signi�cance level is α. The external comparison method was
used for computing the directional FDP estimates and the upper con�-
dence bounds marked with daggers(†) above, as information of p-values
between α and 0.05 can improve the precision. The estimates and upper
con�dence bounds in the �Replication� column are relatively noisy due
to the small number of p-values below the stricter rejection thresholds,
and give little basis for any conclusions.
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E�ect shift

We performed the selective z-test for the hypothesis HE : θO = θR while adjusting for
selection, where seven (15%) studies are rejected. In contrast, without adjusting for
selection, 18 (39%) studies are rejected at 0.05 signi�cance. If we wish to correct for
multiplicity, we can apply Benjamini�Hochberg procedure (1995), which rules �ve (11%)
replication studies as inconsistent with the original studies at false discovery rate 0.10.9

Applying the more stringent Holm's method (1979) to control the familywise error rate
rules only the replication of Farris et al. (2008) as inconsistent at familywise error rate
0.05.

We inverted the test for the hypothesis HE, to yield a predictive interval for ZR and
hence a predictive interval for the replication e�ect size estimate θ̂R, shown in Figure 3.7.
By de�nition HE is rejected when θ̂R is not included in the predictive interval. Adjusting
for selection generally stretches the predictive intervals, resulting in fewer rejections.

We also inverted the test for HE,δ and obtained a con�dence interval for the e�ect
shifts, θO − θR, given in Figure 3.8. By construction the null hypothesis HE : θO = θR
is rejected when the con�dence interval does not include 0. Adjusting for selection also
generally lengthens the con�dence intervals, resulting in fewer rejections.

If all procedures are replicated perfectly, we should expect to reject 5% of the tests
on average, rather than the observed 15%, and after the Benjamini�Hochberg correction,
there would be no rejection with 90% probability. In other words, while selection bias
can partly explain the discrepancies between the original and replication studies, it does
not explain all of it. Nevertheless, the RP:P data cannot be taken as strong evidence
of widespread failure by replication teams to satisfactorily repeat the same experiment
performed in the original study. The lack of strong evidence is hardly surprising: if the
original study lacks power (Morey and Lakens, 2017) or θ̂O is closed to the rejection
boundary, little can be said about θO and hence θO − θR. Furthermore, the replication
sample sizes were determined based on the original e�ect size to achieve at least 80%
in power. Selection bias in�ated the original e�ect size, leading to lower test power and
statistically insigni�cant replications (Camerer et al., 2018; Etz and Vandekerckhove,
2016). The lack of information about θO − θR is evident in generally wider con�dence
intervals after adjustment in Figure 3.8.

E�ect decline

Finally, we considered the proportion of e�ect sizes that declined. Using the selective
z-test, we tested the hypothesis HD, conditioning on the event where the z-scores are
observed and the variable S. The resulting p-values are given in Figure 3.9. Our un-
derestimate and overestimate are 35% (= 16/46) and 100% respectively, with a 90%
con�dence interval of (11%, 100%).

More generally, we used the hypothesis HD,ρ to estimate the proportion of e�ect sizes
that declined by at least a fraction of ρ. The underestimate, overestimate and the 90%

9The �ve rejected studies are Dodson, Darragh, and Williams (2008), Farris et al. (2008), Larsen
and McKibban (2008), Purdie-Vaughns et al. (2008), and van Dijk et al. (2008).
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Figure 3.7: Predictive intervals for θ̂R, both adjusted and unadjusted
for selection, overlay with a plot of θ̂R against θ̂O. Studies 36 and 145
are not shown here. By de�nition we reject H0 : θO = θR whenever the
replication e�ect size estimate lies outside of the predictive interval.
The intervals are generally longer after adjusting for selection.
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Figure 3.8: Con�dence intervals for θO − θR, both adjusted and unad-
justed for selection. By construction the null hypothesis H0 : θO = θR
is rejected when the con�dence interval does not include 0. Many of
the adjusted intervals are fairly long as either the replication studies
su�er low power or the original e�ect size estimate is near the rejec-
tion threshold. The intervals are generally longer after adjusting for
selection.
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Figure 3.9: Histogram of the p-values for the null hypothesis θR ≥ θO.
p-values to the left gives more evidence for θR < θO whereas p-values to
the right gives more evidence for θR ≥ θO. The estimate of the expected
number of null p-values within each bin is given by the horizontal red
line.

con�dence interval are given in Figure 3.10. For example, we estimate that 16 of the
46 e�ect sizes (35% (with a 95% lower con�dence bound 11%) decreased by at least
20%, even after adjusting for selection on measurement noise. Note that this does not
exclude explanations by other forms of selection, e.g. selecting a large e�ect when there
is a random e�ect.

