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OpenKBP-Opt: an international and reproducible evaluation of 
76 knowledge-based planning pipelines

A full list of authors and affiliations appears at the end of the article.

Abstract

Objective.—To establish an open framework for developing plan optimization models for 

knowledge-based planning (KBP).

Approach.—Our framework includes radiotherapy treatment data (i.e. reference plans) for 100 

patients with head-and-neck cancer who were treated with intensity-modulated radiotherapy. That 

data also includes high-quality dose predictions from 19 KBP models that were developed by 

different research groups using out-of-sample data during the OpenKBP Grand Challenge. The 

dose predictions were input to four fluence-based dose mimicking models to form 76 unique 

KBP pipelines that generated 7600 plans (76 pipelines×100 patients). The predictions and KBP-

generated plans were compared to the reference plans via: the dose score, which is the average 

mean absolute voxel-by-voxel difference in dose; the deviation in dose-volume histogram (DVH) 

points; and the frequency of clinical planning criteria satisfaction. We also performed a theoretical 

investigation to justify our dose mimicking models.

Main results.—The range in rank order correlation of the dose score between predictions 

and their KBP pipelines was 0.50–0.62, which indicates that the quality of the predictions was 

generally positively correlated with the quality of the plans. Additionally, compared to the input 

predictions, the KBP-generated plans performed significantly better P<0.05; one-sided Wilcoxon 

test) on 18 of 23 DVH points. Similarly, each optimization model generated plans that satisfied 

a higher percentage of criteria than the reference plans, which satisfied 3.5% more criteria than 

the set of all dose predictions. Lastly, our theoretical investigation demonstrated that the dose 

mimicking models generated plans that are also optimal for an inverse planning model.

Significance.—This was the largest international effort to date for evaluating the combination of 

KBP prediction and optimization models. We found that the best performing models significantly 

outperformed the reference dose and dose predictions. In the interest of reproducibility, our data 

and code is freely available.

1. Introduction

Automated radiotherapy planning is transforming clinical practice and personalized cancer 

treatment (Moore 2019). The most common type of automated planning is knowledge-based 

planning (KBP), which leverages knowledge derived from historical clinical treatment plans 

to generate new treatment plans without human intervention (Cornell et al 2020, Kaderka et 
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al 2021, McIntosh et al 2021). Most common KBP methods are formulated as a two-stage 

pipeline (see figure 1) that first predicts the dose that should be delivered to a patient 

(Kearney et al 2018, Nguyen et al 2019) and then converts that prediction into a treatment 

plan via optimization (Babier et al 2021a, Eriksson and Zhang 2022). Both stages of 

this pipeline, which are active areas of research, can significantly affect the quality of 

generated treatment plans (Babier et al 2020). The contributions of this paper are twofold: 

(1) to provide data that supports KBP optimization research at scale and (2) to establish 

a connection between dose mimicking (a type of KBP optimization) and conventional 

planning methods. We expand on the impact of these contributions throughout this paper.

Comparing the quality of competing KBP models from the research community is difficult 

because the vast majority of research is conducted with large private datasets, as noted 

in several reviews (Hussein et al 2018, Ge and Wu 2019, Wang et al 2020, Momin et al 

2021). To help address this issue, the Open Knowledge-Based Planning (OpenKBP) Grand 

Challenge was organized to facilitate the largest international effort to date for developing 

and comparing dose prediction models on a single open dataset (Babier et al 2021b). The 

OpenKBP dataset, which includes data for 340 patients with head-and-neck cancer who 

were treated with intensity modulated radiotherapy (IMRT), is limited to dose prediction 

research (i.e. it is incompatible with KBP optimization research). Although there are still 

no open datasets for KBP optimization research, there are two open datasets that support 

research in other areas of plan optimization (Craft et al 2014, Breedveld and Heijmen 2017). 

However, it is challenging to use these datasets in KBP plan optimization research for 

two reasons. First, neither dataset includes dose predictions, which are the input to KBP 

plan optimization models. Second, they are small datasets (123 patients total) that span 

multiple sites (prostate, liver, and head-and-neck) and multiple modalities (CyberKnife, 

volumetric modulated arc therapy, proton therapy, and IMRT). While such a diversity 

in cases is important to demonstrate the robustness and generalizability of optimization 

algorithms across sites and modalities, this same diversity is a disadvantage when it comes 

to training dose prediction models, since there is insufficient data for any one site-modality 

pair (Boutilier et al 2016).

There are several types of KBP optimization models that translate dose predictions into 

treatment plans. One major type of KBP optimization model is dose mimicking, which 

generally generates a plan that is similar to an input prediction based on linear (Kierkels et 

al 2019) or quadratic (McIntosh et al 2017) differences. Another type of KBP optimization 

model is inverse planning weight estimation, which optimizes patient-specific parameters 

that make an input dose prediction optimal in a conventional planning model (Chan et 

al 2014). However, both types of models can also use information beyond a single dose 

prediction. For example, dose mimicking models can incorporate parameters that reflect the 

uncertainties in a predicted dose distribution (Zhang et al 2021). Similarly, inverse planning 

weight estimation models can incorporate an ensemble of dose predictions to leverage the 

combined wisdom of multiple predictions (Babier et al 2021a). Note that these optimziation 

models make dose predictions an intermediate step in a KBP pipeline.

