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We use scanning tunneling microscopy/spectroscopy (STM/S) to elucidate the atomically resolved electronic 
structure in strongly correlated topological kagome antiferromagnet Mn3Sn. In stark contrast to its broad 
single-particle electronic structure, we observe a pronounced resonance with a Fano line shape at the Fermi 
level resembling the many-body Kondo resonance. We find that this resonance does not arise from the step 
edges or atomic impurities, but the intrinsic kagome lattice. Moreover, the resonance is robust against the 
perturbation of a vector magnetic field, but broadens substantially with increasing temperature, signaling 
strongly interacting physics. We show that this resonance can be understood as the result of geometrical 
frustration and strong correlation based on the kagome lattice Hubbard model. Our results point to the 
emergent many-body resonance behavior in a topological kagome magnet. 
 

Studying the effects of correlation and topology in quantum materials is emerging as one of the central themes in 
condensed matter physics [1]. In electron systems with strong Coulomb interaction, they often exhibit exotic 
electronic and magnetic properties that cannot be sufficiently accounted for by the non-interacting properties of 
their individual constituents. As such, the realization of these emergent properties in topological materials can lead 
to unpredicted manifestations of their many-body physics. Recently, a series of correlated kagome magnets have 
been observed to have anomalous transport response, correlated topological electronic structure and giant spin-orbit 
tunability [2-16]. Among these, Mn3Sn stands out due to its antiferromagnetism and the absence of any non-kagome 
layers. It is also one of the rare antiferromagnets that exhibits large anomalous Hall and Nernst effects, arising from 
the Berry curvature due to gapped magnetic nodal lines leading to Weyl fermions [2,3]. In addition to its large Berry 
curvature, photoemissions experiments have shown a broad single-particle electronic structure with a band 
renormalization factor as large as five [4]. Therefore, this combination of kagome lattice, topological bands and 
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strong correlation in Mn3Sn lends itself to be a fascinating platform for studying the strongly correlated topological 
kagome magnet.                

Mn3Sn crystallizes in space group P63/mmc with the lattice constant a = b = 5.7 Å, where each layer consists of a 
kagome lattice made of Mn atoms stuffed with Sn atoms [Fig. 1(a)], with AB stacking of the equivalent layers [Fig. 
1(b)]. A first-principles calculation of the bulk band structure [Fig. 1(c)] finds several flat bands and Weyl fermions 
[3,4]. Due to strong interplane coupling, the as-cleaved surface does not exhibit an atomic lattice structure [5,12]. 
To prepare atomic surfaces, we first cleave the sample and then anneal it at 1100K for one hour. With this in-situ 
annealing process, we can measure large clean flat areas with terraces larger than 300nm in size [Fig. 1(d)]. We 
directly visualize the Mn3Sn atomic surface at 4.6K with hexagonal symmetry and expected lattice constant, as 
shown in Fig. 1(e). A comparison to simulation finds reasonable agreement [Fig. 1(e) inset], similar to the kagome 
surfaces in Fe3Sn2 [5,13] and Co3Sn2S2 [10,15]. An analysis of a line cut taken across several single atomic steps 
finds each step to be approximately 2.3Å, consistent with its half c-axis unit [Fig. 1(f)]. Further analysis across a 
single atomic step reveals the interlayer alignment of the kagome lattice, consistent with the AB stacking of the 
bulk crystal structure [Fig. 1(g)].  

Having visualized the atomic kagome surface of Mn3Sn, we now investigate its low-energy electronic structure. 
Measuring the dI/dV spectrum along a line of 50nm, far from any step edge, we find a consistent resonance feature 
at EF with a line-shape asymmetry [Fig. 2(a)]. Near the atomic step edge, we find that the resonance is strongly 
suppressed [Fig. 2(b) and its inset], demonstrating that the resonance is not from the breaking bonding induced 
scattering from the step edge. As this peak is observed at every position on the kagome surface, this resonance state 
is not related to an isolated impurity but is a feature of the kagome lattice. This point is further supported in Fig. 
2(c), that the resonance is slightly suppressed by the isolated atomic impurity. The spectral asymmetry of this 

resonance leads us to consider the Fano equation 𝐹(𝐸) ≈
(௤ାா/௰)మ

ଵା(
ಶ

೨
)మ

, where q is the quality factor that quantifies the 

coupling of the tip to the discrete state and Γ is the resonance width. The spatially averaged dI/dV spectrum can 
indeed be fitted by A*F(E)+B as shown in Fig. 2(d), where A and B are the additional adjustment parameters. It 
can also be seen that there is a non-zero background, indicative that not all states are associated with the resonance. 
Γ = 3.9meV is the characteristic energy scale of the resonance. If we associate this state with the Kondo lattice 
resonance, the estimated Kondo temperature would amount to TK = Γ/1.4kB = 32K.  

