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Galton’s Problem as network autocorrelation 

MALCOLM M. DOW-Northwestern University 
MICHAEL L. BURTON-University of California, lrvine 
DOUQLAS R. WHITE-University of California, lrvine 
KARL P. REITZ-University of California, lrvine 

Ethnologists have long sought to establish and validate causal models of sociocultural 
phenomena by the use of correlational evidence across broad samples of societies. It i s  
well known that correlation does not establish causation. However, evidence for causality 
i s  strengthened if a postulated correlation replicates in many different contexts, thus 
radically reducing the likelihood of hidden third factors, spurious correlations, or correla- 
tions due to chance composition of a sample. 

In the use of correlation as a valid measure of the relationship between two variables, a 
necessary condition i s  that the sample units must be independent. Nonindependence can 
occur in a variety of ways, and i ts  consequences can be quite severe. Even though a cor- 
relation exists between two variables, i ts estimate via a nonindependent sample can be 
grossly inflated or reduced. In cross-cultural research, independence of sample units is 
almost impossible to achieve, a fact that has made cross-cultural research open to a good 
deal of valid criticism. The eminent statistician Sir Francis Galton first pointed out the prob- 
lem in his remarks following E. B. Tylor’s (1889) presentation of his classic cross-cultural 
paper. The problem has since been known in anthropology as Galton’s Problem (Naroll 
1961, 1973; Schaeffer 1974). 

The nonindependence of sample societies stems from the fact that humans have evolved 

Classical statistical inference procedures usually assume the independence of  
sample units. However, the assumption of independence is often unrealistic in 
cross-cultural research because societies in neighboring or historically related 
regions tend to be duplicates of one another across a wide variety of traits that 
are spread by historical fission, diffusion, or migration of peoples. A recent 
generalization of the usual regression model explicitly allows for networks of in- 
terdependencies among sample units as part of the model specification. Here, 
two new estimation procedures for this network autocorrelation model are com- 
pared to previously employed maximum likelihood procedures, and to the usual 
regression procedures which ignore interdependence. The results of com- 
parisons based on simulated autocorelation data and the reanalyses of two 
previously published empirical studies indicate that both of the procedures pro- 
posed here compare very favorably with the maximum likelihood approach, and 
both are vastly superior to the usual regression procedures when there is 
moderate to high autocorrelation (i.e., interdependence). [Galton’s Problem, 
cultural diffusion, networks, cultural evolution, statistical methodology] 
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from a common evolutionary stock and from the diffusion of cultural traits among 
societies. Societies in neighboring or historically related regions tend to be duplicates of 
one another in terms of a wide variety of traits that are spread by historical fission, diffu- 
sion, or migration of peoples. The result is that neither the actual number of “independent” 
cases nor the effect of the interdependencies on trait correlations is  generally known for 
any cross-cultural sample. 

Galton’s Problem applies with equal force to attempts to establish and validate multi- 
variate causal models. Regression models are commonly used for this purpose. Regression 
coefficients may be under- or overestimated, depending on the extent and structure of non- 
independent cases. Here the problem is  known as autocorrelation, where variables or error 
terms in the regression equation are correlated with the scores of related cases on the same 
variables or error terms. In technical terms, the presence of autocorrelation produces inef- 
ficient estimates of the regression coefficients: estimates will vary widely from the true 
coefficient. This problem is compounded by the fact that the variances of these coefficient 
estimates are systematically underestimated. As a result, the following may occur: (1) 
Where little or no correlation exists between two variables, presence of autocorrelation in 
the sample may result in an estimate of the regression coefficient not only substantially dif- 
ferent from zero but also with an underestimate of i t s  variance. This may lead the research- 
er to conclude that the correlation is significantly different than zero. (2) Where the rela- 
tionship between two variables i s  indeed substantial and replicable across samples, the 
estimate of the same regression coefficient via two different autocorrelated samples may 
result in large differences between the two estimates. When this is coupled with an under- 
estimated variance, a researcher may be led to conclude that the estimates are significant- 
ly different and that the relationship does not replicate. 

Autocorrelation was first formulated as a problem with time-series data, for which events 
at a given point in time are generally not independent of the events at points just preceding 
in time. For cross-sectional data the comparable formulation was in terms of spatial auto- 
correlation, for which events at a given point in space are not independent of events at 
points nearby. In the past few years, several cross-cultural researchers have discussed the 
relevance of the spatial autocorrelation model to Galton’s Problem (Loftin 1972; Naroll 
1976; Pryor 1976; Simonton 1975; Wining 1974). That formulation requires measurement of 
interdependencies among societies in terms of spatial distance. The present authors (Dow, 
White, and Burton 1983; White, Burton, and Dow 1961) have generalized the spatial auto- 
correlation model to incorporate any kind of historical or diffusional relationship among 
societies. This network autocorrelation model can use the statistical solutions to the spatial 
autocorrelation model; only the measures of relationships among societies will differ. 

Valid solutions to the spatial autocorrelation model have been developed only recently 
(Ord 1975; Cliff and Ord 1981; Doreian 1960, 1961; Bartels and Ketellapper 1979). In a 
previous paper (Dow, White, and Burton 1983) we review four models in which auto- 
correlation enters into the regression framework and suggest that one of them, the disturb- 
ances model, appears to be well suited for cross-cultural research. In this model autocor- 
relation appears in the error terms of the regression equation. This assumes that there are 
patches of related cases which fit the model better than expected by chance, other patches 
for which scores on the dependent variable are systematically overestimated, and remain- 
ing patches for which the dependent variable is underestimated. Such a model is consistent 
with the case in which the variables under study tend to travel (spread, diffuse) as a packet. 
The great advantage of this autocorrelated spatial disturbances model is that regression 
coefficients can be properly (efficiently) estimated even with the presence of autocorrela- 
tion, by the use of maximum likelihood (ML) procedures. Mathematical, empirical, and 
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simulation work (Dow, Burton, and White 1982) have all shown that these ML autocorrela- 
tion procedures yield markedly different and more accurate results, in the presence of 
autocorrelation, than ordinary least squares (OLS) regression, which assumes the absence 
of autocorrelation. The advantages of the ML procedure over OLS are of a major order 
even in small samples (Dow, Burton, and White 1982). 