Most KBP pipelines are developed as fully-automated pipelines that can replace human 

treatment planners in the planning process (McIntosh et al 2017, Fan et al 2019, Bai 
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et al 2020, Wortel et al 2021). These approaches have demonstrated promising results 

in prospective research studies where a sizeable portion of KBP-generated plans were 

considered inferior to human-generated plans, which suggests that there is an opportunity 

for improvement (Cornell et al 2020, McIntosh et al 2021). In those cases, making manual 

adjustments to the KBP-generated plan is non-trivial because they are generated by fully-

automated pipelines that rely on the quality of the data. In contrast to fully automated 

pipelines, semi-automated pipelines rely on both the quality of data and human expertise, 

which puts less reliance on the data. For example, a semi-automated KBP pipeline could 

enable human planners to improve upon a KBP-generated plan via an intuitive process 

(e.g. inverse planning) and thereby provide a pipeline that leverages both data and human 

expertise.. In the KBP literature, however, there are relatively few papers that describe tools 

that humans can intuitively interact with in semi-automated KBP pipeline (Babier et al 2018, 

Bohara et al 2020, Kaderka et al 2021, Zhang et al 2022).

In this paper, we extend the results from the OpenKBP Grand Challenge with an 

international validation of 76 KBP pipelines. We made this extension, which we call 

OpenKBP-Opt, open to provide a benchmark for future KBP optimization research and 

to lower the barriers for contributing to this research area. We also demonstrate how 

KBP plan optimization models can be used to initialize a conventional inverse planning 

process with good patient-specific parameters (i.e. objective weights). This relationship 

provides a mechanism for transforming some existing KBP optimization models, which are 

fully-automated pipelines that impede manual intervention, into semi-automated pipelines 

that promote human planners to improve upon a KBP-generated plan via inverse planning 

(i.e. a familiar and intuitive process). The data and code to reproduce this paper is publicly 

available at https://github.com/ababier/open-kbp-opt.

2. Materials and methods

Figure 2 separates our methods into five components. The first three components 

(processing patient data, developing dose prediction models, and generating KBP dose 

predictions) are based on the results from the OpenKBP Grand Challenge. The final two 

components (developing plan optimization models and generating KBP treatment plans) are 

an extension of the OpenKBP Grand Challenge and the focus of this paper. Below, we 

describe all five components and our analysis.

2.1. Processing patient data

We obtained data for 340 patients (n = 340) with head-and-neck cancer from the OpenKBP 

Grand Challenge. The data consisted of a training set (n = 200), a validation set (n = 40), 

and a testing set (n = 100). The plans were delivered via 6MV step-and-shoot IMRT from 

nine equidistant coplanar beams at angles 0°, 40°,…, 320°. Those beams were divided into 

a set of beamlets ℬ, which make up a fluence map. The relationship between the intensity 

wb of beamlet b and dose dv deposited to voxel v was determined using the influence matrix 

Dv, b generated by the IMRTP library from the Computational Environment for Radiotherapy 

Research (Deasy et al 2003) using MATLAB, and it is given by dv = ∑b ∈ ℬ Dv, bwb.
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2.2. Developing dose prediction models

All dose prediction models used in this paper were developed in the OpenKBP Grand 

Challenge (Babier et al 2021b). During the challenge, teams developed dose prediction 

models using identical training and validation datasets with access only to ground truth data 

(i.e. reference dose) for the training set. Every dose prediction model used a neural network 

architecture that was based on either a U-Net (Ronneberger et al 2015), V-Net (Milletari et 

al 2016), or Pix2Pix (Isola et al 2017) architecture. Many of the best performing models also 

used other generalizable techniques like ensembles (Nguyen et al 2021), one-cycle learning 

(Zimmermann et al 2021), radiotherapy-specific loss functions (Gronberg et al 2021), and 

deep supervision (Liu et al 2021).

All teams competed to develop models that minimize one of two pre-defined error metrics 

that quantified the difference between the reference dose and a KBP-generated dose (i.e. 

their KBP dose predictions). The metrics were: (1) dose error, which was the mean absolute 

voxel-by-voxel difference between two dose distributions, and (2) dose-volume histogram 
(DVH) error, which was the absolute difference between a DVH point from two dose 

distributions. The DVH error was evaluated on two and three DVH points for each organ-at-

risk (OAR) and target, respectively. The OAR DVH points were the Dmean and D0.1cc, which 

was the mean dose delivered to the OAR and the maximum dose delivered to 0.1 cc of the 

OAR, respectively. The target DVH points were the D1, D95, and D99, which was the dose 

delivered to 1% (99th percentile), 95% (5th percentile), and 99% (1st percentile) of voxels in 

the target, respectively. The models were ranked according to: (1) dose score, which was the 

average dose error of a model, and (2) DVH score, which was the average DVH error of a 

model.