A magnetic field dependent measurement finds that despite some weak broadening the resonance peak does not 
split or shift under an out-of-plane 4T field or in-plane 2T field relative to the unperturbed resonance state [Fig. 3(a) 
orange, brown, and blue curves respectively]. In reference to tunneling experiments in YbRh2Si2 and SmB6 among 
others [6,7,17] where a Kondo resonance with a Fano line shape was observed, the resonance was also not split by 
a strong magnetic field. In contrast to the weak field response, we observe a strong temperature dependence of the 
resonance. Our temperature-dependent measurement finds that the resonance peak is substantially suppressed and 
broadens with increasing temperature [Fig. 3(b), solid lines]. In tunneling experiments, the dI/dV spectra measure 
the convolution of the DOS and the derivative of the Fermi Dirac distribution function. As such, we also plot the 
temperature convolution of the spectrum taken at our lowest temperature (T=4.6K) for each temperature (dotted 
lines) for comparison. We see that the actual data shows a stronger temperature broadening effect than the 
convoluted curves, indicating an interaction driven resonance with intrinsic temperature dependence. Next, we fit 
the experimental data with the thermally convoluted Fano function in Fig. 3(c). During the fitting, we find that 
although q shows little variation, Γ increases substantially with T, which is associated with the intrinsic thermal 
broadening of the DOS peak. The spatially independent line-shape, magnetic field response, and thermal broadening 
of this resonance all resemble the behavior of the resonance in systems that can be described by the Kondo lattice 
model [6,7,17-20]. Fitting Γ(T) with the extended phenomenological expression derived initially for the single-
impurity model [21,22,23], Γ = (2(kBTK)2+(πkBT)2)0.5, we obtain an estimated Kondo temperature of TK = 30K as 
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shown in Fig. 3(d). The obtained TK is consistent with the energy scale of the linewidth at base temperature. In the 
bulk resistivity data [24], we have also observed a characteristic Kondo upturn around this TK determined by STM/S, 
indicating its bulk origin. We can use this estimated Kondo temperature to re-examine the non-splitting nature of 
the resonant state under the magnetic field. The minimum field with which the resonant state splits is related to the 
Kondo temperature by approximately gµBB ≈ 0.5kBTK [25,26]. For an estimated TK = 30K and g ≈ 2, a minimum 
field of approximately 11 T would be required. For the smaller fields applied in our experiment, some broadening 
of the resonance can be observed, but without clearly splitting. 

Indeed, there are several ways in which the crystal and electronic structure of Mn3Sn can be considered analogous 
to systems described by the Kondo model [27]. In the Kondo model, the localized moments in a lattice are screened 
by the itinerant conductive sea, forming periodic singlet states [Fig. 4(a)]. In their excitation spectrum, the many-
body interactions between the flat band and itinerant conduction band can manifest as a resonance with a Fano line 
shape at the Fermi level [Fig. 4(b)]. This behavior is mostly observed in heavy fermion systems with localized f 
orbitals. However, the key components for the formation of such a resonance—namely the flat band and the strong 
Coulomb interactions—can in principle, be satisfied in a strongly correlated 3d kagome metal. In this case, the 
kagome lattice localizes the electronic wavefunctions in place of the heavy f electrons, with the itinerant conduction 
sea naturally arising from its metallic state. Although the higher energy single-particle flat band cannot be clearly 
resolved in this strongly correlated system due to the short quasi-particle lifetime [4], the flat band is a general 
feature of the kagome lattices as demonstrated in its first-principles calculations. Theoretically, we consider a set 
of kagome flat bands touching a dispersive band with a dominating Hubbard U and an inter-band coupling [Fig. 
4(c)]. By solving the coupled equation of motion for the Green’s function derived to the third order for the kagome 
lattice Hubbard model [24], we show that there can be a many-body resonance at the Fermi level in the density of 
states [Fig. 4(d)].  