3.4 Discussion

Importance of adjusting for selection bias

As we have seen, selection bias plays a powerful and pervasive role in shaping the data
we observe in large-scale replication studies (and, by extension, the data we observe
in published studies that have not yet been replicated!). It leads to many predictable
pathologies and should be viewed as a proverbial �elephant in the room� whenever we
discuss descriptive statistics computed from such studies. In particular, we should avoid
leaping to any conclusions about how many false claims there were in the original studies,
whether e�ect sizes declined or by how much, or which replication studies su�ered from
in�delities, until we have carefully ruled out the possibility that publication bias alone
is to blame for whatever descriptive statistic we have computed.
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Figure 3.10: The underestimate, overestimate and the 90% con�dence
interval. The lower black line is the underestimate, the high black line
is the overestimate and the gray band is the 90% con�dence interval.

Fortunately, the truncated Gaussian model, properly combined with modern multi-
ple testing and post-selection inference methods, opens many avenues for analyses that
directly answer questions about true e�ect sizes with appropriate uncertainty quanti�-
cation. We have explored several such avenues here (see also Andrews and Kasy, 2018)
but many others are possible.

Importance of statistical formality

In addition, we hope this chapter serves to advocate for the bene�ts of careful formal
statistical modeling in analyzing replication studies, in place of (or in addition to) de-
scriptive statistics. In particular, using vaguely speci�ed models or eschewing models
altogether can lead to analyses from which it is di�cult to draw �rm conclusions. For
example, in Open Science Collaboration (2015), McNemar's test was applied to a 2× 2
contingency table of whether the original and replication studies are equally likely to be
statistically signi�cant. The very small p-value reported for this test establishes noth-
ing more than that the original studies were selected to be statistically signi�cant, a
fact which is likely already known by most in the �eld. In fact, the test does not quite
establish even that, because it is unclear whether this hypothesis would be true even
without the e�ect of selection bias: The proportion of statistically signi�cant p-values
is a measure of the average power, which depends on the sample sizes, and the sample
sizes often di�ered substantially between the original and replication studies.

Another example is RP:P's use of sample correlation coe�cients between indepen-
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dent and dependent variables as a standardized measure of e�ect size for comparison
between the original and replication studies. This comparison implicitly assumes that
the distribution of the independent variable is the same in the original and replication
studies, an assumption that was violated by many of the replications. In an extreme
case, an ANOVA in Purdie-Vaughns et al. (2008) with race as one of the factors used
40 African Americans and 37 Whites, but was replicated with 120 African Americans
and 1370 Whites. With such a dramatic change in the distribution of an independent
variable, there is no reason why the correlation coe�cients should remain the same, as
illustrated in the following example.

Example 5. A study with a two-sample t-test for some treatment condition is repli-
cated. Suppose the treatment and control group are drawn from N(1, 1) and N(0, 1),
respectively. If the ratio of the two group sizes changes from one study to another, the
correlation coe�cients may di�er as well, even without any in�delities or hidden mod-
erators. Borrowing the numbers from Purdie-Vaughns et al. (2008) for instance, if the
original study contains 40 treatment and 37 control units, the true correlation coe�cient
is 0.45, whereas in a replication with 120 control and 1370 treatment units the true
coe�cient is 0.26 instead.

Replication projects similar to RP:P have since materialized, but few stated an ex-
plicit statistical hypothesis. For example, in economics, Camerer et al. (2016) used the
same �awed metric of proportion of statistically signi�cant results in the original direc-
tion. A statistical analysis with explicitly stated models and hypotheses will give us more
meaningful estimates, particularly valuable given how costly these large scale replication
e�orts are.

