
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Molecular Level Investigations and Mathematical Modeling of Cellulase-catalyzed Hydrolysis 
of Cellulose

Permalink
https://escholarship.org/uc/item/3zp0z99w

Author
Fox, Jerome M.

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3zp0z99w
https://escholarship.org
http://www.cdlib.org/


Molecular Level Investigations and Mathematical Modeling of Cellulase-catalyzed Hydrolysis of 
Cellulose 

 
by 
 

Jerome Michael Fox 
 

A Dissertation submitted in partial satisfaction of the requirements for the degree 
 

of  
 

Doctor of Philosophy 
 

in 
 

Chemical Engineering 
 

in the 
 

Graduate Division 
 

of the 
 

University of California, Berkeley 
 

Committee in Charge 
 

Professors Douglas S. Clark and Harvey W. Blanch, Co-Chairs 
 

Professor Carolyn R. Bertozzi 
 

Professor Alexis T. Bell 
 
 
 
 

Fall 2012  
 
 
 
 

 



	
   1	
  

 
Abstract 

 
Molecular Level Investigations and Mathematical Modeling of Cellulase-catalyzed Hydrolysis of 

Cellulose 
 

by 
 

Jerome Michael Fox 
 

Doctor of Philosophy in Chemical Engineering 
 

University of California, Berkeley 
 

Professors Douglas S. Clark and Harvey W. Blanch, Co-Chairs 
 
 
 
 Cellulose-to-glucose conversion costs comprise one of the largest expenses in the 
production of lignocellulosic biofuels, a renewable alternative to traditional fossil fuels. Efforts 
to reduce these costs by improving the activity of cellulase enzymes, which act within multi-
enzyme mixtures to catalyze the hydrolysis of cellulose, have been hindered by uncertainty 
surrounding the mechanistic origins of rate-limiting phenomena and by an incomplete 
understanding of complementary enzyme function.  In this work, we employed mechanistic 
models of enzymatic action alongside experimental studies of enzyme-enzyme synergy to 
investigate kinetic impediments encountered by cellulase enzymes as they catalyze the 
hydrolysis of cellulose.   Using several mechanistic models of enzymatic hydrolysis, we show 
how hydrolysis kinetics and optimal cellulolytic mixture compositions are dependent on the 
nature of the cellulosic substrate (i.e., particle shape, surface area, degree of polymerization) and 
the conditions under which it is depolymerized (i.e., hydrolysis and fermentation process 
conditions).  By developing a method to estimate catalysis-specific products within multi-
enzyme reactions, we show that cellobiohydrolase enzymes, which catalyze processive 
hydrolysis from cellulose chain ends, encounter rate limitations that result, not from intrinsic 
kinetics, but from slow rates of chain complexation and from morphological obstacles to 
processivity.  And using photoactivated localization microscopy (PALM) to produce pointillistic 
maps of carbohydrate-binding modules (CBMs) bound to cotton, we develop an order parameter 
to quantify the different spatial arrangements of adsorbed CBMs and use that order parameter to 
explain synergy between cellulase enzymes designed to target different surface structures.  The 
results of this work reveal strategies for using morphological targeting to enhance enzyme-
enzyme cooperativity within cellulolytic mixtures, thereby improving their overall activity and 
lowering the cost of cellulose hydrolysis. 
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Chapter 1: Introduction to Cellulosic Biofuels 
 
1.1 Making the Case for Renewable Energy  
 
  Global dependence on oil, coal, and natural gas has led to some of the most significant 
environmental, socioeconomic, and geopolitical problems of the 20th century.  Today, 86% of the 
world’s energy needs are met with these exhaustible resources (1).  Alternatives to traditional 
fossil fuels could halt global climate change, reduce indoor air pollution, generate local job 
growth, facilitate energy independence and strengthen the trade balance for petroleum importing 
countries, and dampen energy market volatility (2-8).  In this section, we explore some of the 
main policy arguments for renewable energy and, by examining their relationship to carbon 
emissions and energy prices, we motivate cellulosic biofuels research that is focused on lowering 
production costs. 
 
 Anthropogenic climate change is the most compelling argument for the pursuit of 
renewable energy technology.  Since the beginning of the industrial era (~1750), atmospheric 
concentrations of carbon dioxide (CO2), methane (CH4), halocarbon gases, and nitrous oxide 
(N2O) have grown as a result of fossil fuel combustion, agricultural practices, and other human 
activities (9).  By enhancing radiative forcing at the tropopause, these greenhouse gases have 
increased the average temperature of the Earth’s surface and brought about abrupt changes in 
global weather patterns. Strategies focused on reducing the incidence of the most catastrophic 
climate change events (i.e., major ecological disruptions, glacial melt, drought, forest fires) are 
focused on stabilizing atmospheric CO2 levels at around 500 ppm (2).  In 2004, the atmospheric 
CO2 concentration was 375 ppm, and global emissions were about 7 billion tons of carbon-
equivalents per year (GtC/yr).  At that time, if CO2 was to be stabilized at 500 ppm, global 
emissions had to be held constant for the next fifty years (2).  In October of 2012, CO2 levels 
reached 391 ppm, and annual emissions increased to over 9 billion tons of carbon per year (10).  
With greenhouse gas emissions accelerating, climate change abatement requires many forms of 
renewable energy to be developed and implemented in the next 10-30 years. 
 
 Air pollution motivations for clean fuel are most strongly rooted in health effects, not 
carbon dioxide.  Over 2 billion people in the developing world are exposed to high levels of 
indoor air pollution that could be reduced or eliminated with cleaner cooking technologies (4).  
Incomplete combustion of wood, agricultural residues, and other solid cooking fuels results in 
the release of carbon monoxide, hydrocarbons, particulate matter, and nitrogen oxides that cause 
a variety of respiratory diseases (3).  Cleaner fuels such as kerosene, methane, or ethanol can 
enhance air quality within these households. Renewable fuels such as methane derived from 
biogas digesters or ethanol derived from cassava or other plant sources are only advantageous if 
they can be sold at more competitive prices than fossil-fuel-derived equivalents; interestingly, 
several analyses suggest that renewables can be priced competitively in energy- and 
infrastructure-poor regions of China and Africa (11, 12) .  Indoor air pollution may not be a good 
policy argument for renewable energy in its own right, but it is an argument for cleaner burning 
monocomponent fuels, and many of these can be produced from renewable sources in a low cost 
manner. 
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Job growth and national security arguments for renewable energy are also tied to price .  
Both motivations arise from a desire for expanded domestic energy production, which can create 
jobs and prevent supply disruptions in petroleum-importing countries (in addition to 
strengthening their trade balance) (7).  Renewable energy technologies, however, are not 
necessarily advantageous for accomplishing these goals.  In the United States, coal and shale gas 
reserves are adequate to last several generations (13).  These domestically produced fossil fuels 
can create local jobs and promote national security by reducing reliance on foreign supplies.  
Renewable energy technologies will not be advantageous in accomplishing these two goals until 
global fossil fuel supplies begin to dwindle, extraction prices begin to increase, and/or renewable 
alternatives become cost competitive.  Arguments can still be made that early development of 
renewable energy is required in light of diminishing fossil fuel reserves; however, with no 
consensus on the imminence of reserve depletion, these arguments are difficult to make on the 
political stage. 

 
  Dampened volatility in energy prices is a technology-dependent argument.  The price of 
gasoline at the pump is set by supply and demand in international oil market.  If U.S. domestic 
oil production levels are increased to meet national demand, global supply will change only 
slightly, and the shift in price paid at U.S. pumps will likely be slight (14).  Biofuel prices will be 
similarly tethered to the existing transportation fuel market.  Alternative forms of transportation 
energy, by contrast, may not be.  For electric cars, for example, “fuel” prices will be set by the 
local electricity price.  The influence of domestic renewable energy production on domestic 
energy prices clearly depends on the markets involved, which are, to an extent, technology-
specific. 
 
  Although climate change is the strongest policy motivation for development of renewable 
energy technologies when they are not cost competitive with fossil fuels, non-climate change 
arguments are likely to play an important role in creating support for clean energy policies.  
Accordingly, their validity is important for the promotion of renewable energy development and 
deployment in the near future. There are two main mechanisms by which non-climate-change 
arguments for renewable energy can become stronger: (1) a carbon tax can be used to 
incorporate climate change externalities into the price of energy, thereby creating cost parity 
between renewable energy technologies and fossil fuels, or (2) the price of renewable energy 
technologies can be reduced through technological advancements, thereby allowing them to 
compete with fossil fuels.  As there is little evidence to suggest that the first strategy is politically 
feasible in an international market, the second is the more realistic avenue to a clean energy 
future.  By making renewable technologies cost competitive with conventional fossil fuels, non-
climate-change-related arguments for renewable energy development become stronger, clean 
energy policies become more politically feasible, and renewable energy is likely to undergo more 
rapid market penetration. 
 
1.2 Lignocellulosic Biofuels 
 
  Lignocellulosic biofuels are short chain hydrocarbons produced from the carbohydrate 
building blocks of plant cell walls.  For automobile fuels, the most common examples are 
ethanol, butanol, and methyl esters; for jet fuels, cyclic isoprenoids and alkanes (15).  In 
principle, any combustible compound produced from plant cell wall sugars is a lignocellulosic 
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biofuel.  As more catalytic strategies are developed to interconvert and upgrade short chain 
hydrocarbons, the number of lignocellulosic fuel possibilities will continue to expand.  The 
immense advantage of such fuels over other renewables is their ability to closely approximate the 
behavior of existing liquid fuel components and thereby minimize the need to dramatically 
modify the existing transportation infrastructure. 
 
  The renewable nature of lignocellulosic fuels is based on the carbon cycle with which 
they are associated.  Carbon dioxide from the Earth’s atmosphere is converted into carbohydrate 
polymers in plants via photosynthesis.  Biomass thus accumulated is harvested, depolymerized, 
and converted into fuel products via chemical or biochemical catalysis.  Fuels thus generated are 
combusted in automobile or airplane engines and released as carbon dioxide and water back into 
the atmosphere.  The net greenhouse gas emissions resulting from biofuel production and use are 
plant-, process-, and fuel-specific (16), but most studies suggest that they can be negative or 
neutral if regionally-specific production strategies are employed (17). 
 
  Lignocellulosic biomass consists primarily of lignin (10-25%), hemicellulose (20-35%) 
and cellulose (35-50%) (18).  Fuels can be produced from the sugars in hemicellulose, a 
branched heteropolymer of pentose and hexose sugars, and cellulose, an unbranched polymer of 
β-[1,4]-linked glucose.  Lignin, a cross-linked polymer of aromatic alcohols, is burned or 
converted to phenolic resins or polymers in most proposed fuel processes (19); however, it can 
also be converted to fuels via thermochemical processes (20).  Sources of lignocellulosic 
biomass include miscanthus, switchgrass, sweet sorghum, sugarcane bagasse, corn stover, wheat 
straw, pine, poplar, or eucalyptus (18).  These feedstocks differ in their water and nutrient 
requirements; their use as energy crops will likely be dictated by the climatic conditions of 
specific biofuel production facilities, which must be located near feedstock farms to minimize 
greenhouse gas emissions associated with biomass transport (17, 21-23). 
 

 
            Figure 1.1 Process steps for the production of lignocellulosic biofuels. 
 
  Most proposed lignocellulosic biofuels production processes rely on either 
thermochemical or hydrolytic processes to convert biomass to fuel.  Thermochemical strategies 
involve deconstruction of lignocellulosic substrates at high temperatures and pressures to yield 
upgradable intermediates such as bio-oils or syngas (CO/H2 mixtures) (20); in a second step, 
these products undergo chemical/catalytic upgrading via processes such as Fischer-Tropsch 
synthesis or hydrodeoxygenation (20) (Fig. 1.1).  Hydrolytic strategies, by contrast, rely on 
dissection of the biomass and generally consist of three main steps (Fig. 1.1) (24): (1) biomass 
pretreatment, (2) biomass depolymerization, and (3) fuels synthesis.  In the first step, biomass is 
broken apart to increase surface area, reduce lignin and hemicellulose content, and increase 
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cellulose accessibility.  In the second step, cellulose and residual hemicellulose are solubilized 
via chemical or enzymatic catalysis.  In the third step, soluble sugars are converted into fuel 
products via chemical catalysis or microbial fermentation.  Modern biofuels research is focused 
on minimizing the carbon emissions, maximizing the product yields, and reducing the costs 
associated with each of these steps. 
 
1.3 The Plant Cell Wall: Structure and Composition  
 
  Before we detail the processes required to deconstruct the plant cell wall, we briefly 
describe its architecture.  There are about 35 types of plant cells (25); all contain primary cell 
walls, but only a subset contains the secondary cell wall.  Primary cell walls, which surround 
growing plant cells, are made up primarily of cellulose, hemicellulose, and pectin (25, 26).  
Secondary cell walls, which are mainly deposited after plant cell enlargement terminates, are 
made up primarily of cellulose, hemicellulose, and lignin.  The composition of lignocellulosic 
substrates is dictated by the composition of secondary cell walls. 
 

  
Figure 1.2 Scale model of the primary wall polysaccharides in an Arabidoposis leaf cell (reproduced from 
reference (26) ).  Polymers correspond to xyloglucan (XG), glucoronoariabinoxylan (GAX), rhamnogalacturonan 
I (RGI), rhamnogalacturonan II (RGII), and homogalacturonan with calcium bridges between carboxyl groups 
(HG with Ca++ bonds).  The abundance of particular polymers is based on their relative abundance in the plant 
cell wall.  Secondary cell walls are similarly organized, but they contain large quantities of lignin interspersed 
throughout the cellulose microfibrils.  Pectin is also a minority component in secondary cell walls. 
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  Cellulose, the main structural component of the plant cell wall, is a condensation polymer 
of D-anhydroglucopyranose monomers linked via β-[1,4]-glycosidic bonds (27).  Individual 
cellulose chains associate with each other via inter- and intrachain hydrogen bonds (O-H-O) and 
intersheet hydrogen bonds (C-H-O) to form microfibrils that are 2-4 nm wide and 0.1-100 µm 
long (Fig. 1.2) (28).  Van der Waal forces from pyranose ring stacking also play a significant role 
in interchain associations (24, 28).  As plant cells grow, these microfibrils are deposited into a 
matrix of hemicellulose and pectin polymers (Fig. 1.2).  Naturally occurring crystal structures of 
cellulose take on two phases: Iα, which is triclinic unit cell, or Iβ, which is monoclinic (28-30); 
the Iβ allomorph is dominant in higher plants.  Hemicelluloses that become trapped in 
microfibrils as they form can distort these crystal structures, thereby brining about a spectrum of 
cellulose morphologies within the developing wall (25). 
   
  Hemicellulose chains have branches that prevent them from forming microfibrils through 
self-association.  Xyloglucan, a β-[1,4]-linked glucose backbone substituted with xylose 
sidechains, and arabinoxylan, a [1,4]-linked β-D-xylan backbone substituted with arabinose 
sidechains, are the two most abundant hemicelluloses (25).  These hemicellulose are believed to 
crosslink cellulose microfibrils via non-covalent interactions (Fig. 1.2) (31); their reorganization 
during plant cell growth allows for cellulose fibrils to move apart, thus facilitating the integration 
of new cell wall material. 
 
  Pectins play a major role in primary plant cell walls.  These polysaccharides have uronic 
acids as major components (26).  The most common pectins are (1) homogalcaturonan (HG), an 
unbranched polymer of α-[1,4]-linked galacturonic acid; (2) rhamnogalactruonan I (RGI), a 
backbone of α-[1,4]-L-rhamnose-β-[1,4]-D-galacturonic acid with arabinan and galactan 
sidechains, and (3) rhamnogalacturonan II (RGII), a sidechain similar in structure to RGI.  Pectin 
domains serve as additional cross-links to strengthen the plant cell wall (Fig. 1.2); together with 
hemicellulose, they control the plant cell wall porosity (25).  Pectins make up a small percentage 
of secondary cell walls, and thus comprise only 1-4% of lignocellulosic biomass (18). 
     
  Lignin is a complex polymer of p-hydroxyphenyls, guaiacyls, and syringyls (32).  The 
precise ratio of these components varies by source.  Lignin has a high level of heterogeneity that 
is the result of the random radical-radical coupling reactions that drive its formation (32).  The 
primary role of lignin is to stabilize the secondary plant cell wall, which requires immense 
mechanical strength in growing plants. 
 
  Hemicellulose, cellulose, pectin, and lignin form complex cross-linked polymeric 
networks that can support the growth of individual cells while guiding the development of large, 
multi-cellular structures.  Efficient deconstruction of those networks presents a major challenge 
for biofuels production. 
 
1.4 Biomass Pretreatment 
   
  During pretreatment, physical, chemical, or biological means are used to increase the 
surface area of lignocellulosic material or to otherwise modify its structure, making it more 
susceptible to depolymerizing agents (catalysts or enzymes).  Cellulose is the most recalcitrant 
component of lignocellulosic biomass, and is therefore the primary target of most pretreatment 
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processes. This polymer forms tight aggregates that protect most of its β-glycosidic linkages 
from hydrolysis.  Pretreatment processes serve to increase cellulose accessibility by (1) removing 
other cell wall polymer obstructions (the “lignin-hemicellulose barrier”) and/or by (2) breaking 
apart its native crystalline structure, thereby exposing β-glycosidic linkages that might otherwise 
be protected from hydrolytic cleavage (18, 24). 
 
  Commonly proposed pretreatments include dilute acid, ammonia fiber expansion, ionic 
liquid, hot water, and steam explosion.  In dilute acid pretreatment, lignocellulosic materials are 
subjected to 1-2% w/w H2SO4/biomass at 160°-220°C for 1-30 minutes (33).  This process 
removes most of the hemicellulose by converting it to monomeric sugars.  During ammonia fiber 
expansion (AFEX), lignocellulosic substrates are subjected to 50-100% w/w ammonia/biomass 
at 40-180°C and 200-1000 psi for 5-45 minutes followed by rapid decompression (24, 34).  This 
process only partially hydrolyzes hemicellulose, but it depolymerizes lignin and reduces the 
cellulose crystallinity.  During ionic liquid pretreatment, biomass is dissolved in ionic liquid 
solutions containing little or no water.  With the addition of water, cellulose can be pseudo-
selectively precipitated; the regenerated product is less crystalline and contains significantly less 
lignin and hemicellulose (35, 36).  Hot water pretreatment is an alternative to caustic chemical 
strategies that involves exposing lignocellulose to 160-230°C water at high pressures for 10-30 
minutes (24, 33).  Under these conditions, hemicellulose and amorphous cellulose are partially 
hydrolyzed.  Steam explosion is a variation on hot water pretreatment where the pressure is 
explosively released, thus weakening the cellulose fibers and increasing particle surface area. 
 
  All pretreatments reduce the lignin and/or hemicellulose content of biomass and increase 
the susceptibility of cellulose to hydrolysis.  Though they differ in their effectiveness, their most 
important differences relate to cost and a tendency to generate toxic byproducts, which lower the 
efficiency of fuel synthesis.  Pretreatment choice therefore depends on overall process 
considerations.  Several recently published technoeconomic analyses explore these 
considerations in greater detail. 
 
1.5 Biomass Depolymerization 
 
  The depolymerization of biomass into soluble sugars can be accomplished with chemical 
or enzyme catalysts.  Inorganic catalysts such as mineral acids (e.g., H2SO4), sulfonated resins 
(e.g., Amberlyst), or inorganic oxides (e.g., ZrO2) will rapidly hydrolyze cellulose and 
hemicellulose at high temperatures (>100°C) (20, 37).  Unfortunately, these methods require 
significant amounts of reagent (mineral acids in the first case, and ionic liquid solvents in the 
latter two cases), rely on high temperatures, and/or generate degradation products 
(hydroxymethylfurfural, levulinic acid, and insoluble humins in the case of H2SO4) (20, 38).  
Enzymatic depolymerization strategies, by contrast, use aqueous reaction environments and are 
highly selective (no byproducts).  Hemicellulase and cellulase enzymes, which are naturally 
secreted by biomass-utilizing organisms, can hydrolyze hemicellulose and cellulose under mild 
conditions (30-65°, pH of 4-6) . 
 
  The lack of degradation products associated with enzymatic depolymerization make this 
biocatalytic strategy favorable for microbial fuel production processes.  These are the focus of 
the present work. 
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  Enzymatic depolymerization is dominated by cellulose saccharification.  Hemicellulose 
remaining after pretreatment is structurally diffuse and rapidly broken down by hemicellulases, 
which hydrolyze glycosidic bonds and ester linkages of acetate or ferulic acid side groups (39).  
Cellulose, however, remains in closely associated aggregates, and is slowly depolymerized by 
multi-enzyme mixtures of hydrolytic and oxidative enzymes.  As the majority of hemicellulose is 
removed during pretreatment, and as any remaining hemicellulose can be rapidly broken down 
by low concentrations of hemicellulases, the enzymatic mixtures employed in the 
depolymerization step are dominated by cellulolytic enzymes (24). 
 
  Cellulolytic enzymes account for a significant fraction of the cost associated with 
cellulosic biofuel production and are thus the focus of many ongoing research efforts.  Recent 
estimates of the cost contribution of these enzymes to ethanol produced from corn stover range 
from $0.68 to $1.47/gallon (40).  To reduce enzyme costs, many industrial and academic efforts 
have focused on improving the activity of cellulolytic mixtures through either mixture 
optimization or improvement of enzyme activity and/or thermostability (41-44).  Before we 
discuss these improvement strategies, we will describe the cellulolytic enzyme systems in greater 
detail. 
 
  Cellulases are the most active component of the enzyme systems employed by biomass-
degrading organisms.  These enzymes, which catalyze the hydrolysis of the β-1,4-glycosidic 
linkages between adjacent glucose units in cellulose, are deployed within multi-enzyme 
complexes called cellulosomes or within secreted multi-component mixtures.  Cellulosomes, 
which are found in cell wall protuberances of anaerobic bacteria, consist of numerous 
hemicellulase and/or cellulase enzymes linked to a scaffold protein called scaffoldin (45, 46).  
The architecture of the Clostridium thermocellum cellulosomes is a representative example.  Its 
scaffoldin contains a number of domains that are linked by short peptide linkers: a single 
carbohydrate-binding module, which allows it to adsorb to the cellulose surface, and 9 cohesin 
domains, which allow it to template the hemicellulase and cellulase substituents via cohesion-
dockerin interactions (46).  Non-complexed cellulases, by comparison, can have similar modular 
architectures, but never contain more than one catalytic domain.  These enzymes are secreted 
within multi-enzyme mixtures by biomass-degrading fungi and bacteria.  Their canonical 
architecture consists of a catalytic domain connected to a CBM via a 6-109 peptide linker (47, 
48); however, variants containing no CBMs, multiple CBMs, and/or no linker also exist.  The 
specific activities (biomass hydrolyzed/mg enzyme/hr) of cellulosomes and multi-component 
cellulolytic mixtures are comparable (49), but the large size of cellulosomes (2-16 MDa) makes 
them far more difficult to produce at the >100 g/L titers which have been achieved for secreted 
non-complexed enzymes (50).  Thus, most work on improving cellulolytic enzyme performance 
for use in industrial biofuel production has focused on non-complexed enzyme systems. 
 
  The enzymes of non-complexed cellulolytic mixtures employ one of two catalytic 
strategies to depolymerize cellulose: hydrolysis and oxidative cleavage.  Below, we introduce the 
enzymes relevant to each strategy. 
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1.5.1 Hydrolytic Processes  
 
  The non-complexed cellulolytic system contains three main classes of hydrolytic 
enzymes: (1) cellobiohydrolases (or exoglucanases, EC 3.2.1.91), which hydrolyze cellulose 
chains processively from either the reducing- or non-reducing ends (51,	
  52); (2) endoglucanases 
(EC 3.2.1.4), which hydrolyze cellulose chains non-processively at any exposed glycosidic 
linkage (53); and (3) β-glucosidases (3.2.1.21), which hydrolyze soluble cello-oligosaccharide 
chains (degree of polymerization shorter than 7) at their terminal glycosidic bonds (54).  All of 
these glycosyl hydrolases have active sites consisting of two glutamate and/or aspartate residues 
positioned to promote general acid-catalyzed hydrolysis of the β-1,4-bonds that link the 
repeating glucose subunits of cellulose.  Two distinct mechanisms are employed (Fig. 1.3B): (1) 
retaining, which results in a net retention of the anomeric carbon’s configuration, and (2) non-
retaining, which results in an inversion of configuration.  In the retaining mechanism (SN1), the 
catalytic residues are separated by about 5.5 Å, and both interact directly with the carbohydrate 
substrate (Fig. 1.3): (1) a glycyosidic oxygen is protonated by an aspartate/glutamate; (2) a basic 
glutamate attacks the anomeric carbon, thus providing nucleophilic assistance to the aglycon 
leaving group and thereby generating a glucosyl-enzyme intermediate; and (3) the glucosyl-
enzyme intermediate is hydrolyzed by a water (55).  In the non-retaining mechanism (SN2), the 
catalytic residues are separated by a larger distance of 10 Å, which allows for direct 
carbohydrate-interaction by only one catalytic residue; simultaneous protonation of the 
glycosidic oxygen by an aspartate/glutamate and nucleophilic attack by a glutamate-activated 
water result in cleavage of the glycosidic bond (55).  All glycosyl hydrolases have been 
classified into over 130 families based on their amino acid sequence similarities in the 
Carbohydrate Active Enzyme Database (cazy.org); enzymes within each family often share 
substrate specificities and catalytic mechanisms.  Cellobiohydrolases, endoglucanases, and β-
glucosidases each have representatives in multiple families. 
 

Cellobiohydrolases and endoglucanases catalyze hydrolysis via several discrete physical 
steps (Fig. 1.3A).  A cellobiohydrolase (1) adsorbs to the cellulose surface via its CBM domain 
(56-58); (2) it complexes with a cellulose chain end via its catalytic domain, possibly after 
diffusing along the surface (59); (3) it catalyzes an initial hydrolysis event, generating glucose, 
cellobiose, or cellotriose (60-62); (4) it processively catalyzes 10-100 subsequent hydrolysis 
events, generating only cellobiose (63, 64); (5) it decomplexes from the cellulose chain (65); (6) 
it recomplexes with a cellulose chain or desorbs from the surface.  Endoglucanases undergo 
similar steps, but they are generally thought to engage in non-processive random attack. 
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Figure 1.3 Mechanisms of key components of secreted non-complexed cellulolytic enzyme mixtures.  (A) 
Endoglucanase, cellobiohydrolase, β-glucosidase, cellobiose dehydrogenase, and polysaccharide monooxygenase 
enzymes engaged in hydrolysis.  Various cellulose morphologies and enzyme architectures are represented.  On the 
left side of the diagram, the N-terminal heme domain is depicted as being in close proximity to a PMO as it is might 
be when it transfers an electron to the PMO.  (B) The retaining and non-retaining mechanisms of glycosyl hydrolase 
enzymes (A=acid catalyst; B=base): for retaining, (1) a glycyosidic oxygen is protonated; (2) a basic glutamate 
attacks the anomeric carbon; (3) the resulting glucosyl-enzyme intermediate is hydrolyzed by a water (55).  In the 
non-retaining mechanism, simultaneous protonation of the glycosidic oxygen by an aspartate/glutamate and 
nucleophilic attack by a glutamate-activated water result in cleavage of the glycosidic bond. (C) The propose 
mechanism of the PMO: the PMO Cu(II) is reduced to Cu(I); O2 binds Cu(I); this superoxo species abstracts a 
hydrogen from the 1 position of an internal glucose residue; the CDH yields a second electron to the PMO, 
triggering the release of water and the generation of a copper oxo radical; the PMO hydroxylates the 1 position, 
thereby triggering the elimination of the glycosidic linkage.   
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 Though there are only two main cellulase classes, biomass-degrading bacteria and fungi 
produce multiple variants of each.  The filamentous fungus Neurospora crassa is a representative 
example.  Its genome contains nine predicted cellulase genes, which undergo different levels of 
transcription during growth on biomass (66).  When cellulose is used as a carbon source, the N. 
crassa secretome is dominated by two cellobiohydrolases (53%), three endoglucanases (13%), 
and a β-glucosidase (3.8%) (67).  Similar to other Ascomycetes, the dominant cellobiohydrolase 
(39.5%) is a member of GH family 7, which implies that it engages cellulose chains from the 
reducing end and employs a retaining mechanism (68); the minority cellobiohydrolase is a 
member of GH family 6, which implies that it engages cellulose chains from the non-reducing 
end and employs a non-retaining mechanism (69).  The endoglucanase enzymes are from 
families 5, 6, and 7; the β-glucosidase, family 3.  While the two varieties of cellobiohydrolases 
have been shown to act synergistically on cellulose (70), the advantage conferred by the 
secretion of multiple endoglucanase variants has remained poorly understood .  We explore the 
possible advantages of cellulase variants within multi-enzyme mixtures later on in this work. 
 
1.5.2 Oxidative Processes  
  
 Non-complexed cellulolytic mixtures are thought to facilitate oxidative cleavage of 
cellulose either directly through polysaccharide monooxgenases (PMOs) or indirectly through 
the generation of hydroxyl radicals via Fenton chemistry.  PMOs, which were originally 
classified as family 61 glycosyl hydrolases, are metalloeznymes that work in concert with 
cellobiose dehydrogenases (CDHs) and/or other protein/small molecule electron donors to 
hydroxylate glucose carbons (C1 or C4) proximal to internal glycosidic linkages of cellulose 
chains, thus triggering β-1,4 bond cleavage via elimination (71).  Again, the cellulolytic system 
of N. crassa contains representative examples.  With cellulose as the carbon source, the 
secretome of this fungus has been shown to include a CDH (CDH-1, 2.4%), an oxidoreductase 
with an N-terminal heme domain and a C-terminal flavin domain, and four PMOs (15%), 
monooxygenases which contain N-terminal copper coordination sites (67, 71).  These enzymes 
act through the following mechanism (71, 72) (Figs. 1.3A and 1.3C): (1) the catalytic flavin-
containing domain of CDH oxidizes the reducing end of either a cellulose chain or a cello-
oligomer, generating a lactone; (2) the heme domain of the CDH transfers one electron to a 
PMO, reducing its Cu(II) to Cu(I); (3) O2 binds the Cu(I) of the PMO, thereby generating a 
copper superoxo intermediate; (4) the superoxo species generates a carbohydrate radical by 
abstracting a hydrogen from the 1 or 4 position of a glucose residue internal to a cellulose chain, 
thus oxidizing Cu(I) back to Cu(II); (5) the CDH yields a second electron to the PMO, triggering 
the release of water and the generation of a copper oxo radical; (6) the PMO hydroxylates the 1 
or 4 position from which it previously abstracted a hydrogen, thereby triggering the elimination 
of the glycosidic linkage.  Evidence for direct enzymatic oxidation of cellulose has only emerged 
over the last several years (73, 74); thus, the detailed mechanism is still being worked out (75).  
By contrast, indirect oxidative cleavage via the Fenton reaction has been discussed for several 
decades (76, 77).  This mechanism relies on the Fe(II)-catalyzed decomposition of H2O2 into 
water and a hydroxyl radicals (HO�), which can depolymerize cellulose and other cell wall 
polymers via random oxidation.  Many basidiomycetes, which are efficient fungal degraders of 
lignocellulosic biomass, secrete reductase and oxidase enzymes, sources of Fe(II) and H2O2, in 
addition to cellulases (76, 78).  These enzymes have been proposed to enhance cellulose 
degradation rates by generating hydroxyl radicals near the substrate surface.  Though the 
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generation of hydroxyl radicals during biomass depolymerization has been shown, however, the 
role of these radicals in microbial cellulose degradation is not well understood (79).  In general, 
both of the direct (enzymatic) and indirect (hydroxyl radical) oxidative systems have a very clear 
advantage over cellulolytic systems: they obviate the need for a cellulose chain abstraction step, 
which is energetically costly (80).  Future investigation of their mechanisms of targeting and 
synergy will allow for the development of more efficient cellulolytic mixtures. 
 
1.6 Fuels Synthesis 
 
  Soluble sugars generated from the depolymerization of cellulose and hemicellulose can 
be reduced to fuels via microbial fermentation, chemical catalysis, or a combination of the two.  
In microbial fuel production, carbohydrates consumed by fungi or bacteria are converted to fuel 
products via endogenous or engineered (nonnative) metabolic pathways.  Organisms such as 
Saccharomyces cerevisiae, Escherichia coli, Clostridium acetobutylicum, and Zymomonas 
mobilis have been engineered to produce ethanol, butanol, fatty esters, or fatty alcohols at 
substantial yields from plant-derived C5 and C6 sugars (81-86).  Pathways for alkanes and cyclic 
isoprenoid (jet fuel) production within several of these organisms are also being pursued (15).   
In catalytic fuel production, solid catalysts are employed in multi-step reactions designed to 
convert carbohydrates to compounds with a lower oxygen content and greater density of C-C 
bonds (20).  Several highlights include (1) the generation of alkanes via aqueous-phase 
dehydration/hydrogenation of C6 sugars (87), (2) the production of 2,5-dimehtylfuran from 
fructose dehydration to HMF followed by hydrogenolysis to DMF (88), and (3) aqueous phase 
reforming of carbohydrates to light alkanes, syngas, and monofunctional hydrocarbons (89).  
Combined fermentative/chemocatlalytic approaches involve the use of fermentation products in 
catalysis feed streams.  Recently, a combined approach was demonstrated using C. 
acetobutylicum and palladium catalysts: acetone, butanol, and ethanol, which were selectively 
extracted from C. thermocellum fermentation broth via glycerol tributerate, were converted into 
ketones by palladium-catalyzed alkylation (90).  With continual advances in the fields of 
metabolic engineering and catalyst design, the possibilities for fuel generation via microbial 
fermentation and chemical catalysis are expanding.  All rely on reducing the carbohydrate sugars 
produced from biomass into compounds with higher energy densities and good combustion 
characteristics.  Future work on fuel production will involve the design of synthesis routes that 
are highly selective and high yielding, and which require minimal energy inputs (high 
temperatures).    
 
1.7 Cellulose Hydrolysis and the Future of Biofuels 
 

Most life cycle assessments indicate that lignocellulosic biofuels can mitigate greenhouse 
gas emissions caused by transportation (17).  Unfortunately, production prices (~$4.00) remain 
uncompetitive with those for conventional fossil fuels ($3.5 at the pump as of November 3, 2012 
in the U.S.) (91, 92).  To achieve cost parity, biofuels research currently underway is aimed at 
improving biomass-to-fuel yields, conversion rates, and product characteristics so that high 
quality lignocellulosic biofuels can become cost competitive with petrochemical alternatives (24, 
93). 
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Inefficient cellulose depolymerization presents one of the greatest opportunities for 
reducing cellulosic biofuels production costs.  By most estimates, high cellulolytic enzyme 
requirements are one of the largest barriers to successful competition between cellulosic fuels 
and fossil fuel alternatives (93, 94).  Improvements in the stability and activity oft these enzymes 
can significantly lower production costs by lowering cellulase/cellulose loading requirements 
(40).  In the present work, we describe mechanistic models and experimental approaches that we 
employed to investigate the kinetic details of cellulase-catalyzed hydrolysis of cellulose.  Our 
results reveal important rate-limiting phenomena and demonstrate new strategies for improving 
and/or optimizing the activity of cellulolytic mixtures. 
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Chapter 2: A Mechanistic Model of the Enzymatic Cellulose Hydrolysis* 

2.1 Abstract 

 A detailed mechanistic model of enzymatic cellulose hydrolysis has been developed.  The 
behavior of individual cellulase enzymes and parameters describing the cellulose surface 
properties are included. Results obtained for individual enzymes (T. reesei endoglucanase 2 and 
cellobiohydrolase I) and systems with both enzymes present are compared with experimental 
literature data. The model was sensitive to cellulase-accessible surface area; the EG2-CBHI 
synergy observed experimentally was only predicted at a sufficiently high cellulose surface area. 
Enzyme crowding, which is more apparent at low surface areas, resulted in differences between 
predicted and experimental rates of hydrolysis. Model predictions also indicated that the 
observed decrease in hydrolysis rates following the initial rate of rapid hydrolysis is not solely 
caused by product inhibition and/or thermal deactivation. Surface heterogeneities, which are not 
accounted for in this work, may play a role in decreasing the hydrolysis rate. The importance of 
separating the enzyme adsorption and complexation steps is illustrated by the model’s sensitivity 
to the rate of formation of enzyme-substrate complexes on the cellulose surface. 

2.2 Introduction 

 The mechanism of enzymatic cellulose hydrolysis is not well understood. The complexity 
of the system, which arises from the concerted action of several enzymes acting on a 
heterogeneous solid substrate, makes experimental kinetic and mechanistic studies difficult. As a 
result, the rate-determining features of the cellulase-cellulose system have yet to be identified, 
and the physical and chemical details of the enzyme-substrate interaction remain to be 
elucidated.  Improved understanding of the overall system is crucial for the design of optimal 
enzymatic hydrolysis processes. 

