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THE PHYSICS 01:' FLUIDS VOLUME 16, NUMBER 9 S EPTEMBER 1973 

Relativistic electron beam neutralization in a dense magnetized plasma 

K. R. Chu* and N. Rostokert 
Laboratory for Plasrrw Studies and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850 

(Received 6 September 1972; final manuscript received S April 1973) 

For the case of a longitudinal magnetic guide field this problem has been treated neglecting ion dynamics 
[R. Lee and R. N. Sudan, Phys. Fluids 14, 1213 (1971)). Under the assumptions ne > Wpe.~i > wp;~ where 
w , n are plasma and gyrofrequencies, there is no neutralization because both electrons and ions are tied to 
fi:id lines. When ne > wpe and n; < w 1, it is essential to consider ion dynamic~ since the ions play the 
dominant role in neutralization. ln the fi'nal state, the beam is essentially neutralized both electrically and 
magnetically and the energy associated with plasma oscillations is a small fraction of the beam energy except 
when the radius of the beam is small compared with the plasma skin depth. 

I. INTRODUCTION 

Recently, several papers1- 4 have been devoted to the 
theory of the generation of the counter current in a 
dense plasma penetrated by a high current relativistic 
electron beam. The common result of these papers is 
that, under certain conditions (to be specified later), 
the magnitude of the counter current approximately 
equals that of the beam current, a result in good agree­
ment with the experimental observations. 

The physical mechanism for the return current 
generation can be most conveniently understood in 
the beam frame, wherein the beam is at rest in a back 
streaming plasma whose velocity v0 is equal in magni­
tude to the beam velocity in the laboratory frame. 
The negatively charged beam tends to expel the plasma 
electrons out of and to draw ions into the beam, result­
ing in a perturbed positive charge density op inside the 
beam. Let p,=op-nbe and p/=op'-nb'e be the total 
charge densities as seen from the laboratory frame 
and beam frame, respectively. To compare p, and p,', 
we express the beam frame quantities (denoted by 
primes) in terms of the laboratory frame quantities 
by use of the Lorentz transformations to obtain 
p/='Yo(op-nbe/ 'Yo2), where 'Yo= (1-vo2/ c2)-112• It is 
clear from the expression of p/ that owing to the 
presence of the 1/ 'Yo2 factor, even before the beam 
is fully charge neutralized in the laboratory frame, 
the total charge density as seen from the beam frame 
would have already turned positive. Since there is 
no magnetically induced electric .field in the beam 
frame, the electrostatic field due to this positive p/ is 
thus responsible for the acceleration of the plasma 
electrons in building up the counter current. 

The electrical and magnetic neutralizations are 
closely related in that the magnitude of the driving 
field of the counter current depends on the degree of 
charge neutralization. Therefore, unless noted other­
wise, the term "neutralization" will imply both elec­
trical and magnetic neutralization. 

larger than the skin depth c/ wp• of the plasma, where 
wpe is the electron plasma frequency. Their model was 
subsequently extended by Lee and Sudan3 to include 
a uniform exlernal magnetic field. In their paper it was 
found that the neutralization could be significantly 
reduced if the axial external magnetic field is strong 
for plasma electrons (i.e., n.»wpe, where n. is the 
electron cyclotron frequency in the external magnetic 
field). Both papers neglected the ion dynamics. While 
the immobile ion model is justifiable for a field-free 
or weakly magnetized plasm.a, it is not valid for a 
particular magnetic field regime, namely, f.!e»wp,, but 
fi ;«wp;, in which the electrons, tied to field lines, are 
transversely immobile, but the ions essentially still 
see no magnetic field. Therefore ions, instead of elec­
trons, are expected to assume the dominant role by 
moving radially into the beam region in response to 
the negatively charged beam. 

The two-fluid approach to be used in this paper is 
motivated by the foregoing considerations. 