Interpretation of e�ect shifts

While we have proposed several methods for quantifying discrepancies between the e�ect
sizes in the original and replication studies, the data alone cannot tell us why they might
di�er. Several potential explanations include:

1. design failures, systematic biases or calculation errors in either the original or the
replication study;

2. major di�erences in experimental conditions between the original and replication
studies, which most researchers would recognize a priori as likely to a�ect the
results; which Gilbert et al. (2016b) call in�delities; and

3. minor di�erences in experimental conditions between the studies � such as lighting,
weather, or the passage of time � which cannot all be controlled but whose e�ects
may nevertheless alter the true e�ect size in unforeseeable ways, often referred to
as hidden moderators (e.g. Srivastava, 2015).

While there may be no sharp distinction in principle between in�delities and hidden
moderators, there is a scienti�cally crucial di�erence between moderating factors that can
be anticipated by experimenters and those that cannot. If we can anticipate in advance
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when replications are likely to fail by carefully evaluating their designs, we might hope to
solve the problem simply by being more careful in setting up experiments. By contrast,
if hidden moderators confound most attempts to replicate most psychological studies, it
would raise profound questions about the entire enterprise of experimental psychology. In
the extreme case, if even trivial changes to those conditions have large and unpredictable
e�ects on most phenomena of interest, we might begin to despair of gaining generalizable
knowledge about psychology through laboratory experimentation.

Our analyses point to several conclusions regarding e�ect shifts: First, that there are a
few studies where we can be con�dent the e�ect in the replication study was signi�cantly
di�erent than in the original study; second, that in aggregate, when e�ects do shift, they
tend to decline (shift toward zero) in replications rather than increase; and third, that
there is insu�cient evidence to conclude that the vast majority of experimental e�ects
simply evaporated upon replication. In particular, 83% should not be treated as a
reasonable estimator of the fraction of true e�ect sizes that declined; rather, it likely
re�ects that the estimates in the original studies overestimated their corresponding true
e�ects due to selection bias.

One possible explanation for systematically declining e�ect involves a subtler form
of selection bias, where every experiment's e�ect size is random, bu�eted by hidden
moderators, and those experiments whose moderators primarily magnify the e�ect size
are more likely to be published. That is, in the same way that experimenters select
studies whose sampling error is large, they also selects for studies whose true e�ect
size is larger than usual. Further systematic replication studies may help to shed light
on which factors are most often the culprits in moderating true e�ect sizes, possibly
improving the reliability of experiments and leading to new scienti�c insights (Barrett,
2015; Klein et al., 2018).

Future work

As large-scale replicability studies are becoming more common in assessing the �well-
being� of a scienti�c domain, this chapter serves as a stepping stone for improving
methodologies in future replicability studies.

First, selection for signi�cance is an inevitable consequence of the current scienti�c
process. Our adjustments for selection is admittedly crude, but necessitated by the
limitations in the given data. With more available information, a better model for
selection can be used. For example, with the advancement of preregistration, we can use
the external comparison method to produce less conservative estimates of the directional
FDP at level α = 0.05 if we have more information about statistically nonsigni�cant
studies. With more replications carried out, we can estimate the publication bias model
in Andrews and Kasy (2018) more precisely; together with higher powered design in
replications (e.g. Camerer et al., 2018), we can enhance the precision of our estimators
and power of our tests.

Second, we emphasized the importance of statistical formality. Our proposed criteria
are based on clearly de�ned parameters. While these criteria may not suit all needs in
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future replicability studies, additional formal hypotheses can also be analyzed under the
post-selection inference framework similarly.

With our proposed criteria and procedures, researchers can perform more informative
inferences than the current practice, and provide a clearer picture of the replicability
crisis.

Reproducibility

A git repository containing with the code generating the images in this chapter is available
at https://github.com/kenhungkk/assessing-replicability.git.