During enzymatic cellulose hydrolysis, saccharification rates typically decline 
dramatically after an initial “burst” phase (1-5). This decrease in hydrolysis rates makes high 
enzyme loadings and long reaction times necessary to achieve desired cellulose conversions. 
While many hypotheses for the cause or causes of this decline have been proposed (6-13), the 
origin of this phenomenon is still unresolved.   

Detailed mechanistic models provide tools for studying the kinetics and mechanisms of 
complex reaction systems. Their importance in efforts to understand and improve enzymatic 
cellulose hydrolysis processes has been described earlier (14, 15). Mechanistic models allow 
investigators to rapidly probe a proposed reaction network through the use of computational 
predictions and sensitivity analysis. By understanding the underlying kinetics and mechanism of 
the cellulase reaction system more directed and rational approaches can be used for cellulase 
engineering and process optimization. 

 Many models of cellulase-catalyzed cellulose hydrolysis have been developed over the 
past 30 years. Most of these models contained simplified representations of the cellulases and/or 
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the substrate. The activities of the different cellulase enzymes that work together during cellulose 
hydrolysis are commonly lumped together as a single enzyme concentration. The cellulose 
substrate has been represented using a variety of simplified representations: (1) considering the 
solid cellulose phase to be equivalent to a soluble polymeric substrate (15), (2) describing the 
cellulose by a single bulk concentration (16-18), (3) treating the cellulose as a mixture of 
digestible and inert substrate concentrations (19, 20), (4) using one or two adsorption sites (e.g., 
crystalline and amorphous) on a surface area that is then related to the bulk cellulose 
concentration (21-25), and (5) using a hypothetical periodic surface composed of random 
polymeric chains (26). These simplifications limit the ability of these models to explain enzyme-
enzyme cooperativity or to predict evolution of the cellulose substrate surface morphology as 
hydrolysis occurs.   

Most models that include an enzyme adsorption step rely on simple assumptions about 
the enzyme-substrate interaction. Cellulase adsorption onto cellulose has typically been 
described through the use of a Langmuir-type equilibrium equation (16, 25, 27-29). The 
Langmuir isotherm, while often able to be fit to experimental data, is based on assumptions that 
are not representative of the cellulase-cellulose system. In addition, inconsistencies between 
experimental adsorption data and the Langmuir equation predictions have been reported in the 
literature (30). Several models have avoided using an equilibrium adsorption model (20, 22), but 
their reliance on lumped enzyme and/or substrate concentrations has remained, rendering the 
physical meaning of the adsorption step unclear.   

Representing adsorption in a mechanistic model is further complicated by the formation 
of the enzyme-substrate complex on the cellulose surface. Early models assumed that an enzyme 
adsorbs to the cellulose surface and complexes with a cellulose chain in one concerted reaction 
step (15, 31, 32); later models derived from these early models have also made this assumption 
(28, 29, 33). Most cellulases, however, have a structural architecture that suggests a two-step 
process. Cellulases contain a carbohydrate binding module (CBM) that is separated from the 
catalytic domain by a short linker; adsorption of the CBM domain to the surface and 
complexation of the catalytic domain to a chain may occur as two distinct events. A recent high-
speed AFM study of cellulase enzymes on cellulose supports this two-step interaction (34). 
Mathematical representations must capture this complexation event. The utility of previous 
models in predicting enzymatic cellulose hydrolysis behavior has been severely limited by their 
reliance on lumped terms and inadequate representations of cellulase-cellulose interactions. 

 In this work a model has been developed which avoids some of the unrealistic 
assumptions that have limited earlier efforts. It is based on a mechanistic description that 
includes distinct enzyme adsorption and complexation steps. The equilibrium assumption is 
abandoned, thus permitting dynamic interactions between cellulases and the cellulose surface to 
be incorporated. Individual cellulases of a well-defined enzyme mixture are explicitly tracked; 
substrate concentration and the degree of cellulose polymerization are monitored; and surface 
concentrations of each cellulose chain length are individually described. Representation of the 
substrate is focused on capturing the time course of cellulose surface area; as the cellulose 
particles shrink, new chains are exposed, and the total cellulose surface area is reduced. This 
approach provides useful insights into the impact of substrate surface area on the hydrolysis rate, 
the roles of various mechanisms in the slowdown in the rate of hydrolysis, and the importance of 
an adequate representation of the enzyme-substrate interaction. 
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2.3 Methods 

2.3.1 Representation of the Cellulose Substrate 

The solid cellulose substrate is represented as an assembly of spherical particles. This 
representation reflects an established mapping of arbitrary shapes into an assembly of 
monodisperse spheres that has the same total surface area and volume as the original shape (35). 
This approach has been used to describe the radiative scattering and absorption of atmospheric 
ice crystals (35, 36). The rate of cellulose hydrolysis is directly dependent to the amount of 
substrate surface area; the manner in which surface area changes depends on the initial shape. In 
order to describe the change of surface area with time, we posit that the original shape can be 
represented by a polydisperse assembly of spheres (Box 1 provides the details of arbitrary shape 
mapping to spheres). In the present work, both monodisperse and bimodal distributions are 
considered.  

 

 Particles are composed of cellulose chains of varying length described by a Poisson 
distribution based on the initial degree of polymerization. The cellulose particles shrink as 
soluble cello-oligosaccharides are released from the surface. A material balance describes the 
rate at which the radius changes with time (Eq. 2.1). The surface area is related to the density and 
the radius of a spherical particle by a simple relationship (Eq. 2.2). 

BOX	
  1.	
  Mapping	
  Arbitrary	
  Particle	
  Shapes	
  to	
  Collections	
  of	
  Spheres	
  	
  

	
   Monodisperse	
   distributions	
   of	
  
spheres	
   can	
   be	
   used	
   to	
   model	
  
properties	
   for	
   static	
   shapes.	
   When	
   the	
  
arbitrary	
  shapes	
  of	
  interest	
  change	
  with	
  
time,	
   a	
   polydisperse	
   distribution	
   of	
  
spheres	
  must	
  be	
  used	
   to	
  properly	
  map	
  
the	
   properties.	
   Figure	
   A	
   shows	
   the	
  
requirements	
   and	
   capabilities	
   for	
  
matching	
  static	
  and	
  dynamic	
  properties	
  
of	
  a	
  given	
  shape.	
  	
  

The	
   polydisperse	
   distribution	
  
of	
   spheres	
   required	
   to	
   map	
   a	
   given	
  
shape	
   is	
   difficult	
   to	
   determine.	
   It	
  
requires	
  knowledge	
  of	
  how	
  the	
  surface	
  
area	
  changes	
  with	
  time.	
  Thus	
  a	
  reverse	
  
approach	
   may	
   be	
   used,	
   where	
   a	
   given	
  
polydisperse	
   distribution	
   is	
   used	
   to	
  
model	
   the	
   dynamic	
   change	
   of	
   a	
  
particle’s	
  properties.	
  The	
   form	
  of	
   these	
  
results	
   is	
   compared	
   to	
   measured	
  
results.	
  Thus,	
  instead	
  of	
  directly	
  finding	
  
the	
   sphere	
   distribution	
   to	
   match	
   an	
  
arbitrary	
   shape,	
   an	
   arbitrary	
   shape	
   is	
  
found	
   that	
   matches	
   a	
   given	
   sphere	
  
distribution.	
  

	
  	
  

Figure	
   A.	
   Hexagonal columns, cylinders, and shape 
combinations represented as spheres: a monodisperse 
distribution of spheres has the same total volume and total 
surface area as the original shape, a polydisperse distribution 
of spheres has the same total volume, total surface area, and 
overall hydrolysis rate as the original shape	
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As soluble cello-oligosaccharides are released from the solid cellulose surface, fresh 
cellulose chains become part of the surface. A term is required in the equations for cellulose 
chain surface concentrations to account for this new chain exposure. Particles are assumed to be 
composed of a continuum of cellulose chains rather than discrete layers, and their physical 
characteristics (e.g., sites per area and density) are assumed to remain constant as the particles 
shrinks. The rate at which new chains are exposed is equal to the rate at which old chains are 
lost, as the number of sites per area is assumed to be constant. Individual chains have an 
exposure term that depends on the rate of loss of old chains and the initial degree of 
polymerization probability distribution function (Eq. 2.3). 

d[Ci
' ]

dt
= + pdf (DP0,i)

1
DP0

jri
'

j=1

6

∑  (2.3) 

 The cellulose chains on the surface are represented as a lattice of glucose units. In the 
case of lignocellulosic substrate, the representation of the surface can be modified to include 
non-hydrolyzable sites. Each cellulase enzyme that adsorbs onto this lattice occupies a certain 
number of sites, described by its footprint. Footprint estimates are based on small angle X-ray 
scattering measurements of the Trichoderma reesei cellobiohydrolase I (CBHI) (37, 38). If the 
size of each glucose unit is assumed to be 0.25 nm2, CBHI occupies approximately 84 glucose 
sites. If all cellulases are assumed to have this footprint, regardless of shape, a monolayer of 
perfectly packed enzymes would cover all lattice sites. A more physically-realistic description of 
adsorption can be developed by considering random adsorption by cellulases of a defined shape 
to the surface.  Consequently, random sequential adsorption (RSA) simulations of a 
cellulase-shaped adsorbate consisting of a large catalytic domain, a short linker, and a small 
CBM, adsorbing onto a periodic square lattice were used to determine an effective footprint. An 
adsorbed enzyme represented this way occupies 156 glucose units, nearly double the physical 
footprint. The details of the RSA simulation are provided in Appendix B of the supplemental 
material. 

2.3.2 Hydrolysis Mechanism 

The mechanism by which cellulases catalyze the hydrolysis of cellulose can be 
considered in three steps: (1) adsorption, (2) complexation, and (3) reaction. Adsorption and 
complexation were treated as reversible steps, while the reaction step was treated as irreversible. 
A schematic of this mechanism is given in Fig. 2.1, which illustrates these steps for an 
endoglucanase (EG) and a cellobiohydrolases (CBH). 
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Figure 2.1 Schematic of the general mechanistic steps of cellulase-catalyzed hydrolysis of cellulose by an 
endoglucanase and an exoglucanase. 

 Adsorption and desorption of the cellulases were described using site and enzyme 
balances, which provide concentrations of cellulose surface sites and solution-phase enzymes. 
All cellulases are allowed to adsorb to identical free sites on the cellulose surface. Adsorption 
and desorption reactions are treated as elementary reactions, leading to balance equations for 
adsorbed, uncomplexed enzyme concentrations (Eq. 2.4). 

d[E'x−ads ]
dt

= kx−ads[Ex− free ][*
']− kx−des[E

'
x−ads ]  (2.4) 

The terms resulting from adsorbed enzyme complexing and decomplexing with a cellulose chain 
and catalysis are not included in Eq. 2.4. The catalysis step is assumed to be slow in comparison 
with the other reactions, allowing the complexation/decomplexation step to be considered at 
equilibrium. 

 The equilibrium assumption for complexation leads to a simple relationship between the 
surface concentrations of adsorbed complexed enzyme, adsorbed uncomplexed enzymes, and 
surface cellulose chains (Eq. 2.5). The difference in the equilibrium relationship for 
endoglucanase and cellobiohydrolases enzymes stems from the ability of endoglucanase to 
complex with any glycosidic bond on the cellulose chain while cellobiohydrolases can only 
complex with a specific chain end (reducing or non-reducing). 

[E'EG−adsCi
' ]=

[E'EG−ads ]θEG (i −1)[C
'
i ]

KM−EG−cel
[E'CBH−adsCi

' ]=
[E'CBH−ads ]θCBH [C

'
i ]

KM−CBH−cel
 (2.5) 

Using this equilibrium relationship and the mechanism depicted in Fig. 2.1, balance equations for 
the surface concentration of solid cellulose chains of length i can be derived (Eq. 2.6). 



	
   22	
  

(i > 6)
d[C 'i ]
dt

=
kcat−EG−cel
KM −EG−cel

[E'EG−ads ]θEG 2 [C 'j ]
j=i+1

∞

∑ − (i −1)[C 'i ]
⎛

⎝⎜
⎞

⎠⎟

+
kcat−CBH −cel
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i ]( )

 (2.6) 

Additional endoglucanase or cellobiohydrolases enzymes can be incorporated into the model; 
this will add terms to Eq. 2.6 that are similar to those above. 

Soluble cello-oligosaccharides are formed by enzymes acting on both soluble, short-chain 
sugars and on insoluble chains within the solid substrate. The equations describing the generation 
of soluble short-chain sugars (DP≤6) assume a Michaelis-Menten mechanism for the soluble 
phase reaction terms, and rely on assumptions similar to those in Eq. 2.6 for the solid phase 
reaction terms. The equation for cellobiose concentration is shown as an example in Eq. 2.7. The 
full set of material balance equation can be found in Appendix A with detailed derivations in 
Appendix C of the supplemental material. While it is not shown here, the action of β-glucosidase 
can be integrated into the model equations with an additional Michaelis-Menten type term in the 
cellobiose and glucose equations. Both free and adsorbed cellulases are competitively inhibited 
by glucose and cellobiose. Terms for this inhibition are present in the enzyme and site balances.  
The full set of model equations is shown in Appendix A (with detailed derivations in Appendix 
C of the supplemental material). 
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2.3.3 Model Parameters 

The model requires a variety of adsorption, kinetic, and physical parameters. Sets of 
experimental values were determined in the present work, or values from the literature were 
used. In the absence of reliable experimentally determined parameters, estimates were made by 
fitting the model to experimental data. 

Kinetic parameters for the activity of cellulase enzymes on a variety of substrates have 
been reported in the literature. The work detailed here relies on accurate determination of 
Michaelis-Menten constants for cellulase activity on soluble cello-oligosaccharides. For 
Trichoderma reesei parameters are available for CBH1 (39), CBH2 (40) and a range of 
endoglucanases (41).  Recent results for the rate at which a CBH1 enzyme moves as it degrades 
the end of a cellulose chain (34) reveal that the turnover number of a cellulase complexed with a 
solid cellulose chain (~7 s-1) is roughly equivalent to that of a cellulase acting on a soluble 
cello-oligosaccharides in solution (~9 s-1). Accordingly, kcat values determined on substrates like 
cellohexaose and cellopentaose can be used not only for solution-phase reactions but also for 
solid cellulose substrates. There are no comparable experimental values for the complexation 
constants of adsorbed enzyme with chains on the surface of a solid substrate. These parameters 
were thus optimized to best fit the experimental data. 

Product inhibition equilibrium constants have been reported for cellulase hydrolysis of 
soluble substrates. Reported values range over several orders of magnitude (39, 42-44), making 
the determination of reliable values difficult. Literature values were used only to set reasonable 
bounds for the optimization of the product inhibition parameters. 

The majority of cellulase adsorption studies have employed solution depletion 
measurements. A Langmuir model has typically been fit to such data to determine adsorption 
parameters.  Because the model proposed here requires values of kadsorption and kdesorption for each 
enzyme in the system (Eq. 2.4), fits to the Langmuir isotherm have not been employed.  Values 
for these parameters have been estimated for a commercial cellulase mixture (Celluclast 1.5L) 
using data obtained from ellipsometry (45). 

The parameters associated with the cellulose substrate are the initial surface area, the sites 
per area, and the average degree of polymerization of the cellulose chains. The substrate surface 
is assumed to consist of a homogeneous lattice of glucose units. While an experimental value for 
sites per area is not available an upper bound for this value can be calculated based on the size of 
a single glucose unit (0.25 nm2); accordingly a glucose lattice structure has a surface 
concentration of 6.64x10-5 mmol-1 dm-2. The degree of polymerization of several of cellulosic 
substrates (including Avicel, cotton, bacterial cellulose) has been determined using a variety of 
techniques (46-50). These values provide an estimate of a typical degree of polymerization for a 
given cellulosic substrate. The literature provides only a limited set of surface area 
measurements. Nitrogen BET measurements are available; however, nitrogen molecules are far 
smaller than proteins, and this method requires the use of dry substrates; therefore, these 
measurements will give inaccurate values for the surface area accessible to cellulases. Attempts 
to use surface depletion of fluorescent cellulase-like constructs have also been made (51),  but 
these use only one type of CBM and thus likely underestimate the accessible surface area. 
Appendix D in the supplemental material provides more detail about the parameter values used 
in this study. 
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2.3.4 Model Assembly and Solution 

The model consists of a system of differential and algebraic equations. Balance equations 
for the surface concentrations for chains of DP 7 to DPmax (set to 1.5xDP0); the concentrations of 
soluble cello-saccharides from glucose to cellohexaose; the adsorbed, uncomplexed enzyme 
surface concentrations; and the radius of the cellulose particles are included. Algebraic equations 
for enzyme and site balances are also part of the system of equations that comprise the model. 
The model was solved in Matlab using the ode23t function. For parameter optimization the 
fmincon function was used, which utilizes a sequential quadratic programming optimization 
algorithm. A normalized sum of square error between experimental values and model results was 
used as the objective function. 

2.4 Results 

2.4.1 Surface Area Requirements 

The inadequacy of currently available surface area measurements is made clear by a 
comparison between measured values and the cellulose surface area required based on adsorbed 
enzyme footprint estimates. A typical enzyme loading of 0.15 µmol g-1 (approximately 9 mg 
enzyme per gram substrate) requires a surface area of 1.9 m2 g-1 assuming an enzyme footprint 
based on the crystal structure enzyme dimensions, and a surface area of 3.5 m2 g-1 is required 
based on the effective (RSA) enzyme footprint. The 0.15 µmol g-1 loading is usually considered 
to be industrially relevant, and the accessible surface area of Avicel has recently been reported as 
2.38 m2 g-1 (51). However, the 2.38 m2 g-1 estimate for the cellulase-accessible surface area for 
Avicel is insufficient to accommodate a loading of 0.15 µmol g-1

. Despite being experimentally 
elusive, reliable measurements for enzyme accessible surface area are critical for understanding 
and modeling the enzyme-substrate interactions during hydrolysis. 

2.4.2 Enzyme Activity with Low Surface Area (Monodisperse Spheres) 

The model was tested using T. reesei CBHI and endoglucanase 2 (EG2) hydrolysis time-
course data reported by Medve et al. (5). The hydrolysis conditions were as follows: 10 g L-1 
Avicel; 0.16 µmol g-1 of either EG2 or CBHI (individual pure enzymes) (approximately 10 mg 
enzyme per g cellulose); 0.32 µmol g-1 total enzyme (1:1 EG2:CBHI mixed enzymes) 
(approximately 20 mg enzyme per g cellulose); pH 4.8; 50 mM sodium acetate buffer; 40 °C.  
The experiments and simulations conducted with a single pure enzyme (EG2 or CBHI) will be 
referred to as “single enzyme hydrolysis” in this work. The summation of the total effective 
glucose release rates of the EG2 and CBHI single enzyme hydrolysis experiments and 
simulations will be referred to as “theoretical mixed enzyme hydrolysis”. The experiments and 
simulations that use a 1:1 EG2:CBHI mixture will be referred to as “mixed enzyme hydrolysis”. 
The parameters used in the model are shown in Table 2.1 (more details can be found in 
Appendix C of the supplemental material). 
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           Table 2.1. Kinetic parameters used in model simulations for comparison to 
            experimental data from Medve et al. (1998). 

Kinetic Parameter Valuea Units 
kEG2-ads 8640b L mmol-1 hr-1 
kCBH1-ads 8640b L mmol-1 hr-1 

kEG2-des 19.3b hr-1 

kCBH1-des 164b
 hr-1 

kcat-EG2 65c s-1 
kcat-CBH1 9.4c s-1 

KM-EG2-cel 0.0067d mmol dm-2 

KM-CBH1-cel 0.000014d mmol dm-2 

KM-EG2-sol 0.053c mmol L-1 
KM-CBH1-sol 0.0032c mmol L-1 

Ki-EG2-cellobiose 0.01d mmol L-1 

Ki-CBH1-cellobiose 0.093d mmol L-1 

Ki-EG2-glucose 16.9d mmol L-1 
Ki-CBH1-glucose 31c mmol L-1 

aFor expanded details about the model parameters and their sources see Appendix 
C in the supplemental material 
bParameters based on values from elipsiometry experiments(unpublished data) 
cExperimental parameters from various literature sources 
dParameters optimized to early time data (less than 3 hours) for single enzyme 
hydrolysis results from Medve et al. (1998) 
 

An Avicel surface area of 8 m2 g-1 was used as a low surface area condition.  This value 
was chosen because it corresponds to a case where an enzyme loading of 0.16 µmol g-1 
represents 50% surface coverage based on the effective (RSA) area occupied by an enzyme. The 
model results are compared to the experimental values in Fig. 2.2.  The activities for single 
enzyme hydrolysis are shown in Fig. 2.2A. The model exhibits excellent quantitative agreement 
at early times (up to 3 hr) and qualitative agreement for extended times for single enzyme 
hydrolysis. The model fails to capture the decrease in the rate of hydrolysis. The model does not 
capture the experimental data for the hydrolysis rates with both enzymes present, as shown in 
Fig. 2.2B. While the experimental results show a synergistic relationship between EG2 and 
CBH1, the model predicts a competitive relationship.   
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Figure 2.2 Model results using monodisperse spheres with the low initial surface area value (8 m2 g-1) compared to 
experimental data for a) single enzyme hydrolysis with CBH1 ( £, experiment; --- ,model) and EG2 (¯, 
experiment; —, model) and b) theoretical mixed enzyme hydrolysis based on single enzyme experiments (r, 
experiment; —, model) and the actual mixture (�, experiment; ---, model).  The experimental data are from Medve 
et al. (1998).  The insets show an expanded view of the early time points (up to 3 hours). 

The model allows the cause of this inconsistency to be examined. Fig. 2.3 shows the 
fraction of available sites on the substrate surface for each enzyme during single enzyme and 
mixed enzyme hydrolysis. The fraction of sites available to EG2 for hydrolysis is much lower in 
mixed cellulase hydrolysis compared to hydrolysis with EG2 alone. This decrease in substrate 
accessibility severely hinders the effectiveness of EG2 in hydrolyzing cellulose within a mixture. 
The CBH1 enzyme, on the other hand, suffers almost no change in the fraction of available sites 
(chain ends) on the surface. The difference between how a crowded surface affects EG2 and 
CBHI is expected. EG2 has far more sites to react with than CBHI because there are many more 
glycosidic bonds than chain ends. An enzyme on the surface therefore obstructs more EG2 sites 
than CBHI sites. In addition, EG2 activity converts glycosidic bonds into chain ends, thus adding 
to the number of CBHI sites. A low surface area under mixed enzyme hydrolysis conditions 
causes the synergistic relationship between EG2 and CBH1 to break down; EG2 is unable to 
effectively cleave cellulose chains to increase the number of chain ends available for CBH1 to 
hydrolyze to cellobiose. 
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Figure 2.3 Fraction of sites on the cellulose surface available for catalysis by each enzyme type during the model 
simulation using monodisperse spheres with the low initial surface area value (8 m2 g-1).  Only the first half hour is 
shown because the values have reached steady state at that point. 

2.4.3 High Surface Area (Monodisperse spheres) 

The effect of surface area on hydrolysis was further examined by employing an initial 
Avicel surface area of 47.6 m2 g-1 (all other conditions unchanged).  This value was chosen to 
minimize any effect a lack of available surface area would have on the cellulose and still be 
within the range of surface areas reported for other types of cellulose (e.g., PASC and bacterial 
cellulose) (51). For single enzyme hydrolysis (Fig. 2.4A), the model results and experimental 
data show good quantitative agreement at early times (up to 3 hours) and qualitative agreement 
at extended times. The mixed enzyme model results (Fig. 2.4B) are now also in good quantitative 
agreement with the experimental data at early times (up to 3 hours) and qualitative agreement at 
extended time. It is clear that the increased cellulose surface area is required to predict the 
observed synergistic interaction between the cellulase enzymes. However, the model fails to 
capture the full extent of the observed decrease in the rate of hydrolysis. 
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Figure 2.4 Model results using monodisperse spheres with the high initial surface area value (47.6 m2 g-1) compared 
to experimental data for a) single enzyme hydrolysis with CBH1 ( £, experiment; ---, model) and EG2 (¯, 
experiment; —, model) and b) theoretical mixed enzyme hydrolysis based on single enzyme experiments (r, 
experiment; —, model) and the actual mixture (�, experiment; ---, model).  The experimental data is from Medve et 
al. (1998).  The insets show an expanded view of the early time points (up to 3 hours). 

 The role of increased surface area in allowing the synergistic interactions to occur can be 
explored by examining the change in the fraction of available sites for complexation for each 
enzyme in the model (Fig. 2.5). While EG2 still demonstrates a decreased fraction of accessible 
surface sites in the mixed enzyme hydrolysis case compared to the single enzyme hydrolysis 
case, this decline in available surface sites is much lower than that seen in the low surface area 
case. CBH1 has a large increase in the fraction of available sites (chain ends) on the substrate 
surface during mixed enzyme hydrolysis compared to the single enzyme hydrolysis case. This 
result is expected because EG2 cleaves cellulose chains on the surface into shorter chains, 
thereby increasing the number of chain ends available. The results of the high and low surface 
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area scenarios illustrate that in order for synergy to occur, the endoglucanase must be able to act 
almost as efficiently in the mixture as it does alone. 

 
Figure 2.5. Fraction of sites on the cellulose surface available for catalysis by each enzyme type during the model 
simulation using monodisperse spheres with the high initial surface area value (47.6 m2 g-1).  Only the first half hour 
is shown because the values have reached steady state at that point. 

2.4.4 The Inclusion of Thermal Deactivation (Monodisperse Spheres) 

In the model cases above only changes in the available surface area and product 
inhibition are capable of causing a decrease in the rate of hydrolysis. Clearly, even with strong 
product inhibition from cellobiose, the model is unable to capture the full extent of the observed 
decrease in the rate of hydrolysis. The extent to which thermal deactivation could contribute to 
the slower rate of hydrolysis was included through addition of first-order thermal decay of 
enzyme. The entire enzyme population was assumed to be identically susceptible to the thermal 
deactivation, and for simplicity thermal deactivation was assumed to occur only in solution. 
When the enzyme half-lives were reduced significantly, the model results achieved excellent 
agreement with the experimental data at all hydrolysis times (Fig. 2.6). The half-life of EG2 was 
set to 4.3 hours and the half-life of CBH1 was set to 10.6 hours. These are much shorter thermal 
half-life values than the value of the half-life for a commercial T. reesei cellulase mixture 
reported in the literature, 42.5 hours (52). 
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Figure 2.6. Comparison of model results with experimental data using monodisperse spheres with the high initial 
surface area (47.6 m2 g-1) case with the inclusion of first-order thermal enzyme deactivation in the model.  Results 
are shown for hydrolysis with EG2 (¸, experiment; —, model), CBH1 (£, experiment; ---, model), theoretical 
mixture from single enzyme hydrolysis results (r, experiment; ¬¬¬, model), and the actual EG2 and CBH1 mixture 
(�, experiment; ━, model). The experimental data are from Medve et al. (1998).  The insets show an expanded 
view of the early time points (up to 3 hours). 
 

2.4.5 The Effect of a Bimodal Particle Size Distribution 

All of the simulations discussed above used a monodisperse spherical particle 
distribution.  As a demonstration of the use of polydisperse spherical particle distributions to 
capture the hydrolysis behavior of non-spherical cellulose particles, a range of bimodal 
distributions was employed under the same conditions as the high surface area case without 
thermal enzyme deactivation.  The time course of cellulose surface area in the reactor with 
different bimodal distributions is shown in Fig. 2.7.  In the cases shown in Fig. 2.7, the 
proportion and size of small spheres in the distribution has been varied; the fraction of initial 
surface area arising from small spheres was held constant at 83%. The decrease in cellulose area 
can also be altered by changing the fraction of the initial area resulting from each of he two 
spherical particle in the bimodal distribution (data not shown).  
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Figure 2.7. Model results for the accessible surface area per reactor volume under various sphere size distributions. 
The monodisperse cases are for high initial surface area (47.6 m2 g-1) (¬¬¬) and low initial surface area (8 m2 g-1) 
(━).  The bimodal cases all have a total initial surface area that matches the high initial surface area value.  The 
distribution is initially set to split the surface area with 83% on the small spheres and 17% large sphere.  The cases 
presented vary weight % of the small spheres in the distribution (and the size to maintain the initial surface area 
ratios): 5% 1.5 µm spheres 95% 142.5 µm spheres (━), 7.5% 2.25 µm spheres 92.5% 139 µm spheres (━ ━), 10% 
3 µm spheres 90% 135 µm spheres (-- --), 15% 4.5 µm spheres 85% 127.5 µm spheres (---). 
 
 The model results for the bimodal particle distribution 2.25 µM particles at a 
concentration of 0.75 g L-1 (83% of the initial surface area) and 139 µM particles at a 
concentration of 9.25 g L-1 (17% of the initial surface area) are shown in Fig. 2.8. This bimodal 
distribution was able to fit the experimental data for a mixture of EG2 and CBHI at all times but 
failed to match the experimental data for the single enzyme hydrolysis cases at longer times (Fig. 
2.8).  The decline in the hydrolysis rate is captured in the enzyme mixture but not in the single 
enzyme hydrolysis, resulting in the inability of the model to capture the synergy exhibited in the 
experimental data. By examining the predicted fraction of available sites (Fig. 2.9), it can be seen 
that the sites available to EG2 initially exhibit a slight decrease, similar to that seen in the high 
surface area case (Fig. 2.5). However the fraction of available sites for EG2 for complexation 
rapidly decreases as the particle size distribution transitions between being similar to the high 
surface area case to that of the low surface area case.  The predicted fraction of available sites for 
CBHI exhibits a similar trend, where the fraction matches the behavior seen in the high surface 
area case (Fig. 2.5) but rapidly looses available sites as surface area declines. 
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Figure 2.8 Comparison of model results with experimental data using a bimodal sphere distribution with 7.5 wt% 
2.25 µm spheres and 92.5 wt% 139 µm spheres with an initial total surface area of 47.6 m2 g-1.  Results are shown 
for hydrolysis with EG2 (¸, experiment; —, model), CBH1 (£, experiment; ---, model), theoretical mixture from 
single enzyme hydrolysis results (r, experiment; ¬¬¬, model), and the actual EG2 and CBH1 mixture (�, 
experiment; ━, model). The experimental data are from Medve et al. (1998).  The insets show an expanded view of 
the early time points (up to 3 hours). 
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Figure 2.9 Fraction of sites on the cellulose surface available for catalysis by each enzyme type during the model 
simulation using the bimodal sphere distribution with 7.5 wt% 2.25 µm spheres and 92.5 wt% 139 µm spheres with 
an initial total surface area of 47.6 m2 g-1. 
 
2.5 Discussion 

2.5.1 The Role of Surface Area  

The total cellulase-accessible cellulose surface area is a governing parameter for 
enzymatic hydrolysis.  The model’s ability to capture EG2-CBHI synergy depends strongly on 
surface area. The activities of enzymes acting alone or present in a mixture depend on the 
amount of surface that is accessible for cellulase complexation.  The enzyme crowding effect is 
exacerbated as the amount of enzyme on the surface increases. 

The extent to which enzyme crowding occurs may be influenced by the existence of enzyme-
specific interactions between different cellulases and heterogeneities within the cellulose surface.  
When exposed to a low surface area cellulosic substrate, the adsorption of CBHI and EG2 results 
in high enzyme surface concentrations of both enzymes limiting the activity of EG2.  Because 
the two enzymes are allowed to adsorb anywhere on the homogeneous surface, CBHI and EG2 
compete for surface area.  Lignocellulose substrates, however, are heterogeneous, containing 
crystalline and amorphous sub-sites.  Furthermore, there is evidence that different cellulose 
binding domains exhibit specificity for particular morphological regions (53-56).  By altering the 



	
   34	
  

manner in which cellulases compete for sites on the surface, the distribution of subsites may 
impact the competitive behavior that leads to crowding effects. 

2.5.2 The Decrease in Hydrolysis Rate 

With significant enhancement in cellobiose inhibition and thermal inactivation 
parameters, the model was able to capture the slowdown in the hydrolysis rate exhibited by the 
experimental data (Fig. 2.7).  Strong cellobiose inhibition was required: Ki = 0.01 mM for EG2 
and Ki = 0.093 mM for CBHI.  While cellobiose is known to be a strong inhibitor of cellulases, 
these values are low relative to reported values reported.  Product inhibition alone did not enable 
the model to quantitatively capture the experimental data (Figs. 2.4 and 2.5).  The sensitivity of 
the model to these parameters underscores the need to obtain reliable experimental values for the 
inhibition constants.  

 The inclusion of short thermal inactivation half-lives allowed the model to achieve 
quantitative agreement with the experimental data.  These half-lives, however, were up to an 
order of magnitude smaller than those reported for a T. reesei cellulase mixture.  The interaction 
of the cellulases at the solid-liquid interface may enhance their rate of thermal denaturation; 
alternatively, another rate-limiting mechanism may be at play.  Regardless, the discrepancy 
between experimentally determined inactivation parameters and those required by the model 
indicates that the molecular picture is not complete.  As with inhibition parameters, accurate 
half-life measurements for individual cellulases need to be obtained.  Additional mechanisms 
that limit enzyme activity also need to be explored. 

The model also indicates that enzyme crowding is not an exclusive explanation for the 
decrease in the hydrolysis rate.  The kinetic slowdown has been observed under a wide range of 
hydrolysis conditions; however, enzyme crowding only arises with high enzyme loadings or low 
surface areas.  The experimental data referenced in this work shows the decline in hydrolysis rate 
both with single enzymes acting alone and with enzymes acting within a mixture.  Model results 
show crowding only with mixed enzymes and low substrate surface area.  Again the need to 
explore additional rate-limiting mechanisms is illustrated by the incidence of a hydrolysis rate 
decrease. 

2.5.3 Parameter Sensitivity 

A sensitivity analysis was used to examine the importance of specific mechanistic steps 
in the performance of the model.  The adsorption, catalytic, complexation, and cellobiose 
inhibition constants were increased and decreased by 20% under the high surface area, mixed 
enzyme, with thermal deactivation scenarios.  These results were used to determine the fractional 
change in the amount of cellulose solubilized with respect to variations in each parameter.  This 
is a standard method for sensitivity analysis of a kinetic model (57).  The sensitivity analysis 
indicated that the model was highly responsive to changes in four parameters: KM-CBH1-cel, KM-

EG2-cel, Ki-EG2-cellobiose, and Ki-CBH1-cellobiose, which are listed from most to least sensitive. These 
parameters relate to the complexation of the enzymes either with the solid cellulose surface for 
catalysis or with cellobiose to inhibit the enzymes.  The model was relatively insensitive to 
changes in the adsorption, desorption, and catalytic parameters for both EG2 and CBHI.  The 
sensitivity results suggest that complexation of adsorbed enzyme with the substrate is the 
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governing kinetic step in cellulose hydrolysis.   The sensitivity of the model to the inhibition 
parameters reinforces the need for reliable experimentally determined values. 

2.5.4 Capturing Particle Shape Effects 

The bimodal distribution serves as a demonstration that more complicated rates of change 
in the total surface area of substrate can be represented using a distribution of spheres chosen to 
match the initial total area and volume of the particles.  More complex particle size distributions 
would be required to match the rate of change in surface area for a specific particle shape.  To 
determine these particle size distributions, detailed information about how a particle shape 
decreases during hydrolysis would be necessary.  Box 1 details an approach for developing 
sphere size distributions for different particle shapes.   

The model results for the bimodal case (Figs. 2.8 and 2.9) demonstrate the large effect 
more complex rates of surface area change can have on the predicted hydrolysis behavior. The 
inability of the model to capture synergy in the bimodal case reinforces the point that by itself, 
enzyme crowding related to a lack of accessible surface area cannot explain the decline in the 
rate of hydrolysis.  If the decline in the rate of hydrolysis was caused simply by surface area and 
crowding there would be evidence available that lowering the enzyme loading can reduce, delay, 
or alleviate the effect; this has not been reported in the literature. In fact, the single enzyme 
hydrolysis results of Medve et al. (1998) show a decline in the rate of hydrolysis at a lower 
conversion than the mixed enzyme hydrolysis results, even though the single enzyme loading 
was only half the mixed enzyme loading.  

2.5.5 Broader Implications of the Model Results 

The model used kcat values for soluble oligosaccharide (cellohexaose or cellopentaose) in 
representing catalysis steps performed by enzymes bound to soluble chains as well as to the solid 
substrate.  The use of soluble-substrate kcat values relies on the assumption that once the substrate 
is bound the rate of chemical catalysis does not change.  Recently published experimental 
evidence supports this assumption: high-speed AFM results (34) showed the CBHI enzyme 
moving along a cellulose surface at 3.5 nm s-1, which corresponds to a kcat of 7 s-1, similar to the 
soluble cello-oligosaccharide values. 