Autocorrelation solutions to Galton's Problem in the regression context depend on an ex- 
plicit specification of the strength of relatedness between each pair of cases in the sample. 
A restricted and incomplete approach to such specifications, using onedimensional arrays 
or "diffusion arcs," was introduced to the cross-cultural literature by Naroll (1961, 1973), 
Loftin (1972), and Simonton (1975). A more powerful two-dimensional or "diffusion proximi- 
ty" specification was introduced by Wirsing (1974) and Pryor (1976). The weaknesses of the 
Loftin and Simonton arguments as autocorrelation solutions to Galton's Problem consist of 
underestimating the amount of diffusion by assuming that (1) diffusion operates only in one 
direction and (2) is never reciprocal. The weaknesses of the Wirsing and Pryor arguments 
are not in the specification of the interdependency matrix but in how this i s  incorporated in- 
to the estimation procedures for the regression model. Our network disturbances model 
builds in the proper estimation procedures. 

While the network disturbances model has great advantages for cross-cultural and 
causal-modeling research, i t s  chief disadvantage to date has been the computational effort 
required by the ML estimation procedure. This is true in spite of Ord's (1975) useful 
simplification of the estimating routine. The procedure is  formidable even with small 
samples, more so with large ones. And, unless the structure of the interdependencies in 
large samples assumes some particularly simple forms (Ord 1975:125), the ML computa- 
tional routine cannot be employed. 

The major purpose of this paper, then, i s  to examine two estimation procedures for the 
network autocorrelated disturbances model, both of which are considerably simpler corn- 
putationally than the ML procedure. Although neither procedure generates estimates 
which are preferable to ML estimates on purely formal criteria, we compare the empirical 
performance of each procedure to  the ML approach and to the usual OLS regression pro- 
cedures using simulated autocorrelation data. The results of this simulation indicate that 
both methods compare very favorably with the ML procedure in terms of bias and efficien- 
cy of the regression coefficient estimates. Both methods also offer major improvements 
over the usual OLS regression when moderate to high autocorrelation is present. Also, both 
methods perform extremely well in reanalyses of two previously published autocorrelation 
examples. 

In the following section we review briefly the matrix formalization of the network dis- 
turbances model and outline the three autocorrelation estimation methods. ' We then pre- 
sent and discuss the results of the simulation. In the subsequent section we suggest 
significance testing procedures which can be used with these alternative routines. Finally, 
we present the results of our reexamination of two previously reported (White et al. 1981; 
Pryor 1976) empirical examples using all three autocorrelation methods and OLS. 

autoconeiated disturbances regression model 

Although Calton's Problem was first raised in connection with the spatial and historical 
patterning of cultural traits, it i s  in a statistical sense actually a problem of model specifica- 
tion. A model i s  correctly specified when the equations in the model adequately corres- 
pond to the processes generating the observed variation in the data. Model specification i s  
a matter of degree: the better the theoretical understanding of the underlying processes, 
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the closer the correspondence between the postulated equations and the empirical data, 
and the more precise the estimates of the model parameters. 

From a cross-cultural perspective, cultural diffusion is  one of the theoretically important 
underlying processes affecting the degree of variation in comparative data. The formal ex- 
pression of this process in equational form is  thus a necessary part of any correctly 
specified model used to analyze cross-cultural data. Before presenting the network 
autocorrelated disturbances model in equational form, however, we first examine the 
representation of cultural diffusion as a matrix of relationships among the sample units. 

An important step in Pryor’s (1976) attempt at a matrix formulation of Galton’s Problem 
is  the calculation of a “diffusion possibility index” between every pair of societies in a sam- 
ple. Any factor thought to influence the probability of diffusion, such as distance and 
language similarity, can be used to calculate a “DP index” for each pair. As a purely hypo- 
thetical example, Pryor calculates the DP indices between pairs using the formula DP = 5 
+ 3L - 40, where L i s  a 0,l variable indicating language similarity (1) or not (0), and D i s  
geographical distance measured in thousands of miles. Pryor computes a DP index for 
every pair drawn from six hypothetical societies (7, V, W, X, Y, Z) and assembles the results 
into a “sample diffusion matrix,” shown as the S matrix in Table 1. 

Societies T and V in this S matrix would be most alike (DP = 6), while T and Y have l i t t le 
similarity (DP = I), as measured by Pryor‘s hypothetical DP equation. It i s  entirely possible, 
of course, to calculate relationships using measures based only on distance or only on 
language similarity, rather than attempting to combine them in some ad hoc fashion. No 
matter which measures of diffusion or similarity are preferred, however, the interdepen- 
dencies among sample units are s t i l l  formalized as an S matrix. 

The network autocorrelation disturbances model assumes that the N sample units are 
somehow differentially interrelated and that the interrelations can be operationalized as 
an N x N ”relational” matrix W. This matrix differs from Pryor‘s diffusion possibility matrix 
only in that each element is divided by i ts  row sum; thus, the rows are rescaled to sum to 1. 
The W matrix in Table 1 i s  the diffusion possibility matrix S appropriately row-normalized 
to unity. Since a sample unit is not assumed to influence itself, the main diagonal of this 
matrix has all zeros. The entries in this matrix, wij, indicate the interaction probabilities be- 
tween unit i and unit j. Note that now interactions may be reciprocal, but they need not be 
symmetric (i.e., wij does not necessarily equal wji). 

This model i s  a generalization of the usual OLS (ordinary least squares) multiple regres- 
sion model, which can be compactly stated in matrix form’ as 

Y = xp + E E - IND(O,O:/) (1 1 

Table 1. Matrix representation of sample unit interdependence. 