Supplement

The supplement is available in the git repository, or directly on https://github.com/

kenhungkk/assessing-replicability/raw/public/supplement.pdf. The discussion
of t-distribution approximations is also included in the appendix of this dissertation.

https://github.com/kenhungkk/assessing-replicability.git
https://github.com/kenhungkk/assessing-replicability/raw/public/supplement.pdf
https://github.com/kenhungkk/assessing-replicability/raw/public/supplement.pdf
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Chapter 4

Optimal Post-Selection Combined

Inference

4.1 Introduction

There is a recent surge of interest in replicability research in many social science domains,
such as psychology and economics. Experiments are selected and repeated in attempts
to determine the validity of the original �ndings, e.g. Camerer et al. (2016), Klein et al.
(2018), and Open Science Collaboration (2015). Statisticians developed to investigate
the discrepancies between the original experiments and the replications, e.g. Andrews and
Kasy (2018), Etz and Vandekerckhove (2016), Hung and Fithian (2019b), and Johnson
et al. (2017).

These replication e�orts provided a side bene�t to the scienti�c community: with
more replications, e�ect sizes can be estimated more precisely by combining the original
experiments and replications. In some cases where many replications are performed (e.g.
Klein et al., 2018), all of the replication experiments and the original experiment can be
aggregated for a better estimate.

Historically there have been many methods for combining experiments to provide
better inferences. A classical method is Fisher's combined test (1925), which combines
the logarithms of the p-values of individual experiments. However, as the original exper-
iments are selected in the publication process, or selected to be replicated based on its
statistical signi�cance, the p-values tend smaller and classical combination methods like
Fisher's do not account for this bias.

To adjust the original p-value pO, a truncated model is often used (Andrews and
Kasy, 2018; Hung and Fithian, 2019b; van Aert and van Assen, 2018). In particular, the
p-value can be conveniently adjusted by division by the statistical signi�cance threshold,
α0, under mild conditions discussed in Hung and Fithian. van Aert and van Assen
proposed to consider the sum of the adjusted original p-value, p′O, and the replication
p-value, pR, as a test statistic, as p′O + pR follows the Irwin�Hall distribution under the
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null.1

Note that there are many potential ways to combine p′O and pR, e.g. Fisher's com-
bined test. Di�erent combination methods may have more power against di�erent alter-
native hypotheses. To choose a combination method, there are two main considerations:
(1) type of optimality in the test or estimator; (2) importance of di�erent experiments.
Since all experiments investigate a univariate parameter with two-sided alternatives, a
uniformly minimal variance unbiased (UMVU) estimator is often considered optimal.
For a univariate test, a uniformly most powerful unbiased (UMPU) test is commonly
considered optimal, where for a simple null H0 : θ = θ0,

β(θ0) ≤ α, β(θ) ≥ α for all θ 6= θ0,

α is the level of the test and β is the power function. The methods in van Aert and
van Assen (2018), however, do not meet these optimality criteria.

Furthermore, van Aert and van Assen (2018) weighs the original experiment and
replication equally, regardless of their sample sizes. Consider an extreme scenario where
the replication has a sample size approaching in�nity. The power of their test does not
approach 1 as the adjusted original p-value p′O has a non-vanishing probability of being
bounded away from 0; meanwhile the asymptotic power using only the replication is 1.

Related work

Our method is inspired by the conditional inference framework proposed in Fithian, Sun,
and Taylor (2014). In particular, we model the selection process are require the same as-
sumption as in Hung and Fithian (2019b). We restate their assumption in Assumption 2
for readers' convenience.

Assumption 2. pO < α0 is �signi�cant enough�: that is, not all results with signi�cant
p-values are necessarily published, but a result with pO < α0 would have been equally
likely to be published (or selected for replication), had the p-value taken on some other
statistically signi�cant value.

Furthermore, our methods are guided by ideas from mathematical statistics, such as
su�cient statistics2 and Rao�Blackwell theorem (1947). Finally, when selection bias is
absent, our test and estimator coincide to the weighted inverse normal method by Lipták
(1958).

Outline

We start by investigating a Gaussian model in Section 3.2, and extend it to sample
correlation coe�cients later. Section 4.3 simulates 1000 sample correlation coe�cients

1More precisely, the sum should be stochastically larger than the Irwin�Hall distribution under the
null, because the null does not need to be simple.