If parameters describing the catalytic activity of enzymes on solid and soluble cellulose 
chains are identical, improvements in intrinsic cellulase kinetics (kcat) on soluble substrates 
should improve the enzyme’s activity on solid substrates.  However, the model shows that the 
conversion of solid substrates to soluble sugars is not sensitive to the kcat values of the enzymes.  
As discussed above, the complexation of adsorbed enzyme with solid substrate is the most 
significant parameter that influences the model predictions.  Therefore, improvements in kcat may 
not translate into improvements in solid-substrate cellulolytic activity. 

The importance of accessible surface area is also highlighted by the model results.  The 
discrepancy in activity and synergy behaviors between the low and high surface area cases 
indicates the broadly beneficial role of maximizing the enzyme accessible surface area before 
hydrolysis starts.  A pretreatment process that enhances substrate surface area can reduce the 
likelihood that enzyme crowding will become rate limiting.  
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2.6 Conclusions 

 A detailed mechanistic model for cellulase-catalyzed hydrolysis of cellulose has been 
developed.  The model explicitly tracks individual cellulases and key cellulose surface 
properties.  Independent enzyme adsorption and complexation steps have been incorporated in an 
attempt to capture the most important details of the enzyme-substrate interaction. 

Individual enzyme hydrolysis (EG2 or CBHI) and mixed enzyme hydrolysis scenarios 
were used to compare model results with experimental data from the literature.  The model 
results were not consistent with all of the experimental data in the case of relatively low surface 
area.  When the surface area was increased, limiting the effect of enzyme crowding during mixed 
enzyme hydrolysis, the model achieved good agreement with the experimental data, including 
EG2-CBHI synergy. 

The model was not capable of capturing the full extent of the decrease in the rate of 
cellulose hydrolysis often reported in the literature.  Strong product inhibition and short enzyme 
half-lives were required to match the slowdown apparent in experimental data.  Neither of these 
effects is the primary cause of the observed slowdown.  The ability to capture the rate of change 
in available surface area for shapes more complex than spheres, using a distribution of spherical 
particle sizes was demonstrated using a bimodal distribution. The available substrate surface area 
and how this area changes during hydrolysis was shown to be important, but these changes are 
unlikely to explain the decline in the rate of hydrolysis alone. The differential manner in which 
cellulases interact with structural heterogeneities within the substrate may play an important role 
in causing the rapid reduction in hydrolysis rate.  These physical subtleties are not currently 
included in the model.  The changes to the cellulose morphology that occur during hydrolysis 
may alter the character of the sub-sites on the surface leading to a reduction in the observed 
hydrolysis rate.  The model results presented in this paper illustrate the importance of 
understanding the effect of relevant surface areas to enzyme hydrolysis activity.  This work also 
highlights the utility of future investigations attempting to elucidate further details of cellulase-
cellulose interaction. 
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2.8 Nomenclature 

Acel  Total surface area of cellulose in the system (dm2) 
Ci

’   Solid cellulose chain of length i (i>6) 
Ci Soluble cellooligosaccharide chain of length i (i<7) 
DP   Degree of polymerization 
DP0   Initial degree of polymerization 
DPmax  Maximum degree of polymerization tracked in the model 
E’

CBH-ads   Uncomplexed cellobiohydrolase adsorbed to the surface 
E’

CBH-adsCi   Cellobiohydrolase adsorbed to the surface and complexed with an i length cellulose 
chain  

ECBH-free  Uncomplexed cellobiohydrolase in solution 
E’

EG-ads   Uncomplexed Endoglucanase adsorbed to the surface 
E’

CBH-adsCi   Endoglucanase adsorbed to the surface and complexed with an i length cellulose 
chain  

ECBH-free  Uncomplexed Endoglucanase in solution 
E’x-ads  Uncomplexed cellulase of type x adsorbed to the surface 
Ex-free  Uncomplexed cellulase of type x in solution 
kcat-CBH-cel   Catalytic constant for cellobiohydrolase acting on a solid cellulose chain (s-1) 
kcat-CBH-sol   Catalytic constant for cellobiohydrolase acting on a soluble cello-oligosaccharide (s-

1) 
kcat-EG-cel   Catalytic constant for endoglucanase acting on a solid cellulose chain (s-1) 
kcat-EG-sol   Catalytic constant for endoglucanase acting on a soluble cello-oligosaccharide (s-1) 
KM-CBH-cel   Complexation equilibrium constant for cellobiohydrolase with a solid cellulose 

chain (mmol dm-2) 
KM-CBH-sol   Complexation equilibrium constant for cellobiohydrolase with a soluble 

cello-oligosaccharide (mmol L-1) 
KM-EG-cel   Complexation equilibrium constant for endoglucanase with a solid cellulose chain 

(mmol dm-2) 
KM-EG-sol   Complexation equilibrium constant for endoglucanase with a soluble 

cello-oligosaccharide (mmol L-1) 
kx-ads   Adsorption constant for a cellulase of type x onto a cellulose surface (L mmol-1 s-1) 
kx-des   Desorption constant for a cellulase of type x from a cellulose surface (s-1) 
MW1   Cellulose monomer molecular weight (g mmol-1) 
n   Concentration of cellulose particles (mmol L-1) 
R   Cellulose particle radius (dm) 
ri

’   Rate of formation of a length i soluble sugar from solid substrate (mmol dm-2 s-1) 
SA   Cellulose surface area (dm2 g-1) 
t   Time (s) 
Vliq   Volume of reactor (L) 
θCBH   Fraction of free sites on the surface available to a cellobiohydrolase for 

complexation 
θEG  Fraction of free sites on the surface available to an endoglucanase for complexation 
ρcellulose Cellulose density during hydrolysis (g L-1) 
 *    Free sites 
[ ]   Concentration (mmol L-1)  if unprimed symbol or surface concentration (mmol dm-

2) if primed symbol 
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2.9	
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2.10 Appendix 2: Random Sequential Adsorption Simulations 

 Random sequential adsorption (RSA) describes a process where shapes are placed onto a 
surface at random locations subject only to the constraint that no shape is allowed to overlap with 
another shape.  Cellulase enzymes  adsorbing to a surface may be described by such a random 
sequential adsorption process.  If an RSA simulation is performed to the limit where no 
unoccupied areas on the surface are large enough to accommodate a new cellulase, the saturation 
limit of cellulase on a model cellulose surface may be determined. 

 A stochastic simulation approach was used for the RSA simulations used in this work.  
The cellulose surface was represented by a periodic square lattice. A periodic lattice was used to 
account for the small size of the cellobiose units compared to the actual surface area of a 
cellulose particle.  The adsorption area was assumed to be square lattice with minimum image 
boundary conditions; the adsorbate shape could extend fromone side of the lattice and appear on 
the other side.  Adsorbate shapes were defined by the arrangements of sites they would occupy 
on the lattice when on the surface. 

Shapes were placed using one of two methods.  Early in the simulations, when little 
adsorption had occured, a lattice site was randomly chosen on the surface and that lattice site was 
then used as an anchor to test whether a shape with a random orientation could be placed there 
without overlapping previously placed shapes.  If the shape did not overlap any occupied sites 
the free lattice sites it covered were then considered to be occupied; if the shape overlapped 
anywhere it was not placed.  This process was repeated until a preset threshold of failed 
placements occurred in successive placement attempts.  After this threshold was reached, a 
second shape placement algorithm was used.  The second algorithm was designed to be more 
efficient on an already crowded surface.  Each lattice site was examined to see if a shape in any 
allowed orientation could successfully be placed using that site as its anchor.  One of these site 
and shape orientation combinations was then randomly chosen and the lattice was altered to 
reflect this new shape placement.  This process was repeated, updating the list of possible 
adsorption sites based on the new lattice configuration each iteration until there were no possible 
lattice sites that would lead to the successful placement of a new shape.  These two algorithms 
used together allow for efficient RSA simulations to determine the saturation coverage on a 
surface (58).  The simulation program was written and run using Matlab.  It was validated by 
determining the saturation coverage for shapes with available literature values: linear dimers, 
trimers, and square tetramers (58) (data no shown).  The saturation coverage was determined by 
averaging the result of five separate stochastic simulations.  As the size of the lattice was 
increased the standard deviation of these results declined. 

 To determine the saturation coverage for a typical cellulase on cellulose a 512-by-512 
periodic square lattice was used for the cellulose surface.  This gave a standard deviation for the 
saturation coverage of less than 0.5%. Each site on the lattice was assumed to be the size of a 
cellobiose unit.  The adsorbing shape was designed to mimic a cellulase with a large coverage 
domain to represent the catalytic domain, a small coverage domain to represent the cellulose 
binding module, and a short, thin region to represent a short linker region.  The cellulase shape 
was designed to occupy 42 cellobiose sites on the surface.  Figure 2.A1 depicts the cellulase 
shape used for adsorption.  Five RSA simulation runs conducted using this shape and surface 
gave saturation coverage of 53.5 ± 0.1%.  This saturation coverage gives an effective footprint of 
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78 cellobiose units (156 glucose units) for a cellulase that is 42 cellobiose units large (84 glucose 
units).  This effective footprint accounts not just for the area that is physically blocked by an 
adsorbed cellulase but also for the area that is inaccessible because of the crowding of multiple 
adsorbed enzymes. 

 
Figure 2.A1 The "cellulase" shape used in the random sequential adsorption simulations used to determine the 
effective size of the enzyme on a cellulose surface.  The shape was designed to take the typical size of a cellulase of 
42 cellobiose units (21 nm2) and distribute it properly among the three basic cellulase domains.  A square in the 
shape is a cellobiose unit. 
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2.11 Appendix 3: Derivation of Model Equations 

2.11.1 Cellulose Chain Surface Concentrations 

 The equations describing the surface concentrations of cellulose chains incorporate the 
action of the adsorbed cellulase enzymes.  A surface reaction mechanism for each cellulase can 
be developed from the overall hydrolysis mechanism (Fig. 2.1) as shown in Fig. 2.A2.  
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kcomp!EG!Ci

"

kdecomp!EG!Ci

EEG!adsCi
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Figure 2.A2 Mechanism for surface action of a typical endogluconase and a typical cellobiohydrolase on cellulose.  
2<i≤6 are soluble sugars and 6<i are solid cellulose chains. 
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Competitive inhibition by cellobiose and glucose have also been included in the surface reaction 
mechanism.  Using this mechanism, balance equations for the surface concentration of solid 
cellulose chains (DP>6) and for adsorbed enzyme complexed with a solid cellulose chain with 
respect with time can be written (Eqs. 2.A10-2.A12)  

d[C 'i ]
dt

= −kcomp−EG−Ci
[E'EG−ads ]θEG (i −1)[C

'
i ]+ kdecomp−EG−Ci

[EEG−adsC
'
i ]
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'
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 (2.A10) 

d[EEG−adsCi
' ]

dt
= kcomp−EG−Ci

[E'EG−ads ]θEG (i −1)[C
'
i ]

− (kdecomp−EG−Ci
+ kcat−EG−cel )[EEG−adsC

'
i ]

 
(2.A11)

 

d[ECBH −adsCi
' ]

dt
= kcomp−CBH −Ci

[E'CBH −ads ]θCBH [C
'
i ]

− (kdecomp−CBH −Ci
+ kcat−CBH −cel )[ECBH −adsCi

' ]

 (2.A12) 

 

 

Cleavable glycosidic bonds are carefully tracked. The endogluconase complexation term 
includes an (i-1) multiplier to account for the number of glycosidic bonds within a cellulose 
chain of length i. Enzymes bound to any of these bonds are included in the complexed enzyme 
term, so proper accounting is required because only a fraction of the bond cleavages of an 
enzyme-cellulose chain complex result in the formation of a chain of a particular length. For a 
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chain of length j, where j is larger than i, there are two out of j-1 cleavable bonds that will result 
in the formation of a chain of length i. Accordingly, in Eq. 2.A10, the term for the formation of a 
chain of length i from an endoglucanase-cellulose complex is multiplied by 2/(j-1).  This relies 
on the assumption that all have an equal probability of complexing with an endoglucanase.  No 
such assumptions are required for the cellobiohydrolase terms, which depend only on cellulose 
chain surface concentrations; each chain has only one reducing or non-reducing end. 

Equations 2.A11 and 2.A12 lead to Eq. 2.4 if two assumptions are made (1) the 
complexation reaction is in equilibrium and (2) the catalytic step is slow in comparison with the 
rate of complexation.  

If the inhibition reactions are assumed to be in equilibrium, the terms involving 
cellobiose and glucose in Eq. A10 cancel each other out.  Eq. 2.4 can then be substituted into Eq. 
2.A10 to which can be simplified based on KM-x-cel = (kcat-x-cel+kdecomp-x-Ci)/kcomp-x-Ci to yield Eq. 
2.5. This is the basic model differential equation for the surface concentration of a solid cellulose 
chain of length i with respect for time. 

2.11.2 Soluble Cello-oligosaccharide Concentrations 

 Soluble cello-oligosaccharides are both substrates and products for cellulase enzymes that 
are either free in solution or adsorbed to solid cellulose. The balance equations for the soluble 
sugars must capture all formation and consumption processes. 

 The terms describing the formation of soluble sugars from solid cellulose are identical to 
the terms derived for the action of cellulases on long cellulose chains. Based on the mechanism 
shown in Fig. 2.A2, cellobiohydrolase catalytic activity will always form cellobiose.  If the solid 
chain is a C7 or C8 oligomer, cellopentaose or cellohexaose will also be formed.  An 
endoglucanase can produce soluble sugars on chains of any length if the bond that is cleaved is 
six or fewer glucose units from a chain end. The derivations discussed above can be adapted to 
develop the terms for the formation of soluble sugars from solid cellulose as shown in Eqs. 
2.A13-2.A15. 
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The Acel/Vliq multipliers are used to convert the surface reaction rates to volumetric reaction 
rates.   

 The remaining terms in the balance equations for soluble sugar concentrations describe 
the activity of enzymes on cellooligosaccharides that are free in solution (cellotriose up to 
cellohexaose). Adsorbed cellulases can react with soluble substrate according to the mechanism 
shown in Fig. 2.A2, where the degree of polymerization (i) will vary from 3 to 6. The action of 
soluble enzyme on a soluble sugar is mechanistically identical; the adsorbed enzyme term just 
needs to be replaced with a free enzyme term.  

 A derivation similar to that used above can be used for the terms involving enzyme action 
on soluble substrates.  Two slight differences exist (1) the θEG or θCBH will no longer be used in 
the equilibrium relationships for enzyme-substrate complex concentrations and (2) soluble phase 
complexation constants will be needed in place of the solid phase constants. With these changes 
and careful attention to reaction stoichiometries the following additional term are obtained for 
the soluble sugar differential equations (Eqs. 2.A16-2.A18): 
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When Eq. 2.A17 is combined with Eq. 2.A14, Eq. 2.6 is obtained.  The other equations for the 
soluble sugar concentrations can be formed by combining their terms from Eqs. 2.A13-2.A19. 

2.11.3 Site Balance 

The cellulose surface is occupied by a variety of species: adsorbed uncomplexed 
enzymes, adsorbed enzymes complexed with solid substrate, adsorbed enzymes complexed with 
soluble substrates, and adsorbed enzymes inhibited by cellobiose or glucose.  If the footprints for 
these species are known, a term for surface concentration of free sites on the surface ([*’]) can be 
used to develop a simple site balance. The surface concentration of total sites ([*’max]) is 
assumed to remain constant (Eq. 2.A20). 
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Equilibrium relationships for the inhibited and complexed enzyme terms can be used to simplify 
the site balance (Eq. 2.A21). 
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The free site fraction can be determined from the site balance by subtracting the terms related to 
the enzyme surface concentrations (in all forms) from both sides and by dividing both sides by 
[*max]’ (Eq. 2.A5). 
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For a particular enzyme, the fraction of sites available for complexation can be found by adding 
the fraction of sites occupied by uncomplexed adsorbed enzymes of that specific type to θ, to 
yield θEG (Eq. 2.A6) and θCBH (Eq. 2.A7). 
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σEG[E

'
EG−ads ]

[*'max ]
 (2.A6) 

θCBH = θ +
σCBH [E

'
CBH −ads ]

[*'max ]
 (2.A7) 

The site balance is used for determining the surface concentration of free sites for adsorption 
while the enzyme specific available site fractions are used for scaling the concentrations of 
surface chains in the complexation relationships to account for enzyme crowding. 

2.11.4 Enzyme Balances 

 Steady-state enzyme balances, which are used in the adsorption equations as well as in 
equations representing soluble-phase enzyme action, can be written for each type of cellulase in 
the system.  The basic enzyme balances for a typical endoglucanase and cellobiohydrolase are 
shown in Eqs. 2.A22 and 2.A23. 

[EEG−total ] = [EEG ]+ [EEGCi ]
i=3

6

∑ + [EEGC1]+ [EEGC2 ]

+ [E'EG−ads ]+ [EEG−adsC
'
i ]

i=7

∞

∑ + [EEG−adsC
'
i ]

i=3

6

∑ + [EEG−adsC
'
1]+ [EEG−adsC2

']
⎛

⎝⎜
⎞

⎠⎟
Acel
Vliq

 (2.A22) 

[ECBH −total ] = [ECBH ]+ [ECBHCi ]
i=3

6

∑ + [ECBHC1]+ [ECBHC2 ]

+ [E'CBH −ads ]+ [ECBH −adsC
'
i ]

i=7

∞

∑ + [ECBH −adsC
'
i ]

i=3

6

∑ + [ECBH −adsC
'
1]+ [ECBH −adsC

'
2 ]

⎛

⎝⎜
⎞

⎠⎟
Acel
Vliq

 (2.A23) 

If equilibrium relationships are substituted into Eqs. 2.A22 and 2.A23, these equations can be 
solved for the concentration of free enzyme in solution (Eqs. 2.A8 and 2.A9). 
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2.11.5 Cellulose Material Balance 

 The shrinking size of the cellulose particles is tracked using a material balance. If soluble 
sugars formed from the solid cellulose are assumed to instantly enter the soluble phase, then this 
is the only loss of mass from the cellulose particles (Eq. 2.A24). 

dM particle

dt
= −MW1Aparticle iri

'
i=1

6

∑  (2.A24) 

For a spherical particle, this mass balance can be simplified to Eq. 2.A25. 

dR
dt

= −
MW1

ρcellulose
iri
'

i=1

6

∑  (2.A25) 

The density of the cellulose, the radius of the particle, and the surface area per mass of the 
cellulose (SA) are related by Eq. 2.A26 for a spherical particle. 

ρcellulose =
3

R ⋅SA
 (2.A26) 

When Eq. 2.A26 is substituted into Eq. 2.A25, Eq. 2.1 is obtained.  Mass balances for other 
particle shapes can be developed using Equation 2.A24 as a starting point.
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2.12 Appendix 4: Model Parameters 
Parameter Value Units Justification 
DP0 300 - The degree of polymerization of a solid cellulosic substrate 

is difficult to determine because there are limited solvents 
that dissolve cellulose, a requirement for standard 
techniques such as viscometry and gel permeation 
chromatography.  The value of 300 was chosen as a typical 
average DP for Avicel based on the reported values in the 
literature ranging from 181 to 327 (Ng and Zelkus 1980; 
Ryu et al. 1982). 

[EEG2-total] 0 or 1.6 µmol L-1 Enzyme loadings set to match experimental conditions 
used in Medve et al. (1998) 

[ECBHI-total] 0 or 1.6 µmol L-1 Enzyme loadings set to match experimental conditions 
used in Medve et al. (1998) 

kCBHI-ads 8640 L mmol-1 
hr-1 

Value measured using elipsometry to determine the 
adsorption and desorption kinetics of a T. reesei cellulase 
mixture on a spin coated cellulose surface (Mauer and 
Radke 2009).  While this value is not specific to an 
individual cellulase, it can be considered to be in an 
appropriate range for CBHI and the other major 
components of the T. reesei cellulase mixture. 

kEG2-ads 8640 L mmol-1 
hr-1 

Value measured using elipsometry to determine the 
adsorption and desorption kinetics of a T. reesei cellulase 
mixture on a spin coated cellulose surface (Mauer and 
Radke 2009).  While this value is not specific to an 
individual cellulase, it can be considered to be in an 
appropriate range for EG2 and the other major components 
of the T. reesei cellulase mixture. 

kcat-CBHI 34000 hr-1 The same value of kcat for CBHI was used for enzymatic 
catalysis of both soluble oligosaccharides as well as for 
solid cellulose. It was assumed that once a cellulose chain 
was bound in the cellulase active site the rate of catalysis 
would be minimally affected by the differences between 
soluble short chain oligosaccharides and solid long chain 
cellulose. The value reported by Nidetzky et al. (1994) for 
hydrolysis of cellohexaose by T. reesei CBHI was used in 
this work. The values were determined using a 
Lineweaver-Burk plot (conditions: 2.1 nM of CBHI, 1-100 
µM of cellohexaose, 30 °C, acetate buffer, pH 4.8).  

kcat-EG2 234000 hr-1 The same value of kcat for EG2 was used for enzymatic 
catalysis of both soluble oligosaccharides and solid 
cellulose. It was assumed that once a cellulose chain was 
bound in the cellulase active site the rate of catalysis would 
be minimally affected by the differences between soluble 
short chain oligosaccharides and solid long chain cellulose. 
The value reported by Karlsson et al. (2002) for hydrolysis 
of cellopentaose by T. reesei EG2 was used in this work. 
The values were determined using a Lineweaver-Burk plot 
(conditions: 1.0 nM of CBHI, 10-150 µM of cellopentaose, 
40 °C, Na-acetate buffer, pH 5.0). 
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kCBHI-des 164 hr-1 Value based on elipsometry experiments to determine the 
adsorption and desorption kinetics of a T. reesei cellulase 
mixture on a spin coated cellulose surface (Mauer and 
Radke 2009).  The value increased for CBHI to give 
adsorption behavior similar to that reported by Medve et 
al. (1997) in the study used for comparison in this work, 
which was rapid achievement of a steady value of 
approximately 95% of the CBHI adsorbed in both the 
single enzyme and the mixed enzyme experiments.  

kEG2-des 19.3 hr-1 Value based on elipsometry experiments to determine the 
adsorption and desorption kinetics of a T. reesei cellulase 
mixture on a spin coated cellulose surface (Mauer and 
Radke 2009).  The value increased for EG2 to give 
adsorption behavior similar to that reported by Medve et 
al. (1997) in the study used for comparison in this work, 
which was rapid achievement of a steady value of 
approximately 95% of the EG2 adsorbed in both the single 
enzyme and the mixed enzyme experiments.  In the mixed 
enzyme experiments Medve et al. showed that EG2 
adsorbed more readily than CBHI, hence the use of a lower 
kdesorption for EG2 than for CBHI. 

Ki-CBHI-

cellobiose 

0.093 mmol L-1 Cellobiose is known to strongly inhibit the action of 
cellulases but the reported values for Ki for T. reesei 
cellulases range from 0.021 mM to 1.4 mM for hydrolysis 
of soluble substrates (Hsu et al. 1980; Koivula et al. 1996; 
Nidetzky et al. 1994; von Ossowski et al. 2003).  This 
range of was used to set sensible bounds (0.01 to 5 mM) to 
fit the value of the Ki-CBHI-cellobiose in the model.  The value 
was fit to the single enzyme hydrolysis data reported by 
Medve et al. (1997).  It should be noted that the fit value of 
0.093 mM is in fair agreement with the value reported by 
Nidetzky et al. (1994) of 0.034 mM for competitive 
inhibition of cellotetraose by cellobiose. 
 

Ki-CBHI-glucose 31 mmol L-1 Cellulases are inhibited by glucose, but to a lesser degree 
than by cellobiose.  The range of reported values for 
glucose inhibition parameters for T. reesei cellulases is 2.1 
to 31 (Hsu et al. 1980; Koivula et al. 1996).  This range 
was used to fit the inhibition parameter for glucose to the 
single enzyme hydrolysis data reported by Medve et al. 
(1997).  The value for CBHI did not change from 31 mM 
since glucose is not produced via the action of CBHI in the 
model.  Time-course data for hydrolysis of cellulose by 
CBHI with β-glucosidase in the system would allow an 
improved value for this inhibition parameter to be fit.  It is 
known, however, that glucose inhibition plays a less 
significant role in affecting the hydrolysis rate than 
cellobiose. 
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Ki-EG2-

cellobiose 

0.01 mmol L-1 Cellobiose is known to strongly inhibit the action of 
cellulases but the reported values for Ki for T. reesei 
cellulases range from 0.021 mM to 1.4 mM for hydrolysis 
of soluble substrates (Hsu et al. 1980; Koivula et al.. 1996; 
Nidetzky et al. 1994; von Ossowski et al. 2003).  This 
range of was used to set sensible bounds (0.01 to 5 mM) to 
fit the value of the Ki-EG2-cellobiose in the model. The value 
was fit to the single enzyme hydrolysis data reported by 
Medve et al. (1997).  The fit parameter fell at the lower 
bound set for the parameter optimization, which can 
indicate that the bounds chosen may need to be adjusted.   
Allowing a Ki value that makes EG2 more susceptible to 
cellobiose inhibition is not supported by the literature so 
the value of 0.01 was used for this work. 
 

Ki-EG2-glucose 16.9 mmol L-1 Cellulases are inhibited by glucose, but to a lesser degree 
than by cellobiose.  The range of reported values for 
glucose inhibition parameters for T. reesei cellulases is 2.1 
to 31 (Hsu et al. 1980; Koivula et al. 1996).  This range 
was used to fit the inhibition parameter for glucose to the 
single enzyme hydrolysis data reported by Medve et al. 
(1997).  The value for EG2 fell within this range.  The 
large difference in value for inhibition of EG2 by glucose 
versus cellobiose demonstrates that glucose affects the rate 
of hydrolysis by EG2 much less than cellobiose. 
 

KM-CBHI-cel 0.000014 mmol dm-2 Currently, there are no reliable values for KM for the 
complexation of a cellulase with solid cellulose on the 
substrate surface.  Standard initial rate experiments using 
Lineweaver-Burk analysis are not relevant for solid 
substrates because the adsorption step is not accounted for 
in the traditional kinetic analysis of enzymatic reactions.  
Without a reliable value or experimental technique to use 
to obtain a value for this important parameter, a value was 
fit to the single enzyme hydrolysis results for CBHI from 
Medve et al. (1997). 
 
 

KM-CBHI-sol 0.0032 mmol L-1 The value reported by Nidetzky et al. (1994) for hydrolysis 
of cellohexaose by T. reesei CBHI was used in this work. 
The values were determined using a Lineweaver-Burk plot 
(conditions: 2.1 nM of CBHI, 1-100 µM of cellohexaose, 
30 °C, acetate buffer, pH 4.8). There are limited reported 
values for purified cellulase kinetic constants on soluble 
cello-oligosaccharides.  The effect of chain length on KM-

CBHI-sol was ignored as the accumulation of soluble cello-
oligosaccharides larger than cellobiose during hydrolysis is 
usually negligible. 
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KM-EG2-cel 0.0067 mmol dm-2 Currently, there are no reliable values for KM for the 
complexation of a cellulase with solid cellulose on the 
cellulose surface.  Standard initial rate experiments using 
Lineweaver-Burk analysis are not relevant for solid 
substrates because the adsorption step is not accounted for 
in the traditional kinetic analysis of enzymatic reactions.  
Without a reliable value or experimental technique to use 
to obtain a value for this important parameter, a value was 
fit to the single enzyme hydrolysis results for EG2 from 
Medve et al. (1997). 

KM-CBHI-sol 0.053 mmol L-1 The value reported by Karlsson et al. (2002) for hydrolysis 
of cellopentaose by T. reesei EG2 was used in this work. 
The values were determined using a Lineweaver-Burk plot 
(conditions: 1.0 nM of CBHI, 10-150 µM of cellopentaose, 
40 °C, Na-acetate buffer, pH 5.0). There are limited 
reported values for purified cellulase kinetic constants on 
soluble cello-oligosaccharides.  The effect of chain length 
on KM-EG2-sol was ignored as the accumulation of soluble 
cello-oligosaccharides larger than cellobiose during 
hydrolysis is usually negligible. 

MW1 0.162 g mmol-1 Molecular weight of anhydrous glucose 
SA 8 or 47.6 m2 g-1 The lower value was used because it gives a coverage, 

based on the RSA enzyme size, of approximately 50% 
with an enzyme loading of 1.6 µmol L-1 if the enzymes 
readily adsorb.  This ensures that the enzymes will be able 
to adsorb to the surface when there is twice as much 
enzyme.  The upper value was used as it minimizes the 
effect of enzyme crowding.  The upper value is 20 times 
the experimental value of 2.38 m2 g-1.  The same source of 
the above experimental value had values of 41.9 and 33.5 
for PASC and BMCC respectively which are similar to the 
upper value used in this study. 

S0 10 g L-1 Substrate loadings set to match experimental conditions 
used in Medve et al. (1998) 

σCBHI 156 - Footprint size determined using RSA simulations of a 
“cellulase” shaped adsorbate.  See Appendix B 

σEG2 156 - Footprint size determined using RSA simulations of a 
“cellulase” shaped adsorbate.  See Appendix B 

*max 6.64x10-5 mmol dm-2 Based on the dimensions of a glucose unit (0.5 nm x 0.5 
nm) for the area of a single site on the model surface.  This 
area was used to determine the upper limit of sites per area 
by calculating the surface concentration in a perfectly 
packed square lattice. 
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3. A Mechanistic Model for Rational Design of Optimal Cellulase Mixtures* 

3.1 Abstract 

A model-based framework is described that permits the optimal composition of cellulase enzyme 
mixtures to be found for lignocellulose hydrolysis. The rates of hydrolysis are shown to be 
dependent on the nature of the substrate. For bacterial microcrystalline cellulose (BMCC) 
hydrolyzed by a ternary cellulase mixture of EG2, CBHI, and CBHII, the optimal predicted 
mixture was 1:0:1 EG2:CBHI:CBHII at 24 hours and 1:1:0 at 72 hours, at loadings of 10 mg 
enzyme per g substrate. The model was validated with measurements of soluble cello-
oligosaccharide production from BMCC during both single enzyme and mixed enzyme 
hydrolysis.  Three-dimensional diagrams illustrating cellulose conversion were developed for 
mixtures of EG2, CBHI, CBHII acting on BMCC and predicted for other substrates with a range 
of substrate properties. Model predictions agreed well with experimental values of conversion 
after 24 hours for a variety of enzyme mixtures. The predicted mixture performances for 
substrates with varying properties demonstrated the effects of initial degree of polymerization 
(DP) and surface area on the performance of cellulase mixtures. For substrates with a higher 
initial DP, endoglucanase enzymes accounted for a larger fraction of the optimal mixture. 
Substrates with low surface areas showed significantly reduced hydrolysis rates regardless of 
mixture composition. These insights, along with the quantitative predictions, demonstrate the 
utility of this model-based framework for optimizing cellulase mixtures. 

3.2 Introduction 

 Cost-effective enzymatic hydrolysis of cellulose is required for the conversion of biomass 
to renewable transportation fuels. Nature employs a mixture of enzymes acting in concert to 
breakdown cellulosic biomass (1). Efficient deconstruction of the various lignocellulosic 
substrates proposed as feedstocks for biofuels production requires cellulolytic enzyme mixtures 
tailored to individual biomass compositions and pretreatment methods. To date, design of 
optimal cellulase mixtures has been based primarily on statistically designed experiments (2-6). 
Most studies have focused on a single lignocellulosic substrate without testing the optimality of 
the cellulase mixture on additional substrates with different characteristics (for example, surface 
area, degree of polymerization, and lignin content). An individual cellulase mixture, even if 
optimized for a specific biomass substrate, would not be expected to perform optimally on 
lignocellulosic materials with different characteristics. Commercially available cellulase 
mixtures exhibit different rates and extents of hydrolysis when applied to different substrates (7-
9), demonstrating the importance of the cellulase-substrate relationship. 

Recently, Banerjee and coworkers (4) applied a high-throughput statistical scheme to 
optimize mixtures for a variety of substrates and pretreatment methods. Their results show that 
the composition of the optimal mixture is different for each feedstock/pretreatment combination. 
Designing cellulase mixtures using statistical techniques is useful, but it requires a large amount 
of experimental resources and time for each mixture. Understanding the specific features and 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
* This chapter, with few modifications from its original format, represents the following peer-reviewed publication: 
S. E. Levine, J. M. Fox, D. S. Clark, H. W. Blanch, A mechanistic model for rational design of optimal cellulase 
mixtures. Biotechnol Bioeng 108, 2561 (Nov, 2011). 
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mechanisms of the cellulase-substrate system that impact cellulase mixture performance would 
allow the rational development of optimal enzyme mixtures. 

 Mechanistic modeling is a powerful tool to provide insights into specific substrate 
features and enzymatic reaction steps that affect enzymatic hydrolysis (10). Even the most 
comprehensive cellulose hydrolysis models to date lack the mechanistic detail necessary to 
capture important features that impact how specific soluble products are formed, and instead 
focus on determining overall hydrolytic activity (11-15). For example, enzyme processivity is 
central to the action of cellobiohydrolases (CBHs) but has not been described in models to date. 
In the current work, we have built upon our previous model (13) to include mechanistic details 
that account for individual product formation by both CBH and endoglucanase  (EG) enzymes. 
This model is used to study the activity of cellulase mixtures in the degradation of cellulosic 
substrates with different physical properties. This framework forms the basis for a rapid, rational 
approach to design and optimize enzyme mixtures, and requires basic information about the 
cellulase-substrate system of interest. This approach also provides an understanding of why a 
particular mixture works more or less efficiently on a given substrate. This information is useful 
for both development of enzyme “cocktails” and in assessing the effectiveness of pretreatment 
methods. 

3.3 Methods 

3.3.1 Mechanistic Model Development 

 The model employed in this study was adapted from the mechanistic model of enzymatic 
cellulose hydrolysis described by Levine et al. (13). To improve the model’s ability to predict not 
only overall cellulose conversion to sugars, but also the time-course of specific products, the 
model was expanded to incorporate additional information on the physicochemical processes 
involved in cellulose hydrolysis. For example, by incorporating an explicit processive 
mechanism for CBH enzymes, we removed the previous assumption that CBH enzyme-substrate 
complexation was in equilibrium. This assumption, while commonly made in cellulase kinetic 
models (14, 16-19), has no experimental support. The removal of this assumption results in the 
mechanism shown in Fig. 3.1A. Adsorbed CBH enzymes can complex with a chain end on the 
cellulose surface and then either decomplex from that cellulose chain or catalyze the release of 
cellobiose, resulting in a CBH-cellulose complex on a chain that is two glucose units shorter.  
The new enzyme-substrate complex can then react further or decomplex. 
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Figure 3.1 Processivity mechanisms for CBH enzymes: (a) assumes that CBH enzymes can only produce 
cellobiose; (b) assumes that glucose, cellobiose, and cellotriose can be formed in the first cut after complexation, 
with subsequent cuts forming only cellobiose. 