II. FORMULATION 

We adopt essentially the same model developed by 
Hammer and Rostoker2 (Fig. 1), namely, at t=O, a 
rigid cylindrical relativistic electron beam of uniform 
density stretching from z= -oo to z=O along the z 
axis is propagating with constant velocity voe. in an 
infinite and uniform plasma. The plasma is magnitized 
by a constant field B0e, and its density is much larger 
than the beam density so that linear perturbation 
theory can be used. However, instead of turning on the 
beam at t=O and looking for solutions at. t= oo as in 
the original model, we assume that an equilibrium 
condition is already reached at t=O. In other words, the 
z and t dependence of all quantities are now integrated 
into one variable z-vot. Unless noted otherwise, the 
lab frame is used throughout. 

According to this model, the beam current density is 

Using a cold electron, immobile ion, and rigid beam 
model, Hammer and Rostoker2 showed that the beam 
will be fully neutralized provided its radius is much 

1472 
otherwise, 

(1) 
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where nb is the beam electron density, and a is the beam 
radius. 

In reality, the beam always has a tail; however, in 
our semi-infinite beam model, only the front of the 
beam will be considered. We note that there will be no 
loss of generality in this model since a finite length 
beam can easily be modeled by superimposing two 
semi-infinite beams of opposite charges. In other 
words, the physics of an electron beam tail is simply 
that of a positron beam front. 

We use the two-fl.uid equations for a cold plasma 
to describe the dynamics of both species 

av. e e at+ (v.· v)v.= - ;;; E- me v. xB-vv,, (2) 

where m is the electron mass, and M is the ion mass. 
In the above equations, a phenomenological mo­

mentum relaxation term is introduced. In the next 
section, it will be estimated that for the parameters 
typical of a relativistic electron beam e},.'Periment, the 
momentum transfer collision frequency v is several 
orders of magnitude smaller than the plasma frequency. 
The duration of an electron beam is typically several 
tens of nsec (or several hundreds of plasma oscilla­
tions in most cases). On this time scale, the collisions 
will have very little damping effect, still, the introduc­
tion of v is necessary in order to obtain an equilibrium 
solution in which a static beam electric field may 
exist. As it will turn out, v serves to properly locate the 
poles when the contour integration method is used. 
For this purpose, we can let v be the same for both 
species of fluids without qualitatively affecting the 
results. 

The equilibrium assumption enables us to eliminate 
the time variable by defining Z=z-i•0t; thus, 

a a 
- =-Vo-. at az (4) 

FIG. !. A relativistic electron beam propagating in a dense 
magnetized plasma. 

FIG. 2. x space and k space. 

Substituting Eq. (4) into Eqs. (2) and (3), lineariz­
ing the resulting equations and Fourier transforming 
the space variables gives 

(- ik.vo+v)ov.= - (e/m)oE - (e/mc)ov. ><Bo, (5) 

(-ik,vo+v)ovi= (e/M)oE+ (e/Mc)ov; xB0, (6) 

where quanlities ink space are distinguished by a bar 
on top and ov., ov;, oE, etc., are first-order perturbed 
quantities. 

For later convenience, we introduce a new frame 
defined by the following unit vectors (see Fig. 2): 

e1 =k/k, e3= k.L-lk )( e., ~=ea)( e1. 
After some straightforward manipulations of Eqs. 

(5) and (6) in this new frame, we obtain Ohm's law 
for the plasma medium 

oJ =n0e(o'V;-ov6 ) =a·oE, (7) 
where 

uu = A- 1 (s) I - k2(s-v )2[w,,.2(s- v) 2+wp,.2U.2] 

+vo- 2w1"'2n.2s2[(s-v)2+n,2Jl 

u22 =A- 1(s) {- k2(s-v) 2[w,,.2(s-v) 2+wp;2U.2] 

-k.L2w,,.2n.2[(s-v)2+n,2Jl' 