2.3. Generating KBP dose predictions

In this paper, the OpenKBP organizers collaborated with teams that competed in the 

OpenKBP Grand Challenge. The 28 teams that completed the final phase of the OpenKBP 

Grand Challenge were invited to participate in the OpenKBP-Opt project, and 21 of those 

teams agreed to participate. We obtained dose predictions from the participating teams for 

each patient in the test set to create a dataset with 2100 dose predictions (21 different 

predictions for each of the 100 patients). We observed that two models had dose scores that 

were over two standard deviations (6.3 Gy) above the mean (4.0 Gy), whereas the rest were 

within half a standard deviation (1.6 Gy) of the mean. Thus, we omitted those two outlier 

models and proceeded with only 19 KBP models (n = 1900 dose predictions).

2.4. Developing plan optimization models

Next, we formulated four dose mimicking models, which are a type of KBP optimization 

model. Each model used the same set of structures and objective functions that are described 

in sections 2.4.1 and 2.4.2, respectively. However, they differ in how they mimic (i.e. 

penalize differences) a specific dose distribution. In particular, they each have a different 

cost function, outlined in section 2.4.3. Note that in this paper the terms objective function 
and cost function refer to distinct concepts, and the cost functions in this paper are functions 

of objective functions.
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2.4.1. Structures—All of our optimization models used the same set of regions-of-

interest (ROIs) ℛp for each patient p ∈ P in our test set. The set ℛp contained OARs, targets, 

and optimization structures. The OARs were the brainstem, spinal cord, right parotid, left 

parotid, larynx, esophagus, and mandible. Each target t was a planning target volume 

(PTV) with a dose level θt, and those targets were the PTV56, PTV63, and PTV70. The 

optimization structures were the limPostNeck, which was used to limit dose to the posterior 

neck, and six PTV ring structures (a 3mm ring and a 6mm ring for each target). These were 

the same structures used to generate the plans in the original OpenKBP dataset (Babier et al 

2021b). Every ROI r ∈ ℛp was also divided into a set of voxels Vr.

2.4.2. Objective functions—Our models used the objective functions in table 1. Each 

objective function quantified a different measure of the dose delivered to a single ROI r ∈ ℛp

in a patient p ∈ P, which we call an objective value. Specifically, the average and maximum 

dose objective function quantified the average dose and maximum dose delivered to an ROI 

r, respectively. The average dose over and under threshold objective functions quantified the 

average dose delivered to an ROI r that was over and under a dose threshold f, respectively. 

Our average dose over and under threshold objective functions are similar to tail mean dose 
(Romeijn et al 2006) and conditional value-at-risk (Rockafellar and Uryasev 2000), which 

are both defined on the percentiles of a distribution.

In total, we considered 107 objectives functions: seven per OAR, three per target, and seven 

per optimization structure. The objective functions for each OAR were the mean dose; 

maximum dose; and average dose over thresholds of f equal to 0.25, 0.50, 0.75, 0.90, and 

0.975 of the maximum predicted dose to that structure. The objective functions for each 

target were the maximum dose, the average dose under a threshold f equal to the dose 

level of the target (i.e. f = θt), and the average dose over a threshold f equal to five percent 

more than the dose level of the target (i.e. f = 1 . 05θt). The objective functions for each 

optimization structure were the same as the OAR objective functions. Not all patients had all 

ROIs, so the models associated with those patients had fewer than 107 objective functions.

2.4.3. Model formulations—Our KBP optimization models performed dose mimicking 

to generate plans with optimized objective values that closely matched the input objective 

values from a dose prediction. To streamline our model formulation, let each m ∈ ℳp index 

one of the 107 objective functions (as outlined in section 2.4.2), and let the elements in 

the vector w represent beamlet intensities wb, ∀b ∈ ℬ. Let gm w  and ĝm be objective values 

of their corresponding objective functions evaluated over the optimized plan and predicted 

dose, respectively. In all models, the cost functions were formulated such that lower values 

of gm w  were favored over higher values. Table 2 presents the cost functions of our dose 

mimicking models. Each model minimized either the mean or max difference between all 

corresponding pairs gm(w), ĝm  of the objective values, which were quantified via an absolute 

gm w − ĝm  or relative gm w − ĝm /ĝm  difference measure, resulting in four dose mimicking 

models. In the mean difference models, we chose to prioritize the positive differences (i.e. 

where the optimized plan objective value was higher than the predicted dose objective value) 

more than the negative differences, which we assigned a small positive weight ϵ (ϵ = 0 . 0001
in our experiments). This was done to incentivize the model to do at least as well as the dose 
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prediction before striving to outperform the dose prediction on other objective functions. 

In contrast, the max difference models used only a single term because the max difference 

naturally incentivizes the model to outperform the prediction only once the plan outperforms 

the prediction across all objective values (i.e. when gm(w) ⩽ ĝm, ∀m ∈ ℳp).