Removal of the equilibrium assumption for CBH complexation with cellulose requires 
that the enzyme-substrate complexes be tracked with separate material balances. An example of 
one of these material balances is shown in Eq. 3.1.  In addition, it was necessary to modify the 
CBH-related terms in the material balance equations for surface cellulose chains of a given 
length, as shown in Eq. 3.2. 

d[ECBH −adsCi
' ]

dt
= +kcomp−CBH −celθCBH [ECBH −ads

' ][Ci
' ]

− (kdecomp−CBH −cel + kcat−CBH )[ECBH −adsCi
' ]

+ kcat−CBH [ECBH −adsCi+2
' ]

    (3.1) 

d[Ci
' ]

dt
= −kcomp−CBH −celθCBH [E

'
CBH −ads ][Ci

' ]

+kdecomp−CBH −cel[ECBH −adsCi
' ]

     (3.2) 

 Cellobiose is the primary product of CBH activity on cellulose, but glucose and 
cellotriose are formed in significant quantities as well (20). Experimental studies of CBH 
hydrolysis of oligosaccharides suggest that glucose, cellobiose, and cellotriose can be formed 
from the first cut the enzyme makes after complexing with a chain (21, 22). Subsequent 
processive cuts form cellobiose. To incorporate this mechanism into the model, the CBH-
cellulose material balances were divided into those pertaining to enzyme-substrate complexes 
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formed via complexation and those where complexes resulted from processive catalytic action. 
The mechanism used in the model is shown in Fig. 3.1B. The soluble product of the first 
hydrolytic cut by a CBH enzyme after complexation was determined by multiplying the kcat for 
hydrolysis by a partition constant based on experimental data (21, 22). Balance equations for an 
uncomplexed cellulose chain, a CBH-cellulose complex formed via complexation, and a 
CBH-cellulose complex formed via processive catalysis are shown in Eqs. 3.3-3.5. 

d[Ci
' ]

dt
= −kcomp−CBH −celθCBH [E

'
CBH −ads ][C

'
i ]

+kdecomp−CBH −cel ([ECBH −adsC
'
i−1st ]+ [ECBH −adsCi

' ])
   (3.3)

d[ECBH −adsC
'
i−1st ]

dt
= +kcomp−CBH −celθCBH [E

'
CBH −ads ][Ci

' ]

− (kdecomp−CBH −cel + kcat−CBH )[ECBH −adsC
'
i−1st ]

   (3.4) 

d[ECBH −adsCi
' ]

dt
= +kcat−CBH ([ECBH −adsC

'
i+2 ]− [ECBH −adsCi

' ])

+ p1kcat−CBH [ECBH −adsC
'
i+1−1st ]+ p2kcat−CBH [ECBH −adsC

'
i+2−1st ]

+ p3kcat−CBH [ECBH −adsC
'
i+3−1st ]− kdecomp−CBH −cel[ECBH −adsC

'
i ]

 (3.5) 

 The mechanism typically used to describe EG activity assumes that all bonds in a 
cellulose chain are equally likely to be hydrolyzed by the enzyme. This mechanism would 
consequently lead to an equal distribution of all soluble products, producing near equimolar 
amounts of glucose and cellobiose. The product distributions observed experimentally are far 
from this assumed product distribution (20). One mechanism that explains the observed product 
distribution is reduced activity of EG on the terminal glycosidic bond of a cellulose chain (23). 
This reduced activity can be incorporated into the model by separating the cuts by EG on the 
terminal glycosidic bonds from general EG cuts. An example of the resulting EG terms in a 
cellulose chain material balance that includes this distinction is given by Eq. 3.6 (this equation 
was derived using the same method detailed in our previous modeling work (13)). 

d[Ci
' ]

dt
= +

kcat−EG
Kcomp−EG−cel

[E 'EG−ads ]θEG 2 [C 'j ]
j=i+2

∞

∑ − (i − 3)[C 'i ]
⎛

⎝
⎜

⎞

⎠
⎟

+
kcat−EG−term

Kcomp−EG−cel−term
[E 'EG−ads ]θEG2 [C

'
i+1]− [C

'
i ]( )

   (3.6) 

 The previous model (13) was also altered to include the observed reduction in activity of 
cellulases on cellotriose. Both EG and CBH enzymes have been shown to have reduced activity 
on cellotriose compared to longer oligosaccharides (21-25). This was included by separating the 
rates of complexation and catalysis of a cellulase with cellotriose from the general action of these 
enzymes on longer soluble oligosaccharides. 
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3.3.2 Model Parameters 

 The model parameters were determined using an approach similar to that outlined 
previously (13). Experimental parameters were used when available. In the absence of 
experimental values, parameters were estimated using literature values for related parameters or 
simple calculations for dimensional parameters (for example, glucose sites per area). When 
neither of the above sources was suitable, parameters were estimated by fitting to a defined data 
set. Most of the new parameters required for the improvements to the model were based on 
experimental data or relevant literature. For a small number of parameters, primarily those 
associated with enzyme-solid substrate complexation, it was necessary to estimate parameters 
from best fits of experimental hydrolysis data. The IMSL nonlinear optimizer NNLPF was used 
for optimization against time-course hydrolysis data to estimate parameters for individual 
cellulase enzymes. Table 3.1 lists the kinetic parameters used in the model. As shown in the 
previous modeling study this work builds upon (13), the sensitivity to surface area in model 
performance is only significant at longer hydrolysis times (>12 hrs) and has minimal effect on 
the fit parameters. 

3.3.3 Model Assembly and Solution 

 The model was constructed in FORTRAN 95 using the Absoft Pro Fortran v11 compiler. 
The model was solved using the DASPG solver from IMSL, which uses the Petzold-Gear 
method to solve the differential and algebraic equations that comprises the model. To aid in 
model construction for a variety of enzyme mixtures and initial cellulose degrees of 
polymerization, a PERL script was developed that builds the model equations from basic input 
related to the number and type of cellulases and the initial average degree of polymerization of 
cellulose in the system. The number of equations in the model depends on the number of 
enzymes included in the system as well as the maximum cellulose chain length tracked. The 
primary model used in this work had 5635 differential equations and 15 algebraic equations, 
includes one EG enzyme and two CBH enzymes and tracks cellulose chains up to 1125 (average 
chain length of 750) glucose units long. 
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Table 3.1 Parameters used in the model of enzymatic cellulose hydrolysis  
Parameter Value Units Source 
kEG2-ads 2.4 L mmol-1 s-1 (13)a 

kCBHI-ads 2.4 L mmol-1 s-1 (13)a 

kCBHII-ads 2.4 L mmol-1 s-1 (13)a 

kEG2-des 5.36 x 10-3 s-1 (13)a 

kCBHI-des 6.10 x 10-3 s-1 This studyb 
kCBHII-des 2.08 x 10-4 s-1 This studyb 
kcat-EG2 65 s-1 (13)a 

kcat-CBHI 4.42 s-1 This studyb 
kcat-CBHII 14 s-1 (25)c 
KM-EG2-cel 2 mmol m-2 This studyb 
kcomp-CBHI-cel 1990 m2 mmol-1 s-1 This studyb 
kcomp-CBHII-cel 7780 m2 mmol-1 s-1 This studyb 
kdecom-CBHI-cel 1.37 s-1 This studyb 
kdecom-CBHII-cel 2.78 s-1 This studyb 
KM-EG2-sol 0.053 mM (13)a 
kcomp-CBHI-sol 483 L mmol-1 s-1 (22)d 
kcomp-CBHII-sol 1200 L mmol-1 s-1 (25)d 
kdecom-CBHI-sol 2.78 s-1 (22)d 
kdecom-CBHII-sol 2.78 s-1 (25)d 
kcat-EG2-C3 5.44 s-1 (34)d 
kcat-CBHI-C3 0.016 s-1 This studye 
kcat-CBHII-C3 0.061 s-1 (25) 
KM-EG2-C3 19.5 mM This studya 
kcomp-CBHI-C3 26 L mmol-1 s-1 This studye 
kcomp-CBHII-C3 142 L mmol-1 s-1 (25) 
kdecom-CBHI-C3 2.78 s-1 This studye 
kdecom-CBHII-C3 2.78 s-1 (25) 
P1:P2:P3 CBHI 4:4:3 NA (21)c 
P1:P2:P3 CBHII 1:1:1 NA (21)d 
kcat-EG2-C1 5.44 s-1 (34) 
KM-EG2-C1-cel 900 mmol m-2 This studyb 
KM-EG2-C1-sol 90 mM This studyf 
Ki-EG2-cellobiose 0.03 mM This studyb 
Ki-CBHI-cellobiose 0.19 mM This studyb 
Ki-CBHII-cellobiose 0.06 mM This studyb 
Ki-EG2-glucose 16.0 mM This studyb 
Ki-CBHI-glucose 31 mM (13)a 
Ki-CBHII-glucose 29 mM This studyb 
kd-EG2 3.89 x 10-6 s-1 (35)d 

kd-CBHI 3.89 x 10-6 s-1 (35)d 

kd-CBHII 8.06 x 10-6 s-1 (35)d 

aParameters used were taken from the earlier version of the model; see Levine et al. 2010 for details 
bParameters optimized against single enzyme hydrolysis data 
cParameters taken directly from published values 
dParameter set based on published data 
eParameters obtained via kinetic experiments using soluble cello-oligosaccharides in our laboratory (data not shown) 
fParameter set for soluble substrate set based on optimized value for solid substrate reaction 
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3.3.4 Enzymes 
 

Both Trichoderma longibrachiatum Cellobiohydrolase I (CBHI) and Taleromyces 
emersonii Endoglucanase 2 (EG2) were purchased from Megazyme.  Previous experiments by 
our group revealed minor endoglucanase and β-glucosidase contamination of these products.  
The analysis in this work relied on accurate measurements of cellooligosaccharide 
concentrations in cellulase/cellulose reaction mixtures over 72-hour periods, so careful measures 
were taken to ensure high enzyme purity.  A GE Healthcare ATKA Explorer system was used 
for this purpose.  Approximately 20 mg of the TrCBH1 enzyme, which was purchased in 3.2 M 
ammonium sulfate solution, was dissolved into 15 ml of 25 mM HEPES pH 7.35 and desalted on 
a GE HiPrep 26/10 desalting column with a 4 ml/min flow of identical buffer.  The protein-
containing fraction was purified further via exchange on a HiLoad 16/10 Q Sepharose HP anion 
exchange column.  The main peak from this step was then concentrated and run through a 
Superdex 75 10/300 gel filtration column (15% 1.0M HEPES solution).  The leading peak from 
this step was desalted again and purified on a Mono Q 10/100 GL anion exchange column.  
Single-band purity was ensured with a 10% Tris-HCl gel (Bio-Rad).  The TemEG2 enzyme was 
purified in an identical way, but without the Mono Q step.  The final TemEG2 enzyme had a 
slight lower molecular weight impurity with no known enzymatic activity (Megazyme E-CELTE 
Product Information).  In both cases, beta-glucosidase contamination was tested for by 
incubation for 4 hours at 50°C with 1.1 mM of cellobiose (50 mM sodium acetate buffer, pH 
4.8).  Samples were quenched at this time with equal volumes of 0.100 M NaOH and run on a 
Dionex PA-200 column (method described below).  No β-glucosidase activity was detected. 

Trichoderma reesei CBH2 (CBHII) was purified from Celluclast (Sigma-Aldrich), a 
lyophilized mixture of enzymes secreted by T. reesei when grown on cellulose.  The CBHII 
enzyme was purified in a fashion identical to that of TrCBH1.  The final product was analyzed 
by SDS-PAGE (7.5% Tris-HCl gel) to ensure the absence of TrCBH1. 

3.3.5 Cellulose Preparation 

Many previously reported BMCC preparations have been shown to modify substrate 
morphology and enhance digestibility.  Pretreatment effects are minimized in the preparation 
employed here by the exclusion of steps involving strongly acidic or basic solutions. 

A 20 µL freezer stock of Acetobacter xylinum (ATCC 53582) was used to inoculate 1 L 
of medium as described previously (26).  This inoculum was grown in a 2-L Erlenmeyer flask 
for 7 days at 25°C in a shaker at 250 RPM).  The resulting mixture was spun down at 6000 RPM 
in a Beckman Coulter Avanti J-26 XP Centrifuge.  The lower ¼ of the resulting heterogeneous 
suspension, which contained most of the cellulose, was then resuspended in 600 ml of water, and 
spun down again.  This process was repeated three times with 600 ml of 50% ethanol solution.  
After being incubated at 10°C in 50% ethanol for three weeks, the resulting suspension was spun 
down, and blended for 3 minutes in a Waring blender.  The absence of live cells was confirmed 
with a Leica Epifluorescence Microscope and the subsequent suspension was washed once with 
50% ethanol.  The final BMCC preparation was suspended in 30% ethanol, and its cellulose 
concentration was measured with the phenol sulfuric acid method as described previously (27).   
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3.3.6 Measurement of Cello-oligosacchride Production in Various Mixtures 

 Cello-oligosaccharide production by defined mixtures of TlCBH1, TrCBH2, and 
TemEG2 acting on BMCC was monitored over the course of 72 hours.  Reactions were carried 
out in -50 ml Erlenmeyer flasks containing 25.25 ml of 1 g/L BMCC, 50 mM sodium acetate 
buffer (pH 4.8), and the enzyme concentrations described in Table 3.2. 

    Table 3.2 Hydrolysis reaction mixtures 
Reaction # CBHI (µM) CBHII (µM) EG2 (µM) 
1 0 0 0 
2A 0.094 0 0 
2B 0 0.031 0 
2C 0 0 0.022 
3A 0.094 0.031 0.022 
3B 0.076 0 0.019 
3C 0.152 0 0 

 

The reactions fell into three groups: (1) enzyme-free controls, (2) reactions used to obtain fit 
parameters, (3) reactions used for model validation.  After reagent addition, the flasks were 
sealed with foil and placed in humidified shakers at 200 RPM.  Samples were taken at the 
following times:  0, 0.83, 1.83, 3.08, 4.53, 5.53, 7.05, 8.83, 10.62, 17.5, 20.83, 26.8, 31.9, 41.78, 
49.15, 57.5, 66.4, and 74.57 hours.  At all time points, two 20 µL samples were withdrawn from 
each reaction mixture and added to 180 µL of water (each) within 1.5 ml Eppendorf tubes; these 
were subsequently dipped into an ethanol and dry ice bath for fast freezing.  This small sample 
volume minimized reduction in the reaction volume (1.5% by the end of the experiment).  For 
Dionex HPLC preparation, samples were thawed with the addition of 200 µL of 0.1 M NaOH 
solution, and spun down for 20 minutes at 1400 rpm.  Supernatant collected from each 
Eppendorf tube was diluted 2-200 fold with 0.05 M NaOH before Dionex analysis.  All reactions 
were carried out in duplicate. 

3.4 Results 

3.4.1 Single Enzyme Hydrolysis 

 Certain kinetic parameters in the model were determined from fits of the time-course of 
all detectable soluble products (glucose, cellobiose, and cellotriose) measured in the hydrolysis 
of BMCC by purified, single enzymes. Fig. 3.2 shows the optimized model results compared to 
the experimental data for EG2 (Fig. 3.2A), CBHI (Fig. 3.2B), and CBHII (Fig. 3.2C). 
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Figure 3.2 Model results compared to experimental time-course data for (a) EG2, (b) CBHI, and (c) CBHII single-
enzyme hydrolysis. All detectable soluble products are shown: glucose (�, experiment;  ⎯,  model), cellobiose (r, 
experiment; ━, model), and cellotriose (£, experiment; ---, model). 

The substrate was modeled with an initial degree of polymerization (DP) of 750 and an 
initial surface area of 47.6 m2 g-1. The enzymes loadings were 0.022 µmol g-1 for EG2, 0.031 
µmol g-1 CBHII, and 0.094 µmol g-1 for CBHI (approximately 10 mg cellulase per g substrate). 
As shown in Table 3.1, 14 of the 41 enzyme parameters in the model were determined from the 
optimization of the model to the single-enzyme hydrolysis data. All model results exhibit good 
agreement with the experimental data. That the model is able to capture a large data set with a 
minimal requirement for parameter optimization provides strong support for the accuracy of the 
assumed mechanisms.  
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3.4.2 Model Validation 

 To demonstrate the accuracy and predictive ability of the model, comparisons were made 
to three additional hydrolysis time-courses (Fig. 3.3). 

 
Figure 3.3 Model results compared to experimental time-course data for (a) EG2-CBHI-CBHII ternary mixture, (b) 
EG2-CBHI binary mixture, and (c) CBHI single-enzyme (different loading than Fig. 3.2B) hydrolysis. All 
detectable soluble products are shown: glucose (�, experiment;  ⎯,  model), cellobiose (r, experiment; ━, model), 
and cellotriose (£, experiment; ---, model). 

The model accurately predicted the hydrolysis behavior for an EG2-CBHI-CBHII ternary 
mixture (Fig. 3.3A), an EG2-CBHI binary mixture (Fig. 3.3B), and a different loading of CBHI 
alone (Fig. 3.3C). The substrate parameters were the same as above.  The enzyme loadings were 
0.0218 µmol g-1 EG2, 0.0938 µmol g-1 CBHI, and 0.0313 µmol g-1 CBHII for the ternary 
mixture; 0.0117 µmol g-1 EG2 and 0.0762 µmol g-1 CBHI for the binary mixture, and 0.152 µmol 
g-1 CBHI for the single enzyme system. The ternary mixture had the same individual enzyme 
loadings as those employed in the single enzyme hydrolysis reactions discussed above. 
Equivalent loadings were used to demonstrate that the model is able to capture the synergy 
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observed in the ternary mixture. This is an important effect primarily related to EG enzymes 
shortening the average cellulose chain length on the surface, creating additional free chain ends 
with which the CBH enzymes can react. The ability to describe hydrolysis by different cellulase 
mixtures composed of EG and CBH enzymes enables use of the model to determine which 
enzyme mixtures will efficiently degrade a simple cellulosic substrate. 

3.4.3 Mixture Effects on Substrates 

 To demonstrate how the model can be used to design efficient enzyme mixtures, three-
dimensional plots of the total cellulose conversion at a specific hydrolysis time (24 and 72 hours) 
as it varies with ternary cellulase mixture composition were constructed for BMCC (substrate 
variables were the same as above) with a constant total enzyme loading of 10 mg enzyme per g 
of substrate (Fig. 3.4). Four 24-hour end-point assays for total cellulose conversion were used to 
validate the model predictions further. As can be seen in Fig. 3.4A the experimental 24-hour 
conversion values are in good agreement with the model predictions. Mixtures B and C have 
very close conversion values similar to the model predictions, but mixture C is larger than 
mixture B contradicting the model. This discrepancy may have resulted from experimental errors 
and/or uncertainty inherent to the model. The model predicts the composition of the optimal 
cellulase mixture for this system. The optimal cellulase mixture shifts from1:0:1 
EG2:CBHI:CBHII for 24-hour conversion to 1:1:0 for 72-hour conversion. This shift is 
consistent with the differences in thermostability between CBHI and CBHII. 
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Figure 3.4 Three-dimensional plots of percent conversion of cellulose at (a) 24 hours and (b) 72 hours of hydrolysis 
with mixtures of EG2-CBHI-CBHII. The vertical axis (colored) is total cellulose conversion (%). The substrate has 
an initial DP of 750 and an initial surface area of 47.6 m2 g-1. Total cellulase loading is 10 mg g-1. Model predictions 
were compared to experimental values at the marked points in (a) A: model 33.3%, experiment 29.9%; B: model 
43.3%, experiment 40.4%; C: model 41.8%, experiment 46.0%; D: model 27.0%, experiment 28.7%. 

 The effect of substrate characteristics on hydrolysis by cellulase mixtures was examined 
for a range of model substrates. Figure 3.5 shows ternary diagrams for varying initial DPs and 
initial cellulose surface areas. Comparing the different substrate conditions shown in Fig. 3.5 
clearly reveals that the effectiveness of different mixtures varies substantially. Accommodating 
different substrate characteristics is important for enzyme mixture design because lignocellulosic 
materials undergo physical or chemical pretreatment before saccharification. Different 
pretreatments have different effects on the substrate properties. These range from dilute acid 
pretreatment, which reduces substrate DP significantly but has less of an effect on surface area, 
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to biomass dissolution in ionic liquids, which leads to minimal changes in substrate DP but 
significantly increases surface area. It should be noted that pretreatments have other important 
effects relating to substrate parameters that are not incorporated into the current model (for 
example, crystallinity and the presence of lignin and other non-cellulosic species). 

 
Figure 3.5 Three dimensional plots of percent conversion of cellulose at 24 hours of hydrolysis with mixtures of 
EG2-CBHI-CBHII. The vertical axis (colored) is total cellulose conversion (%). Total cellulase loading is 10 mg g-1. 
The substrate has initial properties of (a) DP = 200 and surface area = 47.6 m2 g-1, (b) DP = 750 and surface area = 
5.95 m2 g-1, (c) DP = 1500 and surface area = 47.6 m2 g-1, and (d) DP = 1500 and surface area = 5.95 m2 g-1. 

3.5 Discussion 

 The rational design of cellulase mixtures tailored to a specific substrate requires a 
detailed understanding of the underlying mechanism of interaction between the enzymes and the 
substrate.  As shown in Fig. 3.2 and Fig. 3.3 the model successfully predicts the evolution of the 
major soluble oligosaccharide products, validating the assumed mechanisms from which the 
model is derived. The validated model can be used as a tool to study enzyme-substrate 
interactions and to develop a better understanding of how both individual and mixed cellulases 
degrade cellulose. This understanding, as well as the model itself, forms the basis of a rational 
approach to design and optimize cellulase mixtures. 

 The model’s prediction of how cellulase mixtures perform on substrates with different 
properties demonstrates interesting trends. Comparing Fig. 3.4, Fig. 3.5A, and Fig. 3.5C 
indicates that the higher the initial DP of the cellulose, the more important EG becomes to the 

a b

c d
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mixture. This relationship is expected based on the accepted endo-exo synergy mechanism 
whereby EG lowers the surface DP of the substrate, increasing the number of chain ends 
available for CBH enzymes. The model results show that the optimal level of EG in the mixtures 
increases as initial DP increases. However the increase is limited, indicating that an upper bound 
exists for the optimal EG fraction as DP increases.  This is likely caused by a balance between 
increasing the number of chain ends available by increasing the EG fraction in the mixture and 
maintaining enough CBH enzymes in the system to use those chain ends efficiently. 
Furthermore, it is clear that the overall conversion achieved decreases with increasing DP, in 
agreement with published results on a range of cellulose substrates (28, 29). 

An additional trend revealed by the related to the performance of enzyme mixtures is 
shown in Figs. 3.5B and 3.5D. These 3-dimensional plots were developed for model substrates 
with low initial surface area and show a large decline in the conversion achieved by all cellulase 
mixtures at 24 hours. The lower surface area was chosen to ensure it was a limiting factor. 
Comparing Fig. 3.5B to Fig. 3.4A and Fig. 3.5C to Fig. 5D reveals that the relative topology of 
the three-dimensional plot is unaltered as the surface area is reduced. These results demonstrate 
that surface area is more important than DP for the overall conversion of a hydrolyzed substrate, 
while the relative effectiveness of a specific cellulase mixture is primarily controlled by DP. A 
major focus of all biomass pretreatment methods should thus be to increase the available surface 
area of the biomass before saccharification, in agreement with our previous modeling study 
indicating that adequate surface area was critical for efficient cellulase action and synergy (13). 
These general trends of cellulase-mixture performance can be used to understand how various 
pretreatments should impact the optimal mixture composition. Harsher pretreatments (such as 
dilute-acid pretreatment), which decrease the DP of the cellulose drastically, would be expected 
to reduce the amount of endoglucanase required in the optimal mixture compared to less severe 
pretreatments (such as AFEX), which have a smaller effect on the cellulose DP. Furthermore, a 
pretreatment’s overall effectiveness in improving cellulase activity towards a substrate will be 
controlled by how effectively the process “opens up” the biomass, increasing the accessible 
surface area.  

 By including sufficient mechanistic details, a description of the solid substrate, and a 
reliable parameter set for each enzyme in the mixture being designed, a straightforward 
optimization of the mixture composition can be performed to determine an efficient, tailored 
mixture for a given substrate. The method for determining efficient cellulose mixtures is shown 
in Fig. 3.6. The three steps in this rational mixture design can be summarized as (1) system 
definition, (2) model assembly and validation (if necessary), (3) and mixture optimization. 
Basing mixture optimization on a well-characterized model of the system of interest provides a 
clear link between the enzyme mixture and the substrate characteristics. These connections guide 
approaches to further improve hydrolysis rates, including modifying the substrate by new 
pretreatment methods, and altering the activities of individual cellulases through mutagenesis. 
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Figure 3.6 Schematic of the model-based rational approach to design and optimize a cellulase mixture for a specific 
substrate. 

To date, the model-based mixture design method has only been applied to the proof-of-
concept system of a ternary enzyme mixture acting on BMCC. BMCC is one of the most 
homogeneous cellulosic substrates available with a moderately high degree of polymerization 
(30, 31) and an open ribbon structure leading to high surface area (32). This system was chosen 
to demonstrate the rational design approach because it minimizes the impact of substrate surface 
heterogeneity on cellulase activity. In addition to determining the optimal ternary mixture for 
BMCC, qualitative trends of how substrate properties influence cellulase mixture performance 
have been revealed.  

As the details of lignocellulosic substrates and biomass-degrading enzymes become 
better understood, it is critical to combine this information in a detailed mechanistic model to 
translate this knowledge into a practical tool. Understanding enzyme-substrate interactions of the 
various helper enzymes, such as Cel61A (33) as well as different hemicellulases, is important to 
expand the range of enzymes that can be included in the modeled enzyme mixtures. This requires 
knowledge of enzyme-specific kinetic and inhibition parameters. Equally important is the 
manner in which individual enzymes interact with different cellulosic surfaces. Understanding 
the range of adsorption-, complexation-, and mobility-related rates for the various enzymes on 
crystalline cellulose (including different crystal types and faces) as well as amorphous cellulose 
is important for discerning the different roles played by each enzyme in the mixture when 
degrading complex substrates. In order for the model to be used to optimize enzyme mixtures 
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toward real lignocellulosic substrates (e.g., corn stover, sugarcane bagasse, or miscanthus) 
enzyme interactions with lignin and hemicellulose need to be included. 

3.6 Conclusions 

 We have developed a detailed modeling framework for cellulase hydrolysis of cellulose 
that includes mechanistic details for both CBH and EG enzymes that account for specific product 
formation. These include explicit inclusion of CBH processivity, an important mechanism 
usually neglected in kinetic models of enzymatic cellulose hydrolysis. The model was validated 
using a large set of time-course data for soluble oligosaccharide evolution during hydrolysis by 
both single and mixed cellulases. The model showed excellent predictive agreement with 
experimental data. 

 Three-dimensional plots of the performance of cellulase mixtures consisting of EG2, 
CBHI, and CBHII were generated for cellulosic substrates having a range of initial DPs and 
surface areas including values representing BMCC. These diagrams demonstrated the ability of 
the model to predict efficient cellulase mixtures. For BMCC, the substrate used to validate the 
model, the most efficient mixture was 1:0:1 EG2:CBHI:CBHII at 24 hours and 1:1:0 at 72 hours. 
Moreover, the results reveal general trends for the impact of specific cellulose characteristics on 
cellulase mixture performance.  These include the increasing importance of EG in the mixture as 
the initial DP of the substrate increases, and the dominant role of initial surface area in 
controlling enzyme behavior. Additional substrate details can be incorporated into the model 
framework and studied for their impact on cellulase mixture performance. 

 The model described in this work forms the basis of a rational approach for designing 
effective cellulase mixtures. It relies on properly defining the important features of the system of 
interest, assembling a detailed model, and using that model for mixture optimization.  This 
method illuminates crucial relationships between the substrate and the enzymes, and enables 
further refinement of the overall saccharification process. Furthermore, this method is based on a 
computational approach, thus avoiding the large amount of materials and experimental effort 
required for statistically designed experimental mixture optimization. 
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3.8 Nomenclature 

Ci
’    Solid cellulose chain of length i (i>6) 

DP    Degree of polymerization 
E’

CBH-ads   Uncomplexed cellobiohydrolase adsorbed to the surface 
ECBH-adsCi

’   Cellobiohydrolase adsorbed to the surface and complexed with an i length 
cellulose chain formed via processive catalytic action 

E’
CBH-adsC‘

i-1at   Cellobiohydrolase adsorbed to the surface and complexed with an i length 
cellulose chain formed via complexation with a cellulose chain 

E’
EG-ads   Uncomplexed Endoglucanase adsorbed to the surface 

ECBH-adsCi
’   Endoglucanase adsorbed to the surface and complexed with an i length cellulose 

chain  
kcat-CBH Catalytic constant for cellobiohydrolase acting on cellulose (s-1) 
kcat-EG  Catalytic constant for endoglucanase acting on cellulose (s-1) 
kcat-EG-term Catalytic constant for endoglucanase acting on cellulose at the terminal glycosidic 

bond (s-1) 
kcomp-CBH-cel Kinetic rate constant for complexation of a cellobiohydrolase with the end of a 

solid cellulose chain (m2 mmol-1 s-1) 
Kcomp-EG  Complexation equilibrium constant for endoglucanase with a cellulose chain 

(mmol m-2) 
Kcomp-EG-term  Complexation equilibrium constant for endoglucanase with a cellulose chain at 

the terminal glycosidic bond (mmol m-2) 
pi Probability the initial catalytic event of a cellobiohydrolase after complexation 

will form and i length cello-oligosaccharide (i=1,2,3) 
t   Time (s) 
θCBH   Fraction of free sites on the surface available to a cellobiohydrolase for 

complexation 
θEG  Fraction of free sites on the surface available to an endoglucanase for 

complexation 
 [ ]   surface concentration (mmol m-2) when used with a primed symbol 
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Chapter 4: An Evaluation of Cellulose Saccharification and Fermentation with an 
Engineered Saccharomyces cerevisiae Capable of Cellobiose and Xylose Utilization* 

4.1 Abstract 

 Commercial-scale cellulosic ethanol production has been hindered by high costs 
associated with cellulose-to-glucose conversion and hexose and pentose co-fermentation.  
Simultaneous saccharification and fermentation with an S. cerevisiae strain capable of cellobiose 
and xylose co-utilization has been proposed as a possible avenue to reduce these costs.  
Cellobiose is the primary product of cellulase-catalyzed hydrolysis of cellulose, but as a potent 
inhibitor of cellulase enzymes, it is usually hydrolyzed by exogenously added β-glucosidase.  A 
yeast strain capable of cellobiose consumption has the potential to alleviate cellobiose inhibition 
of cellulase enzymes while preventing the generation of extracellular glucose, a known inhibitor 
of xylose transport in yeast.  The recently developed DA24-16 strain of S. cerevisiae 
incorporates a xylose assimilation pathway and a cellodextrin transporter (CDT) that permit 
rapid growth on xylose and cellobiose.  In the present work, a mechanistic kinetic model of 
cellulase-catalyzed hydrolysis of cellulose was combined with a multi-substrate model of 
microbial growth to investigate the ability of cellobiose consumption by this strain to obviate the 
need for exogenously added β-glucosidase and to assess the impact of cellobiose utilization on 
simultaneous saccharification and fermentation (SSF) and separate hydrolysis and fermentation 
(SHF).  Results indicate that with SSF, the strain is not as effective at enhancing cellulose 
hydrolysis or ethanol production as a non-CDT-containing strain supplemented with β-
glucosidase. Under SSF conditions, reducing the Monod constant for growth on cellobiose 
enabled DA24-16 to produce ethanol nearly as rapidly as non-CDT-containing yeast. In 
producing 75 g/L ethanol, SSF with any strain did not result in shorter residence times than SHF 
with a 12-hour saccharification step.  Strains with improved cellobiose utilization are therefore 
unlikely to allow higher titers to be reached more quickly in SSF than in SHF. 

4.2 Introduction 

Cellulosic biofuels may provide a viable low-carbon alternative to traditional fossil fuels, 
but high cellulose-to-sugar conversion costs and inefficient fermentation of both hexose and 
pentose sugars have made commercial production economically unattractive.  Simultaneous 
saccharification and fermentation (SSF) has been proposed as a possible avenue to improve 
process economics.  In this one-reactor scenario, cellulase enzymes catalyze the hydrolysis of 
cellulose to glucose, which is simultaneously fermented into alcohols or other liquid fuels, thus 
preventing monomeric sugars and soluble cello-oligosaccharides from inhibiting the enzymatic 
de-polymerization process.  Alcohols produced during SSF have the potential to reduce 
microbial contamination that might occur in non-aseptic saccharification reactors, and the use of 
one reactor has been proposed as a possible strategy to lower equipment costs (1-3). 

Yeast strains capable of simultaneous cellodextrin and xylose fermentation may be 
particularly advantageous in SSF processes.  The plant cell wall of biofuel-candidate grasses and 
trees contains xylose and glucose polymers that must be broken down into their constituent 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
* This chapter, with few modifications from its original format, represents the following peer-reviewed publication: J. 
M. Fox, S. E. Levine, H. W. Blanch, D. S. Clark, An evaluation of cellulose saccharification and fermentation with 
an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization. Biotechnol J,  (Jan 9, 2012). 
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sugars prior to being metabolized into useful fuels (4).  Xylose is present primarily as the 
hemicellulose xylan, which is released as soluble xylose oligomers during pretreatment of 
lignocellulosic substrates (5, 6).  Glucose is present in the β-1,4-linked cellobiose polymer 
cellulose, which undergoes saccharification through an enzyme-catalyzed hydrolysis process that 
takes place after pretreatment.  The cellulase enzymes responsible for saccharification are 
inhibited by cellobiose; β-glucosidase is often added to alleviate this inhibition by converting 
cellobiose to glucose (7).  Ideally, fuel-producing microbes would be capable of using both 
xylose and glucose; the additional ability to consume cellobiose may obviate the need for the 
addition of β-glucosidase. 

The engineered DA24-16 strain of Saccharomyces cerevisiae may improve the 
economics of SSF.  In this strain, a xylose assimilation pathway, a Neurospora crassa 
cellodextrin transporter (CDT), and an intracellular β-glucosidase were introduced to facilitate 
rapid consumption of xylose and cellobiose (8).  Previous attempts to engineer xylose 
assimilation pathways into S. cerevisiae have been successful, but DA24-16 is able to grow on 
xylose at rates nearly equivalent to those of Pichia stipitis, which natively consumes xylose more 
rapidly than any other wild type yeast strain yet discovered (8-11).  S. cerevisiae strains capable 
of growth on cellobiose have also been engineered previously, but all have relied on secreted β-
glucosidase enzymes to hydrolyze cellobiose to glucose (12-14).  The advantage of the CDT-
containing DA24-16 strain relates to its ability to avoid extracellular production of glucose, 
which inhibits xylose consumption (15).  By obviating the need for exogenous β-glucosidase and 
by facilitating the uninhibited metabolism of xylose, the DA24-16 S. cerevisiae strain and yeast 
with similar capabilities may reduce enzyme costs and increase the sugar conversion efficiencies 
associated with SSF processes. 

 In the present work, we explore the potential advantages of cellobiose utilization by 
employing a mechanistic kinetic model of cellulase action and a multi-substrate model of 
microbial growth to compare the performance of a CDT-containing strain in SSF to the 
performance of a non-CDT-containing strain in SSF and SHF.  Our analysis places particular 
emphasis on assessing the capacity of cellobiose transporters acting in concert with an 
intracellular β-glucosidase to replace exogenously added β-glucosidase enzymes in the 
hydrolysis process, and on evaluating the impact of cellobiose utilization on the possible 
advantages of SSF over SHF.  Xylose growth parameters for both strains and cellobiose growth 
parameters for the cellodextrin-containing strain were equated to those of DA24-16; however, 
our results are generally applicable to other CDT-containing S. cerevisiae strains that are able to 
consume multiple substrates.  The sensitivity of our results to these parameters and the likelihood 
of altered growth behavior in response to changes in these parameters are also discussed.  This 
work marks the first time that an independently validated mechanistic model of cellulase action 
capable of tracking cello-oligosaccharide chain length has been used alongside a microbial 
growth model to assess the potential benefits of cellobiose consumption in yeast. 

4.3 Methods 

4.3.1 Choice of Enzymatic Hydrolysis Conditions 

 The process economics of commercial-scale cellulosic biofuels production are enhanced 
by high solids loadings (20% or higher), which lower energy costs associated with substrate flow 
and product separation (16).  In the present work, commercial operation requirements were 
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accommodated through the use of cellulose and xylose concentrations of 129 g/L and 71 g/L, 
respectively.  These match the average cellulose:xylan ratio (15:9) of candidate biofuels crops 
and amount to a 200 g/L (20%) solids loading in reactions where both substrates are present (4).  
This solids loading refers to the pretreated slurry where the lignin has been removed (16). 

 The cellulase enzymes chosen for this study were Trichoderma sp. Cel7A (TrCel7A), 
Trichoderma sp. Cel6A (TrCel6A), and Talaromyces emersonii GH5 (TemGH5).  These fungal 
cellulases are similar to the main constituents of commercial cellulase mixtures.  The TrCel7A 
and TrCel6A cellobiohydrolases catalyze the hydrolysis of insoluble cellulose by adsorbing to 
the substrate, complexing with reducing ends (TrCl7A) or non-reducing ends (TrCel6A) of 
cellulose chains, engaging in processive catalysis, decomplexing from chains, and recomplexing 
or desorbing from the surface.  The TemGH5 endoglucanase enzyme engages in a similar 
manner, but complexes anywhere within chains and catalyzes only one hydrolysis event before 
decomplexing.  In solution, all three enzymes can directly hydrolyze soluble cello-
oligosaccharides (DP<7).  The kinetics of these steps are described by Levine et al., and 
parameter values are included in Table 4.1. Cellulose was assumed to have the properties of 
Avicel, as described by Levine et al (17). 