Pryor’s (1976) sample diffusion 
possibility matrix 

Row normalized relational matrix 

T V W X Y Z  T V W X Y Z  

T -  6 5 3 1 2  T 0 .35 .29 .I8 .06 .12 
V 6 -  4 4 2 1  V .35 O .24 .24 .12 .06 
w 5  4 - 2 2 3  W .31 .25 0 .I3 .I3 .I8 
x 3 4 2 -  4 5 w =  X .17 .22 .I1 0 .22 .28 
Y 1 2 2 4 -  5 Y .07 .14 .I4 .29 0 .36 
2 2  1 3  5 5 -  Z .I3 .06 .I9 .31 .31 0 

S =  
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where 

Y is an N x 1 column vector of dependent variable observations; 
X i s  an N x (K  + 1) matrix of K independent variables plus an initial column of ones; 
fl is a (K  + 1) x 1 column vector of regression coefficients; 
E i s  an N x 1 column vector of (independent) multivariate normal errors. 

When the error term assumptions of this model are met, in particular the independence 
assumption, the ML estimation procedure and the usual OLS procedure yield equivalent 
results.’ That is, estimates of the regression coefficients fi and their standard errors are 
identical. However, given an interdependent set of observations, such as frequently occur 
in continuous area cross-cultural studies or time series studies, the error terms may not be 
independent of one another, and the above OLS model i s  incorrectly specified in this case. 

Given an interdependent set of observations and an appropriate W relational matrix, the 
OLS model can be respecified as a network autocorrelated disturbances model: 

This model states that the disturbances E from the previous OLS regression model are not 
independent. Rather, each disturbance is  a weighted average of the disturbances at related 
units, the weights being the nonzero wii in the appropriate row of W, times a scalar p which 
is  analogous to a correlation coefficient, plus an N x 1 column vector of random com- 
ponents v. Rho (p) expresses the extent of the error dependencies (i.e., the overall auto- 
correlation in the system of variables under study). Note that when p = 0 (Le., there i s  no 
autocorrelation present with respect to W), this model is identical to the OLS model in 
equation 1. When W has all zero elements, corresponding to complete independence of 
each sample unit from all the others, this model is again identical to equation 1. Thus, the 
network disturbances model i s  a true generalization of the usual OLS regression model. 

Some insight into the nature of the network disturbances model can be obtained by alge- 
braically combining equations 2 and 3. Solving for E in terms of v in equation 3 we get 

E - pWE = V 

then ( I  - pw)E = v 

and E = ( I  - Pw)-’V 

where I is  the N x N identity matrix. Substituting back into equation 2 we get 

Y = xp + ( I  - pw1-1,. (7) 

Premultiplying this equation by ( I  - pW) gives 

( I  - pW)Y = ( I  - pw)xp + v 

Y - pWY = (X - pWX)P + v 

(81 

(9) or 

This latter equation is  more simply written as 

Y* = x *  p + v v - IND(O.O~II (1 0) 

Note that after this common linear transformation of all variables the error terms in equa- 
tion 10 now meet OLS assumptions; hence, unbiased and relatively efficient estimates of 
the regression coefficients 0 and their standard errors can be obtained using the usual OLS 
procedures on the transformed data. 

Within the regression framework, then, the network autocorrelation problem is  twofold: 
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construction of a plausible relational matrix W and estimation of the autocorrelation 
parameter p. Selection of the weights w;j for the W matrix i s  of major importance, since 
spurious results may be obtained if the hypothesized matrix does not correspond to any 
real process (Cliff and Ord 1973). In geographical research, interaction effects are often 
estimated according to notions of space-friction constraints on the possibility of effects 
from one unit to another. The simplest function in this case is  an exponentially decaying 
distance function such as D !CL, where D;j i s  the distance from location i to location j and CL 

i s  a suitable exponent chosen a priori. Cliff and Ord (1973) compute weights based on both 
distance and proportion of boundary in common between the 28 counties of Eire. Gatrell 
(1979) has constructed a measure of interaction among Swedish towns based on distance 
and number of telephones. Bodson and Peeters (1975) employ distance and minimum 
public transportation time when constructing an “accessibility function” to generate the in- 
teraction weights among 44 Belgian arrondisements. 

Clearly, the form of the weighting matrix will depend on the problem at hand and on the 
available data. In cross-cultural research, many possib es exist for computing weights. 
Apart from the spatial functions which are obviously applicable to a diffusion process, 
other pertinent network effects which have commonly been hypothesized are language 
similarity, whether or not two societies belong to the same state, and trading relationships. 
A measure of language similarity has been proposed and employed in previous cross- 
cultural examples (White et al. 1981; Dow in press). Language similarity and geographical 
distance measures are used individually to construct the two W matrices employed in the 
analyses reported below.‘ 

If there i s  autocorrelation, the network disturbances model has desirable statistical pro- 
perties that the OLS model lacks. First, although the OLS estimates of regression coeffi- 
cients are unbiased, they are more highly dispersed around the true population parameter 
than are the ML estimates. Second, the OLS estimates of the sampling variances of the 
regression coefficients will generally underestimate the true variances. Hence, with respect 
to estimates based on a single sample, underestimating the variances of the regression 
coefficients will lead to spurious attributions of significance to particular independent 
variables. By contrast, in replication studies across several interdependent samples, the in- 
vestigator would tend to conclude that a valid model fails to replicate because of large dif- 
ferences in estimates of the same parameter due to their unreliability (i.e., wide dispersiori 
around the true parameter). Thus, both single and multiple sample replication studies are 
biased toward finding differences where none exist (type 1 error) if OLS estimation is used 
with interdependent samples (Dow, Burton, and White 1982). This is a crucial issue in cross- 
cultural research whereby functional relationships are expected, i f  valid, to replicate across 
the major geographical/culturaI regions of the world. 