The main constraint in all four models was a constraint to limit plan complexity. In 

particular, the sum-of-positive gradients (SPG) (Craft et al 2007) of all plans generated 

by the models was constrained to be less than or equal to 65, which was a constraint in 

the reference plans (Babier et al 2021b). The remaining constraints were simply auxiliary 

constraints (including auxiliary variables) used to linearize both the objective and cost 

functions (i.e. the formulations in table 1 and table 2). The optimization models were all 

formulated in Python 3.7 using OR-Tools 9.1 and solved using Gurobi 9.1 on a single 

computer with an Intel i7-8700K (6-Core 3.7 GHz) CPU and 16GB of random access 

memory. Default parameters were used with the Gurobi solver except for Crossover set 

to 0, Method set to 2, and BarConvTol set to 0.0001, which were selected based on past 

experience to improve solve time without compromising solution quality.

2.5. Generating KBP treatment plans

Next, we assembled 76 KBP pipelines by combining the 19 dose prediction models with 

each of the four dose mimicking models. Each pipeline was applied to the 100 patients in the 

testing set, resulting in 7600 KBP plans (see figure 3). We used these plans in our analysis to 

measure the quality of the respective KBP models. We refer to the plans generated by each 

dose mimicking model as MeanAbs, MaxAbs, MeanRel, and MaxRel plans.

Altogether, after completing the process in figure 3, we had dose distributions for a set of 

reference plans (n = 100), predictions (n = 1900), and KBP plans generated by four dose 

mimicking models (n = 4 × 1900). The reference plans are the plans that were released 

as part of the OpenKBP Grand Challenge, and the predictions are dose distributions that 

were submitted by 19 teams in the final testing phase of the challenge. In general, there 

will be differences between the reference plan, prediction, and KBP plan dose distributions. 

Differences between a dose prediction and its corresponding KBP plan are due to multiple 

factors including noisy and undeliverable predictions. Differences between a KBP plan and 

its corresponding reference plan reflect different trade-offs in the cost function used to 

generate these plans.

2.6. Analysis

We conducted three analyses to measure model performance in terms of dose error, DVH 

point differences, and clinical criteria satisfaction. We also investigated the theoretical 

connection between our dose mimicking models and inverse planning. Finally, we 

summarized empirical optimization metadata.

2.6.1. Dose score and error—We evaluated the KBP models using the dose score and 

dose error as defined in section 2.2. We calculated the Spearman rank order correlation 

of the dose score rank between the prediction models and corresponding KBP pipelines. 

The distribution of dose error was also visualized using a box plot. A one-sided Wilcoxon 
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signed-rank test was used to evaluate whether the dose error of the optimization models was 

the same (null hypothesis) or lower (alternative hypothesis) than the dose prediction models. 

For all hypothesis tests in this paper, P < 0.05 was considered significant.

2.6.2. DVH point differences—To measure the relative quality of dose distributions 

from a clinical perspective, we examined the distribution of DVH point differences between 

the reference and KBP-generated dose. The differences were evaluated over the DVH points 

listed in section 2.2 and visualized using boxplots. We used the one-sided Wilcoxon signed-

rank test to evaluate whether the dose generated by all optimization models performed the 

same (null hypothesis) or better (alternative hypothesis) than the dose predictions. This test 

was chosen to evaluate the aggregate performance of all optimization models relative to the 

predictions. Lower values were better for Dmean, D0.1cc, and D1; higher values were better for 

D95 and D99.

2.6.3. Expected clinical criteria satisfaction—As another measure of plan quality, 

we examined the proportion of clinical criteria that were satisfied by the reference plans 

and KBP-generated dose. One criterion was evaluated for each ROI (see table 3). The target 

criteria were evaluated after overlap between targets, which was removed when processing 

patient data for the OpenKBP dataset, was reinstated. We tabulated the proportion of clinical 

criteria that were satisfied by the reference plans, dose predictions, MeanAbs plans, MaxAbs 

plans, MeanRel plans, MaxRel plans, and the plans from the KBP pipeline that satisfied the 

most clinical criteria overall. We also plotted the proportion of OAR, target, and all ROI 

clinical criteria that each of the 76 KBP pipelines achieved.

2.6.4. Theoretical analysis of dose mimicking models—To justify our choice of 

dose mimicking models, we conducted a theoretical analysis into their structure using linear 

programming duality theory (Bertsimas and Tsitsiklis 1997, Chapter 4). This analysis was 

based on previous literature that showed a connection between Benson’s method (Benson 

1978), which identifies efficient solutions to multi-objective optimization models, and 

estimating the weights for inverse planning (Chan et al 2014). We were motivated to conduct 

a similar analysis as in Chan et al (2014) because our dose mimicking models are similar to 

the formulations in Benson (1978). In particular, we linearized the dose mimicking models, 

took their duals, and related the dual variables to objective weights α̂m in a conventional 

multi-objective inverse planning problem depicted in model (1):

minimize
w

∑
m ∈ ℳp

α̂mgm(w),

subject to SPG ⩽ 65,
(1)

Auxiliary constraints to linearize functions in Table 1 and 2.