In our studies, xylose was used as a surrogate for the xylan hydrolyzate produced during 
pretreatment of lignocellulosic substrates.  Pretreatments such as dilute acid hydrolysis, alkaline 
hydrolysis, steam explosion, liquid hot water pretreatment, and ionic liquid pretreatment can 
remove the majority of xylan from cellulosic substrates, producing xylose and a variety of 
soluble xylo-oligomers (5, 6, 18, 19).   These xylo-oligomers, which can make up over 50% of 
xylan hydrolyzate, have been shown to inhibit cellulase activity as strongly as cellobiose, which 
is about 100-fold more inhibitory than glucose.  Xylo-oligomer concentrations, however, can be 
significantly reduced and converted to xylose through optimized pretreatment processes or 
through the addition of β-D-xylosidase to hydrolysis reactions (20-22).  Accordingly, xylan 
hydrolyzate is represented as xylose in the present work.  Pretreatments that incompletely 
hydrolyze xylan, creating a requirement for significant xylanase action during the cellulose 
hydrolysis step, are not addressed here. 

Table 4.1 Parameter Values 
Parameter Value Units Source Description 
kEG2-ads 2.4 L mmol-1 s-1 (17)a Adsorption of EG2 onto the cellulose surface 
kCBHI-ads 2.4 L mmol-1 s-1 (17)a Adsorption of CBH1 onto the cellulose 

surface 
kCBHII-ads 2.4 L mmol-1 s-1 (17)a Adsorption of CBH2 onto the cellulose 

surface 
kEG2-des 5.36 x 10-

3 
s-1 (17)a Desorption of EG2 from the cellulose surface 

kCBHI-des 6.10 x 10-

3 
s-1 (23)b Desorption of CBH1 from the cellulose 

surface 
kCBHII-des 2.08 x 10-

4 
s-1 This 

studyb 
Desorption of CBH2 from the cellulose 
surface 

kcat-EG2 65 s-1 (17)a Activity of EG2 on cellulose chains 
kcat-CBHI 4.42 s-1 This 

studyb 
Activity of CBH1 on cellulose chains 

kcat-CBHII 14 s-1 (24)c Activity of CBH2 on Ci cellulose chains 
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KM-EG2-cel 2 mmol m-2 This 
studyb 

KM of EG2 for insoluble cellulose chains 

kcomp-CBHI-cel 1990 m2 mmol-1 s-1 (23)b Complexation of CBH1 / insoluble chain ends 
kcomp-CBHII-cel 7780 m2 mmol-1 s-1 (23)b Complexation of CBH2 / insoluble chain ends 
kdecom-CBHI-cel 1.37 s-1 (23)b Decomplexation of CBH1 / insol chain ends 
kdecom-CBHII-cel 2.78 s-1 (23)b Decomplexation of CBH2 / insol chain ends 
KM-EG2-sol 0.053 mM (17)a KM for EG2 and soluble cellulose chains 
kcomp-CBHI-sol 483 L mmol-1 s-1 (25)d Complexation of CBH1 / soluble chain ends 
kcomp-CBHII-sol 1200 L mmol-1 s-1 (24)d Complexation of CBH2 / soluble chain ends 
kdecom-CBHI-sol 2.78 s-1 (25)d Decomplexation of CBH1 / sol chain ends 
kdecom-CBHII-sol 2.78 s-1 (24)d Decomplexation of CBH2 / sol chain ends 
kcat-EG2-C3 0.253 s-1 (26)d Activity of EG2 on cellotriose 
kcat-CBHI-C3 0.016 s-1 (26)e Activity of CBH1 on cellotriose 
kcat-CBHII-C3 0.051 s-1 (26)d Activity of CBH2 on cellotriose 
KM-EG2-C3 0.96 mM (26)a KM for EG2 on cellotriose 
kcomp-CBHI-C3 26 L mmol-1 s-1 (23)e Complexation of CBH1 with cellotriose 
kcomp-CBHII-C3 142 L mmol-1 s-1 (24)d Complexation of CBH2 with cellotriose 
kdecom-CBHI-C3 2.78 s-1 (23)e Decomplexation of CBH1 with cellotriose 
kdecom-CBHII-C3 2.78 s-1 (24)d Decomplexation of CBH2 with cellotriose 
C1:C2:C3 
CBH1 

6:1.5:2.5 NA (26)c Ratio of C1:C2:C3 for CBH1 initial cuts 

C1:C2:C3 
CBH2 

6:1.5:2.5 NA (26)d Ratio of C1:C2:C3 for CBH2 initial cuts 

kcat-EG2-C1 5.44 s-1 (27)d Activity of EG2 at chain ends 
KM-EG2-C1-cel 900 mmol m-2 (23)b KM for EG2 on insoluble chain ends 
KM-EG2-C1-sol 90 mM (23)b KM for EG2 on soluble chain ends 
Ki-EG2-C2 0.03 mM (23)b Competitive inhibition of EG2 by C2 
Ki-CBHI-C2 0.19 mM (23)b Competitive inhibition of CBH1 by C2 
Ki-CBHII-C2 0.06 mM (23)b Competitive inhibition of CBH2 by C2 
Ki-EG2-C1 16.0 mM (23)b Competitive inhibition of EG2 by C1 
Ki-CBHI-C1 31 mM (17)a Competitive inhibition of CBH1 by C1 
Ki-CBHII-C1 29 mM (23)b Competitive inhibition of CBH2 by C1 
kd-EG2 3.89 x 10-

6 
s-1 (28)d Desorption of EG2 from cellulose 

kd-CBHI 3.89 x 10-

6 
s-1 (28)d Desorption of CBH1 from cellulose 

kd-CBHII 8.06 x 10-

6 
s-1 (28)d Desorption of CBH2 from cellulose 

µmax-C1 0.5 h-1 (29)c Maximum specific growth rate on C1 
KC1 1.7 mM (30)c Monod constant for growth on C1 
YX/C1 0.19 g/g (30)c Yield coefficient for dry cell weight from C1 
YEth/C1 0.43 g/g (8)c Yield coefficient for ethanol from C1 
µmax-C2 0.39 h-1 This 

studyg 
Maximum specific growth rate on C2 

KC2 350 mM This 
studyg 

Monod constant for growth on C2 

Bi-C1-C2 9.0 mM-1 (30)c Inhibition of C2 uptake by C1 
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YX/C2 0.15 g/g (30)c Yield coefficient for dry cell weight from C2 
YEth/C2 0.42 g/g (8)c Yield coefficient for ethanol from C2 

 
µmax-Xy 0.19 h-1 This 

studyg 
Maximum specific growth rate on xylose 

KXy 20 mM This 
studyg 

Monod constant for growth on xylose 

qmax-Xy 4.73 mM/g/h (8)c Maximum specific uptake rate for xylose 
Bi-C1-Xy 9.0 mM-1 (30)c Inhibition of xylose uptake by glucose 
YEth/Xy 0.35 g/g (8)c Yield coefficient for ethanol form xylose 
Ki-Xy-EG2 16.0 mM This 

studyd 
Competitive inhibition of EG2 by xylose 

Ki-Xy-CBH1 31 mM This 
studyd 

Competitive inhibition of CBH1 by xylose 

Ki-Xy-CBH2 29 mM This 
studyd 

Competitive inhibition of CBH2 by xylose 

Ki-X-Eth 87 g/L (31)d Threshold inhibition of cell growth by ethanol 
Ki-Eth-EG2 50.35 g/L (32)d Noncompetitive inhibition of EG2 by ethanol 
Ki-Eth-CBH1 50.35 g/L (32)d Noncompetitive inhibition of CBH1 by 

ethanol 
Ki-Eth-CBH2 50.35 g/L (32)d Noncompetitive inhibition of CBH2 by 

ethanol 
kcat-BG-C2 518 s-1 (33) Activity of β-glucosidase on cellobiose at 

30°C 
kcat-BG-C2 1810 s-1 (33) Activity of β-glucosidase on cellobiose at 

50°C 
KM-BG-C2      0.88 mM (33) KM for BG on cellobiose 
Ki-BG-C1       3.4 mM (33) Competitive inhibition of BG by glucose 
aParameters used were taken from the hydrolysis model developed by Levine et al (17). 
bParameters optimized against single enzyme hydrolysis data in the latest version of the hydrolysis model developed 
by Levine et al (23). 
cParameters taken directly from the literature. 
dParameter set based on published data. 
eParameters obtained via kinetic experiments using soluble cello-oligosaccharides as reported in Levine et al (23). 
fParameters for soluble substrate based on optimized values for solid substrate reactions as in Levine et al (23). 
gParameters optimized against batch fermentation data from Ha et al (8). 
 

Xylose, which is significantly less inhibitory than longer DP xylo-oligomers, is thought 
to be a competitive inhibitor of cellulase enzymes (5, 34); however, there are no directly 
measured xylose inhibition parameters available in the literature.  In the present work, these 
parameters were equated with the glucose inhibition parameters for each enzyme (Ki-EG-G = Ki-EG-

Xy). 

Pretreatments that hydrolyze the majority of the hemicellulose produce xylose feed 
streams that that can be routed either to glucose/xylose co-fermentation reactors or to separate 
xylose fermentation units (18, 35).  Process scenarios in which xylose undergoes a separate 
fermentation step are not addressed in the present work.  In our model, xylan hydrolyzate is 
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included in the combined hydrolysis and fermentation of SSF, whereas in SHF, it is included in 
the fermentation but not necessarily in the hydrolysis reaction.   

In the present work, xylose inhibition of cellulase enzymes is explored through modeling 
runs where its inhibitory effect is assumed to be as weak as that of glucose or as strong as that of 
cellobiose. The implications of this range of inhibition on the present assessment of multi-
substrate utilizing yeasts in SSF processes and on SHF vs. SSF comparisons are addressed below. 

Cellulase loadings of 25 mg enzyme / g glucan were used in each simulation.  This 
loading is similar to that reported for proposed commercial operations and to those employed in 
recently-published SSF studies (36-39).  The cellulase mixture contained cellobiohydrolase I 
(CBHI), cellobiohydrolase II (CBHII), and endoglucanase (EG1) in a 1:3:1 molar ratio, which is 
close to the optimal composition reported for these enzymes (40).  When β-glucosidase was 
present, it represented 10% of the total enzyme concentration (by mass), a commonly reported β-
glucosidase concentration (21). 

 The optimal conditions for the fungal enzymes considered are pH of 4.85 and a 
temperature of 50°C. The growth and ethanol production rates of S. cerevisiae are highest at a 
pH of 5.5 and a temperature of 30°C.  Previous studies have shown the activity of Trichoderma 
sp. enzymes to be 50% lower at 30°C than at 50°C.  We therefore accounted for the reduction in 
enzyme activity at 30°C by reducing the cellulase enzyme kcat values by 50%.  The effect of pH 
5.5 on optimal enzyme activity is small (<5% reduction in activity) (41), and was ignored in this 
work.  The kinetic parameters for β-glucosidase activity at 30 and 50°C were taken directly from 
Chauve et al (33).  All other parameters were obtained from the literature and were assumed to 
be independent of temperature in the 30-50°C range (Table 4.1). 

4.3.2 Hydrolysis Model Development 

Cellulose saccharification was modeled with the mechanistic kinetic model of cellulase-
catalyzed hydrolysis recently developed by Levine et al (23). Cellulase action on insoluble 
cellulosic substrates is modeled as a heterogeneous biocatalytic reaction involving endo- and 
exocellulases that either interact directly with soluble cello-oligosaccharides (DP<7) or form 
complexes with insoluble cellulose chains after first adsorbing to available sites on the substrate 
surface.  Unlike previously developed models of cellulase catalysis, this model tracks all chain 
lengths and products, and it does not assume equilibrium for cellobiohydrolase-substrate 
complexes (23, 42-45).  This model also explicitly accommodates reduced activity by 
endoglucanase enzymes at chain ends, and processive catalysis by cellobiohydrolase enzymes 
along chains. 

The action of beta-glucosidase on cellobiose was modeled with Michaelis-Menten 
kinetics modified to include competitive inhibition by glucose: 

d C2[ ]
dt

=
kcat−BG−C2BG C2[ ]

C2[ ]+ KM−BG−C2 1+
C1[ ]

Ki−BG−C1

⎛
⎝⎜

⎞
⎠⎟

                                                                                  (4.1)    

where BG is the concentration of  β-glucosidase and Ki-BG-C1 is the equilibrium constant for 
competitive inhibition by glucose. 
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 For SSF, the additional influences of ethanol and xylose on enzyme behavior were 
incorporated through the addition of non-competitive and competitive inhibition terms, which 
were obtained from reports on the effect of these compounds on cellulose hydrolysis rates (5, 46).  
These terms appear in equations for the site and enzyme balances.  Inhibition effects of ethanol 
and xylose were described by the following relationships: 

kcat
app = kcat

1+ Eth[ ]
Ki−Eth

  (4.2) 

KM
app = KM 1+

qCBH1 Ci
'⎡

⎣
⎤
⎦

KM -CBH1-cel
+

Ci[ ]
KM -CBH1-sol

+
C1[ ]

Ki-CBH1-C1
+

C2[ ]
KM -CBH1-C2

+
Xy[ ]

Ki-CBH1-Xyi=3

6

∑
i=7

∞

∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (4.3)  

where kcat represents an arbitrary kinetic constant, and Ki-Eth represents the noncompetitive 
equilibrium constant between ethanol and a given enzyme.  The other parameters are defined as 
in Levine et al. (17, 23); their values are reported in Table 4.1. 

4.3.3 Choice of SSF and SHF Conditions 

 Our comparisons of SSF and SHF processes are based on the total residence times 
required to reach particular ethanol concentrations. Estimates of the combined residence time for 
hydrolysis and fermentation processes range from 3-6 days, but 2-3 day targets have been 
proposed for commercial operations (47).  For SHF, we considered three different hydrolysis 
times spanning the period over which the hydrolysis rate varied significantly (Fig. 4.1): 12, 24, 
and 36-hr.   

 
Figure 4.1 Profiles of cellulose conversion during saccharification reactions.  Runs were carried out for 144 hours at 
50°C with a combined total enzyme loading of 2.5 g/L and substrate concentrations of 128.57g/L cellulose with or 
without 71.43 g/L xylose.  Cellulases were present in a 1:3:1 EG2:CBH1:CBH2 (molar) enzyme ratio; β-glucosidase 
made up 10% of the enzyme mixture by mass.  Lines are as follows: solid black line (cellulose present); dashed 
black line (cellulose and xylose present). 

Fermentations were simulated at the optimal pH and temperature for growth and ethanol 
production by S. cerevisiae (pH = 5.5; T = 30°C). When fermentation and hydrolysis were 
conducted separately, they were done so under pH and temperature conditions that were optimal 
for each step: pH 4.85 and 50°C for saccharification and pH 5.5 and 30°C for fermentation. 
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Fermentations were modeled with and without xylose to assess the impact of this sugar on the 
results. 

 All fermentations had an inoculum of 0.252 g cells/L (OD600~1.0) so that growth could 
be compared with published batch fermentation processes.  The impact of larger inocula on 
residence times is addressed below. 

4.3.4 Model Development for SSF and SHF 

Yeast growth was modeled using Monod kinetics with growth-associated ethanol 
production and threshold-based ethanol inhibition.  Simultaneous utilization of multiple carbon 
sources (glucose, cellobiose, and xylose) was incorporated through additive growth kinetics 
modified to include catabolic repression of cellobiose and xylose utilization by glucose.  
Previous reports on the DA24-16 strain showed no evidence that xylose inhibits cellobiose 
uptake or vice versa.  The resulting equation for batch growth in the absence of cellulases is 
identical in form to that proposed for the glucose, cellobiose, and xylose fermenting yeast 
Candida lusitaniae (30):   

dX
dt

=
µmax−C1C1
KC1 +C1

+
µmax−C2C2
KC2 +C2

1
Ki−C1−C2C1 +1

+
µmax−XyXy
KXy + Xy

1
Ki−C1−XyC1 +1

⎛

⎝
⎜

⎞

⎠
⎟ 1−

[Ethanol]
Ki−Eth−X

⎛
⎝⎜

⎞
⎠⎟
X                     (4.4) 

Ethanol production by each substrate was modeled in an analogous fashion:  

dEth
dt

=

YEth/C1
YX /C1

µmax−C1C1
KC1 +C1

+
YEth/C2
YX /C2

µmax−C2C2
KC2 +C2

1
Bi−C1−C2C1 +1

+
YEth/Xy
YX /Xy

µmax−XyXy
KXy + Xy

1
Bi−C1−XyC1 +1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
1− [Ethanol]

Ki−Eth−X

⎛
⎝⎜

⎞
⎠⎟
X

                                        (4.5) 

Uptake equations for each carbon source were based on Monod kinetics: 

rate of glucose uptake = − 1
YX /C1

⎛

⎝
⎜

⎞

⎠
⎟

µmax−C1C1

KC1 +C1

⎛

⎝
⎜

⎞

⎠
⎟ 1− [Ethanol]

Ki−X−Eth

⎛
⎝⎜

⎞
⎠⎟
X            (4.6) 

rate of cellobiose uptake = − 1
YX /C2

⎛

⎝
⎜

⎞

⎠
⎟

µmax−C2C2

KC2 +C2

⎛

⎝
⎜

⎞

⎠
⎟

1
Bi−C1−C2C1 +1

⎛

⎝
⎜

⎞

⎠
⎟ 1− [Ethanol]

Ki−Eth−X

⎛
⎝⎜

⎞
⎠⎟
X  (4.7) 

rate of xylose uptake = − 1
YX /Xy

⎛

⎝
⎜

⎞

⎠
⎟

µmax−XyXy
KXy + Xy

⎛

⎝
⎜

⎞

⎠
⎟

1
Bi−C1−XyC1 +1

⎛

⎝
⎜

⎞

⎠
⎟ 1− [Ethanol]

Ki−Eth−X

⎛
⎝⎜

⎞
⎠⎟
X   (4.8) 

where Y, µmax, and K represent the specific yield coefficient, maximum specific growth rate, and 
Monod constant for growth on each substrate; Bi-C1 and Ki-Eth represent parameters describing 
glucose inhibition of substrate uptake and ethanol inhibition of cell growth. 

 Equations 4.6 and 4.7 were included in the material balance for glucose and cellobiose, 
effectively linking the fermentation model to the cellulose hydrolysis model.  Equation 4.8 was 
included in the xylose material balance.  
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4.3.5 Model parameters 

 To estimate values of KC2, µmax-C2, KXy, and µmax-Xy for the DA24-16 strain, the IMSL 
nonlinear optimizer NNLPF was used to fit batch reactor material balance equations consistent 
with the conditions employed by Ha et al. (8): 

dC2
dt

= − 1
YX /C2

⎛

⎝
⎜

⎞

⎠
⎟

µmax−C2C2
KC2 +C2

⎛

⎝
⎜

⎞

⎠
⎟ 1−

[Ethanol]
Ki−Eth−X

⎛
⎝⎜

⎞
⎠⎟
X   (4.9) 

dXy
dt

= − 1
YX /Xy

⎛

⎝
⎜

⎞

⎠
⎟

µmax−XyXy
KXy + Xy

⎛

⎝
⎜

⎞

⎠
⎟ 1−

[Ethanol]
Ki−Eth−X

⎛
⎝⎜

⎞
⎠⎟
X   (4.10) 

Initial cellobiose and xylose concentrations were set at their reported experimental values of 40 
g/L.  Inhibition of S. cerevisiae growth by ethanol was assumed to be independent of substrate, 
so the previously measured value of Ki-Eth-X = 87 g/L was employed (46); the Monod constants 
(KC1 and KC2) and maximum specific growth rates (µmax-C1 and µmax-C2) were treated as adjustable 
parameters and optimized.  The number of available data points was low (7 total), which 
increased the uncertainty associated with the fitted values. 

 

 After  µmax-Xy  was determined, the xylose yield coefficient was estimated from the qmax-

Xy value reported for the DA24-16 strain according to the following equation (8):  

qmax−Xy =
µmax−Xy
YX /Xy   (4.11)

 

4.3.6 Model Assembly and Solution 

 The model was constructed in Fortran 95 using the Absoft Pro Fortran v11 compiler.  
The model used the IMSL function DASPG differential and algebraic equation solver, which 
employs the Petzold-Gear method.  To capture hydrolysis and fermentation, 5,365 differential 
equations and 15 algebraic equations from the original hydrolysis model, modified to include 
xylose and ethanol inhibition, were supplemented with three differential equations to track cell 
density, ethanol concentration, and xylose concentration.  

4.4. Results and Discussion 

4.4.1 The Potential of CDT Yeast Strains to Reduce β-glucosidase Requirements 

 Previous reports on cellobiose-consuming yeast have asserted that such strains may be 
able to alleviate cellobiose inhibition of cellulase and thereby obviate the need for exogenously 
added β-glucosidase enzymes, which account for up to 10% of the total enzyme cost (8, 48).  The 
capacity of the cellodextrin transporter (CDT) to remove cellobiose as quickly as extracellular β-
glucosidase hydrolyzes it to glucose was investigated in separate SSF reactions (Table 4.2; 
reactions 1-4).  
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Table 4.2 Total residence times to achieve target ethanol concentrations within various process 
scenarios 
Run Process Scenarios τres (hr) 40 

g/L Ethanol 
τres (hr) 75 
g/L Ethanol 

1 SSF with CDT-containing yeast; cellulose present >144 >144 

2 SSF with CDT-containing yeast; cellulose and xylose present >144 >144 

2’ SSF with CDT-containing yeast with KC1 = 0.14 mM; cellulose 
and xylose present 

>144 >144 

3 SSF with non-CDT-containing yeast supplemented with β-
glucosidase; cellulose present 

21.25 89 

4 SSF with non-CDT-containing yeast supplemented with β-
glucosidase; cellulose and xylose present 

37.5 71 

4’ SSF with non-CDT-containing yeast supplemented with β-
glucosidase; KC1 = 0.14 mM; cellulose and xylose present 

26.5 56.75 

5 SSF with CDT-containing yeast with no glucose inhibition of 
xylose and cellobiose transport; cellulose present 

>144 >144 

6 SSF with CDT-containing yeast with no glucose inhibition of 
xylose and cellobiose transport; cellulose and xylose present 

>144 >144 

7 SSF with CDT-containing yeast where KC1=KC2; cellulose 
present 

70.5 >144 

8 SSF with CDT-containing yeast where KC1=KC2; cellulose and 
xylose present 

35.5 102.75 

9 SSF CDT-containing yeast where µmax-C2 = µmax-C1; cellulose 
present 

>144 >144 

10 SSF CDT-containing yeast where µmax-C2 = µmax-C1; cellulose and 
xylose present 

>144 >144 

11 SSF CDT-containing yeast where KC2 = KC1 and µmax-C2 = µmax-

C1; cellulose present 
63.5 >144 

12 SSF CDT-containing yeast where KC2 = KC1 and µmax-C2 = µmax-

C1; cellulose and xylose present 
34.5 96.75   

13 SHF with 12-hour hydrolysis step; xylose added in fermentation 31.5 59.5 

13’ SHF with 12-hour hydrolysis step; KC1 = 0.14 mM; xylose 
added in fermentation 

28 54.75 

14 SHF with 12-hour hydrolysis step; KC1 = 0.14 mM; xylose 
added in hydrolysis 

32.75 61.25 

15 SHF with 24-hour hydrolysis step; xylose added in fermentation  40.5 67.25 

16 SHF with 24-hour hydrolysis step; xylose added in hydrolysis 41.5 68.5 

17 SHF with 36-hour hydrolysis step; xylose added in fermentation 50.75 76.5 

18 SHF with 36-hour hydrolysis step; xylose added in hydrolysis 51.5 77.75 

19 SSF CDT-containing yeast where KC2 = 0 mM, µmax-C2 = µmax-C1, 
and BC1 = 0; cellulose and xylose 

28.5 62.25 

19’ SSF CDT-containing yeast where KC2 = 0 mM, µmax-C2 = µmax-C1, 
and BC1-C2 = 0; KC1 = 0.14 mM ; cellulose and xylose 

25 58 
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Time-course profiles of cellulose conversion into products for each of these conditions are 
plotted in Fig. 4.2A.  With cellulose alone, SSF with the CDT-containing strain resulted in 10% 
conversion of cellulose in 140 hr.  In contrast, SSF with the non-CDT-containing strain 
supplemented with β–glucosidase achieved nearly 100% conversion in 90 hr.  Interestingly, 
when xylose was added, the CDT-containing strain achieved 25% cellulose conversion in 140 hr; 
growth on xylose led to higher concentrations of yeast, which facilitated faster overall cellobiose 
uptake (see Eq. 4.6), reducing its inhibitory effect.  The DA24-16 strain does not remove 
cellobiose as quickly as a non-CDT-containing strain that is supplemented with β-glucosidase, 
and is therefore less effective in alleviating cellobiose inhibition of cellulase-catalyzed 
hydrolysis. 

    2A 

 
    2B 

 
Figure 4.2 Profiles of cellulose hydrolysis and ethanol production in SSF scenarios.  Runs were carried out for 144 
hours at 30°C with a 1:3:1 EG2:CBH1:CBH2 (molar) enzyme ratio, a combined total enzyme loading of 2.5 g/L, 
and substrate concentrations of 129 g/L cellulose with or without 71 g/L xylose.  When β-glucosidase was present, it 
comprised 10% of the total enzyme mass.  Cultures were started with a yeast inoculum of 0.252 g/L, corresponding 
to an OD600 of approximately 1.  Runs are annotated with the following abbreviations: simultaneous saccharification 
and fermentation (SSF); cellodextrin transporter and intracellular β-glucosidase present (CDT); cellulose present 
(C); xylose present (X).  Lines show time course profiles of (2A) cellulose conversion to products and (2B) ethanol 
production for the following conditions: SSF CDT C (dashed red line, run 1); SSF CDT C X (solid yellow line, run 
2); SSF CDT w/ KC2 = KC1 C X (dotted green line, run 8); SSF CDT w/ KC2 = KC1, µma-C2= µma-C1 C X (solid blue 
line, run 12); SSF C X BG (solid black line, run 4).  Note: lines for runs 9 and 10 (SSF CDT without glucose 
inhibition of growth cellobiose) are coincident with those from runs 1 and 2, respectively. 

 



	
   88	
  

 Both xylose and cellobiose transporters are inhibited by glucose (8, 30).  To address the 
inhibitory effect of glucose on the cellobiose consumption rates in SSF, we examined a situation 
in which glucose inhibition of cellobiose and xylose uptake by the CDT-containing yeast was 
removed (runs 5 and 6, Table 4.2).  These scenarios brought about only a slight increase in 
cellulose conversion rates.  After 144 hours, SSF with CDT strains uninhibited by glucose 
inhibition of cellobiose uptake allowed cellulose conversion to reach 11.4% and 25.9% for runs 5 
and 6, respectively; this is a 5 and 3 % increase over runs 1 and 2.  Clearly, in these hydrolysis 
scenarios, glucose was consumed nearly as rapidly as it was generated, failing to reach strongly 
inhibitory levels. 

 S. cerevisiae strains capable of cellobiose assimilation could be engineered to have 
faster rates of cellobiose uptake through improvements to the transporter protein or through 
modifications to the assimilation pathway. Enhancements in cellobiose uptake rates likely to 
result from such efforts were investigated by varying the kinetic parameters associated with 
growth of S. cerevisiae on cellobiose.  

 For the DA24-16 strain, the Monod constant for cellobiose (KC2=350 mM) is about 200-
fold larger than the analogous constant for glucose (KC1=1.7 mM).  The influence of KC2 on the 
ability of cellobiose-utilizing S. cerevisiae to alleviate cellobiose inhibition of cellulase enzymes 
was investigated with SSF runs in which it was set equal to KC1 (runs 7 and 8, Table 4.2).  This 
lower value of KC2 enabled cellobiose consumption to increase rates of cellulose hydrolysis 
almost as effectively as the addition of β-glucosidase (Fig. 4.2A). 

 The impact of increasing the specific growth rate of the CDT-containing yeast in SSF 
was assessed with simulations where µmax-C2 was increased to µmax-C1 (runs 9 and 10, Table 4.2).  
This change did not allow for faster conversion rates in SSF; conversion profiles for runs 9 and 
10 were coincident with those of runs 1 and 2.  This maximum specific growth rate is the highest 
measured for S. cerevisiae; it is likely limited by the maximal rate of rRNA synthesis in this 
yeast, not glucose uptake capacity, and is therefore independent of the nature of the substrate 
(49-52). Higher values of µmax-C2 were not investigated.  As illustrated in Figs. 4.2A and 4.2B, 
cellulose conversion and ethanol production results for the DA24-16 strain were insensitive to 
the increase in µmax-C2. 

 The influence of a faster specific growth rate was also investigated in simulations where 
KC2 and µmax-C2 were set equal to KC1 and µmax,C1 (runs 11 and 12, Table 4.2).  At 72 hours, when 
compared to run 8 (with the CDT-containing yeast with KC2 =KC1), run 12 showed a 4.6% 
improvement in conversion (Fig. 4.2A) and a 3% improvement in ethanol concentration (Fig. 
4.2B).  Thus, only when KC2 was set to KC1 did an increase in the maximum specific growth rate 
lead to slight increases in hydrolysis rates and ethanol titers. 

 In practice, it may be possible to reduce KC2 by enhancing the affinity of the transporter 
for cellobiose, by increasing the number of transporters per cell, or by raising Vmax for the 
transporter enzyme (53, 54). The N. crassa transporter incorporated into the DA24-16 strain has 
high affinity for cellobiose (apparent KM equal to ~3 µM), which is low compared to other 
substrate transporters; hence, improving affinity of the transporter for cellobiose is not likely to 
lower KC2 (8). Transporter abundance in the membrane or activity are more likely to be effective 
targets for improvement. 
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Improvements to downstream enzymes may also lower KC2. After an intracellular 
hydrolysis step, the cellobiose assimilation pathway is identical to that of glucose assimilation.  
Thus, the activity of intracellular β-glucosidase could also be a limiting factor in cellobiose 
consumption.  

4.4.2 Impact of Co-utilizing Cellobiose, Xylose, and Glucose on SSF vs. SHF 

The impact of cellobiose utilization on SSF and SHF was explored by comparing 
residence times required to achieve 40 g/L and 75 g/L ethanol titers (Table 4.2).  Kinetic 
parameters for xylose utilization were held constant in all runs (Kxyl and µmax-xyl of the DA24-16 
strain) and growth parameters for CDT-containing and non-CDT-containing yeast were identical. 
For all SHF runs, the residence times included in Table 4.2 represent the sum of the times 
required for hydrolysis and fermentation.   

Regardless of ethanol titer, the SHF process with the 12-hour hydrolysis step led to the 
shortest residence times: 31.5 hours for 40 g/L and 59.5 hours for 75 g/L.  These times are 8 and 
18% shorter than the shortest SSF residence times for the processes considered in Table 4.2. 

The rankings of total residence times for the SSF scenarios depended on the ethanol titers 
that were targeted (Table 4.2).  For 40 g/L ethanol, the shortest SSF residence time (34.5 hours) 
corresponded to the scenario with the best-case CDT-containing strain (KC2 = KC1 and µmax-C2 = 
µmax-C1 ). For 75 g/L, however, the SSF process where the non-CDT containing strain was 
supplemented with β-glucosidase resulted in a residence time of 71 hours compared to 96.75 
hours for the best-case CDT-containing strain. These results indicate that the introduction of a 
CDT transporter into SSF scenarios provides no advantage over SHF.  

The residence time required for a fermentation to achieve a particular ethanol titer 
depends on the concentration of cells used for inoculation (0.252 g/L in this study).  We studied 
the influence of this dependence on the relative performance of different SSF and SHF processes 
by plotting the residence time required to reach 75 g/L ethanol against inoculant concentration 
for several scenarios (Fig. 4.3): SSF with the non-CDT yeast supplemented with β-glucosidase 
(Run 4), SSF with the best-case CDT yeast (Run 12), and SHF with the 12-hour hydrolysis step.  
The relative performance of the SSF runs was not affected by the inoculum size.  This is 
consistent with the kinetics of the fermentation reaction; the rate of ethanol production is first 
order in yeast concentration.  Thus, rate enhancements resulting from higher inoculant 
concentrations are identical within different SSF scenarios. 
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Figure 4.3 Sensitivity of time required to reach 75 g/L ethanol to inoculation size.  The influence of inoculation size 
on the residence time required to produce 75 g/L ethanol was explored with scenarios where the fermentation 
inoculum was varied from 0.252 g/L (OD600 ~ 1) to 12.6 g/L (OD600 ~ 50).  The following scenarios were 
investigated: SSF CDT w/ KC2 = KC1, µma-C2= µma-C1 C X (open squares, run 12); SSF C X BG (open circles, run 4); 
SHF with a 12-hour hydrolysis step (open triangles, run 13). 

By comparison, for an SHF process with a hydrolysis step of predetermined length (e.g., 
12 hours), a larger inoculum size shortens only the duration of the fermentation step; the 
resulting reduction in overall residence time is less significant than it is within SSF.  This effect 
is apparent in Fig. 4.3.  As inoculum size is increased, the residence times required to reach 75 
g/L ethanol decrease more rapidly in the SSF processes than in the SHF alternative.  In fact, at 
inoculant concentrations of 12.6 g/L cells (OD600 ~ 50), the residence time for the SSF process 
conducted with a non-CDT yeast supplemented with β-glucosidase was shorter than that required 
by SHF with a 12-hour hydrolysis step: 42.25 hours compared to 45.5 hours.  At this high 
inoculum size, however, shorter residence times can likely be achieved within SHF if the 
hydrolysis step is shortened; the duration of this step was not optimized in the present work.  
Thus, while the relative performance of particular SHF and SSF scenarios is sensitive to the 
inoculum size, the general result remains: cellobiose-consuming yeast are unlikely to make SSF 
more efficient than SHF. 

4.4.3 The Influence of the Cellodextrin Transporter on Xylose Uptake Rates 

              The cellodextrin transporter’s role in enhancing xylose uptake by preventing glucose 
inhibition of xylose uptake was investigated through a comparison of the times required for yeast 
to fully consume xylose in three scenarios: SSF with the best-case CDT-containing strain, SSF 
with the non-CDT-containing strain supplemented with β-glucosidase, and SHF with a 12-hour 
hydrolysis step (Table 4.3).  For the SHF process, the xylose consumption time was calculated 
by adding the time required for complete xylose consumption in the fermentation step to the 12 
hours required for hydrolysis.  In SSF with the best CDT-containing strain, xylose was 
completely consumed in 27.25 hours; this was significantly shorter than the 38 hours required for 
SSF with the non-CDT-containing strain supplemented with β-glucosidase and the 37.5 hours 
required for SHF with a 12-hour hydrolysis step.  As discussed above, however, the production 
of 75 g/L ethanol titers required residence times longer than 50 hours, and all processes allowed 
for complete xylose utilization within this time.  Moreover, we found no correlation between 
rapid xylose uptake and shortest residence time.  Thus, the enhanced xylose consumption rates of 
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the best-case CDT-containing strain are not beneficial when high concentrations of ethanol are 
desired. 

Table 4.3 Time Taken to Consume Xylose 
Run Conditions Bi-G-Xy tcons. 

for 
xylose 

τres (hr) 
75 g/L 
Ethanol 

13 SHF with 12-hour hydrolysis step; xylose added in 
fermentation 

9 mM 37.5 59.5 

4 SSF with non-CDT-containing yeast supplemented 
with β-glucosidase; cellulose and xylose present 

9 mM 38 
 

71 

12 SSF CDT-containing yeast where KC1=KC2 and 
µmax-C2 = µmax-C1; cellulose and xylose present 

9 mM 27.25 96.75 

13 SHF with 12-hour hydrolysis step; xylose added in 
fermentation 

90 
mM 

93.5 94.5 

4 SSF with non-CDT-containing yeast supplemented 
with β-glucosidase; cellulose and xylose present 

90 
mM 

98.75 122 

12 SSF CDT-containing yeast where KC1=KC2 and 
µmax-C2 = µmax-C1; cellulose and xylose present 

90 
mM 

50 119 

 
 Parameters describing glucose inhibition of xylose uptake by the DA24-16 strain have 
yet to be measured experimentally.  The present work employs experimental parameters 
describing glucose inhibition of xylose transport in the yeast Candida lusitaniae, which exhibits 
glucose growth kinetics similar to those of S. cerevisiae (30).  These parameters may be incorrect 
for the DA24-16 strain.  Thus, the cellodextrin transporter’s ability to increase xylose uptake 
rates was further investigated with simulations where the glucose inhibition parameter (BC1-Xy) 
was increased 10-fold.  In such a scenario, glucose inhibition of xylose uptake is stronger than 
reported in most yeast strains capable of xylose assimilation (30, 55, 56).  In the SSF run with 
this stronger inhibition, the optimized CDT-containing strain consumed all xylose within 50 
hours, a much shorter time than the 93.5 and 98.75 hours required for the SHF and SSF 
alternative processes, respectively.  Within SSF, strong glucose inhibition of xylose transport led 
to conditions where rapid xylose uptake correlated with short residence times; SSF with the best-
case CDT yeast allowed for 75 g/L ethanol to be produced more quickly than with the non-CDT 
yeast.  However, this correlative relationship did not hold when SHF and SSF were compared.  
The SHF scenario with the 12-hour hydrolysis step still had the shortest residence time for a 75 
g/L ethanol titer despite the longer time for complete xylose consumption. 