2For a brief introduction or review, see Keener (2010).
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to illustrate the performance of our methods when compared to van Aert and van As-
sen (2018) and using only the replication, and to justify approximations involved in
converting correlation coe�cients to Gaussian variables. Section 3.4 concludes.

4.2 Methodology

We start with a Gaussian model. We set up our statistical model in the same way as
Hung and Fithian (2019b): suppose the true parameter is θ, and we have noisy Gaussian
observations, ZO from the original study and ZR from the replication, with variances σ2

O

and σ2
R respectively. However, due to selection bias, the observation pair (ZO, ZR) is only

observed when the original experiment is statistical signi�cant, i.e. when ZO ≥ c = σOzα0 ,
where zα0 is the upper α0-quantile of a standard normal distribution. For simplicity we
assume this selection is one-sided, and hence ZO distributes according to

ZO ∼ N(θ, σ2
O)1{ZO≥c},

where the indicator function means truncation and renormalization of the distribution.
Meanwhile, ZR is free from selection bias, and distributes as

ZR ∼ N(θ, σ2
R).

For sample correlation coe�cients, RO and RR, they can be Fisher tranformed (1921)
into approximately Gaussian distributed statistics,

ZO = tanh−1RO, and

ZR = tanh−1RR,

with variances σ2
O = 1/(nO − 3) and σ2

R = 1/(nR − 3).
The joint distribution is thus a truncated bivariate Gaussian(

ZO
ZR

)
∼ N

((
θ
θ

)
,

(
σ2
O 0
0 σ2

R

))
1{ZO≥c}. (4.1)

Observe that this joint distribution can be viewed as an exponential family, as elucidated
by the probability density function (p.d.f.):

pθ(zO, zR) = exp

(
−(zO − θ)2

2σ2
O

− (zR − θ)2

2σ2
R

)
1{zO≥c}A(θ)

= exp

((
zO
σ2
O

+
zR
σ2
R

)
θ

)
g(zO, zR)Ã(θ),

where some A(θ) and Ã(θ) are normalizing constants that depend only on θ, and g is a
function of only zO and zR.

In fact, we can see that S = ZO/σ
2
O + ZR/σ

2
R is a su�cient statistic for the natural

parameter θ, forming the groundwork of an optimal estimator and an optimal test.
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Estimator Starting from an unbiased estimator, we can Rao�Blackwellize (1947) to
obtain a UMVU estimator by taking its expectation conditioned on a su�cient statistic.
Since ZR is free from selection bias, it is an unbiased estimator of θ. Hence the UMVU
estimator is given by

θ̂UMVU = E[ZR |S] = E
[
ZR

∣∣∣∣ ZOσ2
O

+
ZR
σ2
R

]
. (4.2)

An explicit formula for the conditional expectation in θ̂UMVU can be obtained by an
orthogonalization trick: we can reparametrize the joint distribution (4.1) as[

ZO − ZR
S

]
∼ N

([
0

(1/σ2
O + 1/σ2

R) θ

]
,

[
σ2
O + σ2

R 0
0 1/σ2

O + 1/σ2
R

])
1{ZO≥c}, (4.3)

where the truncation event can be further rewritten as {ZO ≥ c} = {ZO − ZR ≥ a(S)},
where

a(S) =
σ2
O + σ2

R

σ2
O

c− Sσ2
R.

The conditional expectation in (4.2) is thus

E[ZR |S] =
σ2
R

σ2
O + σ2

R

E
[
σ2
OS − (ZO − ZR)

∣∣S]
=

σ2
Oσ

2
R

σ2
O + σ2

R

S − σ2
R

σ2
O + σ2

R

E[ZO − ZR |S]

=
σ2
Oσ

2
R

σ2
O + σ2

R

S − σ2
R√

σ2
O + σ2

R

φ
(
a(S)

/√
σ2
O + σ2

R

)
Φ̄
(
a(S)

/√
σ2
O + σ2

R

) ,
where φ(·) and Φ̄(·) are the p.d.f. and the survival function of a standard Gaussian,
respectively. Note that the �rst term is in fact the estimate if there were no publication
bias, and is the inverse-variance weighted average of the observations, ZO and ZR.