Moreover, in contrast to heavy fermion materials, Mn3Sn exhibits anomalous Hall and Nernst effects coming from 
Berry curvature with topological fermions and Fermi arcs2,4,11, and the interplay between frustrated magnetism, 
Berry-phase and many-body effects within this material has the potential to open new research directions. The 
achievement of a large atomic flat surface in this material by our methodology also indicates the possibility of 
engineering such stoichiometric materials down to atomically thin layers to realize the quantized anomalous effect 
towards the realization of high-temperature interacting dissipationless modes. Finally, it has not escaped our 
attention that previous tunneling data directly into the kagome layer of Fe3Sn2 and Co3Sn2S2 all exhibit an 
anomalous zero-bias peak [5,10,13,15], therefore this many-body resonance phenomenon may be ubiquitous in this 
family of strongly correlated kagome metals.  
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Fig. 1 (a) Crystal structure of the Mn3Sn kagome lattice. (b) c-axis AB stacking of the kagome lattice from side 
view and top view, respectively. (c) Normalized bulk band structure of Mn3Sn in the conformal Brillouin zone 
showing low energy flat bands (black arrows) and Weyl nodes with two examples indicated by red and blue arrows. 
(d)(e) STM topographic images at different scales of Mn3Sn after annealing the cleaved surface at 1100K for 1 hour, 
showing a large atomic flat surface showing the lattice with hexagonal symmetry. Inset of (e): first-principles 
simulation of the image overlaid with atoms illustrations. (f) STM topographic image across multiple steps of single 
layers, whose line profile is shown on the right. (g) Stacking alignment of two layers across a step, with the black 
and blue dots denoting Sn atoms of the upper and lower layers, respectively. All topographic data were taken at 
T=4.6K, V=-50mV, I=50pA. 
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Fig. 2 (a) dI/dV line cut across 50nm, taken far from any step edge, showing a peak at EF. Every fifth curve is 
marked by a solid black line for clarity. (b) Perturbation of a step edge on the Fermi level resonance. The inset 
shows the line-cut spectra taken across a single step edge, whose position is marked by the arrow. (c) Perturbation 
of the atomic impurity on the Fermi level resonance. The inset shows the topographic image of the impurity. (d) 
Spatially averaged dI/dV spectrum (open circles). The solid line is a fit to Fano line-shape function, 𝐹(𝐸) =
(௤ାா/௰)మ

ଵା(
ಶ

೨
)మ

.  
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Fig. 3 (a) dI/dV taken at 0T (blue), 2T along a-axis (brown) and 4T along c-axis (yellow). (b) Temperature-
dependence of dI/dV with spectra offset for clarity. The dotted lines are numerically calculated spectra by 
convoluting the 4.6K data with the derivative of Fermi-Dirac distribution function at respective temperatures. (c) 
Fit of the temperature-dependent spectra by thermally convoluted Fano function. (d) Resonance width Γ plotted 
against temperature, giving a Kondo temperature of TK=30K when fit to the Kondo model.  

 

 

 

Fig. 4 (a) Schematic depicting a Kondo lattice formed by the coupling between periodic localized states (red arrows) 
and itinerant conduction electrons (blue arrows). (b) DOS spectrum of the Kondo lattice, where a Kondo resonance 
(dark blue) at EF is generated by the many-body coupling of the localized flat band (red) and itinerant conduction 
band (shaded blue). (c) Band structure for a kagome tight-binding model showing a flat band with interband 
coupling and a large Hubbard interaction. (d) The calculated DOS shows a weak bump arising from the kagome 
flat band and a many-body resonance at EF due to the hybridization of the localized and itinerant states.  
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Supplementary Material 

 

Materials and Methods: 

Single crystal Mn3Sn samples were cleaved ex situ and then cleaned in situ with standard Ar ion sputtering and 
subsequently annealed at 1100K for approximately one hour before being inserted into the STM head at T = 4.6K 
after cooling to ~150K. Topographic images were obtained at T=4.6K, V=-50mV, and I=50pA. Differential 
conductance spectra were measured using a standard lock-in technique with modulation voltage VRMS=0.3mV at 
V=-100~-50mV and I=500pA.  