three estlmation procedures 

maximum likelihood (ML) In the usual application of the regression model, estimates of 
the coefficients and their standard errors can be obtained by the method of moments. That 
is, means, variances, and covariances of all variables are calculated and can then be used 
to find estimates of the population parameters. An alternative procedure which does not 
employ sample moments i s  maximum likelihood (ML) estimation. The basic idea behind 
this procedure is  to try to locate estimates which are “most likely” to have generated the 
observed sample values. Details on the estimation theory for the ML network disturbances 
model and other ML autocorrelation models are given in Ord (19751, Doreian (1980), Cliff 
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and Ord (1981). Since we shall compare two simpler solutions (IGLS and IRR; see below) to 
the ML solution, we present here an outline of the ML solution. 

and 6$ for the network disturbances model, 
plus the standard errors of these estimates. The major computational problem is to find the 
ML estimate of 3 which permits the simple variable transformations in equation 11. The ap- 
propriate ML estimate is the value 6 which minimizes the following expression (Doreian 
1980)’: 

The basic problem is to locate estimates 

where 

N 

N i = l  
In (YA‘PAY) -1 z In (1 - phi) 

A = I - p W  (I is  the N x N identity matrix) 
P = I - [(AXI((AX)’AX)- ‘(AX)’] 
si = ith eigenvaiue of W. 

For the results reported below, expression 12 was minimized by direct search of the inter- 
val (-l,l).6 As the sample N increases, repeated evaluation of expression 12 becomes com- 
putationally burdensome. Note that the summation term requires the N eigenvalues of the 
W matrix. As mentioned above, unless W assumes some particularly simple form, i ts eigen- 
values are virtually impossible to compute for a sample of N over about 90.’ 

With 6 obtained from the above procedures the following parameters can be estimated: 

(1 3) ^p = [X‘A‘AX]-l X’A’AY 

which amounts to a generalized least squares (CLS) regression of AY on AX, and 

It is of course desirable to perform the usual inferential procedures on 6 and ̂ p. Consistent estimates of 
their standard errors are obtained from 

(1 51 
~ ~ X * A , A X  0 I-’ a2tr(B) 

~a2.6, f i )  = a4 a*tr(B) a 4 [ t r ( ~ ~ ) - a ]  0 “: 0 
where 

N 
a = - E L? /(I - p+)2 

i = l  

B = WA- ’  
0 = 1 x ( K  + 1) row vector of zeros 
0 = (K + 1) x 1 column vector of zeros. 

That is, with the appropriate estimates of b2, 6, and B inserted into equation 15, and the 
total expression evaluated, the standard error of 6 i s  given by the square root of the (2,2) 
element of V, and the standard errors of the B;s by the square roots of the remaining main 
diagonal entries. 

iterative generalized least squares (IOLS) The iterative generalized least squares pro- 
cedure is based in part on suggestions made by Ord (1975) and Bodson and Peeters (1975). 
For the ML approach, the criterion used to decide on the best estimate 6 was that the 
estimate minimize equation 12, which is  equivalent to maximizing the total log-likelihood 
function. In the IGLS procedure, we sidestep the difficulties associated with finding the 
eigenvalues of W and the repeated evaluation of equation 12. We iteratively search the in- 
terval -1 ( p ( 1 as before; now, however, we (1) insert the search values of directly into 
equation 11 and perform the variable transformations; (2) apply OLS to the resulting equa- 
tion 10 and obtain estimated residuals c; (3) retain as the “best” estimate of p the 6 which 
results in the minimum sum of squares of the residuals from equation 10; (4) retain as our 
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estimates of pi the b i t s  corresponding to this 8; (5) retain the associated standard errors of 
the bi. 

As with the above direct-search ML estimation, it i s  possible that the search procedure 
may locate a local rather than a global minimum p within the search interval. A fairly fine- 
grained search would make this unlikely, however. The simulation results reported below 
clearly suggest that this procedure will estimate a global minimum. It is also possible that 
no unique minimum sum of squares of errors may be found. This possibility did not occur in 
any of the 200 simulation direct searches reported below; nor did it arise with any of the 
empirical examples. 

iterative residual regression (IRR) The iterative residual regression procedure 
originated in Durbin’s (1960) approach to time series analysis and is  discussed in Bodson 
and Peeters (1975) for the spatial autocorrelation case. For this procedure the steps are: (1) 
estimate Y = Yp + E using OLS and obtain the residuals E = Y -Xb; (2) estimate fl by 
regressing 2 on Wb using OLS (i.e., on 2 = pWE + v); (3) use this i3 to transform variables as 
in equation 11; (4) estimate equation 10 using OLS and obtain a new residual vector C; (5) 
use these residuals to obtain another estimate fl as in step 2; (6) terminate the procedure 
when successive estimates of 6 are within some prespecified absolute value’; (7) retain the 
last value of fl and associated bi and their standard errors. 

Whether this estimation procedure converges to some minimum is unknown for multi- 
lateral interdependencies. For the 200 simulations of this model, the maximum limit we set 
of 10 iterations was never reached. For the simulation data analyzed here, convergence 
was very rapid, averaging less than four iterations. Again, the close similarity of the results 
of this method to the results of the other two procedures suggests that it does indeed con- 
verge to  a global minimum. 

generation of data and relational matrix W 

The procedures employed here to generate the simulation data are similar to those 
reported in Dow, Burton, and White (1982). The following model was used to generate the 
data: 

where 

Y = 0 + 1  O X  + E 
x = LWX + c 
E = PWE + v 

5 - IND(M.641) and v - IND[0,81/). 