The cellodextrin transporter facilitates rapid xylose consumption by alleviating glucose 
inhibition of xylose transport, but for high ethanol titers, this enhanced xylose utilization rate is 
only beneficial within SSF if glucose inhibition of xylose uptake is stronger in the DA24-16 
strain than in other reported xylose-utilizing strains (30, 55, 57).  Additionally, when SSF and 
SHF are compared, the overall residence time for high ethanol titers is not sensitive to rapid 
xylose uptake, and the SHF scenario allows for shorter residence times despite leading to 
conditions in which xylose is consumed more slowly. 
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4.4.4 Sensitivity of the SSF/SHF Comparison to Values of KC1 and KC2 

 In the present work, the Monod constant for growth on glucose (KC1) was assumed to be 
the lowest achievable value of the Monod constant for growth on cellobiose in an engineered 
CDT-containing yeast.  However, reported values of KC1 for yeast growth on glucose range from 
0.1 to 3 mM (29, 30, 56, 58).  In our study, we used an intermediate value of 1.7 mM for KC1.  
To more completely explore the sensitivity of our results to KC2 values that are even lower than 
1.7 mM, we examined the residence times required to achieve 75 g/L ethanol in SSF with a 
CDT-containing strain where KC2 was varied from 0.035 mM to 3.5 mM (Fig. 4.4).  The lowest 
estimates of KC1 for yeast are around 0.14 mM; the residence time for this value of KC2 is 
illustrated in Fig. 4.4 (starred point).  SSF with such a dramatically improved CDT yeast allowed 
for a shorter residence time than SSF with a non-CDT yeast supplemented with β-glucosidase 
(71 hours; dashed gray line in Fig. 4.4).  In all runs, however, the residence times were longer 
than the corresponding time for the SHF process with a 12-hour hydrolysis step (59.5 hours; 
black line in Fig. 4.4).  Reductions in residence time from improvements to KC2 beyond 1.7 mM 
were minimal and appeared to reach a limit near KC2 = 0.035 mM (65 hours).  Thus, while 
performance of the CDT-containing yeast in SSF scenarios is highly sensitive to KC2, the result 
that SHF with a 12-hour hydrolysis step leads to shorter residence times at high ethanol titers is 
not. 

 
Figure 4.4 Sensitivity of time required to reach 75 g/L ethanol in SSF to KC2.  The influence of KC2 values on the 
residence time required to produce 75 g/L ethanol in SSF with a CDT yeast were explored.  Points represent 
residence times for various reductions in the Monod constant associated with growth on cellobiose, which are 
plotted along the x-axis as log(KC2/KC2’) where KC2 = 350 mM and KC2’ is an improved (lower) value of KC2.  The 
lines correspond to the residence times required to reach 75 g/L of ethanol in SHF with a 12-hour hydrolysis step 
(run 13; solid black line) and SSF with a non-CDT yeast supplemented with β-glucosidase (dashed gray line). 

 The possible influence of a lower KC1 on our results was also explored (Table 4.2).  
When this KC1 was lowered to 0.14 mM in runs 2, 4, and 13, the relative ordering of residence 
times was unchanged (2’, 4’, and 13’ in Table 4.2).  When KC2 was subsequently lowered (as 
above), the same result was observed.  The SHF process with a 12-hour hydrolysis step still 
allowed 75 g/L ethanol to be produced more quickly than all other processes.  
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4.4.5 Sensitivity of the SSF/SHF Comparison to Glucose, Cellobiose, and Xylose Inhibition 

 The potential advantages of SSF and SHF may be sensitive to inhibition of cellulase 
enzymes by glucose, cellobiose, and xylose.  Xylose inhibition in particular is not well studied; 
there are no directly measured inhibition parameters describing the impact of this sugar on 
cellulase enzymes.  The influence of xylose inhibition was explored through a comparison of 
cellulose conversion profiles generated by three processes simulated with low and high xylose 
inhibition parameters: SSF with the CDT-containing yeast, SSF with the best CDT-containing 
yeast, and SHF with a 12-hour hydrolysis step (runs 2, 12, and 13 in Table 4.2).   

Parameter values describing the competitive inhibition of cellulase enzymes by xylose 
(Ki-Xy) were estimated from published measurements of cellulase inhibition by other sugars.  In 
the simulations discussed in 3.1-3.5, equilibrium constants for competitive xylose inhibition were 
set equal to measured equilibrium constants for glucose inhibition.  Reported measurements of 
glucose inhibition, however, are inconsistent.  For example, the values of Ki-C1 employed in the 
simulations discussed in 3.1 and 3.2 ranged from 17-31 mM, but a study by Phillippidis et al. 
reported a Ki-C1 value of 295 mM for a similar mixture of Trichoderma sp. enzymes (32). The 
implications of this range of values on the results of this work were investigated with runs where 
glucose and xylose inhibition parameters were set equal to this higher value (Ki-Xy = Ki-C1 = 295 
mM).  These runs represent a low xylose inhibition scenario.  A high xylose inhibition scenario 
was also simulated.  Xylan hydrolyzate is not necessarily composed entirely of xylose, but can 
be dominated by xylo-oligomers.  These longer DP sugars have been shown to be as inhibitory 
of cellulase enzymes as cellobiose (5). To investigate the implications of xylan hydrolyzate that 
is as inhibitory of cellulase enzymes as cellobiose, competitive equilibrium constants for xylose 
inhibition were equated with the analogous constants for cellobiose inhibition (Ki-Xy = Ki-C2 for 
each enzyme).  Cellulose conversion profiles over 72 hours are reported in Fig. 4.5. 

 
Figure 4.5 Sensitivity of the SSF vs. SHF comparison to product inhibition.  The influence of higher or lower levels 
of xylose inhibition was explored through a comparison of SSF with the CDT-containing yeast (run 2), SSF with the 
best-case CDT-containing yeast (run 12), and SHF with a 12-hr hydrolysis step (run 13). Low inhibition (low Xi) 
corresponds to runs in which KI=xyl=Ki-C1=295 mM.  High inhibition (high Xi) corresponds to runs in which Ki-

Xy=Ki-C2 for each enzyme.  Lines correspond to conversion profiles for the following conditions: SSF CDT C X high 
Xi  (solid yellow line); SSF CDT w/ KC2 = KC1, µma-C2= µma-C1 high Xi (solid blue line); 12-H SHF C high Xi (solid 
black line); SSF CDT C X low Xi  (dotted yellow line); SSF CDT w/ KC2 = KC1, µma-C2= µma-C1 low Xi (dotted blue 
line); 12-H SHF C low Xi (dotted black line). 

The cellulose conversion profile for the CDT-containing yeast in the SSF scenario was not 
significantly affected by xylose inhibition parameters. At reduced levels of xylose and glucose 
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inhibition, the SHF process resulted in 15% higher conversion at 72 hours than the SSF process 
with the best CDT-containing yeast; at the higher level of xylose inhibition, the SHF process led 
to a 25% higher conversion. Thus, SHF outperformed SSF at low and high levels of xylose 
inhibition, indicating that the results of this work are insensitive to the values of the parameters 
used to describe xylose inhibition. 

4.4.6 A Best-case Scenario for Cellobiose Consumption 

 To assess the ability of a CDT-containing yeast to achieve high ethanol titers, we ran the 
model with KC2 = 0, BC1-C2 = 0, and µmax-C2 = 0.5 hr-1 (Run 19 in Table 4.2).  Under such 
circumstances, cellobiose uptake can be represented by the following equation: 

rate of cellobiose uptake = 1
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Here, uptake of cellobiose (and growth on cellobiose) is governed only by the maximum specific 
growth rate of S. cerevisiae and inhibition by ethanol, and is zeroth order in cellobiose.  For such 
a strain, the residence time required to achieve 75 g/L of ethanol was 62.25 hours, which is still 
4.6% higher than the residence time for SHF with a 12-hour hydrolysis step.  The same result 
was obtained in the set of runs where KC1 = 0.14 mM (run 19’ in Table 4.2).  Accordingly, 
improvements to the cellobiose assimilation pathway are not likely to lead to a strain of yeast 
that allows high ethanol titers to be reached more quickly in SSF than in SHF. 

4.4.7 Collection of Parameter Values 

 Some of the parameter values for the microbial growth model employed in the present 
analysis were not available in the literature and had to be estimated from limited datasets and 
non-Saccharomyces yeast strains.  As discussed above, the conclusions of the present work are 
not sensitive to these parameters, but the model-predicted performance of any particular strain is.  
Future work to engineer yeast strains capable of xylose and cellobiose assimilation should 
involve attempts to accurately measure kinetic parameters for growth on these substrates 
(Ksubstrate, µmax-substrate, B-C1-substrate). 

4.5 Concluding Remarks  

 We combined a detailed mechanistic kinetic model of cellulase-catalyzed hydrolysis 
with a multi-substrate model of microbial growth to investigate the ability of cellobiose utilizing 
S. cerevisiae to facilitate cellulase hydrolysis and improve ethanol titers using SSF.  The model 
showed that an existing strain with this capability (DA24-16) is not as effective at enhancing 
rates of cellulose hydrolysis or ethanol production as a non-cellobiose-utilizing alternative 
supplemented with β-glucosidase. However, lowering the Monod constant for growth on 
cellobiose would enable DA24-16 to produce ethanol from cellulose and xylose nearly as rapidly 
as the non-cellobiose-utilizing alternative.  Strategies to lower the Monod constant include 
increasing transporter expression and/or increasing the rate of intracellular cellobiose hydrolysis.  
Such a best-case CDT strain would likely reduce, but not eliminate, the β-glucosidase 
requirement. 
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By relieving glucose inhibition of xylose uptake, the cellodextrin transporter allowed 
xylose to be consumed more quickly in CDT yeast than in non-CDT yeast with the same xylose 
assimilation pathway machinery.  Rapid xylose uptake, however, did not result in short residence 
times for producing 75 g/L ethanol unless glucose inhibition of xylose uptake was assumed to be 
higher in the DA24-16 strain than for most other xylose-consuming yeast strains; and, under 
such circumstances, this correlation existed only in SSF scenarios.  The SHF scenario with the 
12-hour hydrolysis step required more time for complete xylose utilization but allowed high 
ethanol titers to be reached more quickly than in SSF processes, regardless of the level of 
glucose inhibition of xylose uptake. 

 Improvements to the cellobiose utilization system of the DA24-16 strain are unlikely to 
result in SSF residence times that are shorter than those of separate hydrolysis and fermentation 
(SHF) processes.  Our simulations showed that SHF with a 12-hour hydrolysis step allowed 75 
g/L ethanol titers to be reached more quickly than all SSF processes addressed in this work.  A 
technoeconomic analysis is necessary to determine whether or not the longer residence times 
required in SSF with optimized CDT-containing strains of S. cerevisiae could allow for a net cost 
savings resulting from the elimination or reduction in β–glucosidase requirements. 

In an SHF process, improved cellobiose-utilizing strains could still be useful.  If 
cellulases that are insensitive to cellobiose are developed, there would be no need for β –
glucosidase in the hydrolysis step; and enzyme cost would be reduced.  In this scenario, any 
organism capable of rapid cellobiose consumption would be advantageous in the fermentation 
step, which would contain a high concentration of cellobiose. 
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Chapter 5: Initial- and Processive-cut Products Reveal Cellobiohydrolase Rate Limitations 
and Role of Companion Enzymes 

5.1 Abstract 

 Efforts to improve the activity of cellulases, which catalyze the hydrolysis of insoluble 
cellulose, have been hindered by uncertainty surrounding the mechanistic origins of rate-limiting 
phenomena and by an incomplete understanding of complementary enzyme function.  In particu-
lar, direct kinetic measurements of individual steps occurring after enzymes adsorb to the cellu-
lose surface have proven to be experimentally elusive.  The present work describes an experi-
mental and analytical approach, derived from a detailed mechanistic model of cellobiohydrolase 
action, to determine rates of initial- and processive-cut product generation by Trichoderma 
longibrachiatum cellobiohydrolase I (TlCel7A) as it catalyzes the hydrolysis of bacterial micro-
crystalline cellulose (BMCC) alone and in the presence of Talaromyces emersonii endoglucanase 
II (TemGH5).  This analysis revealed that the rate of TlCel7A-catalyzed hydrolysis of crystalline 
cellulose is limited by the rate of enzyme complexation with glycan chains, which is shown to be 
equivalent to the rate of initial-cut product generation.  This rate is enhanced in the presence of 
endoglucanase enzymes.  The results confirm recent reports of the role of morphological obsta-
cles on enzyme processivity, and also provide the first direct evidence that processive length may 
be increased by the presence of companion enzymes, including small amounts of TemGH5.  The 
findings of this work indicate that efforts to improve cellobiohydrolase activity should focus on 
enhancing the enzyme’s ability to complex with cellulose chains, and the analysis employed pro-
vides a new technique for investigating the mechanism by which companion enzymes influence 
cellobiohydrolase activity. 

5.2 Introductory Notes 

5.2.1 Abbreviations 

TemGH5, Talaromyces emersonii GH5 endoglucanase; TlCel7A, Trichoderma longibrachiatum 
cellobiohydrolase Cel7A; Gi, cello-oligosaccharide of length i. 

5.2.2 Textual Footnotes 

* This chapter, with few modifications from its original format, represents the following peer-reviewed publication: 
J. M. Fox, S. E. Levine, D. S. Clark, H. W. Blanch, Initial- and processive-cut products reveal cellobiohydrolase rate 
limitations and the role of companion enzymes. Biochemistry 51, 442 (Jan 10, 2012). 

**Initial rates (averages of the first three hours of hydrolysis) are normalized by TlCl7A concentration to facilitate 
comparison with the initial-cut experiments of TlCel7A on cellohexaose, where a lower concentration of enzyme 
had to be used to facilitate initial-rate measurements.  Rates reported here correspond to reactions 4A-4E in Table 
5.1, where [TlCel7A] is held constant but [TemGH5] is increased.  These rates are 30-300 times slower than initial 
rates of initial-cut product generation on cellohexaose (3 µM/ sec / µM TlCel7A). 

***Estimates of processive length (npr) for each enzyme mixture.  These estimates are based on the ratio of concen-
trations of processive-cut products to initial-cut products for a processive enzyme; this ratio levels off to the proces-
sive length of that enzyme.  Figure 5.2 confirms this behavior. Values of processive length (npr) are estimated at 110 
hours (the 110 hour time points from Fig. 5.2).  The dependence of processive length on concentrations of TlCel7A 
and TemGH5 enzymes is addressed in the discussion. 
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5.3 Introduction 

 Cellobiohydrolases comprise a major class of cellulase enzymes, which catalyze the hy-
drolysis of insoluble cellulose into soluble sugars.  In Nature, they are the largest single compo-
nent of the multi-cellulase mixtures secreted by cellulolytic fungi (1); in industry, they are a 
common target of enzyme engineering strategies to develop more efficient saccharification sys-
tems for cellulosic biofuels production (2).  Efforts to understand and improve cellobiohydrolase 
activity in cellulolytic mixtures have been hindered by the experimental difficulties presented by 
the heterogeneous biocatalytic systems in which they participate (3-5). 

 Once adsorbed to the cellulose surface, cellobiohydrolases participate in a series of reac-
tion steps that are difficult to study in isolation (6-8).  Experimental evidence of a particular rate-
limiting kinetic step has therefore remained elusive.  In this work, we employed an experimental 
approach, based on a detailed mechanistic model of cellobiohydrolase action, to identify the rate-
limitations imposed upon Trichoderma longibrachiatum cellobiohydrolase I (TlCel7A) as it cata-
lyzes the hydrolysis of bacterial microcrystalline cellulose (BMCC) alone and in the presence of 
Talaromyces emersonii endoglucanase II (TemGH5).    

 Cellobiohydrolases (CBH; EC. 3.2.1.91) and endoglucanases (EG; EC. 3.2.1.4) represent 
the two broad cellulase classes.  Both have active sites consisting of two glutamate and/or aspar-
tate residues positioned to promote general acid catalyzed hydrolysis of the β-1,4-bonds that link 
the repeating cellobiose subunits of cellulose chains (9-11).   The distance between these catalyt-
ic residues (5.5 or 10 Å) determines whether hydrolysis results in a retention or inversion of the 
anomeric carbon’s configuration.  In cellobiohydrolases, which hydrolyze cellulose processively 
from either the reducing or non-reducing chain ends, the active site is located within a tunnel that 
can accommodate 6-10 glucosyl units (12, 13).  In endoglucanases, which catalyze hydrolysis 
within cellulose chains, it is located within a 3-5 residue binding site cleft (14).  In both cases, 
the catalytic domain is linked via a 6-109 residue polypeptide linker to a smaller cellulose bind-
ing module (CBM), which facilitates adsorption to insoluble cellulosic substrates (15).  Endoglu-
canases sometimes lack a CBM, but cellobiohydrolases with such architectures have not been 
found. 

 The TlCel7A and TemGH5 enzymes used in this study are thermostable examples of GH7 
and GH5 cellulases.  TlCel7A is a retaining cellobiohydrolase with a 10-residue binding site tun-
nel that facilitates processive hydrolysis from the reducing ends of cellulose chains (12). 
TemGH5, which has been less extensively studied, is a retaining endoglucanase that appears to 
lack a CBM domain and binds cellulose with a binding site cleft that allows it to catalyze hy-
drolysis from within cellulose chains (16, 17).  
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Figure 5.1 A general conceptual picture of the reaction path undertaken by cellobiohydrolases as they hydrolyze 
insoluble cellulose.  Steps for endoglucanases are similar, but they do not engage in processive catalysis. 

 Possible reaction paths undertaken by these enzymes as they hydrolyze insoluble, hetero-
geneous cellulosic materials have been proposed in the literature (Fig. 5.1) (3). A cellobiohydro-
lase (1) adsorbs to the crystalline regions of the cellulose surface via its CBM domain (18-20); 
(2) it diffuses along the surface and complexes with a cellulose chain end via its catalytic domain 
(21); (3) it catalyzes an initial hydrolysis event, generating glucose, cellobiose, or cellotriose (G1, 
G2, and G3) (22-24); (4) it catalyzes subsequent hydrolysis events, generating only G2, as it pro-
cessively moves along the chain (25, 26); (5) it decomplexes from the cellulose chain (27); (6) it 
recomplexes with a cellulose chain or desorbs from the surface.  Endoglucanases undergo similar 
steps, but they are generally thought to engage in a non-processive random attack of less crystal-
line regions with single chains exposed.  These enzymes generate both soluble and insoluble 
products, depending on the length the polymer they are hydrolyzing and the position of the hy-
drolyzed glycosidic linkage being broken.  

 Over the past 30 years, numerous mechanistic models describing the kinetics of cellulase-
catalyzed hydrolysis of cellulose have been developed to determine the rate limitations of enzy-
matic hydrolysis (3, 4, 28-33).  Often relying on simplified representations of cellulose (includ-
ing those of a soluble polymer, a bulk phase substrate, a multi-component mixture, a periodic flat 
surface), these studies have been limited in their ability to determine kinetic limitations arising 
form the nature of the cellulose surface (surface diffusion, chain abstraction, processivity, and 
decomplexation) (29-31, 33).  Almost all of these studies conclude that more experimental in-
sights into surface reactions are required.  Experimental efforts have been made to measure the 
rates of steps 1, 4, and 5 for Cel7A; however, conclusions about the sensitivity of overall hydrol-
ysis kinetics to these steps have been difficult to draw in the absence of rate data for steps 2 and 
3 (25, 27, 34, 35).  

 Initial- and processive-cut TlCel7A product profiles can be employed to reveal the kinetic 
limitations imposed by complexation of an adsorbed cellobiohydrolase with chain ends and by 
subsequent processive catalysis.  When compared to initial-rate measurements on soluble cello-
oligosaccharide chain ends, initial-cut product profiles from crystalline hydrolysis can reveal ki-
netic impediments associated with adsorption and complexation. Together with initial-cut time 
courses, processive-cut profiles can reveal limitations associated with processivity. 
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Endoglucanase enzymes engage in complementary hydrolysis activities that reveal the limita-
tions of initial and processive modes of cellobiohydrolase catalysis. Endoglucanases increase the 
concentration of free chain ends on the substrate surface and, by acting preferentially on partial-
ly-exposed cellulose chains, may decrease the amount of solution-exposed pseudo-amorphous 
regions (36).  The response of initial- and processive-cut TlCel7A product profiles to the pres-
ence of increasing concentrations of endoglucanase enzymes can reveal not only the surface fea-
tures that limit TlCel7A complexation and processivity, but also the kinetic limitations imposed 
by them. 

 We used measurements of cello-oligosaccharide production from bacterial microcrystal-
line cellulose (BMCC) obtained with either (1) identical concentrations of TlCel7A and different 
concentrations of TemGH5 or (2) different concentrations of TlCel7A acting alone to calculate 
time-course profiles for the rates of initial and processive cellobiohydrolase hydrolysis events.  
We show that initial-cut products are reporters of the complexation of adsorbed cellobiohydro-
lases with glycan chains and that ratios of processive- to initial-cut products at later times serve 
as a measure of processive length. Profiles of initial-cut products, processive-cut products, and 
the ratio of the two permit assessment of the extent to which the overall hydrolysis process is 
limited by the reaction steps associated with an adsorbed cellobiohydrolase’s engagement with 
cellulose chain ends and by those associated with its subsequent processive hydrolysis.  This rep-
resents the first experimental attempt to directly study (1) cellobiohydrolase complexation kinet-
ics and their impact on overall rates of cellulose hydrolysis and (2) the influence of endoglu-
canase enzymes on cellobiohydrolase complexation kinetics and on processive length.   

5.4 Materials and Methods 

5.4.1 Enzyme Purification 

 Both Trichoderma longibrachiatum Cellobiohydrolase I (TlCel7A) and Talaromyces em-
ersonii EG2 (TemGH5) were purchased from Megazyme and purified to single band purity as 
described in SI Materials and Methods.  A 5-hour assay of each enzyme against 10 g/L carbox-
ymethyl cellulose ensured TlCel7A purity.  At 0.27 µM, TemGH5 hydrolyzed ~ 50% of the sub-
strate in 5 hours, but TlCel7A had no detectable activity against it, indicating no endoglucanase 
contamination of TlCel7A (SI Materials and Methods).  

5.4.2 Cellulose Preparation 

 Pretreatment effects were minimized in the preparation employed here by the exclusion of 
steps involving strongly acidic or basic solutions. 

 A 20 µL freezer stock of Acetobacter xylinum (ATCC 53582) was used to inoculate 1 L of 
media as described previously (37).  This inoculum was grown in a 2 L Erlenmeyer flask for 7 
days at 25°C in a shaker at 250 RPM); the resulting cellulose was purified as described in SI Ma-
terials and Methods.  The final cellulose concentration was measured with the phenol sulfuric 
acid method (37, 38).   
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5.4.3 Measurement of TlCel7A Initial-cut Product Distribution 

 The first-cut product distribution generated by TlCel7A after binding to cellohexaose was 
measured with initial rate experiments.  Sugar production was monitored for two minutes in 100 
µL reactions containing the following: 0.01 µM TlCel7A, 1390 µM cellohexaose (G6), and 50 
mM sodium acetate buffer (pH 4.8).  The G6 solution (with buffer) was incubated for 5 minutes 
in a 96-Well PCR plate at 50°C before 4.2 µL of the enzyme was added to bring the total volume 
to 100 µL.  Reactions were stopped at 0, 20, 40, 60, 80, 100, and 120 seconds with 100 µL of 
0.100 M NaOH solution.  Concentrations of glucose (G1), cellobiose (G2), cellotriose (G3), cel-
lotetraose (G 4), and cellopentaose (G5) were measured with a Dionex ICS-3000 equipped with a 
CarboPac PA200 column and a Dionex Electrochemical Cell detection unit.  All reactions were 
carried out in triplicate. 

5.4.4 Measurement of Cellotriose Hydrolysis Rates 

 The Michaelis-Menten kinetic parameters for the activity of TlCel7A and TemGH5 on cel-
lotriose were calculated with nonlinear regression of initial rate data (Datagraph, Figs. A2A and 
S2B).  Hydrolysis was monitored in 100 µL reactions with 0.051 µM TlCel7A or 0.074 µM 
TemGH5 in 50 mM sodium acetate (pH 4.8) buffer (50°C).  Initial cellotriose concentrations of 
10.13, 50.65, 202.6, 506.5, and 919.804 µM were used for TlCel7A and 7.61, 50.03, 194.25, 
476.02, 865.07, and 3323.6 µM for TemGH5.  Reactions were stopped after 1, 2, 3, and 4 hours 
with 100 µL of 0.10 M NaOH, and glucose production was measured on the Dionex HPLC.  

5.4.5 Measurement of Cello-oligosaccharide Production in Various Mixtures 

 Cello-oligosaccharide production by defined mixtures of TlCel7A and TemGH5 acting on 
BMCC was monitored discretely over the course of 120 hours.  In humidified shakers at 50°C 
(200 RPM), reactions were carried out in 250 ml Erlenmeyer flasks containing 25.25 ml of 1 g/L 
BMCC, 50 mM sodium acetate buffer (pH 4.8), 0.01 % sodium azide, and enzyme concentra-
tions as described in Table 5.1.  Samples were taken from 1, 3A-3C, and 4A-4E at the following 
times:  0, 1.17, 2.22, 3.42, 4.6, 5.93, 7.8, 13.15, 16.42, 20.87, 37.47, 45, 59.63, 68.33, 75.6, 
86.08, 97.73, 110.4, and 120.6 hours.  Samples were taken from 2A-2C at the following times: 0, 
1.75, 6.3, 16.5, 21.4, 26.9, 32.3, 49, 98.1, and 121.1 hours.  At all time points, two 20 µL aliquots 
were withdrawn individually frozen and diluted with 0.05 M NaOH before being run on a Di-
onex.  All reactions were carried out in duplicate. 

         Table 5.1 Enzyme Loadings in Various Mixtures 
Reaction # [Ce7A] 

(µM) 
[GH5] 
(µM) 

 Reaction # [Cel7A] 
(µM) 

[GH5] 
(µM) 

1 0 0  3B 0.152 0 
2A 0 0.022  3C 0.305 0 
2B 0 0.037  4A 0.076 0 
2C 0 0.19  4B 0.076 0.0187 
2D 0 0.37  4C 0.076 0.0935 
2E 0 0.74  4D 0.076 0.187 
3A 0.015 0  4E 0.076 0.374 
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5.4.6 Analysis of Kinetic Data 

 Prior to detailed kinetic analysis, measurements likely to be erroneous were detected with 
a MATLAB program written for this study. When a single measurement brought the standard 
error associated with an average of four measurements of the same phenomenon above 10%, that 
measurement was removed from the data analyzed.  Of the total dataset, 19 measurements were 
removed; these represented ~2% of the total measurements. Bias resulting from the removal of 
this small percentage of data is unlikely to affect the results of this work. 

5.4.7 Derivation of Equations for η and f 

 The development of equations for η, the fraction of enzymes that are not directly engaged 
in hydrolyzing the substrate, is described in Section 5.9.  Derivations of equations for f, the frac-
tion of cellotriose generated by TemGH5 within TemGH5-TlCel7A mixtures, are detailed in Sec-
tion 5.11. 

5.5 Results 

5.5.1 Determination of TlCel7A Initial- and Processive-cut Product Generation Rates 

 The differences in product distributions generated by cellobiohydrolases hydrolyzing cel-
lulose processively and non-processively permit the experimental assessment of the kinetic limi-
tations of binding to, processing along, and dissociating from cellulose chains. Upon complexing 
with a glycan chain, TlCel7A generates G1, G2, and G3 in a fixed ratio.  The rate of TlCel7A ini-
tial-cut product (icut product) formation can therefore be written in terms of the rate of G3 gener-
ation from chain ends: 

d icut product[ ]TlCel7A

dt
=

d G3[ ]TlCel7A icut

dt

⎛
⎝⎜

⎞
⎠⎟ ⋅ 1 + α + β( )

 (5.1) 

where 

α =

d G1[ ]TlCel7A icut

dt
d G3[ ]TlCel7A icut

dt

,    β =

d G2[ ]TlCel7A icut

dt
d G3[ ]TlCel7A icut

dt   

A material balance for G3 can be used to express the right side of Eq. 5.1 in terms of measureable 
quantities.  Both the initial cuts of TlCel7A and the “random attack” of TemGH5 on BMCC gen-
erate G3, and both enzymes can catalyze its hydrolysis.  The following equation for G3 produc-
tion takes these processes into account: 

d G3[ ]
observed

dt
                                                                                

     =
d G3[ ]TlCel7A icut

dt
+
d G3[ ]TemGH5 BMCC

dt
−
d G3[ ]G 3 hyd

dt

⎛
⎝⎜

⎞
⎠⎟  (5.2) 

Eqs. 5.1 and 5.2 can be combined to yield 
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d icut product[ ]TlCel7A

dt
                                                                  

 = 1 + α + β( ) ⋅
d G3[ ]

obs

dt
+
d G3[ ]G 3 hyd

dt
−
d G3[ ]TemGH5 BMCC

dt

⎛
⎝⎜

⎞
⎠⎟  (5.3) 

In Eqs. 5.2 and 5.3, soluble cello-oligosaccharide chains consisting of more than three glucosyl 
units are not considered as separate sources of G3 production. While cellotetraose (G4), cellopen-
taose (G5), and cellohexaose (G6) are slowly generated by the action of TemGH5 on cellulose, 
they are quickly hydrolyzed by the same enzyme; thus, their production is included in the last 
term of either equation.  Cello-oligosaccharide chains with more than 6 glucose subunits are in-
soluble. 

 While retaining glycosyl hydrolase enzymes have been shown to be capable of catalyzing 
transglycosylation, this activity has been measured to be minor in comparison with their hydro-
lytic activities by Harjunpaa et al, Gusakov et al, and Vřanská et al (24, 39, 40).  Thus, as in ki-
netic models presented by Okazaki et al, Bezzera et al, Praestgaard et al, and Nidetzky et al, 
transglycosylation by TlCel7A and TemGH5 was neglected in this analysis (23, 29, 41, 42) 

If the initial concentrations of all species are assumed to be zero, Eq. 5.3 can be integrated to ob-
tain an expression for the concentration of initial-cut products that have been generated at any 
given time: 

icut product[ ]TlCel7A                                                                      

    = 1 + α + β( ) ⋅ G3[ ]
obs

+ G3[ ]
G 3 hyd

− G3[ ]
TemGH5 BMCC( )  (5.4) 

Each term on the right hand side represents some discretely measureable or estimable quantity. 

An expression for the concentration of processive-cut products at any given time can be derived 
in a fashion identical to that described above (Eq. 5.5): 

pcut product[ ]Tr CBH1                                                                     

    = G2[ ]
obs

− G2[ ]G 3hyd
− G2[ ]TemGH5 BMCC

− G2[ ]TlCel7A icuts( )  (5.5) 

5.5.2 Measurement of Initial-cut Product Distribution by TlCel7A on Chain Ends 

 The kinetic analysis employed here relies on previous reports that cellobiohydrolase en-
zymes generate glucose, cellobiose, and cellotriose as initial-cut products and that the initial-cut 
product distribution is the same for both soluble and solid substrates. The first assumption is well 
supported by existing literature (22-24, 43). The second is based on a hypothesis that the factors 
influencing cellobiohydrolase product formation patterns result from substrate binding within the 
active site tunnel, rather than outside of it.  Previous efforts to investigate processivity of cellobi-
ohydrolases and chitinases suggest that initial-cut product distributions result from the tendency 
of the terminal glucosyl unit to occupy the +1, +2, and +3 sites located after the catalytic residues 
(8, 43).  For Trichoderma reesei Cel7A, crystallographic data have revealed that the interaction 
between enzyme and bound glycan is determined (1) by an extensive network of direct and indi-
rect hydrogen bonds lining the entire tunnel and (2) by four tryptophan residues responsible for 
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the -7, -4, -2, and +1 binding sites (9, 12).  These data reveal an active site located seven binding 
sites into the enzyme, meaning that the dominant environment of a cello-oligosaccharide chain 
prior to being cleaved is the enzyme’s interior.  As the molecular determinants of binding are 
located inside the enzyme, the initial-cut product distribution that they influence should not de-
pend on whether the substrate was soluble or abstracted from a surface.  In this work, we have 
assumed this to be the case, and that substrate morphology is more likely to affect the rate at 
which initial cuts are generated and the rate with which chains are fed into the tunnel than the 
pattern of their cleavage once they get there.  The limitations of this assumption are addressed 
below. 

 The initial cut (G1-G3) product distribution for TlCel7A acting on insoluble substrate chain 
ends was determined from the initial rates of cellohexaose hydrolysis (G6).  A high cellohexaose 
concentration (~100xKm), a low enzyme/substrate loading, and short reaction times were used to 
ensure that TlCel7A operated at a Vmax corresponding to its rate of catalysis at chain ends.  
Measured rates of G1 and G2 production were observed to be almost equivalent to the respective 
rates of G5 and G4 production (Table 5.2; Fig. 5.A2), suggesting that these products correspond 
only to initial cuts (23, 24). 

G
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Fig. 5.A2.  Initial cut products generated by TlCel7A Activity on G6. Cellooligosaccharides with degrees of 
polymerization that add to 6 are produced at nearly identical rates.  In this figure, sugars are labeled as follows: G1 (-
-), G2 ( �), G3 (☐)G4  (n)  G5  
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                          Table 5.2 Kinetic Parameters 
Enzyme Substrate Parameter Value Source 
TlCel7A G6 (d[G1]/dt)i 0.0142 µM/s Measured 
TlCel7A G6 (d[G2]/dt)i 0.0038 µM/s Measured 
TlCel7A G6 (d[G3]/dt)i 0.0118 µM/s Measured 
TlCel7A G6 (d[G4]/dt)i 0.0033 µM/s Measured 
TlCel7A G6 (d[G5]/dt)i 0.012 µM/s Measured 
TlCel7A G6 kcatTlCel7A 4.5 1/s Measured* 
TlCel7A G6 KMTlCel7A 14.9 µM Measured* 
TlCel7A G3 kcatTlCel7A 58.1 h-1 Measured 
TlCel7A G3 KMTlCel7A 107.3 µM Measured 
TlCel7A G3-6 KIG1 10,000 µM [3] 
TlCel7A G2-6 KIG2 100 µM [31-33] 
TlCel7A G6 α 2.41 Measured 
TlCel7A G6 β 0.64 Measured 
TlCel7A BMCC ρ 2.7 Estimated 
TlCel7A BMCC K’eq 0.592 µM Measured 
TemGH5 G3 kcatTemGH5 910 h-1 Measured 
TemGH5 G3 KMTemGH5 960 µM Measured 
TemGH5 G3-6 KIG1 10,000 [3] 
TemGH5 G3-6 KIG2 500 [30] 
TemGH5 BMCC ρ 1 Estimated 
TemGH5 BMCC K’eq 0.088 µM Measured 

                *These values were measured from initial rate experiments as described in Section 5.13.4. 

5.5.3 Cellotriose Hydrolysis by TlCel7A and TemGH5 

 Cellotriose hydrolysis by both enzymes was observed to follow Michaelis-Menten behav-
ior modified to include competitive inhibition by G1 and G2 (Figs. 5.A2A and 5.A2B) (44): 

d G3[ ]hyd
dt

=
−kcatTlCel7A ⋅ηTlCel7A ⋅ TlCel7A[ ]total ⋅ G3[ ]

G3[ ]+ KMTlCel7A ⋅ 1 +
G1[ ]

KIG1TlCel7A

+
G2[ ]

KIG 2TlCel7A

⎛
⎝⎜

⎞
⎠⎟

      

d G3[ ]hyd
dt

=
−kcatTemGH5 ⋅ηTemGH5 ⋅ TemEG2[ ]total ⋅ G3[ ]

G3[ ]+ KMTemGH5 ⋅ 1 +
G1[ ]

KIG1TemGH5

+
G2[ ]

KIG 2TemGH5

⎛
⎝⎜

⎞
⎠⎟

            

 (5.6 and 5.7) 

where ηCBH and ηEG represent the fractions of each enzyme that are free to interact with soluble 
substrates (η= [enzyme free in solution or adsorbed to the cellulose but not complexed with cel-
lulose chains]/[total enzyme]), i.e., uncomplexed with cellulose chains.  Previous work has 
shown that such enzyme speciation exists (3, 27, 45).  All relevant kinetic constants from Eqs. 
5.6 and 5.7 were measured from initial rate experiments or estimated from the literature (3, 46-
49) (Table 5.2). 