2.6.5. Optimization metadata—Lastly, we summarized the metadata that each 

optimization model generated. In particular, we evaluated the average proportion of 

objective weight that each model assigned to OAR, target, and optimization structure 

objective functions. We also recorded the average, first quartile, and third quartile solve 

times.
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3. Results

In this section, we summarize the performance of the 19 dose predictions models, four dose 

mimicking models, and 76 KBP pipelines. We also complete our theoretical analysis of dose 

mimicking models and summarize the metadata generated by our experiments.

3.1. Dose score and error

Table 4 summarizes the rank order correlation between the dose prediction models and their 

corresponding KBP pipelines. We found that the rank of a prediction model was positively 

correlated with its corresponding KBP pipeline rank. However, there was a wide range in 

correlation from 0.50 to 0.62. This demonstrates that high quality predictions are correlated 

with high quality plans, but this result also indicates that a dose prediction model that 

outperforms a competitor will not always generate better plans when it is used as input to 

a dose mimicking model. Additionally, the KBP plans generated by an optimization model 

that evaluated relative differences (i.e. MeanRel and MaxRel) achieved higher rank order 

correlations than their counterparts that evaluated absolute differences (i.e. MeanAbs and 

MaxAbs).

The dose errors of predictions and KBP plans are shown in figure 4. Two of the four sets 

of KBP plans (those generated by MaxAbs and MaxRel) had a median dose error that was 

lower than the median dose error of the predictions (2.79 Gy), implying that it is possible for 

optimization models to generate dose distributions that more closely resemble the reference 

plan dose, compared to dose predictions. These two models also achieved a significantly 

lower error (P < 0.001) than predictions. The MaxAbs model achieved the lowest median 

dose error (2.34 Gy).

3.2. DVH point differences

Figure 5 shows the DVH point differences between the reference dose and KBP-generated 

dose. In general, dose mimicking tends to produce a plan dose that is significantly better 

than the dose it received as input from a dose prediction model. In particular, the KBP plan 

dose is significantly better on 18 of the 23DVH points than the predicted dose (all OAR 

points and four target points). The five DVH points where the plans were not significantly 

better are the three D95 points and two D99 points.

3.3. Expected clinical criteria satisfaction

In table 5, we compare the percentage of criteria that were satisfied by the reference plans (n 
= 100), predictions (n = 1900), plans generated by each of the four dose mimicking models 

(n = 4 × 1900), and plans generated by the top performing KBP pipeline (n = 100). We use 

the term baselines to refer to the reference dose and dose predictions collectively. The top 

performing KBP pipeline (denoted ‘Best’ in table 5) was defined as the single pipeline (i.e. 

the combination of one dose prediction model and one dose mimicking model) whose plans 

satisfied the most clinical criteria. Of all dose mimicking models, the MaxRel and MeanAbs 

models generated plans that satisfied the fewest (69.8%) and most (72.9%) ROI clinical 

criteria, respectively. For comparison, predictions only satisfied 66.2% of all clinical criteria, 

which was 3.5 percentage points lower than the reference plans (69.7%). The best KBP 
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pipeline, which used the MeanAbs model and one of the 19 prediction models (discussed 

later), satisfied 77.0% of all ROI clinical criteria.

In general, clinical criteria satisfaction varied across each ROI criterion. The brainstem, 

spinal cord, esophagus, and mandible criteria were each satisfied more than 85% of the 

time across all the baselines and our dose mimicking models in table 5. The right parotid, 

left parotid, and larynx were satisfied less than 40% of the time by the the two baselines. 

In contrast, each of our four dose mimicking models generated a higher average criteria 

satisfaction for these ROIs compared to the baselines. In fact, some were substantially 

higher. For example, the average criteria satisfaction of the MeanAbs model on the larynx 

was 71.5%, compared to an average of 36.2% for the baselines. In aggregate over all 19 

prediction models, the performance of the four dose mimicking model was comparable 

or slightly worse than the reference dose in terms of criteria satisfaction in the targets. 

However, the best KBP pipeline outperformed the baselines on all criteria.

Figure 6 summarizes the clinical criteria that were satisfied by each of the 76 KBP pipelines 

that we evaluated. The spread in OAR criteria satisfaction across all 19 models (55.4%–

82.1%) was lower than that of target criteria satisfaction (24.5%–89.7%), see figures 6(a) 

and (b), respectively. Overall, the MeanAbs model generated plans that satisfied more 

criteria than the other three dose mimicking models for 16 of the 19 dose prediction models 

(see figure 6(c)). Additionally, the pipelines that used better prediction models (i.e. lower 

dose score ranks) generally produced plans with higher criteria satisfaction. Interestingly, 

however, the best performing KBP pipeline (from the last column of table 5) used the dose 

prediction model that ranked 16th in terms of dose score. Note that the poor performing 

KBP pipelines used the 12th, 13th, 17th, 18th, and 19th ranked dose prediction models. 