First-principles calculation: 

The electronic structures were computed using the projector augmented wave method28,29 as implemented in the 
VASP package30 within the generalized gradient approximation scheme31. The spin−orbit coupling was included 
self-consistently in the calculations of electronic structures with a Monkhorst–Pack k-point mesh 21 × 21 × 21. 
Experimental lattice constants and the antiferromagnetic configuration were used32. The simulated STM image was 
based on the calculation of the real space charge density distribution according to the Tersoff-Hamann approach, 
which was acquired by the program HIVE33. In order to systematically calculate the surface and bulk electronic 
structure, we constructed a first-principles tight-binding model Hamiltonian for Mn3Sn, where the tight-binding 
model matrix elements were calculated by projecting onto the Wannier orbitals, which used the 
VASP2WANNIER90 interface34. We used Mn d, and Sn p orbitals to construct Wannier functions without using 
the maximizing localization procedure. The surface states were calculated from the surface Green’s function of the 
semi-infinite system. The band structure was renormalized by a factor of five to match the ARPES data4. 

Resistivity measurements: 

 

 

Fig. S1 Resistivity measurements of bulk samples of Mn3.07Sn0.93 along the [21ത1ത0] direction. The inset highlights 
the Kondo upturn.  
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Kondo resonance in a kagome Hubbard model  

Since the electron correlation is indispensable in the system, we start with a 2D kagome Hubbard lattice model  
 
𝐻௙ = −𝑡 ∑ 𝑑௜,ఙ

ற
ழ௜,௝வ,஢ 𝑑௝,ఙ − 𝜇 ∑ 𝑑௜,ఙ

ற
௜,஢ 𝑑௜,ఙ + (𝑈/2) ∑ 𝑛௜,஢𝑛௜,ఙഥ௜,ఙ    (1) 

 
where 𝑡, 𝜇 and 𝑈 are the hopping, the effective chemical potential, and the Hubbard U interaction respectively. 
𝑛௜,஢ = 𝑑௜,ఙ

ற 𝑑௜,ఙ.  For U = 0, one can obtain the typical single-particle energy spectrum as shown in the left panel of 
Fig S2a. We treat the effective chemical potential as a tuning parameter. For 𝜇 = 𝜇ଵ as denoted by the orange dashed 
line in Fig.S2a, a single Fermi surface emerges together with a flat band below the Fermi pocket. For 𝜇 = 𝜇ଶ, two 
Dirac bands need to be considered. We consider the first case 𝜇 = 𝜇ଵ while the second case can be found to generate 
qualitatively the same physical results with direct generalization.  
 
 
Due to the presence of an onsite Hubbard interaction, the flat band degrees of freedom can also be essential although 
it is relatively far away from 𝜇. We project the lattice model to the low-energy window near the Fermi energy while 
keeping the flat band degrees of freedom. This results in a projected effective Hamiltonian, 𝐻 = 𝐻௖ + 𝐻௙, with 
 
𝐻௖ = ∑ 𝜀𝒌ఙ𝑐𝒌,ఙ

ற
𝒌,ఙ 𝑐𝒌,ఙ   (2) 

 
and  
 
𝐻௙

଴ = 𝜖௙ ∑ 𝑓𝒌,ఙ
ற

𝒌,஢ 𝑓𝒌,ఙ    (3) 
 
where we use c and f to describe the itinerant band and flat band after projection respectively. A renormalization 
group analysis clearly shows that the projected Hubbard interaction (𝑈/2) ∑ 𝑐𝒌,஢

ற 𝑐𝒌ା𝒒,ఙ𝑐
𝒌ᇲ,ఙഥ
ற

𝒌,𝒌ᇲ,𝒒,ఙ 𝑐𝒌ᇲି𝐪,,ఙഥ  brings 

about only Landau Fermi liquid renormalization to the c-electrons with finite quasi-particle weight, therefore being 
irrelevant for the following analysis. Whereas the projected Hubbard interaction has crucial effects on the flat band 
whose kinetic energy is completely quenched due to the kagome lattice geometry, hence the total Hamiltonian 
describing the flat band is cast into 
 
 𝐻௙ = 𝜖௙ ∑ 𝑓𝒌,ఙ

ற
𝒌,஢ 𝑓𝒌,ఙ + (𝑈/2) ∑ 𝑓𝒌,஢

ற 𝑓𝒌ା𝒒,ఙ𝑓
𝒌ᇲ,ఙഥ
ற

𝒌,𝒌ᇲ,𝒒,ఙ 𝑓𝒌ᇲି𝐪,,ఙഥ    (4) 