Since our main interest is in the relative performance of each of the three procedures 
with respect to the bias and efficiency of the p estimate, the intercept was set equal to 
zero. First, we generated a random column vector 6 with mean and variance as in expres- 
sion 18. An autocorrelated independent X variable was then obtained using 

(1 9) 

The extent and direction of OLS estimation error i s  a function of the degree of autocorre- 
lation of the independent variable (i.e., 5) and of the errors (i.e., p); therefore, we set 5 = .4. 
For each independent X vector we generated an autocorrelated error vector by drawing a 
random vector v and transforming it as before: 

x = ( I  - kw)-ly 

E = ( I  - p w ) - l v  (20) 

Given the X and E vectors, we then constructed the dependent Y variable using equation 15. 
That is, we simply add the X and the E vectors. These steps were repeated 50 times for 
values of p = 23, .43, .63, .83 and a fixed sample size of 35. Only positive values of 5 and p 
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were used, since negative autocorrelation i s  less interesting theoretically and less likely em- 
pirically. Also, the expense of computing using the ML program precluded examination of 
all possible autocorrelation values. 

The 35 x 35 relational matrix W used in generating the data via equations 19 and 20 was 
obtained from the language family relationships of  35 SubSaharan African societies from 
the Standard Cross-Cultural Sample (Murdock and White 1969). Briefly, linguistic similarity 
is measured on the genetic tree of languages as an inverse function of the number of nodes 
along the path between the two languages. Further details on the construction of this and 
other cross-cultural relational matrices are provided in White et al. (1981). 

simulatlon results 

Our previous study of the ML disturbances model (Dow, Burton, and White 1982) showed 
that there were no significant gains over OLS for low levels of error autocorrelation (i.e., p ( 
.5). Hence, we did not employ our ML program on the simulated data where p = .23 or .43. 
We compare the performance of the three autocorrelation procedures to each other and to 
OLS with respect to bias and efficiency of the regression coefficient b, and then compare 
the three autocorrelation procedures with respect to bias in the estimate of the autocorre- 
lation parameter p. 

bias in the estimates: E(B - 6) Table 2 gives the average B over 50 replications at 
each level of p. Since the true B = 1, the average bias introduced by each procedure cor- 
responds to the values reported in Table 2, minus 1. Clearly, there is very little bias using 
any of the autocorrelation methods, as we expected from the previous discussion. For auto- 
correlation at .43 and above, OLS displays the highest bias. 

Table 2. Average of 50 estimates of p at each level of p (true p = 1). 

0 OLS IGLS IRR ML 

.23 

.43 

.63 

.83 

1.050 1.057 1.059 - 
1.044 1.007 1.01 3 - 
1.070 1.008 1.009 1.01 2 
1.1 35 1.011 1.010 1.006 

relative efficiency of p estimates As mentioned previously, the problem with OLS 
analyses of autocorrelated data is that the regression coefficient estimates, though un- 
biased, are inefficient. That is, the variance of the estimates i s  large relative to that obtain- 
able through autocorrelation procedures. It i s  usual to compare estimators using a measure 
which combines both bias and efficiency, the mean square error (MSE), since the overall 
performance of an estimator depends on both quantities. Using expectation notation, M S E  
is defined as 

E(P - b? = (bias)* + variance (21 1 

The MSE is the expected value (i.e., average) of the squared differences of the estimates 
from the true population parameter 0. 

Table 3 reports the ratios of MSE’s of p for all procedures. If the MSE ratio equals 1, then 
the procedures being compared are equally efficient; if the ratio i s  less than 1, then the pro- 
cedure used to calculate the numerator is more efficient (smaller MSE) than the procedure 
used to calculate the denominator; and if the ratio is more than 1, the opposite i s  true. 
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Table 3. Ratios of MSE (b) for all estimation procedures. 

P IRR OLS ICLS 
IC LS IRR IRR ML ML 

- - 

.23 

.43 

.63 

.83 

- - ,751 .595 ,792 
1.021 ,946 ,926 
2.372 2.384 1.005 1.041 1.038 
7.394 7.396 1 .OOo ,989 ,986 

- - 

The first two columns of Table 3 indicate that at p = .23, OLS is more efficient than 
either IGLS or IRR, and that there is little to distinguish between the OLS and either of these 
two procedures at p = .43. However, at the higher levels of p both IGLS and IRR show huge 
gains in efficiency over OLS, anywhere from about 100 to 700 percent. The third column in- 
dicates that there i s  virtually no difference in the performance of ICLS or IRR at these 
higher levels of p. The last two columns also indicate, rather surprisingly, that for the data 
analyzed here, at least, there i s  little to distinguish between ICLS and IRR and the more for- 
mally correct ML procedure. The former two are marginally more efficient at moderately 
high levels of autocorrelation (p = .63), while ML is marginally more efficient at high auto- 
correlation levels (p = .83). 

bias in p estimates Table 4 shows that at low levels of autocorrelation (p = .23) neither 
ICLS nor IRR yield satisfactory estimates of p. At the next level of autocorrelation (p = .43) 
both procedures tend to underestimate the true p, while at higher levels they both tend to 
overestimate p by about 15 percent. ML provides better estimates of p than either IGLS or 
IRR at these higher levels of autocorrelation. However, this difference appears to have lit- 
tle or no impact on overall efficiency of the regression estimates, as shown in Table 3. 

Table 4. Average of 50 estimates of p 

0 IGLS IRR ML 
.23 - .045 - ,222 - 
.43 .376 .315 - 
.63 ,769 ,759 ,600 
.83 .940 .928 .a67 

significance testing procedures for autocorrelation parameter p 

In the above discussion of the ML computational procedures, expression 14 was given for 
obtaining the standard error of p. Since p/ d* i s  asymptotically normally distributed, 
the likelihood of significant autocorrelation i s  easily evaluated. The exact distribution of 
the 6 estimate generated by IGLS or IRR is not known. 