Since the dose mimicking columns in table 5 included all KBP pipelines, these poor 

performing models contributed to low performance that was most pronounced on the target 

criteria. In contrast, many of the KBP pipelines that used the top ranked models prediction 

models clearly performed much better on target criteria.

3.4. Theoretical analysis of dose mimicking models

We use theoretical results from Chan et al (2014) to demonstrate the connection between our 

dose mimicking formulations and inverse planning. The inverse planning problem presented 

previously as model (1), is presented again in vector and matrix notation to follow Chan et al 

(2014). The objective functions are represented as the rows of the matrix C and the objective 

weights are represented by the vector α̂. The decision variables, which include the fluence 

variables wb, ∀b ∈ ℬ) and auxiliary variables, are represented by vector x. The SPG and 

auxiliary constraints are encoded in the matrix A and vector b. With this vector and matrix 

notation, we can write the inverse planning problem as model (2):

minimize
x

α̂′Cx,
subject to Ax = b,

x ⩾ 0 .
(2)
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Table 6 presents the formulations of the four dose mimicking models and their respective 

dual models in vector and matrix notation. The positive and negative differences between 

optimized objective values Cx and predicted objective values Cx̂ are represented by vectors 

σ and δ, respectively. The max difference between the optimized and predicted objective 

values is expressed as a scalar ζ. The dual variables of the dose mimicking models are 

denoted by α and p. The vectors of all 0 and 1 are denoted by 0 and e, respectively. 

The symbol ⊙ denotes element-wise multiplication of two vectors and prime denotes the 

transpose operator.

Next, we complete our theoretical analysis. We first observe that the weight estimation 

technique developed in Chan et al (2014) is identical to our dual formulations (see table 6) 

except for the constraints related to the objective weights α, which prevent trivial solutions 

to the weight estimation technique. In the context of our models, proposition 5 from Chan et 

al (2014) establishes that an optimal decision vector x* from each dose mimicking model is 

also optimal for the inverse planning model with objective weights equal to the optimal dual 

vector α*, which is a byproduct of solving the corresponding dose mimicking model. This 

result means that the solution to each dose mimicking model is also optimal to an inverse 

planning model with a particular set of objective weights (i.e. x* is an optimal solution for 

model (2) when α̂ = α*). Additionally, by complementary slackness, a plan generated by 

the MeanAbs or MeanRel model will achieve the same objective values (i.e. Cx*) as a plan 

that is optimal for its corresponding inverse planning model. These theoretical results were 

validated computationally but omitted for brevity.

3.5. Optimization metadata

In table 7, we present metadata that was generated by each optimization model, which 

assigned a different proportion of weight to the objectives for each group of ROIs. The 

models that evaluate relative differences (i.e. MeanRel and MaxRel) spread the proportion 

of weight relatively evenly between the OAR and target objectives, but the other two 

models assigned the majority of the weight to target objectives with no more than 0.018 

weight to OARs. Additionally, the optimization structures generally received the smallest 

proportion of weight with the exception of the MaxAbs model, which assigned more weight 

to optimization structure objectives (0.170) than OAR objectives (0.011). There was also a 

wide range in average solve time between the models (222–393 s). On average, the MaxAbs 

model was the fastest.

4. Discussion

KBP research is flourishing. However, optimization models for KBP (e.g. dose mimicking) 

have received much less attention in the literature than dose prediction models. In this 

paper, we developed four dose mimicking models and evaluated their performance with 19 

different dose prediction models, which were inputs to the optimization models. We showed 

that both the dose prediction model and optimization model contributed to considerable 

variation in the quality of plans generated by the corresponding KBP pipeline. Additionally, 

we conducted a theoretical analysis to show that our KBP optimization models generate 

plans that are optimal for a multi-objective inverse planning model with particular weights.
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Our data and code is published at https://github.com/ababier/open-kbp-opt to enable others 

to reproduce our results, which meets the gold standard in reproducibility (Heil et al 2021). 

Our data includes the first open dataset with reference plans and predictions. We hope that 

this effort produces a common resource and lowers the barriers for future KBP optimization 

research, given that researchers must currently acquire their own private datasets and 

develop in-house prediction models before they can start testing new KBP optimization 

models.

Our open dataset contains the data for 100 patients who were treated with IMRT and a 

sample of high quality dose predictions for those same patients. The dataset was curated 

for the purpose of developing new fluence-based KBP optimization models that use ROI 

masks, dose influence matrices, and dose predictions. The dose predictions were generated 

by 21 dose prediction models that were developed by an international group of researchers, 

which provided a diverse sample of realistic inputs for a KBP optimization model. Two 

of those prediction models (the 20th and 21st ranked models) were removed from our 

analysis because their dose scores were poor, which we elaborated on in section 2.3. For 

completeness, however, those 200 predictions are also available as part of our dataset.

We also performed a theoretical analysis to justify our dose mimicking models. Our 

key theoretical finding was that dose mimicking and conventional inverse planning are 

equivalent under certain specifications of the objective weights. This allows us to interpret 

previous weight estimation techniques (Chan et al 2014) through the more intuitive lens of 

dose mimicking models. Finally, by connecting dose mimicking to inverse planning, there 

is the potential to convert fully-automated KBP pipelines into semi-automated pipelines. 