 
Furthermore, the interband scattering processes are unavoidable as manifestations of fluctuations of inter-sublattice 
scatterings. The most important scattering processes takes place between the electrons near the Fermi surface and 
those in the flat band, which is modeled by 
 
𝐻௛௬௕ = 𝑉 ∑ (𝑐𝒌,ఙ

ற
𝒌,ఙ 𝑓𝒌,ఙ + ℎ. 𝑐).  (5) 

 
To summarize, we expect that Eq. (2), (4), (5), which are reduced from the kagome Hubbard lattice model, include 
the major physics responsible for the experimental observation. The reduced model, resembling a periodic Anderson 
lattice model, has been widely studied and various of properties of ground state and phase diagrams have been 
discussed35-44. Here, we focus on (a) the Kondo resonance and discuss the results relevant to our experiment and (b) 
the effect of the spin-polarization of the c-fermion bath on the Kondo resonance which naturally exists in a non-
collinear magnetic insulator. 
 

The STM measurement probes the local density of states (LDOS) 𝜌௙(𝒓, 𝜔) = − ቀ
ଵ

గ
ቁ Im𝐺௙

௥(𝒓, 𝜔), where 𝐺௙
௥(𝒓, 𝜔) 

is the retarded Green’s function (GF) of the f-fermions. To obtain 𝐺௙
௥(𝒓, 𝜔), we set up the equation of motion of the 
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Green’s functions up to the third order. In the following, we introduce the notation for the retarded Green’s function 
as  ≪ 𝑓𝒓,ఙ|𝑓

𝒓ᇲఙ
ற ≫≡ −𝑖 ∫ 𝑑𝑡 < ൛𝑓𝒓,ఙ(𝑡), 𝑓

𝒓ᇲఙ
ற (𝑡 = 0)ൟ > 𝑒௜௭௧ ,

ஶ

଴
  where 𝑧 = 𝜔 + 𝑖𝜂  with 𝜂  being an infinitesimal 

positive number45,46.The retarded Green’s function of two fermionic generic operators A,B satisfy the equation of 
motion 𝜔 ≪ 𝐴|𝐵 ≫≡< {𝐴, 𝐵} >଴ +≪ [𝐴, 𝐻]|𝐵 ≫ , where {𝐴, 𝐵}  is the anticommutation of the two operators. 
Starting from ≪ 𝑓𝒓,ఙ|𝑓

𝒓ᇲఙ
ற ≫ , one arrives at its equation of motion which generates new Green’s functions. We 

continue setting up the equation of motion of the newly generated Green’s functions, and after projecting, at the 
third-order expansion, the generated Green’s functions onto ≪ 𝑓𝒓,ఙ|𝑓

𝒓ᇲఙ
ற ≫, we make the whole coupled equations 

closed. Then, solving the coupled equations, one can obtain in the large U limit the k-space Green’s function of f-

electrons 𝐺௙
௥(𝒌, 𝜔) =  

ଵ

ே
∑ ≪ 𝑓𝒓,ఙ|𝑓𝒓ఙ

ற ≫𝒓,𝒓ᇲ 𝑒௜𝒌∙(𝒓ି𝒓ᇲ), from which we calculated the LDOS of the f-electrons. 

 
 
For a generic 𝒓, the LDOS is shown by Fig.S2b. A robust peak is found for low temperatures, which is located very 
close to the Fermi energy (we considered both spin-degenerate and partially spin-polarized cases). The bump of the 
LDOS near 𝜀௙  is a result of the large DOS from the exact flat spectrum of f-fermions, whose absence in real 
materials is expected, since the flat spectrum is replaced by quasi-flat bands in layered kagome lattices.  
 

Fig. S2 a, The energy spectrum from the kagome lattice model with U = 0 and t < 0.  b The LDOS of f-electrons for 
the large U limit for the spin degenerate and polarized case. V = 0.3, 𝜀௙ = −0.3, 𝜌଴ = 0.5 for the spin degenerate case 
while 𝜌଴↑ = 0.5 and 𝜌଴↓ = 0.45 for the polarized case. The inset shows the zoomed-in LDOS near Fermi energy, where 
a precursor of the pseudogap is observed for the spin degenerate case, which is suppressed after turning on the effective 
Zeeman field.  

 

 