For investigating a true correlation, say r, a UMVU estimator for the Fisher trans-
formed true correction, θ = tanh−1 r can be computed, which can be transformed back-
wards to give an estimate for the true correlation. If the observed correlations are RO

and RR, then the estimator is

r̂�UMVU� = tanhE
[
tanh−1RR

∣∣∣∣ tanh−1RO

nO − 3
+

tanh−1RR

nR − 3

]
.

Note that this is neither unbiased nor UMVU. Alternatively, we can Rao�Blackwellize
an unbiased estimator, such as the estimator in Olkin and Pratt (2007). However, the
conditional expectation is harder to compute. For most applications in social sciences
where r is small, the bias in the estimator r̂�UMVU� tends to be small, as illustrated in
simulations in Section 4.3.
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Test Since the distribution in (4.1) is a one-parameter exponential family, we can derive
a UMPU test based on the su�cient statistic S, in the form of{

reject if S ≤ a or S ≥ b

accept otherwise,

where a and b are threshold chosen such that

Pθ=0[S ≤ a or S ≥ b] = α, (4.4)

∂

∂θ
Pθ[S ≤ a or S ≥ b] = 0. (4.5)

4.3 Simulation

We investigate the performance of our estimator and test by a Monte Carlo simulation.
Each of the 1000 sample correlation coe�cients is generated by passing Gaussian random
numbers through Fisher transformation. Three estimators or tests are applied to the
generated sample: (1) the hybrid method from van Aert and van Assen (2018), (2) testing
or estimating using only the replication, and (3) the �UMVU� estimator or the UMPU
test. For a fair comparison, we use the same range of original sample size nO, the
same range of replication sample size nR, the same range of true correlation and the
same signi�cance threshold α0 as in van Aert and van Assen. The biases and root-
mean-square-errors (RMSEs) of the estimators are given in Figure 4.1 and Figure 4.2
respectively, and the type I error rates or powers of the tests are given in Figure 4.3.

Figure 4.1 shows a generally negative bias for both our �UMVU� estimator and us-
ing only the replication, stemming from the concavity of inverse Fisher transformation.
However, our �UMVU� estimator is more concentrated, which alleviates this bias. Fi-
nally, Figure 4.2 shows that our �UMVU� estimator gives a smaller RMSE compared to
the hybrid method and using only the replication.

For the test, Figure 4.3 demonstrates that our UMPU test achieves higher power
than both the hybrid method and using only the replication data. In particular, when
the original experiment has more samples than the replication (nO > nR), our method
makes use the original study and thus performs better than using only the replication.
On the other hand, when the replication has more samples than the original experiment
(nR > nO), our method does not weigh the two experiments equally. Therefore it
outperforms the hybrid method and performs more similar to using just the replication.

4.4 Discussion

With the high cost involved in social science experiments, every additional bit of infor-
mation is valuable. We presented an optimal method for combining two experiments,
that does not discard any information and always outperforms both the hybrid method
in van Aert and van Assen (2018) and using only the replication data.
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Figure 4.1: Bias for various settings of nO, nR and ρ, for an estimator
using only the replication, the hybrid method and our �UMVU� esti-
mator. Note that even using only the replication leads to a negative
bias due to the concavity of Fisher transform for positive correlations.
Our estimator has the least bias across various sample sizes and various
correlation strengths.
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Figure 4.2: RMSEs for various settings of nO, nR and ρ, for an esti-
mator using only the replication, the hybrid method and our �UMVU�
estimator. Our estimator has smallest RMSE across various sample
sizes and various correlation strengths.

The method can in fact be easily extended to setups with multiple replications (e.g.
Klein et al., 2018), as the joint distribution of observations remains an exponential
family. However, the implicit assumption that both experiments measured the same
true parameter becomes less plausible as the number of replications increases, and a
�xed e�ect model as used in this chapter may be less appropriate.