<733= - A- 1(s)k2(s-v) 2[wpe2(s-v )2+wp;2U.2], 

u12=u21=ivo-1A-1(s)k.Lw,,.2n.zs I (s-v) 2+ni2 I, 
u23= -u:12=ivo-1A-1 (s)s(s-v ) 3wp.2n., 

ua1 = -1131 = -A-1(s) k k.Lw,,.2n.(s- v )3, 

and by definition 

A(s) =47rk2(s-v) [(s- v) 2+n.2][(s-v)2+Ui2], 

Combining Ampere's and Faraday's law yields 

47r oJ 1 iPE 
VxVxE=- -- - -- . (8) 

c2 at c2 ot2 

Following the same procedures as those which led 
toEqs. (5) and (6),weobtain,from Eq. (8), 

-k(k·oE)+[k2+ (s2/c2) ]oE- (4.,,.s/c2)oJ 

= (4'R's/ c2) j b, (9) 
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where jb is the Fourier transform of ]1> in Eq. (1): 

J"= [2?Tn"eai·o211(k.ia) /k.i (s-o) ]e. 
and o is an infinitesimally positive number. 

Substituting Eq. ( 7) for oj in Eq. (9) results in 

a·oE=s.:i(s) j", 
or 

where 

au= s{ k2 ( s- p) 2[wpe2 ( s-p) 2+wp;2fi.2] 

-t'o-"2wpe2fi.2s2[(s-v) 2+Ut2]1 

(10) 

+ k2s2 ( s-") [ ( s-v) 2+n.2][ (s-v) 2+n,2], 

a22= s{ k2( s-v) 2[wpe2 ( s-v) 2+wp;2U.2] 

+k.1.2wpe2fi.2[(s-v ) 2+ni2]j +k2c2(s-11) 

The perturbed charge density is readily found by 
Fourier transforming the continuity equation 

thus, 

where 

aop 
-+V·oJ=O· at ' 

i - -Jb 
op=-kfi.l1= D(k )Y(k.i,s), 

s i•0 .i, s 

Y(k.i, s) = -.:i(s) [s(a·1C)u+ik.Lvo(a•1<)12]. 

Note that D(kJ., s), W(k.1.., s), and Y(kJ., s) are all 
polynomials of k.1. ands. 

We now inverse Fourier transform oJ. and op into 
the x space. 

X (k.L2-S2'Y0-2v0-2) [(s-v)2+n.2][(s-v)2+n,2], ol.= (211')-3 J d1k oJ, exp(iK·x) 

o-33 = k2s(s-11 )2[wpe2( s-11) 2+w,,;2n.2]+k2c2(s- v) 

a12=a21 = -ivo-1k.Lw,,,20.2s2[ (s-v) 2+ni2], 

a32= -a2a=ivo-1kw11•
2Q.s2(s-v ) 3

1 

au= -aai= -k k.iw,,.2U.,s(s-v) 3. 

Equations (7) and (10) give 

oj =s.:i(s)a•a-1 • jb 

s.:i(s) -
= D(k.1.., s) a .. 1'" ]b, (11) 

where D(k.1.., s) =<let I a I and K is the adjoint matrix 
of a. 

From Eq. (11), 0}1 and 0}2 can be calculated: 

- sJ,,.:i(s) (-i ) 
0J2= ( ) - S(IT·K)21+k.1.. (1T•K)22 . 

kD k.1.., s vo 

The axial current density is 

where 

l:V(kJ., s) = .:i(s) {kJ.2(<r·K)2i-S2Vo-2(0'·K)u 

- ·isi•o-lkJ.[ (IT• K) 12+ (<1 •1C)21]l · 

= (-
2 

i)
8 
j .. kJ. dkJ. j 2

r dct> exp[ikJ.r cos(ct>-8) J 
'Vo "° O 0 

The ct> integration (see Fig. 2) can immediately be 
carried out if one writes 

cc 

exp[ik.1.r cos(¢-8) ]= 2: exp[i(ct>-8+!11') Jl n(kJ.r). 