One approach to discerning whether or not a statistically significant network process is 
operative i s  to employ Cliff and Ord’s (1973) I-statistic. This statistic can be applied to the 
residuals obtained from an initial OLS regression to assess whether significant autocorrela- 
tion i s  occurring with respect to a given relational matrix W.9 Hepple (1976) has provided a 
similar statistic for testing OLS residuals which is considerably simpler to compute than the 
I-statistic. Given the OLS vector of residuals 8, Hepple’s s-statistic can be converted to a 
standard normal deviate as follows: 
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where s = E ‘ W E /  C ’ E  

E(s) = tr(C’W) / [N-K]  

and 
1 (N - K)tr(C’W)2 - (tr(C‘W))2 

(N - K?(N - K + 2) 
Var(s) = 2 

C = I - [X(X’X]-’X‘] ( I  i s  an N x N identity matrix). 

Hence, if a significant s were detected, either IGLS or IRR could be used to obtain an 
estimate of the degree of autocorrelation present. The Z score obtained from this statistic 
i s  computed and reported in the empirical examples discussed below. 

An alternative approach to testing the 6 generated by either ICLS or IRR for significance 
would be to accept the ^p they yield as a good approximation to the ML 6 and insert the 
ICLS or IRR value into a likelihood ratio test (Hoe1 1971; Brandsma and Ketellapper 1979). 
However, the simulation results reported here suggest that this would only offer a very ap- 
proximate test of significance, so we do not pursue the possibility at this time. 

empirical reanalyses 

Pryor (1976) presents three tests for the detection of diffusion of cultural traits. As noted 
above, his method is based on the idea of a “diffusion possibility matrix“ which he suggests 
could be constructed from the physical distances between societies or on language 
similarities. As an example he presents data from 60 societies rated on seven variables. He 
hypothesizes that “the presence of a significant amount of market exchange of labor i s  
directly proportional to the level of economic development of the society and also to 
whether it relies heavily on herding as a source of subsistence goods” (1976:740). He also 
hypothesizes that “the presence of gambling in a society i s  directly proportional to the 
presence of a commercial money and to the presence of considerable socioeconomic dif- 
ferences and is inversely related to whether or not the society i s  a nomadic herding 
society” (1976:740). Using distance as a criterion for the possibility of diffusion, Pryor sug- 
gests via his three tests that diffusion of the measured traits is likely. Having found some 
evidence of diffusion, his options at the time he wrote the paper were severely limited. As 
we shall show with our more current methodology, Pryor did remarkably well. He notes 
that gambling was prevalent particularly in North America, so he includes whether a socie- 
ty was a North American society as a (0,l) dummy variable and recomputes his regression 
equation. 

Using our methods, we reanalyzed the data as presented by Pryor. Instead of a diffusion 
possibility matrix, we computed a network relational matrix based on physical distances, as 
in our previous example. Using that matrix and our two network autocorrelation pro- 
cedures, we recomputed the regression coefficients and present them here, along with 
Pryor’s estimates (Tables 5 and 6). The standard deviations of the regression coefficients are 
reported in parentheses below the coefficients. 

In the model for the presence of gambling (Table 5), we find significant autocorrelation 
(z = 6.853). Our estimate of p i s  large (p = .795), but our regression coefficients are 
substantially the same as reported by Pryor in his first analysis, with one important excep- 
tion. Pryor (1976:741) reports a value of .I67 (.I141 as the coefficient and standard deviation 
for the presence of socioeconomic inequality. From these results alone he would have had 
to conclude that socioeconomic inequality was not a causal factor in the presence of 
gambling. Using the same variables along with the matrix of distance similarities, we find a 
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Table 5. Presence of gambling. 

Coeff. 
name 

Z 
P 
lntrcpt 
MON 
SOCED 
NMHRD 
NA 
R2 

Pryor’s 1st 
results 

Pryor’s 2nd 
results 

- 
- 

,123 
,470 (.193) 
.167 (.114) 

- .692 (.298) 

,221 
- 

- 
- 

- .281 
,415 (.126) 
,237 (.075) 

- ,430 (.1%) 
1.33 (.151) 

,676 

IRR 

6.853 
.795 

-.341 (.337) 
,465 (.129) 
.321 (.067) 

-.638 (.213) 

,198 
- 

IGLS 

6.853 
,800 

- ,347 f.346) 
,466 (.129) 
,322 (.067) 

- ,638 (.213) 
- 

,197 

IRR 
with NA 

1.263 
,292 

- ,369 (.175) 
.422 (.122) 
,274 (.068) 

1.291 (.198) 
.656 

- ,479 c.194) 

Notes: MON is the presence of commercial money. 
SOCED is the presence of socioeconomic inequality. 
NMHRD is the presence of nomadic herding. 
NA society is in North America. 
[ 1 is the standard error. 

coefficient of .321 (.067), which is double Pryor’s coefficient, with half the standard error. 
This means that a relationship which remains undetected using standard techniques is  
shown to  be highly significant when the autocorrelation i s  taken into account. 

When Pryor included North America as a dummy variable, the coefficient for socio- 
economic inequality increased and, more importantly, was significant. By use of this dum- 
my variable Pryor found a relationship not seen in his first analysis. At the same time Rz in- 
creases from ,221 to .676, which indicates that a great deal of the variation in the occur- 
rence of gambling can be explained by the presence of the society in North America. When 
we include North America in our regression equation, there i s  no longer significant autocor- 
relation (z = 1.263) and our regression coefficients coincide with Pryor’s. This indicates 
that the autocorrelation which we report in our first analysis i s  to be found mainly in North 
America. 

Again applying the techniques to the model for labor market exchange (Table 6). the test 
for autocorrelation gives a value of z = -.492, which is  insignificant. Although compu- 
tation of the regression estimates under a model of autocorrelated disturbances i s  inap- 
propriate in the case where autocorrelation i s  insignificant, we have presented those com- 
putations to illustrate that estimates of the main parameters of interest remain essentially 
the same as in standard OLS procedures. First note that the results of the two procedures 

Table 6. Labor market exchange. 