Finally, Assumption 2 requires that the original experiment to be statistical sig-
ni�cant, but in some replicability studies, such as Open Science Collaboration (2015),
studies close to signi�cance (e.g. p ∈ [0.05, 0.055]) are included. Our method can be
generalized to provide an estimate in such cases, if a more sophisticated selection model
(e.g. Andrews and Kasy, 2018) is given.
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Figure 4.3: Type I error rate or power for various settings of nO, nR
and ρ, for a test using only the replication, the hybrid method and
our UMPU test. When the original experiment has more samples than
the replication (nO > nR), our method makes use the original study
and thus performs better that using only the replication. On the other
hand, when the replication has more samples than the original exper-
iment (nR > nO), our method does not weigh the two experiments
equally. Therefore it outperforms the hybrid method and performs
more similar to using just the replication information. Our method
is the most powerful generally across various sample sizes and various
correlation strengths.
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Chapter 5

Discussion

This dissertation included a few examples of conditional inference in application to post-
selection inference, arising from either data-dependent hypothesis or data screening.
Conditional inference, and sometimes more generally post-selection inference, can be a
powerful tool in statistics.

First, in the motivating example in Chapter 2, the hypotheses are innately dependent
on the data. Deterministic hypotheses, such as πCruz ≤ maxi 6=Cruz πi, can be uninterest-
ing. At times, e.g. when Trump receives more votes than Cruz in the poll, considering
these deterministic hypotheses can be even silly. Conditional inference allows rigorous
testing of these hypotheses, even when they are traditionally considered ill-de�ned and
untestable.

Second, an unintended bene�t of conditional inference is that the data itself can play
a role in choosing a test, and hence focus the statistical power against more �likely�
alternatives. In Chapter 2, we observe the top two order statistics and their indices.
This enables us to use that particular di�erence as the test statistic, as opposed to
Gupta and Nagel (1967) that considers the maximum of all di�erences between the
largest observation and other observations as the test statistic.

Third, with the abundant data available but one's limited attention, conditional
inference let us screen the data before analysis. In Chapter 3, not all publications on
the three psychology journals are replicated due to limited resources. In the end the
selected experiments are mostly statistical signi�cant, but we can nonetheless analyze the
discrepancies between the original and replication experiments, free from the inevitable
selection bias. A similar �avor of hypothesis testing after screening the given data can
be found in Zhao, Small, and Su (2018) for global null testing.

Fourth, conditional inference allows us to make full use of the leftover information
(Fithian, Sun, and Taylor, 2014). In Chapter 4, while part of the information is lost due
to the selection bias on the original experiment, we do not need to forgo the original
experiment altogether. With conditional inference, we are able to optimally combine the
leftover information of the original experiment and the replication to give a test and an
estimator that demonstrably outperform the existing methods.

As the typical dataset size skyrockets, the common data analysis process becomes
more complex and more data-dependent. While the topics of conditional inference pre-
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sented may seem idealized in comparison, the increasing computation power and theo-
retical advances can realize more complex versions of these ideas to provide more and
better inferences.
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Appendix A

Appendix for Chapter 3

To investigate how well the normal approximation works to t-distributions, we �rst con-
sider the typical degrees of freedom for the t-distributions. Figure A.1 shows the degrees
of freedom in the original and replication experiments where both are at least 30. All
but one study pair falls in the blue region, and hence the grid points marked by �+� are
generally representative.

For each grid point, we simulate a pair of one-sided t-tests with the same e�ect sizes.
We generate

TO ∼ tdfO(ncpO)1{|TO|>tdfO,α/2} and TR ∼ tdfR(ncpR).

Since the original sample size is typically chosen to achieve a certain power, we assume
ncpO stays small. The type I error rate of the selective z-test is given in red in Figure A.2.
The type I error rate can deviate from 0.05 as the noncentrality parameter grows.

This deviation is caused by inaccuracy of approximating a noncentral t-distribution
with a location-shifted standard Gaussian. We propose a �nite sample correction by
approximating the distribution of TO with

TO ∼ tdfO(ncpO)1{|TO|>tdfO,α/2} ≈ N

(
ncpO, 1 +

2ncp2O
dfO

)
1{|TO|>tdfO,α/2}

and approximating the distribution of TR similarly. Note that the distribution of the
test statistic relies on the unknown noncentrality parameter, which we replace with a
plug-in estimator based on TR: TR can stand in for ncpR, as well as ncpO through the
common e�ect size. The resulting type I error rate behaves better and is given in blue
in Figure A.2.