So, with Jb replaced by its explicit expression, Eq. 
(12) becomes 

In the same manner, we get 

l ioo l Y(k.1., s) exp(sZ/ Vo) x ($ ' 
_,,,, (s-o)D(k.1., s) 

(14) 

The s integration can be done using the method of 
contour integration. For Z<O, we dose the contour by 
drawing an infinite half circle on the right Jlalf s plane. 
Let s/s be the poles inside the half circle, then Eqs. ( 13) 
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and (14) can be written 

U,=nbea Vo j"" dkJ.lo(kJ.r)I1(kJ.a) 
0 

L: (s;- s;)W(kJ., s;) exp(s;Z/ vo) (l
5
) 

X ; (kJ.2-s?/v0
2)D(kJ.., s;) ' 

op=n,,ea r· dkJ..lo(kJ.r)J1(kJ..a) 
0 

~ (s;-s;) Y(kJ., s;) exp(s;Z/ vo) x £...; • (16) 
; D(kJ., s;) 

Although, owing to the complicated form of D(kJ., s), 
an exact determination of the poles is not possible, 
enough information is obtainable through appropriate 
approximations and numerical computations. Phy­
sically, the poles can be put into two categories, those 
with zero imaginary part and those with finite im­
aginary part. The former gives rise to nonoscillatory 
solutions and the latter to oscillatory ones. 

ID. NONOSCILLATORY SOLUTIONS 

In this section we intend to find the nonoscillatory 
terms in Eqs. ( 15) and ( 16) . As noted by Lee and 

where 

Sudan,3 only those nonoscillatory terms with a decay 
length longer than that of the plasma oscillations can 
be physically regarded as the neutralizing current or 
charge. Consequently, the poles we are looking for 
should be real and satisfy O<s;5;v. 

In cgs units, we have 

if v is given by its classical value5 and 8. is the average 
plasma electron kinetic energy in electron volts. 

As the plasma is disturbed by an intense electron 
beam, a lower estimate of 8, would be on the order of 
1 eV. Assuming n~1012, then 

In a turbulent plasma, the fluctuations can produce 
an effective collision frequency much larger than the 
classical value; nevertheless, it will still fall far below 
the plasma frequency. 

We can now expand W(kJ.., s) Y(kJ., s), and D(kJ.., s) 
in terms of s and v. Up to the lowest significant order, 
we obtain 

(17) 

'Jo...=c/wpe, is the plasma skin depth; OI,<n>=f0"oJ,<n>21rrdr, is the total counter current flowing inside the beam, 
oQCnl = fo" opCnl21rr dr, is the total perturbed charge per unit length inside the beam, 

DCn> (kJ., s) = s2[wp;2(kJ..2X2+ 1)+f2;2 (kJ..2X2-'Y0-2,B0-2) J-sv[2kJ..2X2w,..-2+w,.;2+ kJ..2A.2n.-2J+v2kJ.. Wwp;2, 

and the superscript n denotes the nonoscillatory solution. 
The two poles given by the zeros of D<n>(kJ.., s) are 

!Sil = I 1+2kJ..W+kJ..W(f2;2/wp;2) ±[[l+kJ.. 2X2(f2,z/wp;2) J+ (4n;2/'Y02,80
2wp1.2)kJ..2A2]112j v 

s2 2{ l+k.tW+ (n;2/w,.;2) [kJ..2'Jo...2- (lho2f302) JI · (l
9

) 

The pole s2 agrees with our assumption 0<s25;v for all kJ... When 0;2«wp.;2, s1 also agrees with the same assump­
tion for all kJ.., but as n, gets larger, SJ satisfies O<s15;v only for kJ..°?..kJ..c, where kJ..c can be determined from Eq. 
(19). 

With all the relevant poles known, Eqs. (17) and (18) can then be integrated overs: 

Of ,Cn> = 
2
100 dkJ.. '12(kJ..a) {[s1(1-'Yo- 2f3o-2fl;2wp;2) -v J exp(s1Z/ vo)-[s2( 1-'Yo-2f3o-2fl;2wp;2) -v J exp(szZ/vo)} (

2
0) 

I h I o kJ.. (s1-s2)[l+kJ..2x2+0.;2wpr2(kJ..2X2-'Yo-2f3o-2)] 

OQCn> = 21"' dkJ.. f1
2(kJ..a) {l+ kJ..2A.2il;2w,.;-2[(-s1+v) exp(s1Z/ vo)-(-s2+v) exp(s2Z/t1o)]}, 

IQbl o kJ.. (s1-s2) [1+kJ..W+f2;2w,,;-2(kJ..W-'Yo-2,Bo-2)] 
(21) 
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where lb= -1f'a2ntre1Jo, is the total beam current, and 
Qi.= - 7ra'tt1,,e, is the total beam charge per unit length. 