Coeff. 
name 

Pryor’s 
results I RR ICLS 

Z 
P 
lntrcpt 
ECDEV 
HERD 
R2 

- .492 - ,492 - - ,198 -‘.200 
- ,103 - ,095 (.091) - ,094 ( .on)  
,017 (.003) ,017 (.003) ,017 (.003) 
,551 (.138) ,563 (.133) .564 c.133) 

,452 ,437 ,437 

- 

Notes: z is the normally distributed measure of the presence of autocorrelated disturbances 
p is the coefficient of autocorrelation. 
ECDEV is the level of economic development. 
HERD means the most important source of food comes from herding. 
( ) is the standard error. 
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(IRR and IGLS) are almost identical. This indicates that the process probably has converged 
to a global minimum. Although Pryor reports evidence of diffusion, we find that auto- 
correlation i s  statistically insignificant and that his OLS coefficients are valid and correct. 
He does report that clustering occurred only among the dependent variables, which is  true 
and is  an indication that perhaps the disturbances model is not correct and that the "ef- 
fects" model for autocorrelation may be more appropriate. lo It should also be emphasized 
that since there i s  insignificant autocorrelation, the negative values for p are meaningless. 

These results verify and illustrate our simulation findings. First, there is little difference 
between the results of ICLS and IRR; however, since they are entirely different procedures, 
the fact that they give identical results i s  an almost sure check that they have converged to 
a global minimum. Second, we have illustrated a case in which significant autocorrelation 
did not exist and yet the results of the two procedures give results identical t? OLS. Finally, 
and of greatest importance to cross-cultural researchers, is the fact that a relationship 
which could have been completely missed using standard techniques has been detected us- 
ing either ICLS or IRR. If it had not been for Pryor's astute observations, he might have 
been forced to abandon a relationship of substantial importance in his theorizing. 

In an earlier paper (White et al. 1981) we propose and explore a model of the causes of 
the sexual division of labor in African agriculture. One of the relationships that we tested i s  
total female agricultural participation as a function of crop type (C: 1 = root, 2 = cereal) 
and slavery (S: 1 = absent, 2 = incipient, 3 = present). The total-female-involvement-in- 
agriculture dependent variable, labeled 1, i s  obtained as the sum of three five-point scales 
indicating female contribution to harvesting, soil preparation, and crop tending, and ranges 
from a low of 3 to a high of 15. 

The sample used in our previous study consists of the 31 African societies from the Stan- 
dard Cross-Cultural Sample (Murdock and White 1969) that have some degree of 
agriculture and for which we have data on crop type and slavery. To measure interdepen- 
dence among these societies we employed both geographical distance and linguistic 
relatedness criteria. That is, we constructed two W connectivity matrices, one based on an 
exponentially decreasing function of distance and the other on a tree of historical relations 
among all 31 languages." (Details on the construction of these matrices and the variables 
used, as well as the theoretical rationale for the model, are available in White et at. 1981.) 

Table 7 shows the results of our reanalyses. The OLS and ML results for both W matrices 
are taken from White et al. (1981). We include here the parameter estimates obtained using 
the abovedescribed ICLS and IRR procedures.'* For the language W matrix, all three net- 
work disturbances procedures show very similar magnitudes for the regression coefficients 
and their standard deviations. These estimates are quite different from the OLS estimates, 
although there are no reversals in inferring significance of the independent variables: each 
regression coefficient is s t i l l  more than twice i ts standard deviation. The disturbances 
parameter estimate i s  significant for all three procedures, although the estimate is higher 
for ICLS and IRR. Both of these latter procedures show R2's almost identical to OLS and 
ML.13 For the distance W matrix, the estimates for all three autocorrelation procedures are 
very similar. The $s are again all significant, though less so than with the language matrix. 
The R2% are very slightly lower for IGLS and IRR than for OLS or ML. 

conclusions 

The formal representation of the network autocorrelated disturbances model in matrix 
terms, as in equations 2 and 3, offers a quite natural characterization of Calton's Problem. 
W relational matrices permit rich expression to the idea of cultural diffusion, and 
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Table 7. Results of all estimation procedures for the total-female-participation-in-agriculture example. 

01s T = 24.4 
(2.7) 

language W matrix 
M l  7' = 19.2 

(2.9) 

IClS r* = 18.5 
(3.5) 

IRR r* = 18.6 
(3.5) 

Distance W matrix 
M l  r* = 21.8 

(2.8) 

lClS r* = 21.6 
(3.4) 

(3.3) 
IRR T' = 21.6 

-4.76C 
(1.22) 

-3.19C* 
(1.07) 

- 3.1 2C" 
(1 .w 

-3.12C' 
(1.09) 

-4.44c* 
(1.33) 

-4.43c* 
(1.45) 

-4.43c* 
(1.45) 

- 2.645 
(.73) 

-1.865* 
(.61) 

-1.715* 
(.62) 

-1.71S* 
(.63) 

-1.78S* 
(.66) 

-1.475* 
(.67) 

-1.485' 
(.67) 

R2 = .47 

R2 = .45 p  ̂ = .69 
(.I81 

P ( .001 
R2 = .45 p  ̂ = .81 

Z = 3.67 
p ( .001 

Z = 3.67 
P .001 

R2 = .45 c = .81 

R2 = .45 3 = .49 
I.20) 

p ( .05 
R2 = .45 p  ̂ = .76 

Z = 2.56 
p ( .02 

R2 = .43 6 = .76 
Z = 2.56 

D < .02 

hypotheses concerning diffusional effects may be investigated by constructing W matrices 
based on various theoretical considerations. The W matrices based on measures of 
language similarity and geographical distance used in the cross-cultural examples reported 
here, for example, correspond quite closely to theoretical notions concerning the mech- 
anisms underlying cultural diffusion processes. 