Specifically, we use dose mimicking to generate a high-quality plan with its corresponding 

objective weights, which reflect the priorities of the input dose prediction, and those 

objective weights can be used in an inverse planning model (i.e. model (3)). This is 

advantageous because it enables human planners to improve the quality of plans generated 

by KBP via a conventional inverse planning process. By enabling this intuitive human 

interaction, we can create a semi-automated KBP pipeline that is aligned with a common 

belief that AI will augment, rather than replace, the duties of healthcare practitioners (Ahuja 

2019).

Evaluating the performance of optimization models using many different dose predictions 

helps to identify interaction effects between these two stages of a KBP pipeline (Babier 

et al 2020). For example, the 16th ranked dose prediction model generated lower quality 

predictions (in terms of dose error) than most of its competitors. However, when used 

in a KBP pipeline with the right optimization model, in this case the MeanAbs model, 

it generated high quality plans that achieved more clinical criteria than any other KBP 

pipeline. In other words, the errors made by the 16th ranked model that contribute to its 

low prediction quality were corrected by the KBP optimization model. Note that the 16th 

ranked prediction model achieved the fewestOAR criteria (55.4%) and the third highest 

target criteria (81.5%), which suggests that the MeanAbs model was adept at correcting 

prediction errors related to under and over predictingOAR and target criteria satisfaction, 

respectively. Since these interaction effects contribute to considerable variation in quality, 

it is important to evaluate KBP optimization models across a diverse set of dose prediction 
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models. Additionally, if we can understand what types of prediction error are most highly 

correlated with KBP plan quality we could propose better evaluation metrics to drive KBP 

prediction research towards making predictions that consistently translate into higher quality 

plans.

As in the original OpenKBP Grand Challenge, a limitation of this work is that we use 

synthetic dose distributions (i.e. the reference dose) as a substitute for real clinical dose. 

Although these dose distributions were subject to less quality assurance than clinical plans, 

they were previously shown to be of similar quality (Babier et al 2021b). A second 

limitation of this work is that the dose prediction models were developed with the goal 

of optimizing the dose andDVH scores. There may be other scoring metrics that are 

better suited for developing a dose prediction model that excels in a KBP pipeline. This 

is a possible direction for future research. Lastly, this work only covers a single site and 

treatment modality. There is no guarantee that KBP optimization models that are developed 

with this dataset can generalize to other sites or treatment modalities.

5. Conclusion

In this paper, we combined the dose predictions contributed by a large international team 

with several KBP optimization models, resulting in 76 KBP pipelines. This was the largest 

international effort to date on KBP pipeline evaluation. We found that the best performing 

pipeline significantly outperformed the baselines. In the interest of reproducibility, our data 

and code is freely available.
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Figure 1. 
An overview of a complete knowledge-based planning pipeline.
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Figure 2. 
An overview of our methods. Afull description of each component is provided in its 

corresponding subsection.
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Figure 3. 
An overview of our process. First, dose prediction models were developed with training and 

validation data. Second, those models predicted dose for testing data that was used by the 

dose mimicking models to generate KBP plans.
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Figure 4. 
The distribution of dose error over all KBP-generated dose (n = 1900 points in each box). 

Boxes indicate median and interquartile range (IQR). Whiskers extend to the minimum of 

1.5 times the IQR and the most extreme outlier.
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Figure 5. 
The distribution ofDVHpoint differences between the reference dose and each set of KBP-

generated dose. Negative differences indicate cases where the KBP-generated dose had 

a lower DVHpoint than the reference dose, and arrows indicate the direction where KBP-

generated dose is considered better than reference dose for each DVHpoint. Boxes indicate 

median and IQR. Whiskers extend to the minimum of 1.5 times the IQR and the most 

extreme outlier.
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Figure 6. 
The percentage of all (a) OAR, (b) target, and (c) ROI clinical criteria that were satisfied 

by each KBP pipeline, which are labeled by their prediction dose score rank. The points 

indicate the percentage of satisfied criteria for n = 100 patients. Adashed line indicates the 

percentage of criteria satisfied by reference plans.
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Table 1.

The formulations for our objective functions.

Objective function

Average dose mean
v ∈ Vr

dv

Maximum dose max
v ∈ Vr

dv

Average dose over threshold mean
v ∈ Vr

dv − f +

Average dose under threshold mean
v ∈ Vr

f − dv
+
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Table 2.

The cost functions for each dose mimicking model that minimize mean absolute (MeanAbs), max absolute 

(MaxAbs), mean relative (MeanRel), and max relative (MaxRel) differences between all pairs of the optimized 

and predicted objective values gm w , ĝm .