The kJ. integration can be carried out analytically in 
the following limits: 

Case (i) n12>.2/w,,,2a2«1. 

Because of the presence of J 1
2(kJ.a) / kJ., the inte­

grands in Eqs. (20) and (21) peak at kJ.,....,.,1/ a, while 
they decay as 1/ kJ.2 for k.La»l, and as k.1. for kJ.a«l 
(Fig. 3). We thus expect the dominant contribution to 
the integrals to be in the neighborhood of kJ.,....,1/a, 

provided the other factors in the integrands behave 
smoothly in this region. This last condition can be 
shown a posteriori to be true. Consequently, kJ. in 
Eqs. (20) and (21) may be treated as on the order of 
1/ a, and s1 and s~ reduce to 

where O(f!;2X2/ wp/2a2
) tenns have been neglected. 

Substituting s1 and s2 into Eqs. (20) and (21), we 
obtain 

OJ,M =2 j'° dkJ. J1
2(kJ.a) {exp[k.1.2f.2vZ/(kJ.2X2+1) 110] +o (n12x2 )} 

I rb I 0 kJ. k.L2x2+1 w,,,2a2 

= [l-2I1(a/ X)K1(a/ X) J exp(Z/ l )+O(fl 1W / wp,2a2) 

= l[l-O(X/ a) J exp(Z/ l) + O(n,2x2/ wp12a
2
) if a»X, 

O(U;W/wp1
2a2) if a«X, 

(22) 

(23) 

where /1 and K1 are modified Bessel functions of the 
first and second kind, respectively, and 

l= (a2+X2)vo/X2v, 

•~ the decay length of the counter current. ~ote that, 
in carrying out the k.i. integrations, we have replaced 
kJ. in the exponential by its dominant value a-1• 

In the above equations, we see that the beam will be 
charge neutrali1>ed for any beam radius, and current 
neutraliz~d if a»X. 

To sum up, we obtain the following criteria for 
neu traliza ti on : 

(a ) Charge neutralization criterion: 

'A 2n,2 I a2wp;2«1. 

where 

It is interesting to note that, aside from the 
O(wp,2a2/ rt;2X2) terms, the results are identical lo the 
infinite field limit of the immobile ion model. The 
reason is that for such a strong field, both electrons and 
ions are transversely immobile. But electrons have a 
greater axial mobility, hence dominate the situation. 

It can be shown that the integral in Eq. (24) is 

(b) Current neutralization criterion: 

(X'/ a't) [ (f!;2/wp;2)+ l]«L 

This leads to the conclusion that the neutralization 
criteria derived under the immobile ion model3 should 
be modified by a factor m/ M. 

Despite the important roles played by the ion 
dynamics and the longitudinal guide field in the 
induction of the counter current, neither of them could 
alter the decay rate of the counter current, which is 
due to the flow of plasma electrons along the magnetic 
field lines. As a result, the decay length l derived above 
agrees with the results of earlier aulhors.u 

Case ( ii) o,W/w,,12a2»1 

By the same consideration if we neglect O(wpf<J.2/\2;2\'1'} 
terms, s1 and s2 reduce to 

hence, 

(24) 

negative and vanishingly small. Physically, owing to the 
lack of charge neutralization, the plasma electrons are 
pushed ahead with the beam electrons, thus resulting in 
a total charge and current slightly in excess of those of 
the beam. 

The general dependence of neutralization on the 
magnetic field is computed numerically from Eqs. 
(20) and (21) . The results shown in Fig. 4 conform to 
our analytic analysis for the two limiting cases. 

It should be pointed out that case (i) virtually 
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covers all the practical experimental conditions. For 
instance, with a back.ground plasma density near 1012 

particles/cm3, it will take a magnetic field over 1000 kG 
to break away from case (i) . 