 Values for ηCBH and ηEG were estimated from constitutive equations based on three as-
sumptions: (1) cellulases can move to complexation sites only after becoming adsorbed to cellu-
lose (complexation and adsorption are not coincident);  (2) cellulase adsorption and complexa-
tion are in equilibrium (50); and (3) the total enzyme concentration and total number of surface 
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sites (adsorption sites plus complexation sites) are assumed to be within an order of magnitude of 
each other (27, 34, 51).  An equation for ηCBH based on these assumptions takes the form (Ap-
pendix 1, Section 5.9): 

ηTlCel7A = ρTlCel7A ⋅
TlCel7A[ ]total

K 'eqTlCel7A+ TlCel7A[ ]total

       
 (5.8) 

where ρCBH is a proportionality constant that  can be estimated from data provided in Kurasin et 
al (27), and K’eqCBH is the apparent equilibrium dissociation constant for complexed enzymes 
(Appendices 1 and 2, Sections 5.9 and 5.10).  The equation for ηEG is identical in form.  Values 
of ρ and K’eq for each enzyme are included in Table 5.2. 

 For each mixture described in Table 5.1, rates of G3 hydrolysis at 18 different time points 
were calculated from soluble cello-oligosaccharide measurements and the parameters described 
above using Eqs. 5.6 and 5.7 (Fig. 5.A3A).  Fits to d[G3]G3hyd/dt vs. t data were then integrated to 
yield time course profiles for G3 hydrolysis (Fig. 5.A3B). 

5.5.4 Estimation of Cellotriose Production by TemGH5 

 Cellotriose resulting from the action of TemGH5 on BMCC was estimated as a fraction f 
of the total G3 produced in each reaction: 

G3[ ]TemGH5 BMCC
= f ⋅ G3 total[ ]+ G3 hyd[ ]( )

G2[ ]TemGH5 BMCC
= λ ⋅ f ⋅ G3 total[ ]+ G3 hyd[ ]( )  (5.9 and 5.10) 

where 

λ =
G2[ ]TemGH5 BMCC

G3[ ]TemGH5 BMCC  

 In solutions containing TemGH5 alone, λ did not vary significantly with time (Fig. 5.A5).  
This observation is consistent with the “random attack” mechanism proposed for this enzyme, 
where it cleaves randomly within chains, generating soluble products either by cleaving near 
chain ends or by generating multiple cuts near the initial cut. Even if the degree of polymeriza-
tion (DP) on the surface decreases throughout hydrolysis, a change in the pattern of glucose, cel-
lobiose, or cellotriose generated from terminal glycosidic linkages is unlikely to result from a 
change in the number of such linkages on the surface.  If these products are generated by multi-
ple cuts close together, their ratio will also be independent of DP. 

 Values of f are difficult to measure, but upper and lower bounds can be estimated from 
Eqs. 5.11 and 5.12: 



 109 

f t( ) = Total G3  by TemGH5 alone

Total G3  by TemGH5 and TlCel7A in mix
     

=
G3[ ]

tot TemGH5 i

G3[ ]
total TemGH5 i

+ G3[ ]
tot TrCel7A i

f t( ) =
G3[ ]

total by TemGH5 i

1.4 ⋅ G3[ ]
total TemGH5 i

+ G3[ ]
total TlCel7A i( )   

 (5.11 and 5.12) 

Equation 5.11 overestimates f by relying on an underestimate of the total amount of G3 generated 
by a two-enzyme mixture (the denominator); TlCel7A and TemGH5 are assumed to act in con-
cert as they would in isolation (subscript i = isolation; Appendix 3, Section 5.11).  Equation 5.12 
underestimates f; in this equation, the concerted action of both enzymes is assumed to lead to an 
increase in G3 production that is identical to the average increase in overall hydrolysis commonly 
reported when these enzymes are combined (Appendix 3, Section 5.11) (52).  This increase is 
often described by the ratio defined by Eq. 13: 

R =
Geq[ ]

mix

Geq[ ]
TlCel7A

+ Geq[ ]
TemGH5

   

   
 (5.13) 

where Geq is the glucose equivalent of soluble products formed.  In the reactions employed in 
this work, the average value of this ratio was 1.4 (Appendix 3, Section 5.11). Averages of upper 
and lower bounds of f(t) were used to evaluate Eqs. 5.9 and 5.10 at each time point.   

5.6 Discussion 

5.6.1 Complexation Limits Hydrolysis 

 The significance of rates of initial-cut product generation from solid substrates can be ex-
plored through a comparison to rates on soluble substrates (Table 5.3).  With 1.39 mM cellohex-
aose, a soluble substrate, TlCel7A generated initial-cut products at a rate of 3 µM/sec/µM 
TlCel7A. This cellohexaose concentration is about 100 times the KM of TlCel7A for this sub-
strate; the rate observed, therefore, is dependent only on the enzyme concentration and the intrin-
sic rate of catalysis (kcat).  On 1 g/L BMCC, TlCel7A generated initial-cut products at initial rates 
of 0.01 to 0.1 µM/sec/µM TlCel7A enzyme (Table 5.3); these rates are 30-300 times slower than 
those on the soluble substrate.  Unlike rates with cellohexaose as substrate, however, the insolu-
ble substrate rates are not necessarily measured where [chain ends] >> KM-surface (mole/surface 
area). To determine the maximum rates of hydrolysis where the chain end concentration was not 
limiting, TemGH5 endoglucanase was added to provide additional cellulose chain ends for 
TlCel7A action. In Table 5.3, the rate at which initial-cut TlCel7A products are generated from 
cellulose appears to reach a point at which it is independent of chain end surface concentration.  
The last two data points indicate that when the endoglucanase concentration is doubled from 
0.185 µM to 0.37 µM, the initial rate of initial-cut product generation by TlCel7A does not dou-
ble, increasing instead from 0.093 to 0.107 µM/ sec / µM TlCel7A. While more endoglucanse 
might enhance that rate, this small rate increase suggests that, in the presence of excess surface 
chains ([chain ends] >> KM), the rate is no longer dependent on the availability of chain ends. 
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The observed values on solid substrates, even with excess surface chains available, are still an 
order of magnitude lower than the analogous rate on soluble substrates.  

 Table 5.3 Initial Rates of Initial-cut Product Generation** 

Step Substrate 
Conc. 

[GH5] icut Product Rate 
µM/sec/µM TlCel7A 

icut on 
BMCC 

1 g/L BMCC 0 0.015 

icut on 
BMCC 

1 g/L BMCC 0.019 0.021 

icut on 
BMCC 

1 g/L BMCC 0.094 0.044 

icut on 
BMCC 

1 g/L BMCC 0.187 0.093 

icut on 
BMCC 

1 g/L BMCC 0.374 0.108 

icut on C6 1.39 mM C6 n/a 3.0 
 

 Initial-cut products appear to be reporters for the complexation of TlCel7A enzymes with 
chain ends in the solid substrate.  In accordance with the aforementioned rate disparities, the in-
trinsic rate of hydrolysis, which is at least as fast as the rate of initial-cut product generation from 
soluble cello-oligosaccharides, does not govern the rate at which initial-cut products are formed 
from crystalline cellulose. Instead, the cellobiohydrolases seem to be impeded by the physical 
processes associated with their ability to adsorb to the substrate, diffuse along the cellulose sur-
face, and form a complex with polymer chain ends.  As adsorption has been shown to reach equi-
librium within one hour, the last two steps, referred to as complexation for this discussion, ap-
pear to determine the rate of initial-cut product formation (53). 

 When compared with recently measured rates of Trichoderma Cel7A processivity, slow 
cellulose chain association rates appear to limit overall hydrolysis.  In situ observations of 
TlCel7A cellobiohydrolases made with fast-scan AFM show processive speeds of ~3.5 +/- 1 
nm/sec Igarashi et al.  (25).  This speed is approximately equal to the kcat reported for this cello-
biohydrolase multiplied by the length of a cellobiose unit (~1 nm), and it amounts to a specific 
activity of ~ 3.5 µM/sec /µM processive TlCel7A when cellobiose is the dominant product.  
Rates of processive catalysis measured by Igarashi et al. are nearly identical to the rates of ini-
tial-cut product generation from soluble substrates measured in the present work (3 µM/sec /µM 
TlCel7A); both appear to be governed by the intrinsic kinetics of the enzyme (kcat).  Thus, the 
kinetics of cellulose hydrolysis are primarily governed by the rates at which cellobiohydrolases 
become processive, not by the rates at which they process. 

 These results shed some light on the kinetic limitations imposed by the rate with which 
processive enzymes decomplex from cellulose chains.  If enzymes that become “unstuck” quick-
ly re-engage in processive hydrolysis, then the rate at which they disengage with chain ends 
could limit overall hydrolysis kinetics. This argument has been put forth in the literature (27). 
We find, however, that, early on, the ability of TlCel7A enzymes to initiate catalysis at chain 
ends is limited by the availability of those ends. Faster rates of decomplexation are only certain 
to increase rates of overall hydrolysis if complexation is fast, and we find that it is slow. 
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5.6.2 Surface Morphology Limits Processivity 

 The presence of additional physical and kinetic impediments to processive cellobiohydro-
lase action was evidenced in time course profiles showing the ratios of processive to initial cuts 
(p/i ratio, Fig. 5.2C).  The average number of processive events resulting from a single initial 
catalytic event is defined as the processive length (npr).  For each cellulase mixture, the p/i ratio 
approaches a value of npr at later times.  The p/i ratios at 110 hours  (~npr) can be used as an es-
timate of processive length (Table 5.4); processive length values reported here are on the same 
order of magnitude as those reported in other studies of TlCel7A on BMCC (27, 54). As these 
values are two orders of magnitude lower than estimates of the intrinsic processive length of the 
Trichoderma Cel7A enzyme on this substrate (1000-4000), processive cellobiohydrolases are 
likely hindered by physical obstructions or decomplexation-encouraging surface features far 
more frequently than they are stopped by the intrinsic kinetics of disengagement from cellulose 
chains.  These findings are consistent with previous work showing that processive length de-
pends on the nature of the substrate (27). 

                     Table 5.4 Estimates of Processive Length (npr) for Each Mixture*** 

[Cel7A] 
(µM) 

[GH5] 
(µM) 

R (p/i)  
110hr 
~npr 

X [Cel7A] 
(µM) 

[GH5] 
(µM) 

R (p/i) 
110hr 
~npr 

X 

0.076 0 13 18 0.015 0 8 2 
0.076 0.0187 16 26 0.076 0 13 32 
0.076 0.0935 12 47 0.152 0 18 57 
0.076 0.187 9 53 0.305 0 21  
0.076 0.374 4 60     

                        R (p/i) = p/i ratio 
                       X = % conversion at 110hr 
 
 The present results also evidence the influence of endoglucanase enzymes on processive 
length (Table 5.4). Mixtures with 0.076 µM of TlCel7A and 0.0187 of TemGH5 permit longer or 
equivalent processive lengths than the reaction with 0.076 µM of TlCel7A alone.  The failure of 
low TemGH5 concentrations to reduce processive length by creating cuts in the surface is coun-
terintuitive. By preferentially hydrolyzing exposed, pseudo-amorphous cellulose chains on the 
cellulose surface, the regions upon which endoglucanases are most active, low concentrations of 
these enzymes may remove impediments, increasing the length over which processive cellobio-
hydrolase catalysis can occur.  Other authors have provided evidence of the influence of surface 
morphology on cellobiohydrolase processive length, but the current data provide evidence that 
morphological changes generated by low concentrations of endoglucanase enzymes may influ-
ence processive length (27, 45, 55). The mechanism of these endoglucanase-influenced structural 
changes is not known.  

 At concentrations above 0.0935 µM, TemGH5 began to restrict the processive length of 
TlCel7A (Fig. 5.2C).  This may result from a shortening of the average length of exposed cellu-
lose strands or an enzyme crowding effect at the surface.  As the latter has not previously been 
observed at the cellulase/cellulose loadings used in this study, the former is more likely (3, 56, 
57).  At high concentrations, TemGH5 may generate cuts within the crystalline regions to which 
TlCel7A binds, thus reducing the length over which TlCel7A can freely process.  Mechanisms 
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proposed here, however, are only speculative.  In the end, the failure of low endoglucanase con-
centrations to rapidly decrease processive length deserves further experimental investigation. 

5.6.3 Cellobiohydrolase Enzymes Potentiate Their Own Activity by Influencing Surface 
Morphology 

 In reactions with TlCel7A acting alone, the processive length increased with TlCel7A 
loading (Fig. 5.2D; Table 5.4), suggesting that these enzymes may affect the morphology of the 
cellulose in a manner that increases its susceptibility to processive catalysis. Bacterial microcrys-
talline cellulose is predominantly in the Iα crystalline phase, which consists of cellulose chains 
aligned in parallel (58).  Previous work has shown that the TlCel7A cellobiohydrolase enzymes 
engage in unidirectional processive catalysis on the hydrophobic face of the crystal (25, 58, 59).  
We speculate that cellobiohydrolases may be able to potentiate their own activity by clearing ob-
structions associated with imperfections in the packing of intertwined or closely aligned chains.  

 The change in processive length with cellobiohydrolase loading may also evidence the 
minor endo-like activity that has been reported for cellobiohydrolases (27).  The present work 
reveals that small amounts of endoglucanase can increase processive length.  The minor endo-
like activity of cellobiohydrolase enzymes may function in a similar fashion; as the cellobiohy-
drolase concentration is increased, this endo-like activity, while still minor, may increase and 
lead to increased processive length in a manner similar to that of small amounts of endoglu-
canase.  Previous work has shown that modification or removal of the four surface loops that 
form the active site tunnel of Cel7A can open up its active site up, increasing its endo-like char-
acter(49, 60).  A processive- and initial-cut analysis similar to that used in the present work but 
carried out with endo-like variants of Cel7A may reveal the influence of endo activity on the 
ability of cellobiohydrolase enzymes to carry out processive catalysis. 

5.6.4 The Sensitivity of This Approach to Estimates Employed 

 The present results showing that complexation is slow are unlikely to change if the initial-
cut product distribution for TlCel7A is different on soluble and insoluble substrates.  The product 
distribution is embedded in the (1+α+β) coefficient of Eq. 5.3, which describes initial-cut prod-
ucts generated from insoluble cellulose. The (1+α+β) term represents the total number of initial-
cut products generated each time cellotriose is generated from an initial cut.  For cellohexaose, 
the value of (1+α+β) was found to be 4.  Initial rates of initial-cut product generation on solid 
and soluble substrates were shown to differ by an order of magnitude when the initial-cut prod-
uct distribution was assumed to be the same  ((1+α+β) = 4) on solid and soluble substrates. For 
initial rates of initial-cut product generation to be equivalent on solid and soluble substrates, the 
value of (1+α+β) would have to be ~40 for cellulose.  In such a case, the processive length corre-
sponding to the reaction with 0.305 µM TlCel7A acting alone, the longest in this study, would be 
2.  This is an order of magnitude smaller than any processive length reported for this enzyme, 
indicating that a value of 40 for (1+α+β) on solid cellulose is unrealistic(27).  Thus, even if ini-
tial-cut product distributions on solid and soluble substrates are different, they are unlikely to be 
different enough to invalidate the result that complexation is rate limiting. 

 The slow complexation result is similarly unaffected by the processive-cut product distri-
bution.  Previous studies have shown that cellobiose is the dominant product of processive catal-
ysis (22, 23). In the present work, cellobiose is treated as the only product of processive cataly-
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sis.  If glucose and cellotriose are generated by processing cellobiohydrolase enzymes, the analy-
sis employed within this work will lead to an overestimate for initial rates of initial-cut product 
generation from soluble substrates.  That is, they will be even slower than reported in Table 5.4.   

 Processive length trends are insensitive to the initial-cut product distribution.  The product 
distribution is incorporated in the (1+α+β) coefficient in the [G2]TlCel7A icuts term of Eqn. 5.5.   
Different initial-cut product distributions can increase or decrease the value of these terms, lead-
ing to higher or lower estimates of initial- and processive-cuts within all reactions. Processive 
length trends within and between reactions, however, are unaffected. 

 
Figure 5.2 TlCel7A initial- and processive-cut product generation within various mixtures.  For A, B, and C, lines 
represent arbitrary fits for the following discretely measured quantities within each TlCel7A-TemGH5 mixture (1 
g/L BMCC, pH 4.85, 50°C): (A) initial-cut products, (B) processive-cut products, and (C) the ratio between the two 
(p/i ratio = [pcut products]/[icut products]).  The red line (X’s) corresponds to the mixture with 0.076 µM TlCel7A 
and no endoglucanase.  All other mixtures have 0.076 µM TlCel7A and concentrations of TemGH5 that are propor-
tional to their shades of blue: 0.019 µM TemGH5 (-, ¢), 0.09 TemGH5 (-, open squares), 0.19 µM TemGH5 (-, �), 
0.37 µM TemGH5 (-, n).  For the reactions with TlCel7A alone, values of the p/i ratio are given in D.  TlCel7A con-
centrations increase from light red to dark red: 0.0152 µM (-, ¢), 0.076 µM (-, X), 0.152 µM (-, open squares), and 
0.305 µM (-,n).  Lines represent arbitrary fits to guide the eye. 

 The qualitative trends illustrated by the initial- and processive-cut TlCel7A product pro-
files are insensitive to values of η and f  (Section 5.12).  Plots of Eq. 5.8 show that 10-90% of 
TemGH5 or TlCel7A is available to hydrolyze soluble sugars at any given time, depending on the 
enzyme loading (Figs. 5.A4C and 5.A4D).  Values of ρ and K’eq affect the value of η in any giv-
en mixture, but they do not affect the proportionality between η and total enzyme concentration 
or the time-invariant nature of η.  The trends illustrated in Fig. 5.2 are most affected by these 
properties of η (Section 5.12) and, thus, they are insensitive to the manner in which η is estimat-
ed.  Estimates of f have a similar influence. The method employed to estimate f affects the 
TemGH5 concentration at which further increases in TemGH5 lead to a reduction in processive 
length, rather than an increase, but this general trend, evident in Table 5.4, occurs with any f es-
timate (high, low, average). 
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5.6.5 Enzyme Denaturation 

The results of this work are not sensitive to the slow denaturation of the cellulase en-
zymes that were used.  When grown on Avicel, Trichoderma reesei secretes a mixture of cellu-
lases which is dominated by Cel7A; the half-life of this mixture has been measured to be 43 
hours at 50°C within a cellulose hydrolysis reaction (61).  T. emersonii grows at higher tempera-
tures than T. reesei, and many of its enzymes are more thermostable (2).  The half-life of 
TemGH5 has not been explicitly measured, but we conservatively equate it to that of TlCel7A for 
the current discussion.  Assuming an exponential model of decay, 95% of the enzymes will re-
main active in solution at 50°C after 3 hours, the period over which initial-cut product generation 
rates from insoluble cellulose were measured.  This 5% inactivation in enzyme is not enough to 
account for the initial-cut product generation rates being 3,000 to 30,000% slower on insoluble 
cellulose than on soluble cello-oligosaccharides. 

Trends observed between the different reaction mixtures are similarly unaffected by en-
zyme denaturation.  Each term in the kinetic equations used to calculate initial- and processive-
cut products exhibits a first order dependence on enzyme concentration.  Reductions in enzyme 
concentration due to denaturation would affect both icut and pcut product concentrations in pro-
portion to the concentration of enzyme present in each mixture; the trends observed between dif-
ferent reaction mixtures would remain unaffected. 

5.6.6 The Influence of Product Inhibition 

 The topic of product inhibition deserves special attention in our discussion of cellobiohy-
drolase kinetics.  Glucose and cellobiose inhibition of cellobiohydrolase enzymes is well known 
(3, 4, 62).  In a very recent study, Bu et al. calculated the absolute binding free energies of cello-
biose to the Cel7A catalytic domain of T. reesei and found that this product is more stable in the 
enzyme tunnel than in free solution (63).  The work of Bu et al. is significant in that it identifies 
the residues responsible for the enzyme’s strong interaction with cellobiose, which acts as a 
competitive inhibitor and thereby reduces the effective enzyme concentration.  If inhibition by 
glucose and cellobiose is reduced, regardless of the rate-limiting step, rates of Cel7A-catalyzed 
cellulose hydrolysis will be increased. 

5.6.7 Evidence of a Morphological Element to Enzyme Synergy 

 The sensitivity of cellobiohydrolase enzymes to the nature of the cellulose substrate may 
provide a rationale for the evolution of multi-enzyme mixtures produced by fungi.  Cellulases are 
often grouped into two main classes (EG and CBH), but fungi such as Trichoderma reesei and 
Neurospora crassa produce multiple variants of each (1, 64).  Several studies have demonstrated 
that carbohydrate-active enzymes have binding site preferences for different surface structures, 
which focus their activities onto proximal regions (65, 66). Such preferences may allow different 
cellulases to interact with and hydrolyze a wider variety of surfaces, thus relaxing the fidelity and 
sensitivities that might otherwise limit two-enzyme mixtures.  Recent investigations into the role 
of GH61 enzymes, which are produced by N. crassa and other filamentous fungi, reinforce this 
hypothesis.  This enzyme, which falls into neither cellulase class, has been shown to have a 
stimulatory effect on cellulases that likely results from an influence on surface morphology or an 
ability to oxidatively generate cuts within crystalline cellulose regions (67, 68). 
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5.6.8 Future Work with CBM-containing Endoglucanase Enzymes 

The results of this work are likely dependent on the morphological specificity of the en-
zymes used.  The CBM-less TemGH5 endoglucanase may have a more relaxed fidelity for par-
ticular surface structures than CBM-containing alternatives.  There are 63 different families of 
CBM domains in the Carbohydrate Active Enzyme Database(69), and different adsorption be-
haviors and cellulose morphology specificities have been observed between them (70, 71).  Fu-
ture work includes attaching CBM’s with demonstrated specificities to the catalytic domain of 
TemGH5 and assessing the different influence of these variants on cellobiohydrolase behavior.  
A crystalline-specific CBM may make the enzyme less likely to act on amorphous or paracrystal-
line cellulose, and therefore less effective at increasing the processive length of cellobiohydro-
lase enzymes.  This is a speculated result, however, and the experiments still need to be per-
formed. 

5.7 Conclusions 

 Complexation has been previously assumed to be rate-limiting, and endoglucanases have 
been asserted to influence complexation rates.  The present work provides direct experimental 
measurement of complexation rates to validate these assumptions. These results complement re-
cently published MD simulations evidencing high energy barriers associated with glycan chain 
abstraction with kinetic measurements showing slow rates of cellobiohydrolase complexation, a 
process in which cellulose chain decrystallization is a key step(63, 72, 73).  

 This study has several major implications for the design of better saccharification systems.  
First, cellobiohydrolase engineering efforts should focus on the development of enzymes with 
enhanced abilities to find and complex with chain ends. Results presented here show cello-
biohydrolase complexation rates to be slow relative to other kinetic steps; enzymes that can more 
quickly extract chains from the cellulose surface are therefore likely to catalyze the hydrolysis of 
insoluble cellulose at higher rates.  Second, this work presents the first experimental evidence 
that cellulases may remove the physical obstructions that cause cellobiohydrolases to become 
stuck.  Endoglucanases are shown to potentiate the activity of cellobiohydrolases, not only be 
generating free chain ends, but also by altering the surface in a way that increases that enzyme’s 
processive length.  Cellobiohydrolases are shown to potentiate their own activity in an identical 
processive-length-enhancing fashion.  Investigations that elucidate the mechanisms of these 
morphology-influenced enzyme synergies will facilitate the design of multi-cellulase mixtures.  
Such efforts would be complementary to recent studies showing that pretreatment-derived struc-
tural changes in the cellulose surface can make it more susceptible to cellobiohydrolase-
catalyzed hydrolysis (74, 75).  Ultimately, pretreatment methods, engineered cellulases, and nov-
el helper enzymes (e.g., GH61 family enzymes) that facilitate the access of cellobiohydrolases to 
chain ends and reduce the incidence of surface obstructions will provide the most effective 
means of improving the rate and cost-effectiveness of biomass conversion to sugars. 
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5.9 Appendix 1: Derivation of Equations for η 

 This derivation of the η equation  (ηTlCel7A and ηTemGH5.) applies to both TlCel7A and 
TemGH5. Three assumptions were made in deriving expressions for η.  First, enzymes were as-
sumed to move to complexation sites only after becoming adsorbed to cellulose (Fig. 5.A1). 
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Fig. 5.A1 Depiction of the equilibrium between different states of TlCel7A.  Cellulases are assumed to 
either be (1) free in solution, (2) adsorbed to the substrate but not complexed with a cellulose chain, and 
(3) complexed with a cellulose chain.  Consistent with previous work, cellulases are assumed not to form 
productive complexes immediately upon adsorbing to the cellulose.  That is, complexation is a separate 
step. 

 

 In accordance with previous work suggesting that cellulases rarely form productive com-
plexes immediately upon adsorbing to the cellulose, direct adsorption of free enzymes to com-
plexation sites was not considered in in this analysis.  Secondly, equilibrium was assumed be-
tween the three different states in which the enzymes can be found: (1) free in solution, (2) ad-
sorbed to the surface, but not complexed, and (3) complexed (Fig. 5.A1). This assumption is 
supported by previous work indicating that cellulase adsorption reaches a constant value within 1 
hour.  Dissociation constants can be subsequently defined as follows: 

Keq,1 =
E[ ] *1[ ]
E *1[ ]

Keq,2 =
E *1[ ] *2[ ]
E *2[ ] *1[ ]

 (5.A1 and 5.A2) 

where *1 represents the volumetric molar concentration of available adsorption sites to which an 
enzyme can bind before finding a complexation site; E*1 represents the volumetric molar con-
centration of enzyme that is adsorbed, but no complexed; *2 represents the volumetric molar 
concentration of available complexation sites to which an enzyme must bind to release a soluble 
product; E*2 represents the volumetric molar concentration of enzyme that is complexed; and E 
represents the molar concentration of enzyme that is free in solution. 

 Site balances on adsorption and complexation sites can be combined with Eqs. 5.A1 and 
5.A2 to produce an equation for E*2, the volumetric concentration of complexed enzyme: 



 117 

E *2[ ] = *T ,2 E[ ]
K 'eq+ E[ ]   (5.A3) 

where 

K 'eq = Keq,1 ⋅Keq,2 =
E[ ] *2[ ]
E *2[ ]  (5.A4) 

 Here, K’eq represents an apparent dissociation constant for complexed enzymes, 

*T,1 is the volumetric concentration of total adsorption sites to which enzymes must bind before 
finding complextion sites, and *T,2 is the volumetric concentration of total complexation sites.   

 Eqs. 5.A3 and 5.A4 can be combined with ET=[E]+[E*1]+[E*2] to yield a cubic equation 
that can be solved for E as a function of ET, *1,T, *2,T, Keq1, and K’eq.  When the total enzyme 
concentration (ET=[E]+[E*1]+[E*2]) and the total number of surface sites (adsorp-
tion+complexation; *T,1+*T,2) are within an order of magnitude of each other, E can be approxi-
mated as proportional to Etot and the following proportionality follows: 

E *2[ ]∝ *T ,2⎡⎣ ⎤⎦ ⋅
ET

Keq + ET

 (5.A5) 

This assumption can be tested experimentally.  At early times, values for [E*2] can be approxi-
mated by [Geq], the glucose equivalent concentration of product released from productive en-
zyme-cellulose interactions: 

Geq = G1 + 2 ⋅G2 + 3⋅G3  (5.A6) 

Eq. 5.A3 can then be rewritten in terms of glucose equivalents: 

Geq⎡⎣ ⎤⎦ =κ ⋅ Geq  max⎡⎣ ⎤⎦ ⋅
ET

Keq + ET

 (5.A7) 

where κ is a proportionality constant and [Geq max] is the glucose equivalent soluble product gen-
erated if all complexation sites are occupied by enzyme.  Mixtures with different concentrations 
of TemGH5 or TlCel7A acting alone on BMCC can then be used to verify the relationship given 
in Eq. 5.A7.  Total glucose equivalents were measured at 20, 40, 60, and 80 hours, and plots of 
[Geq] vs. Etot were generated (Figs. 5.A3A and 5.ASB).  Eq. 5.A4 adequately describes the man-
ner in which Geq changes with protein loading, validating the order of magnitude assumption 
about the values of ET and *T,2. 

 An equation for θ, the fraction of total complexation sites occupied by enzyme, can be 
written by rearranging Eq. 5.A7: 

θ =
Geq⎡⎣ ⎤⎦
Geq  max⎡⎣ ⎤⎦

=κ ⋅ ET

K 'eq+ ET

 (5.A8) 
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Plots of θ/κ as a function of ET (Figs. 5.A3C and 5.A3D) were insensitive to the time at which 
[Geq] was measured, suggesting that θ could be approximated as a constant over the course of 
cellulose hydrolysis. Values of Keq at 40 hours were used for calculations within this work. 

 When the cellulose concentration is constant (1 g/L in all reactions addressed in this 
work), both the fraction of complexation sites occupied by enzyme (θ=E*2/*T,2) and the fraction 
of enzyme available to hydrolyze soluble substrate (η = ([E] + [E*1])/ [ET]) are functions of ET, 
and they are proportional: 

η ET( )∝θ ET( )  (5.A9) 

This proportionality allows for an equation for η to be written in terms of Etot: 

η = E
ET

= ρ ⋅ ET

K 'eq+ ET

 (5.A10) 

where ρ is a constant arising from both κ and the  proportionality between η and θ.  Plots of η vs. 
Etot are show in Figs. 5.A4C and 5.A4D; as with θ/κ, they do not exhibit a strong time-
dependence. 

 

Fig. 5.A4.  Estimation of enzyme fractions free to interact with soluble substrates.  In S4A, glucose 
equivalents of soluble products (G1+2G2+3G3) generated from 1 g/L BMCC are plotted for reactions with 
0.015, 0.076, 0.15, 0.30 µM of TlCel7A at 20 (-), 40 (-), 60 (-), and 80 hours (-).  Reactions were carried 
out at pH 4.85 and 50°C.  In S4B, glucose equivalents of soluble products generated from 1 g/L BMCC 
are plotted for reactions with 0.037, 0.187, 0.374, and 0.748 µM of TemGH5 at 20 (-), 40 (-), 60 (-), and 
80 hours (-).  Reactions were also carried out at pH 4.85 and 50°C.  In S4C, equations for ηTlCel7A devel-
oped from ρTlCel7A = 2.7 and fits to the points in Fig. 5.A4A are plotted against [TlCel7A]tot.  The four 
curves correspond to equations for ηTlCel7A based on a ρTlCel7A estimate of 2.7 and Geq measurements at 20 
(-), 40 (-), 60 (-), and 80 hours (-).  In S4D, equations for ηTemGH5 developed from ρEG=1 and fits to the 
points in Fig. 5.A4B are plotted against [TemGH5]tot.  The four curves correspond to equations for ηTemGH5 
based on Geq measurements at 20 (-), 40 (-), 60 (-), and 80 hours (-). 
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5.10 Appendix 2: Estimation of ρ 

 Values for ρ for TlCel7A can be estimated from the data of Kurasin et al [34].  In that 
work, when 2.5µM TlCel7A was mixed with 10 g/L of cellulose, approximately 80% of the en-
zyme was available to hydrolyze soluble substrate (E = 0.8*ET).  With this data and the K’eq val-
ue reported in Table 5.3, Eq. 5.A7 was solved to yield a value of ρTlCel7A = 2.7.  As no analogous 
data was available for TemGH5, we used ρEG = 1 for this enzyme.  As discussed below, the re-
sults of this study proved to be insensitive to ρ values. 

5.11 Appendix 3: Derivation of Eqs. 5.11 and 5.12 

In order to estimate the contribution of TemGH5 to G3 production, we estimated upper 
and lower bounds of f with low and high estimates of the amount of cellotriose produced by a 
mixture of TlCel7A and TemGH5.  In Eq. 5.11, the enzymes are assumed to generate the same 
amount of cellotriose in a mixture as they would in isolation. 

f t( ) = Total G3  by TemEG2 alone

Total G3  by theoretical mix
    

=
G3[ ]

tot TemEG2 i

G3[ ]
total TemEG2 i

+ G3[ ]
tot TrCBH1 i

 (5.A11) 

Experimental evidence, however, shows that these two enzymes generate more cellotriose when 
they act in concert than they do when they act alone; thus, the value of f in Eq. 5.11 represents an 
upper limit.  

In Eq. 5.12, the enzymes are assumed to generate more cellotriose in a mixture than they 
would in isolation. In the mixtures investigated in this work, there was an average of 1.4 fold 
more soluble product ([Geq]) generated when the enzymes worked in concert: 

Geq⎡⎣ ⎤⎦mix
Geq⎡⎣ ⎤⎦TlCel7A + Geq⎡⎣ ⎤⎦TemGH5

= 1.4  (5.13) 

This 1.4 fold increase in hydrolysis can be employed to create an equation for a lower bound of f: 

f t( ) =
G3[ ]

total by TemEG2 i

1.4 ⋅ G3[ ]
total TemEG2 i

+ G3[ ]
total TrCBH1 i( )    (5.A12) 

In Eq. 5.12, the enzymes are assumed to generate 1.4 fold more cellotriose in a mixture than they 
would in isolation.   Because most of the increased sugar production in two-enzyme mixtures 
comes from increased production of G2, not G3, the denominator in Eq. 5.12 represents an over-
estimate of G3 generation.  The corresponding value of f is therefore a lower bound of the frac-
tion of cellotriose generated by TemGH5, in this study. 
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5.12 Appendix 4: Sensitivity of the Results to η and f Estimates 

The results of this study are relatively insensitive to values of η.  This constant is affected 
by estimates of ρ and K’eq.  As cellotriose hydrolysis rates are proportional to ρ in all enzyme  
mixtures examined, the value of this constant does not affect the trends observed from one mix-
ture to the next.  A higher value of ρ results in higher estimates of processive and initial cuts, but 
trends between initial and processive cut time course profiles remain unchanged; the processive 
length plots remain unaffected.  Values of K’eq have a similar effect; they alter the values of the 
results, but they have no affect on trends.  The primary function of Eq. 8 is to illustrate the non-
linear increase in the fraction of TemGH5 or TlCel7A that becomes available to hydrolyze solu-
ble sugars.  At high TemGH5 and TlCel7A loadings, more enzymes are available to interact with 
soluble substrates than would be available at lower loadings, where much of the enzymes would 
be engaged in hydrolyzing the substrate (Fig. 5.A4D).   

High estimates of f (Eq. 5.10) lead to high estimated rates of production of processive- 
and initial-cut product; low estimates of f (Eq. 5.11) lead to lower estimated rates.  In both cases, 
however, the rate at which initial-cut product generation slows down is greater than the rate at 
which processive-cut product generation slows.  Similarly, for both estimates, the TlCel7A pro-
cessive length increases with the addition of low concentrations of TemGH5 and then begins to 
decrease as that value gets higher.  The TemGH5 concentration at which this happens is sensitive 
to the values used to estimate f; however the results of this work do not depend on the value of f. 

5.13 Additional Materials and Methods 

5.13.1 Chemicals 

Cellotriose and cellohexaose were purchased from Seikagaku Biobusiness; sodium ace-
tate, HEPES, and sodium azide, from Sigma; glycerol and 50% sodium hydroxide solution, from 
Fisher Scientific.  Criterion 10% Tris-HCl gels and GelCode Blue Reagent were supplied by 
Bio-Rad and Thermo Scientific, respectively. 

5.13.2 Enzymes 

Fungal cellulase enzymes have numerous disulfide bonds and distinct glycosylation pat-
terns that make them difficult to express recombinantly in non-cellulolytic hosts.  The Tricho-
derma sp Cel7A cellobiohydrolase, which has twelve disulfide bonds, short O-linked glycoylsa-
tion on its linker, and N-linked glycosylation on its CBM and catalytic domain, has proven to be 
a difficult target for recombinant expression.   Most attempts to produce Cel7A heterologously in 
other hosts have led to Cel7A variants that are less active or less stable than the native form; this 
reduced activity has been attributed to incomplete folding or incorrect glycosylation.  For this 
reason, both Trichoderma sp. Cel7A and Taleromyces emersonii GH5 were purified from com-
mercially available forms, in which they had already been brought to near purity.   