Since the network disturbance model i s  a true generalization of the OLS multiple regres- 
sion model, the same kinds of complex hypotheses testing and data analyses that are possi- 
ble with the latter are possible with the former. Even where observations are interdepen- 
dent, hypotheses concerning the effects of an independent variable on a dependent 
variable while holding constant one or more additional independent variables can be 
tested. More complex analyses of direct and indirect effects, such as in path analysis or 
structural equation modeling, are now possible using cross-cultural survey data. Replica- 
tion of such complex models across major world geographical/culturaI regions, where the 
most important regional autocorrelation effects are specified within the model, is an im- 
portant step toward formulating models of great generality. 

The results of the simulation study clearly show that all three autocorrelation procedures 
completely dominate OLS regression whenever autocorrelation effects are moderate to 
high (p 2 .5 ) .  Thus, one of the three autocorrelation procedures is  clearly preferable to OLS 
at these levels of autocorrelation. For the simulation data analyzed here, there is surprising- 
ly little to distinguish between the more formally correct ML autocorrelation procedure 
and the two newly proposed procedures in terms of bias and efficiency of the regression 
coefficient estimates. From the standpoint of computational simplicity, however, either 
G L S  or IRR i s  clearly preferable to ML. 

Neither our simulation results nor our empirical reanalyses allow us to draw any firm 
conclusions concerning the relative merits of IRR and ICLS. It is possible that for larger 
sample sizes one of the two procedures will come to dominate the other in terms of the 
M S E  of the regression coefficients or the p. For estimating a more general model with two 
or more relational matrices embedded in the error structure, residual regression seems to 
be the more natural approach to estimation. 
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Our confidence in both of the new and computational ly simpler autocorrelation proce- 
dures as accurate and reliable solutions to Galton’s Problem is considerably strengthened 
by the results of our empirical reanalyses. In the reanalyses of our o w n  previous example, 
both IGLS and IRR generate estimates that are tr ivial ly dif ferent f rom our previously 
reported ML results. Also, in the reanalysis of Pryor’s examples both procedures uncover a 
substantively important relationship that does not appear using conventional OLS routines, 
and which may have been missed originally but fo r  Pryor’s astute observations. While it is 
obvious that no technique wil l  replace the investigator’s understanding and grasp of a prob- 
lem, the task of theory building and testing using interdependent cross-cultural data may 
be made substantially easier if appropriate techniques, such as IGLS o r  IRR, are employed. 

notes 

Acknowledgments. This research was supported by a grant from the National Science Foundation to 
Michael Burton and Douglas White. ’ The general matrix formulation of Galton’s Problem presented and discussed in this paper is an ex- 
tension of the usual multiple regression analysis. Hence, we assume that regression analysis is appro- 
priate to the problem at hand. 

Although the matrix formulation employed in this paper introduces some difficulties in that it re- 
quires some familiarity with elementary matrix operations, it leads to the most natural expression of 
the more general network autocorrelated disturbances model. To follow the matrix algebra formula- 
tion of OLS and the network autocorrelation disturbances model presented here requires some knowl- 
edge of addition, subtraction, and multiplication of vectors and matrices, and of matrix inverses. An 
introduction to these operations in the context of the multiple regression model can be found in Hilton 
(1976); more advanced treatments are given in Johnston (1972) and Pedhazur (1982). 

’ E  - IND(O.o~/) is a compressed statement of several assumptions made about the error terms in 
the OLS regression model. This expression says that the errors are independent, normally distributed 
(IND) with zero mean and no autocorrelation or heteroscedasticity (0,a; J) 

‘ For discussion and examples of the a-coefficient and a language similarity measure suitable for 
cross-cultural research, see White et al. (1981). 

The In terms in expression 12 are natural (i.e., base e) logarithms. ‘ A coarse first search of the interval was conducted using steps of 1 to  locate a minimum. A second 
search of the k . 1  interval around this minimum in steps of .01 was then carried out to locate the final 
minimum 6. 

Associated with any N x N square relational matrix W are N numbers, not necessarily distinct, 
called i t s  eigenvalues. Special computational routines are required to calculate the eigenvalues for all 
but extremely small W matrices. An extended discussion of eigenvalues, their properties, and 
algorithms to calculate them is given in Green (1976). Because of the limitations of our current com- 
puter facility, the maximum sample size our ML autocorrelation procedures can handle is about 60. 

We stopped when successive values of 8 were within an absolute value of ,131. 

The I-statistic can also be used to test for autocorrelation of any individual variable in the equa- 
tion. Details on the computation of the l-statistic and its standard error for significance testing are 
given in Cliff and Ord (1973) and Doreian (1980). For an interesting biological example of the use of the 
I-statistic to investigate diffusion of human alleles, throughout Europe, with the spread of farming dur- 
ing the Neolithic, see Sokal and Menozzi (1982). 

l o  The “effects” model hypothesizes that only the dependent variable is autocorrelated with 
respect to a given W matrix. This model is specified as follows: 

Y = PWY + XS + E 

See Doreian (1980) and Erbring and Young (1979) for discussion of this model 
’’ In this paper we estimate the network disturbances model separately for the language matrix and 

for the distance matrix. The network disturbances model can be generalized to include both matrices 
simultaneously as follows. 

E - NID(O.CS,~/) 

Y = x p + E  

E = P1W1E + P2W2E V V - IND(o,O+% 

For an empirical example of this more general model applied to crosstultural data, see Dow (1984). 
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l 2  All of the computations reported in this paper for the IRR and KLS procedures were carried out 
using BASIC language programs written by Reitz and Dow. Listings of these programs are available 
from the authors upon request. 

The R2 reported in our previous paper (White et al. 1981) are incorrect for the ML procedures us- 

.45 and .45, respectively, as shown here. Again, the R2 reported here are simply the squared Pearson 
product-moment correlation between the original dependent variable scores and the predicted scores 
(i.e., r*y;). 

ing both the language and distances W matrices. Instead of the .67 and .61 reported, the correct R 2 are 
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