In Fig. S, charge and current neutralization are 
again plotted vs the absolute strength of Bo and in 
comparison with the stationary ion model. It is observed 
that, in the practically achievable magnetic field 
range, (i) charge neutralization is almost total under 
all conditions, (ii) current neutralization is more 
sensitive to a/>.. than to Bo; and (iii) the effects of ion 
dynamics are important even for a few kG, and become 
progressively so for larger Bo. 

It is known that the electrostatic potential well 
created by an unneutralized intense relativistic electron 
beam could be as high as many MV. Its application 
for fast electrostatic heating of ions to thennonuclear 
fusion temperature is apparent. 

It was believed that this purpose could be achieved 
through the simplest scheme of injecting the beam 
parallel into a magnetized plasma. However, the 
charge neutralization criterion derived above indicates 
that realization of this scheme requires an im­
practically strong magnetic field. On the other hand, 
a potential well of the order of MV is not really most 
favorable for fusion purposes considering the sudden 
burst of over energetic ions it will generate. We are 
thus led to the investigation of other schemes which 
will provide more favorable, as well as realizable con-

.. 
F10.3.PlotofJ1

2(x) / xvsx. ~ 0.10 

i-0.05 
01--~1--->.r-~.,__-= ...... 

· 0.05 2 6 8 

ditions, for electrostatic heating of ions. Results of this 
study wiU be reported shortly. 

IV. OSCILLATORY SOLUTIONS 

These solutions consist of the various modes of cold 
plasma oscillations. The fact that the plasma is aniso­
tropic in the presence of an external magnetic field 
greatly complicates the analysis. However, as a result 
of the anisotropy, the imaginary parts of the oscillatory 
poles are functions of kJ.. When integrated over kJ., 
those oscillatory terms become negligible owing to 
phase and frequency mixing. The only appreciable 
patterns of oscillations occur in the following limits. 

Case (i) a»>.. 
As before, the dominant contribution to all integrals 

comes from the region kJ.';:;:;,l / a, or for this case, kJ.>.<<1. 
Accordingly, kJ.X can be treated as small parameters 
in terms of which W(kJ., s), Y(kJ., s), and D(ki., s) 
can be expanded. Keeping only the zero-order terms, we 
obtain these quantities of interest from Eqs. ( 10) 
and (14) 

i J"' ii"' w'P"2 exp(sZ/ vo) 
opCOl= - n~a dki.Jo(kJ.r)J1(ki.a) ds ( )[( )2 2] 

211" 0 - ioc s-o s-v +w'P" 

= 1- t11'eexp[(v/ t'o)(z-vol) ]cos[(wP./ vo)(z-vot) ] for r::;a,z-vot<O 

0, otherwise 

f 00 lioo exp(sZ/110) 
oE,<0>= - i2nbeavo dki.Jo(kJ.r)J1(kJ.a) ds (. . 

o - ioo s-v) 2+w,,.2 

~ j :4'tt¢( .,,I w~) •"1'[ ( 4») (<-"") J •in[ ( w,J.,) ( , _ ,,,,) ] for r::;a, z- vot<O 

otherwise 

oE/0>-::::::.oEe<0> = 0 

where the superscript 0 denotes the oscillatory solu­
tion. 

By virtue of the equipartition law, the average 
kinetic energy of the plasma equals the average oscil­
latory electric field energy; thus, for a unit length of 
plasma inside the beam, 

!" <I oE 12) (K.E.)av= dr 21rr --
0 81!" av 

=Nb2e2(vo2/ w'P"2a2 ) exp[(211/ vo) (z-vot) ], 

where Nb=7ra2tib. 

This is two orders of magnitude smaller than the 
electrostatic field energy inside an unneutralized 
electron beam (';::;:;,Nb2i1/4), which, for an intense 
relativistic electron beam, is comparable to the beam 
kinetic energy. 

Case (ii) a«>. 