Dose mimicking model cost function

MeanAbs mean
m ∈ ℳp

gm(w) − gm
+ + ϵ mean

m ∈ ℳp

gm(w) − gm
−

MaxAbs
max

m ∈ ℳp

gm(w) − gm

MeanRel mean
m ∈ ℳp

gm(w) − gm
gm

+
+ ϵ mean

m ∈ ℳp

gm(w) − gm
gm

−

MaxRel max
m ∈ ℳp

gm(w) − gm
gm
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Table 3.

The clinical criteria that we used to evaluate dose distributions.

Structures Clinical criteria

OARs

 Brainstem D0 . 1cc ⩽ 50 . 0 Gy
 Spinal cord D0 . 1cc ⩽ 45 . 0 Gy
 Right parotid Dmean ⩽ 26 . 0 Gy
 Left parotid Dmean ⩽ 26 . 0 Gy
 Esophagus Dmean ⩽ 45 . 0 Gy
 Larynx Dmean ⩽ 45 . 0 Gy
 Mandible D0 . 1cc ⩽ 73 . 5 Gy
Targets

 PTV56 D99 ⩾ 53 . 2 Gy
 PTV63 D99 ⩾ 59 . 9 Gy
 PTV70 D99 ⩾ 66 . 5 Gy
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Table 4.

Each dose mimicking model is compared to the predictions in terms of Spearman rank order correlation.

MeanAbs MaxAbs MeanRel MaxRel

Rank order correlation 0.53 0.50 0.62 0.59

Rank order P-value 0.019 0.030 0.005 0.008
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Table 5.

The percentage of clinical criteria satisfied in each set of KBP-generated dose. Note that ‘Best’ is defined as 

the top performing KBP pipeline that generated plans that satisfied the most ROI clinical criteria. The highest 

percentage of satisfied criteria is bolded in each row.

Baselines Dose mimicking models

Reference Prediction MeanAbs MaxAbs MeanRel MaxRel Best

OARs

 Brainstem 96.6 97.3 100.0 99.5 100.0 98.5 100.0

 Spinal cord 95.5 92.7 99.7 97.3 100.0 95.6 100.0

 Right parotid 32.3 32.7 46.1 38.9 45.0 38.0 41.4

 Left parotid 30.6 30.1 43.7 35.0 41.9 35.0 40.8

 Esophagus 93.0 92.7 100.0 95.2 100.0 97.3 100.0

 Larynx 37.7 34.7 71.5 44.9 58.8 44.6 67.9

 Mandible 87.5 89.4 99.6 98.7 99.2 99.0 93.1

Targets

 PTV56 91.2 85.8 83.3 91.8 84.1 84.6 96.7

 PTV63 90.5 86.2 82.2 89.6 84.8 84.8 92.9

 PTV70 64.0 45.7 37.2 51.6 40.1 47.7 66.0

All

 OARs 65.5 65.1 77.1 70.6 75.3 70.2 74.5

 Targets 79.4 68.7 63.3 74.2 65.3 68.8 82.8

 ROIs 69.7 66.2 72.9 71.7 72.3 69.8 77.0
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Table 6.

The dose mimicking models presented in vector and matrix notation with their dual models. Terms that follow 

colons indicate the dual variables for that constraint.

Dose mimicking model Dual mode

MeanAbs minimize
x, σ , δ

e′σ + ϵ e′δ

subject to Cx = Cx + σ + δ:α
Ax = b :p
x ⩾ 0
σ ⩾ 0
δ ⩽ 0

minimize
α, p

α′Cx − b′p

subject to C′α ⩾ A′p :x
α ⩽ e :σ
α ⩾ ϵe :δ

MaxAbs minimize
x, ζ

ζ

subject to Cx ⩽ Cx + ζe :α
Ax = b :p
x ⩾ 0

minimize
α, p

α′Cx − b′p

subject to C′α ⩾ A′p :x
α′ = 1 :ζ
α ⩾ 0

MeanRel minimize
x, σ , δ

e′σ + ϵ e′δ

subject to Cx = Cx ⊙ (e + σ + δ) :α
Ax = b :p
x ⩾ 0
σ ⩾ 0
δ ⩽ 0

minimize
α, p

α′Cx − b′p

subject to C′α ⩾ A′p :x
α ⊙ Cx ⩽ e :σ
α ⊙ Cx ⩾ ϵe :δ

MaxRel minimize
x, ζ

ζ

subject to Cx ⩽ Cx ⊙ (e + ζe) :α
Ax = b :p
x ⩾ 0

minimize
α, p

α′Cx − b′p

subject to C′α ⩾ A′p :x
α′Cx = 1 :ζ
α ⩾ 0
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Table 7.

A summary of the average proportion of objective weight that was assigned to each group of ROI objectives 

and the solve time statistics of each dose mimicking model (n = 1900 plans in each column).

MeanAbs MaxAbs MeanRel MaxRel

Objective weight

  OARs 0.018 0.011 0.554 0.417

 Targets 0.976 0.819 0.418 0.569

 Optimization structures 0.006 0.170 0.028 0.014

Solve time (s)

 Average 389 222 367 393

 First quartile 192 107 183 188

 Third quartile 502 261 481 507
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