With the �nite sample correction, �ve (11%) studies are rejected. Controlling the false
discovery rate at 0.10, we apply Benjamini�Hochberg procedure (1995) and rule four (9%)
replication studies as inconsistent with the original studies, namely Dodson, Darragh,
and Williams (2008), Farris et al. (2008), Purdie-Vaughns et al. (2008), and van Dijk et
al. (2008), generally in line with our results without the �nite sample correction. Farris
et al. (2008) remains rejected at familywise error rate 0.05. To check if our assumptions
still hold reasonably well, we recreate Figure A.2 with the e�ective p-value threshold of
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Figure A.1: Degrees of freedom in the original and replication experi-
ments where both are at least 30, on log-scale. The blue region covers
all but one study pair, and hence the grid points we choose, marked as
�+�, are generally representative.

0.004 (= 4
46
· 0.05) used in Benjamini�Hochberg procedure and 0.001 (= 1

46
· 0.05), given

in Figure A.3 and Figure A.4 respectively.
For sake of completeness, we repeat the above plots speci�cally for the outlier (Study

97; Purdie-Vaughns et al., 2008) with exceptionally large replication degree of freedom,
in Figure A.5.

Our overestimate, underestimate and con�dence interval for the proportion of e�ect
sizes that declined remain the same, but we now estimate conservatively that 14 (30%)
of the e�ect sizes declined by at least 20% with a 95% lower con�dence bound of three
(7%).
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Figure A.2: The type I error rate as a function of the noncentrality
parameter, based on a simulation. The type I error rate of the simple
selective z-test is in red, which can deviate from 0.05 when the noncen-
trality parameter is large. The type I error rate of the selective z-test
with our proposed �nite sample correction is in blue, and stay mostly
controlled. Extreme di�erences in degrees of freedom, as indicated by
the gray background, is absent.
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Figure A.3: The type I error rate as a function of the noncentrality
parameter, based on a simulation. The type I error rate of the sim-
ple selective z-test is in red, which can deviate from 0.004 when the
noncentrality parameter is large. The type I error rate of the selective
z-test with our proposed �nite sample correction is in blue. Extreme
di�erences in degrees of freedom, as indicated by the gray background,
is absent.
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Figure A.4: The type I error rate as a function of the noncentrality
parameter, based on a simulation. The type I error rate of the sim-
ple selective z-test is in red, which can deviate from 0.001 when the
noncentrality parameter is large. The type I error rate of the selective
z-test with our proposed �nite sample correction is in blue. Extreme
di�erences in degrees of freedom, as indicated by the gray background,
is absent.
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Figure A.5: The type I error rate as a function of the noncentrality
parameter, based on a simulation. The type I error rate of the simple
selective z-test is in red and the type I error rate of the selective z-test
with our proposed �nite sample correction is in blue. The error rate
is evaluated for a test with the nominal level, the e�ective level from
Benjamini�Hochberg procedure and from Bonferroni correction.
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Appendix B

Appendix for Chapter 4

A useful function in implementing the UMPU test is the cumulative distribution function
of S under θ,

Fθ(s) = Pθ[S ≤ s].

From (4.3), Fθ(s) can be expressed as

Fθ(s) =

∫ s
−∞ Φ̄0,σ2

O+σ2
R

(a(s))φ(1/σ2
O+1/σ2

R)θ,1/σ
2
O+1/σ2

R
(s) ds

Φ(c/σO)
,

where φµ,σ2(·) and Φ̄µ,σ2(·) are the p.d.f. and the survival function of N(µ, σ2). The
condition (4.4) can be rewritten as Fθ(a) + 1− Fθ(b) = α and (4.5) as

∂

∂θ
(Fθ(a) + 1− Fθ(b)) = 0

∂

∂θ
Fθ(a) =

∂

∂θ
Fθ(b).

Since ∂Fθ(s)/∂θ is a unimodal function in s, we can perform a grid search for a and b
such that the conditions above are satis�ed in linear time.
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