In this limit, the opposite of case (i) is true, namely, 
the dominant contribution to each integral is at kJ.>.» 1. 
So treating (kJ.>.)-1 as a small parameter in the expan­
sion and keeping only the zero-order terms, we obtain 
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Wpe2 exp[ (v/vo) (z-t'ol) J ww.(z-vot) J + cos---~ 

for r~a, z-1•0t<O 

Wpe2+n.2 
Vo 

0 otherwise 

1.,., ls [(s-11) 2+n.2][(s-v)+n;2] exp(sZ/110) 

_, .. ' (s-ll) I [(s-11)2+n.2][(s-11) 2+ n?J+wp02(s-v)2+w,,;2n,2J 

(
n/wp;2 exp[(11/ t10) (z -vot) J wu(z-vot) 

= - 27rtlbe ( 2 2) ( 2 .2) cos wp• +n. wp; +n, 'Vo 

wpe
2 exp[(v/vo) (z - vot)] Wuh(z-vot)) j " I + 2 2 cos . 

wpt +n. 'Vo a2/ r r>a 
oE, <0>"-'0Es<0>~0; 

where 

w111= [n.2(wp;2+n;2) / (wp.2+n.2) ]1' 2, w,.,. = (wpe2+n.2) 112, 

are the lower and upper hybrid mode, respectively. 
For the same reason as before, the average plasma 

kinetic energy per unit length inside the beam is 

1° <' oE J

2> (K.E. )av = 
0 

g;- &v 2111' dr 

~HNb2e2) [ Cwp.2+:,;;~::j2+n;2) y + cp<~~2n.J] . 
In contrast to case (i), this energy amounts up to 

half of the nonneutral beam electrostatic field energy 
depending on the external magnetic field strength. 
Note that when n.»wp• and n;«w,,;, not only the 
plasma energy is at its maximum value, but it is 
mostly shared by the ions owing to the dominance of 
the lower hybrid mode, a fact again conforming to the 
relative activity of the ions in this magnetic field 
regime. 

Although this situation is difficult to realize experi­
mentally because of the requirement of an extremely 
thin beam, it points to an interesting as well as ex­
plorable heating mechanism for the ions. 

All along we have adopted a model under which the 
beam has zero rise time. What if the beam has a finite 
rise time as it always does? As shown by Lee,6 the 

expressions corresponding to a beam with finite rise 
time are readily obtainable by an integration of their 
respective zero rise time expressions (remember we are 
in the linear theory regime). For our purposes, it 
sufficies to make a general comment on the finite rise 
time effects instead of carrying out the detailed calcu­
lation for a specific case. Let r. be the rise time of the 
beam, and re be the characteristic time of a particular 
quantity, such as lhe decay time of the counter current 
or the period of an oscillatory mode. Then, to account 
for the effects of r,, one may roughly add a factor g 
to the quantities under the zero rise time model, where 

g= (l+ r,/ r.)-l. 

For all intense relativistic electron beam experi­
ments, r,·is between a few to a few tens of nanoseconds, 
while the counter current decay time is at least of the 
order of microseconds. Hence, under general experi-
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FIG. 4. Upper: Charge neu­
tralization vs fl;/w,,;. Lower: 
Current neutralization (at 
the beam front) vs fl;/w 9 ;. 
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mental conditions, ~1, so that the finite rise time has 
little effect on the current neutralization phenomena. 

On the other hand, the finite rise time may cause 
strong phase mixing of the oscillatory modes and 
thereby reduce their amplitudes considerably. To see 
this numerically, we assume Tr to be in the same range 
as before and n0 ~1012 cm-i; thus, 

-r.,.a2.,,./w,.,, .$-r.,,=2.,,./w'P' ;510-1 nsec, 

-rci=21r/wv.. $5A 112 nsec, 

where A is the mass number of the ions. Thus, for the 
longitudinal plasma oscillations and the upper hybrid 
mode, g«1, while for the lower hybrid mode, g .$0.5. 
Therefore, only the lower hybrid mode can survive 
the finite rise time effects. However, as pointed out 
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before, it is also this mode that appears most interesting 
for the heating of plasma ions. 
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