Both Trichoderma longibrachiatum Cellobiohydrolase I (TlCel7A) and Talaromyces em-
ersonii EG2 (TemGH5) were purchased from Megazyme (E-CBH1 and E-CELTE).  Previous 
experiments by our group revealed minor endoglucanase and β-glucosidase contamination within 
these products.  The analysis in this work relied on accurate measurements of cellooligosaccha-
ride concentrations in cellulase/cellulose reaction mixtures over 120 hour time periods, so great 
lengths were taken to ensure high enzyme purity.  A GE Healthcare ATKA Explorer system was 
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used for this purpose.  Approximately 20 mg of the TlCel7A enzyme, which arrived in 3.2 M 
ammonium sulfate solution, was dissolved into 15 ml of 25 mM HEPES pH 7.35 and desalted on 
a GE HiPrep 26/10 desalting column with a 4 ml/min flow of identical buffer.  The protein-
containing fraction was purified further via exchange on a HiLoad 16/10 Q Sepharose HP anion 
exchange column.  The main peak from this step was then concentrated and run through a  Su-
perdex 75 10/300 gel filtration column (15% 1.0M HEPES solution).  The leading peak from this 
step was desalted again and purified on a Mono Q 10/100 GL anion exchange column.  Single 
band purity was ensured with a 10% Tris-HCl gel (Bio-Rad).  The TemGH5 enzyme was purified 
in an identical way, but without the Mono Q step.  The final TemGH5 enzyme (37 kDa)  had a 
slight higher molecular weight impurity (47 kDa) with no known enzymatic activity (Megazyme 
E-CELTE Product Information).  In both cases, beta-glucosidase contamination was checked by 
incubation for 4 hours at 50°C with 1.1 mM of cellobiose (50 mM sodium acetate buffer, pH 
4.8).  Samples were stopped at this time with equal volumes of 0.100 M NaOH run on a Dionex 
PA-200 column (method described below).  No β-glucosidase activity was detected. 

The endoglucanase activity of the purified enzymes was tested with the carboxymethyl 
cellulose (CMC) assay, which is the most commonly used assay for endoglucanase activity.  For 
this assay, 0.27 µM of either enzyme was mixed with 10 g/L carboxymethyl cellulose sodium 
salt (Sigma 419273-1kg) at a pH of 4.85 (50 mM sodium acetate buffer) and a temperature of 
50°C.  Samples were agitated at 150 rpm in an incubator shaker.  At 1, 3.03, and 5.16 hours, 30 
µL samples were withdrawn from each reaction mixture and mixed with 60 µL DNS reagent as 
described in Ghose, T. K.  Measurement of Cellulase Activities.  Pure and Appl. Chem 59, 157-
168.  For the sample taken from the TemGH5 reaction after 1 hour, a dilution step was required 
prior to the addition of DNS reagent.  After thorough mixing, these 2:1 mixtures of DNS reagent 
to sample were heated at 99°C for 5 minutes in a thermocycler.  The absorbance of the resulting 
solutions at 540 nm was then measured and converted into glucose equivalents with a glucose 
standard curve generated in an identical fashion.  The TlCel7A cellobiohydrolase had no detecta-
ble activity on CMC, indicating no endoglucanase contamination (Fig 5.A7).  The TemGH5 en-
doglucanase, by comparison, degraded ~50% of the CMC in 5 hours (Fig. 5.A7).   

5.13.3 Cellulose 

Many previously reported BMCC preparations have been shown to modify substrate 
morphology and enhance digestibility.  Pretreatment effects are minimized in the preparation 
employed here by the exclusion of steps involving strongly acidic or basic solutions. 

A 20 µL freezer stock of Acetobacter xylinum (ATCC 53582) was used to inoculate 1 L 
of media as described previously [48].  This inoculum was grown in a 2 L Erlenmeyer flask for 7 
days at 25°C in a shaker at 250 RPM).  The resulting mixture was spun down at 6000 RPM in a 
Beckman Coulter Avanti J-26 XP Centrifuge.  The lower 25% of the resulting heterogeneous 
suspension, which contained most of the cellulose, was then resuspended in 600 ml of water, and 
spun down again.  This process was repeated three times with 600 ml of 50% ethanol solution.  
After being incubated at 10°C in 50% ethanol for three weeks, the resulting suspension was spun 
down, and blended at 3 minutes in a Waring blender.  The absence of live cells was confirmed 
with a Leica Epifluorescence Microscope and the subsequent suspension was washed once with 
50% ethanol.  The final BMCC preparation was suspended in 30% ethanol, and its cellulose con-
centration was measured with the phenol sulfuric acid method as described previously [49]. 
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5.13.4 Determination of kcat and KM for the activity of TlCel7A on G6 

 The Michaelis-Menten kinetic parameters pertaining to the activity of TlCel7A on cello-
hexaose (Table 5.2) were calculated via a Lineweaver-Burk plot of initial rate data.  Hydrolysis 
was monitored in 80 µL reactions with 0.022 µM TlCel7A in 50 mM sodium acetate (pH 4.8) 
buffer (50°C).  Initial cellohexaose concentrations of 1, 1.6, 2.1, 5.1, 20.1, 100, and 149.5 µM 
were used.  Reactions were stopped after 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, and 2.5 
minutes with 20 µL of 1.0 M NaOH on ice, and cellohexaose depletion was monitored on the 
Dionex HPLC.  A plot of 1/V vs. 1/S was made, and the following line of best fit was calculated: 
1/V=2.556*(1/S)+0.1721.  This corresponds to a  kcatTlCel7A of 4.5 s-1 and a KMTlCel7A of 14.9 µM 
(as reported in Table 2).  These values are similar to the analogous parameters describing the ac-
tivity of Trichoderma reesei Cel7A on cellohexaose (kcatTlCel7A of 9.4 s-1 and KMTlCel7A of 3.3 µM) 
calculated by Nidetzky et al in (23). 
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5.13.5 Determination of kcat and KM for the activity of TemGH5 and TlongCel7A on G3 

 

Fig. 5.A3 Michaelis-Menten plots of enzyme activity on G3 at pH 4.85 and 50°C.  In S3A, initial rates of 
G3 hydrolysis by 0.051 µM TlCel7A are plotted against corresponding initial substrate concentrations of 
10.13, 50.65, 202.6, 506.5, and 919.804 µM (�).  In S3B, initial rates of G3 hydrolysis by 0.074 µM 
TemGH5 are plotted against corresponding initial substrate concentrations of 7.61, 50.03, 194.25, 476.02, 
865.07, and 3323.6 µM (¢).  In both plots, the line (-) represents a nonlinear regression fit to the Michae-
lis-Menten equation. 
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5.13.6 Investigation of TemGH5-produced Soluble Sugar Ratios during Saccharification 

 

Fig. 5.A5 Time course profiles for cellotriose-normalized sugar concentrations in TemGH5-
catalyzed hydrolysis of BMCC.  Cellooligosaccharide production from 1 g/L BMCC and 0.022 
µM TemGH5 alone on BMCC (pH 4.85, 50°C).  The cellotriose concentration was corrected to 
account for TemGH5-catalyzed cellotriose hydrolysis (Eqs. 5.6 and 5.7) and then used as a basis 
for normalization: G1/G3 ( -), G2/G3( -), and G3/G3 ( -).  The TemGH5 product distribution is 
relatively constant throughout hydrolysis; this is consistent with the random attack mechanism 
proposed for this enzyme and indicates that transglycosylation activity is very low. 
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5.13.7 Estimation of Rats of TemGH5- and TlongCel7A-catalyzed Hydrolysis During Sac-
charification 

 

Fig 5.A6 TemGH5-catalyzed hydrolysis of G3.  In S6A, rates of cellotriose hydrolysis by TemGH5 in 
various mixtures are plotted against time.  Mixtures consisted of 1 g/L BMCC, 0.076 µM TlCel7A, and 
TemGH5 concentrations as follows 0.019 µM (x, -), 0.09 µM (n,-), 0.19 µM (+,-), 0.37 µM (�,-).  Plots of 
TlCel7A catalyzed hydrolysis in these mixtures and in separate mixtures without TemGH5 looked similar, 
but rates were generally lower.  Lines represent fits of theses points to equations of the form a+b*xc+d* xf 

+ m*nx, where x is an enzyme concentration. In S6B, total cellotriose hydrolyzed by TemGH5 was deter-
mined by integrating lines of fit to the d[G3]/dt points described in Fig. 5.A6A.  Total cellotriose hydro-
lyzed by this enzyme is plotted against time for mixtures consisting of 1 g/L BMCC, 0.076 µM TlCel7A, 
and TemGH5 concentrations as follows 0.019 µM ( -), 0.09 µM (-), 0.19 µM (-), 0.37 µM (-).  
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5.13.8 Confirmation of the Purity of TemGH5 

 

Figure 5.A7 Assay for Endoglucanase Activities of TemGH5 and TlCelA.  In S7, the glucose equivalent 
released by TemGH5 (open circle) and TlCel7A (open triangle) on carboxymethyl cellulose is plotted 
against time.  For the assay, 0.27 µM of enzyme was incubated with 10 g/L carboxymethyl cellulose so-
dium salt at 50°C (1 ml total volume), and reducing sugar concentrations were measured by the DNS as-
say (detailed below).  Absorbance at 540 nm was converted into glucose equivalent concentrations with a 
glucose standard curve.  The TlCel7A cellobiohydrolase had no detectable activity on CMC. 

 

5.13.9 Equations of Fit Used in Figure 5.2 

In 2A, 2B, 2C, and 2D the following equations of fit are used to generate lines to guide 
the eye: 

d product
dt

a b t d t m nc f t[ ]
= + u + u + u                       [S9]

 

As these curves are intended for visualization, they do not influence the results of this work. 
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Chapter 6: Superresolution Images Reveal Binding Targets for the Cooperative Action of 
Cellulolytic Enzymes  

6.1 Abstract 

 The mechanisms of enzyme activity on solid substrates are not well understood.  
Cellulolytic enzymes, which catalyze the depolymerization of cellulose, have received particular 
attention in efforts aimed at reducing cellulose-to-glucose conversion costs, one of the largest 
expenses of cellulosic biofuels production.  These enzymes exhibit binding specificities for a 
range of cellulose morphologies, but the influence of these specificities on the synergy exhibited 
by multi-enzyme mixtures has remained difficult to study without methods for determining 
binding site organization on the surface of heterogeneous cellulosic substrates.  Using 
photoactivated localization microscopy (PALM) to produce pointillistic maps of carbohydrate-
binding modules (CBMs) bound to cotton, we developed an order parameter to quantify the 
different spatial arrangements of adsorbed CBMs and used that order parameter to explain 
synergy between cellulase enzymes designed to target different surface structures.  We show that 
combinations of cellulolytic enzymes that bind similar but non-identical cellulose targets can 
exhibit activities significantly higher than those attainable by individual enzymes.  These results 
demonstrate a strategy for improving the activity of cellulolytic mixtures and demonstrate a 
versatile method for investigating protein organization on heterogeneous surfaces and in 
complex structures. 

6.2 Introduction 

Cellulosic biofuels can provide a renewable alternative to fossil fuels, but high costs 
associated with the breakdown of cellulose into fermentable sugars have hindered their 
commercialization (1-3). Cellulose, a polymer of β-[1,4]-linked cellobiose units, is the main 
constituent of the plant secondary cell wall. There, cellulose is organized on 1, 10, and 100 nm 
length scales into a spectrum of morphologies and packing densities (4). Cellulolytic enzymes 
employ distinct substrate-binding structural motifs or carbohydrate-binding modules (CBMs) to 
interact preferentially with particular cellulose structures (5-8). Increased cellulose-to-glucose 
conversion efficiencies, and thus reduced biofuel production costs, require cellulolytic enzyme 
cocktails that are optimally matched to the structural organizations of particular biomass 
substrates and which exploit all potential avenues of enzyme synergy.   

Conventional imaging and biophysical techniques have struggled to quantify the 
differential targeting of cellulolytic enzymes to heterogeneous cellulosic surfaces that resemble 
those of the native plant cell wall (9-11). The binding targets of cellulolytic enzymes are 
typically characterized as either amorphous or crystalline, but these categories are probably more 
reflective of the limitations of current measurement methods rather than the underlying 
organization of the substrate.  Indeed, confocal imaging of CBMs bound to tobacco stem sections 
has revealed binding patterns that differ not only between these categories but also within them 
(12).  Atomic force microscopy and electron microscopy have the spatial resolution needed to 
visualize and quantify the continuum of cellulose architectures (13, 14), but these techniques 
cannot resolve individual proteins on densely labeled heterogeneous surfaces where the 
morphological binding targets of CBMs are interspersed (Figs. 6.1A-1B). The lack of methods 
for identifying CBM binding site preferences and for evaluating the influence of those 
preferences on the kinetics of multi-enzyme mixtures has limited attempts to understand the 
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structural origins of cell wall recalcitrance and has impeded efforts to optimize the efficacy of 
cellulolytic mixtures. 

Recent advances in light microscopy allow single fluorescent molecules to be localized 
with resolutions consistent with the length scales of cellulose organization. Photoactivated 
localization microscopy (PALM), in particular, allows large numbers of photoactivatable 
fluorescent proteins to be localized with a precision of 10-50 nm via the stochastic activation and 
excitation of small subsets of molecules over time (15). The localization precision afforded by 
PALM is thus 4-20 fold finer than the resolution achievable with diffraction-limited techniques 
(~200 nm). 

6.3 Results and Discussion 

We employed 2D TIRF-PALM to localize six different CBMs bound to dewaxed cotton.  
Previously, PALM and defocused orientation and position imaging (DOPI) have been used to 
confirm the preferential targeting of crystalline-specific CBMs to the hydrophobic (110) faces of 
cellulose nanocrystals (16, 17).  In the present work, we employ PALM to investigate the 
differential targeting of six different CBMs on a structurally heterogeneous cellulosic substrate 
that more closely resembles the structural complexity of the plant cell wall.  These CBMs are 
representative of the two common categories of CBMs found on cellulolytic enzymes 
(crystalline- and amorphous-specific, Table 1). The photoactivatable fluorescent protein mEos2 
was linked to each CBM via a 30-residue linker from the T. reesei Cel7A cellobiohydrolase (SI 
Materials and Methods). The monomeric green-to-red protein mEos2 was selected for its high 
contrast between activated and unactivated states (18); the T. reesei Cel7A linker, which is 
representative of the threonine- and proline-rich linkers found in many cellulase enzymes (19-21), 
was chosen to prevent the mEos2 from interfering with the binding of the CBM.  This family of 
localizable mEos2-CBM fusions provides a unique reagent to map surface features of cellulose 
substrates. 

Name Origin Specificity Mode of binding 
CBM1 Trichoderma reesei cellobiohydrolase Cel7A Crystalline Use a planar surface of 

tryptophan and/or 
tyrosine residues to 
adsorb onto microfibrils, 
which are crystalline 
aggregates of 24-36 
cellulose chains (4, 22, 
31). 

CBM1 Trichoderma reesei cellobiohydrolase Cel6A 
CBM2A Acidothermus cellulolyticus GH5 endoglucanase 
CBM3A Clostridium thermocellum CipA scaffoldin 

CBM17 Clostridium cellulovorans Cel5A endoglucanase Amorphous Employ binding clefts to 
engage single chains 
within disordered 
networks (24, 25, 32). 

CBM28 Bacillus sp. 1139 Cel5a endoglucanase 

Table 6.1 The CBM domains investigated within this study.  Each domain was linked to the photoactivatable 
fluorescent protein mEos2 for imaging and to the catalytic domain from the Acidothermus Cellulolyticus GH5 
endoglucanase for activity studies. 
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Figure 6.1 Equilibrium binding patterns of CBMs bound to cellulose.  (a) Cartoon illustrating the interspersed 
binding sites of CBMs with different morphological targets.  (b) Images of PSCFP2-CBMTrCel6A and mEos2-
CBM28 bound to a cotton linter at 0.24 µmol protein / g cellulose loadings (each): Differential interference contrast 
(DIC) to show the cotton linter (grayscale), 442 nm confocal to show PSCFP-CBMTrCel6A (green), 488 nm 
confocal to show mEos2-CBM28 (red), and a 442/488 nm overlay to show both CBMs (yellow).  (c-j) PALM 
images of mEos2-CBM constructs bound to cotton linters at 0.12 µmol protein / g cellulose: (c) mEos2-
CBM1TrCel7A, (d) mEos2-CBM1TrCel6A, (e) zoom of boxed region of (d), (f) mEos2-CBM2A, (g) mEos2-
CBM3A, (h) mEos2-CBM17, (i) mEos2-CBM28, (j) zoom of boxed region in (i).  Insets of (c-d) and (f-i) show 
overlays of bright field and PALM images.  (k) Histogram of localization precisions for mEos2-CBM positions used 
in our analysis.  (l) Dual color image of PSCFP2-CBM1TrCel6A and mEos2-CBM28 bound to a cotton linter at 
0.12 µmol protein/g cellulose (each).  The inset contains an overlay of a bright field image with both the 
CBM1TrCel6A and CBM28 positions in red. (m) Zoom of boxed region in (l).  Scale bars in (c-d), (f-i), (l), and the 
insets represent 10 µm.  Scale bars in all zoomed images represent 1 µm. 
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After being expressed and purified in the dark, each mEos2-CBM construct was 
equilibrated with a dilute suspension of cotton linters at loadings of 0.12 and 0.24 µmol mEo2-
CBM/g cellulose (pH 7.0, 18°C). At each loading, the mEos2-CBM constructs were localized on 
the surface of cotton with single-color 2D TIRF PALM (SI Materials and Methods). 
Equilibration and imaging of each mEos2-CBM construct was carried out 3 times at each loading 
for a total of 36 separate experiments. The mean localization precision of the labeled CBMs was 
32 nm (Fig. 6.1K) and the Nyquist resolution, a measure of resolution that incorporates the 
spatial density of localized molecules, was 77 nm (SI Appendix 7). 

Although each cotton linter had a different size, shape, and position relative to the 
coverslip, general trends between crystalline- and amorphous-specific CBMs were observable by 
eye. Crystalline-specific CBMs (CBM1Cel7A, CBM1Cel6A, CBM2A, CBM3A) tended to 
cluster on ridges (Figs. 6.1C-1G), occasionally highlighting linear regions running parallel to one 
another (Figs. 6.1E). Amorphous-specific CBMs, bound more homogeneously across the surface 
(Figs. 6.1H-1J), occasionally localizing to sinuous protrusions from the fiber edges (Fig. 6.1H). 
Dual color superresolution imaging showed that the sample-to-sample structural variability in 
cotton linters was not the primary source of the observed differences in binding behavior 
between domains.  In Figs. 6.1L and 1M, a two color PALM image of PACFP2-CBM1TrCel6A 
and mEos2-CBM28 bound to the same cotton linter shows contrast between the preferential 
localization of CBM1TrCel6A (blue) to edges and the more uniform binding of CBM28 (red). 

To investigate subtle organizational differences of CBMs adsorbed on the cellulose 
surface, we sought a metric to quantify CBM-substrate binding patterns. Because the substrate is 
differentially ordered on many length scales, we required this metric to be a function of length 
scale and to incorporate the directional dependence of CBM arrangements. For each PALM 
image, circular regions with 3.1 µm diameters were selected (Fig. 6.2A). Points within these 
regions were projected onto eight axes: one corresponding to the direction of the principal 
component of the points within the image, and seven corresponding to axes located at various 
angles (multiples of 22.5°) to the principal component (Fig. 6.2B).  Pair correlation functions 
(PCF’s) were then constructed along each axis, and the distance between the y-intercepts of the 
two PCF’s that differed most in amplitude was calculated (Fig. 6.2C).  This number, which we 
term the “CBM order parameter” and represent as Ω, indicates the local directional dependence 
of a CBM’s spatial organization on the cellulose surface. The local emphasis is a result of using 
the PCF y-intercepts, which weight the organizational differences of nearest neighbors.  For each 
CBM, an overall order parameter value Ω was determined by averaging the individually 
calculated values from at least 15 different circular regions within 3 separate PALM datasets 
(Table 2). Examples of circular regions from PALM datasets are shown in Figs. 6.2D-2I with 
their associated order parameter. 
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CBM Order 

Parameter at 
0.12 µmol/g 

Order 
Parameter at 
0.24 µmol/g 

1TrCel7A 0.85(0.23) 0.85(0.25) 
1TrCel6A 0.74(0.22) 0.52(0.12) 
2A 0.58(0.15) 0.52(0.11) 
3A 0.47(0.22) 0.41(0.09) 
17 0.44(0.09) 0.72(0.16) 
28 0.34(0.06) 0.71(0.13) 

Table 6.2 Order parameters calculated for spatial point patterns from PALM images of mEos2-CBM constructs 
bound to cotton linters at loadings of 0.12 µmol protein/g cellulose and 0.24 µmol protein/g cellulose. 
 

Order parameters indicate the binding site preferences of CBMs by revealing the 
organization of the structures to which they bind. The targets of CBM28 and CBM1TrCel7A 
represent two extremes in a morphological spectrum (Fig. 6.3A). At a low loading, CBM28, 
which isothermal titration calorimetry experiments have shown binds tightly to single glycan 
chains, had an order parameter of 0.34, and CBMTrCel7A, which electron microscopy studies 
have shown binds to the 110 hydrophobic face of crystalline cellulose microfibrils, had an order 
parameter of 0.85 (22, 23). PALM reveals that CBM28 binds broadly across the surface without 
highlighting rough surface features and that CBM1TrCel7A clusters along edges and along linear 
ridges. The low order parameter associated with CBM28 appears to result from broadly 
distributed single chains; whereas, the high order parameter associated with CBM1TrCel7A 
appears to result from a concentration of ordered microfibrils within edges and ridges.  This link 
between order parameters and CBM affinity for such structures was confirmed with an 
independent spatial adsorption model (SI Appendix 3). The intermediate order parameters 
describing the arrangements of CBM17, CBM3A, CBM2A, and CBM1TrCel6A are indicative of 
intermediary binding site preferences. 
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Figure 6.2 The CBM order parameter.  (a-c) Steps for analyzing spatial distributions of CBMs on the cotton surface.  
In (c), the difference between the extrema of the y-intercepts is indicated with an orange bracket.  (d-i) Example 
circular regions from PALM images of each mEos2-CBM construct  (1 µm scale bars): (d) mEos2-CBM28, (e) 
mEos2-CBM17, (f) mEos2-CBM3A, (g) mEo2-CBM2A, (h) mEo2-CBMTrCel6A, and (i) mEos2-CmTrCel7A.  
Only 700 points from each region have been plotted to facilitate comparison. 
 

The binding behaviors suggested by the PALM order parameter values are consistent 
with published adsorption studies. The low order parameters of CBM28 and CBM17 
(respectively, 0.34 and 0.44) agree with reports that these CBMs bind chains within disordered 
regions, but that CBM17 has a higher affinity for crystalline cellulose than does CBM28 (23-25). 
Analogously, the high order parameters of CBM1TrCel7A and CBM1TrCel6A (respectively, 
0.85 and 0.74) are indicative of a high affinity for crystalline ridges, which these homologous 
CBMs have been shown to have (22). The lower Ω value of CBM1TrCel6A may be explained by 
this CBM’s ability to accommodate greater morphological diversity than CBM1TrCel7A; indeed, 
a study by Linder et al showed that CBM1TrCel6A binds chitin, a polymer of N-
acetylglucosamine, with a 3-fold greater affinity than CBM1TrCel7A (26). Finally, the order 
parameters associated with CBM2a and CBM3a (respectively, 0.58 and 0.47) agree with 
previous binding studies suggesting that CBMs from these families can bind crystalline and non-
crystalline substrates, but that CBM2A has a higher affinity for highly crystalline substrates than 
does CBM3A (6). The consistency between the PALM order parameter results (Figs. 6.1 and 
6.2) and previous adsorption studies substantiates our interpretation of the order parameter as an 
indicator of morphological binding specificity. 
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The sensitivity of the order parameters to CBM loading is indicative of the distribution of 
high and low affinity binding sites.  When the CBM/cellulose loading was increased, the order 
parameters associated with CBMs 1TrCel7A, 1TrCel6A, 2A, and 3A stayed the same or 
decreased slightly, suggesting that, at the higher loading, these CBMs adsorbed not only to their 
high affinity sites, but also to some of the more broadly distributed, amorphous-like regions 
which they have been shown to bind with a lower affinity (6). By contrast, the order parameters 
associated with CBMs 17 and 28 increased, suggesting that these CBMs began to occupy 
crystalline regions at higher loadings. Such a transition is consistent with previous measurements 
of the binding site densities for CBM28 and CBM17 on crystalline substrates, which range from 
0.08 to 0.26 µmol/g for high affinity sites (likely single chains) and 0.79 to 5.01 for low affinity 
sites (likely crystalline regions) (23).   

To relate CBM structural targets and enzymatic activity, we synthesized six 
endoglucanase chimeras differing only by their CBM domain and assayed their catalytic activity 
individually and alongside one another for all 15 possible binary combinations. Endoglucanases 
cleave within cellulose chains by general acid-catalyzed hydrolysis of the β-[1,4]-bonds that link 
glucose subunits (27). Each CBM was connected to the catalytic domain of the Acidothermus 
cellulolyticus GH5 (AcGH5) endoglucanase via the T. reesei Cel7A linker (SI Materials and 
Methods). AcGH5 is a highly active, thermostable endoglucanase (28). 

The chimeras were assayed against cotton linters at 18°C for 45 hours and at 50°C for 5 
hours at GH5-CBM/cotton loadings identical to the mEos2-CBM/cotton loadings of the PALM 
experiments (SI Materials and Methods). The 18°C temperature was chosen to match the 
temperature of the room in which the microscopy was carried out; 50°C was chosen to assess the 
influence of temperature on the performance of each enzyme mixture. Assay durations were 
based on Arrhenius extrapolations from a 2-hour initial rate regime of AcGH5 on cellulosic 
substrates at 70°C (29, 30) (SI Appendix 4). Soluble sugars released were measured with a 
glucose oxidase / horseradish peroxidase assay (SI Materials and Methods). The synergy 
exhibited by each binary combination was calculated as the concentration of soluble sugars 
released by a combination divided by the concentration of sugars expected from purely additive 
behavior between the two enzymes (Fig. 6.3B, SI Appendix 6). 

The activity of binary GH5-CBM mixtures relative to one another was insensitive to the 
enzyme loadings and temperatures examined, suggesting a dilute adsorption scenario where the 
concentrations of total and adsorbed enzyme were approximately equal (SI Appendix 5, Fig. 
6.A7). The absence of a shift in the behavior of GH5-CBM28 and GH5-CBM17 between low 
and high loadings suggests that the activity of the GH5 catalytic domain is similar when it is 
located near the high and low affinity sites of these CBMs. 

A heat map showing the synergy of each binary combination reveals five pairs that 
exhibit synergy greater than 1.2 (Fig. 6.3B).  The synergy of these binary pairs cannot be 
predicted from their amorphous or crystalline binding classification. Surprisingly, however, 
when the synergy was plotted against the difference in order parameters (ΔΩ = Ωa - Ωb), a 
pattern emerged (Fig. 6.3C).  Of the five highly synergistic combinations, four were composed of 
GH5-CBM constructs with ΔΩs between 0.10 and 0.25. By contrast, the eight combinations with 
an average synergy of ~ 1 had ΔΩs that were either very small (ΔΩ ≈ 0) or very large (ΔΩ > 
0.25).  This pattern is consistent with a dilute adsorption regime where substrate is abundant. 
When two enzymes target identical sites (i.e., ΔΩ ≈ 0), the mixture behavior is similar to the 
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behavior of a higher concentration of either enzyme; the combined activity is thus additive 
(synergy ≈ 1). When two enzymes target very different sites (i.e., large ΔΩ), they hydrolyze 
cellulose independently, and the combined activity is again additive (synergy ≈ 1). By contrast, 
when two CBMs bind similar but non-identical targets (0.10 < ΔΩ < 0.25), one enzyme can 
enhance the susceptibility of the substrate to the action of the other, and the combined activity 
that results is superadditive, or synergistic. 

 
Figure 6.3 Order parameters and synergy values. (a) Diagram of mEos2-CBM architecture above a scale showing 
the range of CBM order parameters calculated from PALM images of mEos2-CBM constructs bound to cotton 
linters at 0.12 µmol protein/g cellulose loadings.  (b) Diagram of GH5-CBM architecture above a heat map showing 
the average synergy of each binary GH5-CBM mixture.  In the synergy equation, Geq is the glucose equivalent 
concentration of soluble sugars released from the cotton linters, and CBMA and CBMB represent two non-identical 
CBMs.  Average synergy values are based on the individual synergy values for reaction mixtures assayed on 50.8 
mg/L cotton at pH 4.85 under four conditions: 0.12 µmol enzyme/g cellulose for 5 hours at 50°C, 0.24 µmol 
enzyme/g for 5 hours at 50°C; 0.12 µmol enzyme/g for 45 hours at 18°C; and 0.24 µmol enzyme/g for 45 hours at 
18°C.  (c) Average synergy values plotted against the difference in order parameters of the two relevant CBMs 
(ΩCBMA- ΩCBMB) at the 0.12 µmol protein/g cellulose loadings (within a difference range of 0 to 0.51).  All points are 
colored as in the heat map from (b).  Zones of identical, similar, and dissimilar binding behavior have been shaded 
with orange, red, and blue.  An arrow has been used to indicate the CBM3A/CBM1TrCel7A outlier. 
 

Consideration of the major outlier to the ΔΩ-synergy pattern is informative. The 
CBM1TrCel7A and CBM3A pair has ΔΩ = 0.38, and yet shows synergistic behavior (Fig. 6.3C, 
arrow). Previous reports have shown that both CBMs are capable of adsorbing to the 
hydrophobic 110 face of cellulose microfibrils (22) but that CBM3A can bind a multitude of 
other sites in addition to the 110 hydrophobic face. CBM3A’s ability to bind a range of 
structures is consistent with our results (Fig. 6.A3) and those of Carrard et al (11), which show 
that CBM3A confers to GH5 enzymes a higher activity on a variety of substrates than do other 
CBMs. Thus, the relaxed substrate fidelity of CBM3A increases the ΔΩ of the 
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CBM3A/CBM1TrCel7A pair, obscuring the ability of these CBMs to bind similar but non-
identical sites. When the PALM-based ΔΩ analysis is employed to optimize cellulolytic mixtures, 
some good synergistic combinations, such as CBM3A/CBM1TrCel7A, will be missed unless the 
Ω results are supplemented with adsorption isotherms showing which CBMs are capable of 
binding a wide range of morphological targets. 

6.4 Conclusions 

The PALM-based order parameter provides a new technique for assessing the similarity 
between CBM binding site targets and, in doing so, reveals a strategy for improving the 
performance of cellulase mixtures.  The advantages conferred by multiple CBMs to the AcGH5 
endoglucanase have implications for cellobiohydrolases and polysaccharide monooxygenases, 
the other two main constituents of cellulolytic mixtures.  Our results suggest that combinations 
of cellulolytic enzyme variants that differ only in their binding targets can exhibit higher 
activities than single enzymes. The inclusion of such variants within cellulolytic enzyme 
cocktails may improve the overall activity of these mixtures. 
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6.6 Materials and Methods 

6.6.1 Cellulose Preparation 

 Cotton balls (Walgreens) were de-waxed with a Thermo Scientific ASE 350 Accelerated 
Solvent Extractor.  Cotton was packed into 100 mL steel extraction cells, which were then 
saturated with chloroform at 100°C and 10 MPa for 5 minutes.  This process was repeated a total 
of three times, and between each 5-minute holding time, 40% of the column volume was emptied 
and replaced with fresh chloroform. After the third round of extraction, a 60-second nitrogen 
purge was used to remove residual solvent. 

 Cotton linters were generated through pulsed blending and subsequent washing of the de-
waxed cotton.  The chloroform-extracted cotton balls were submerged in 1 L of water, and the 
resulting suspension was blended for 1.5 minutes on high in a 1 L Waring Blender.  Cotton was 
removed from the blade and cut with sterile scissors.  This blending/cutting process was repeated 
five times.  The final suspension was mixed with sodium hypochlorite to create a final aqueous 
solution of 2% sodium hypochlorite.  This cotton suspension was heated for 2 hours at 70°C and 
cooled to 4°C overnight.  The final bleached product was spun down at 6000 rpm in 1 L 
centrifuge containers for 20 minutes, the supernatant was decanted, and replaced with Nanopure 
water.  This washing process was repeated four times.  The final 3L suspension was mixed at 
150 rpm on a stir plate, and the top 500 ml was withdrawn.  This was enriched in small cotton 
linters; larger particles and clumps fell to the bottom.  The final product was stored in 0.06% 
sodium azide to prevent contamination by microorganisms.  The final cellulose concentration 
was determined with the phenol / sulfuric acid method as described previously (33). 
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6.6.2 Design of Fusion Constructs 

 Fusion constructs were generated with overlap extension PCR.  For CBM1TrCel7A, 
CBM2A, CBM17, and CBM28, the mEos2 and AcGH5 domains were attached to the N-terminus 
of the CBMs via the following primers: 

Forward primer for mEos2:   AAAAACCATGGGGGCGATTAAGCCAGACAT 
Reverse primer for mEos2:   ACCCGGGCTGCTACCGGTGGTGGTCGCCGGACGACGGGT- 
                                           GGTGGTGGTACCACGGGATCCTCGTCTGGCATTGTCAGG 
Forward primer for AcGH5:   AAAACCATGTCGGGCGGTGGTTATTGGC 
Reverse primer for AcGH5: ACCCGGGCTGCTACCGGTGGTGGTCGCCGGACGACGG- 
  GTGGTGGTGGTACCACGACCAACAGGATCGAAGATC- 
  GACGATTTA 
Forward primer for CBM1TrCel7A:  CGTGGTACCACCACCACCCGTCGTCCGGCGACCACCACC 
Reverse primer for CBM1TrCel7A: GAATTCTTAATGATGATGATGATGATGTTTATCA- 
  TCATCATCCAGGCACTGGC 
Forward primer for CBM2A: CCACCCGTCGTCCGGCGACCACCACCGGTAGCAGCCCG- 
  GGTCCGACCCAGAGCACTGCGGCGAGCGGC 
Reverse primer for CBM2A: GAATTCTTAATGATGATGATGATGATGGGTTTTATC- 
  ATCATCATCACTCGCCGCGCACGC 
Forward primer for CBM17:   ACCCGTCGTCCGGCGACCACCACCGGTAGCAGCC- 
 CGGGTCCGACCCAGAGCCAACCGACCGCCCCGAAA 
Reverse primer for CBM17:   AAAAAAGAATTCTTAATGGTGATGGTGATGGTGG 
Forward primer for CBM28:   ACCCGTCGTCCGGCGACCACCACCGGTAGCAGCCCGGGT- 
  CCGACCCAGAGCGGCACCGAAGTGGAAATTCCG 
Reverse primer for CBM28: AAAAAAGAATTCTTAATGATGATGATGATGATGGG 
  TTTTATCATC 
 
For CBM1TrCel6A and CBM3A, the mEos2 and AcGH5 domains were attached to the C-
terminus of the CBMs via the following primers: 
 
Forward primer for mEos2:   ACCACCCGTCGTCCGGCGACCACCACCGGTAGCAGC- 
  CCGGGTCCGACCCAGAGCATGGGGGCGATTAAGCCA- 
  GACAT 
Reverse primer for mEos2:   GAATTCTTAGGATCCTCGTCTGGCATTGTC 
Forward primer for AcGH5: CCACCCGTCGTCCGGCGACCACCACCGGTAGCAGCC 
  CGGGTCCGACCCAGAGCTCGGGCGGTGGTTATTGGC 
Reverse primer for AcGH5:   GAATTCTTAACCAACAGGATCGAAGATCGACGATTTA 
Forward primer for CBM1TrCel6A:   AAAACCATGGCACATCATCATCATCATCATACCG- 
  ATGATGATGATAAAACCCAGGCGTGCAGCAGCG 
Reverse primer for CBM1TrCel6A:  ACCCGGGCTGCTACCGGTGGTGGTCGCCGGACGACG 
  GGTGGTGGTGGTACCACGCAGGCACTGGCTATAATAA 
  TCGTTGCT 
Forward primer for CBM3A: AAAACCATGGCACATCATCATCATCATCATACC- 
  GATGATGATGATAAAGGCATGGCGAATACCCCGGTGTCT 
Reverse primer for CBM3A:   ACCCGGGCTGCTACCGGTGGTGGTCGCCGGACGAC  
  GGGTGGTGGTGGTACCACGCGGTTCTTTACCCC 
  AAACCAGCAC 
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For CBM1TrCel6A, the PSCFP2 domain was attached to the C-terminus of the CBM via the 
following primers: 
 
Forward primer for PSCFP2:  CCACCCGTCGTCCGGCGACCACCACCGGTAGCAGC- 
  CCGGGTCCGACCCAGAGCATGAGCAAGGGCGCCG  
Reverse primer for PSCFP2:  AAAAAGAATTCTCACTTGTACAGCTCATCCATGCCGTG 
 
Each half of each construct was subcloned within a separate amplification reaction consisting of 
the relevant template and the two relevant primers.  Fusion constructs were generated in 
amplification reactions consisting of the two parent templates and the non-overlapping primers 
corresponding to the N- and C-termini of the complete protein.  The product of each final 
amplification reaction was gel purified, digested with NcoI-HF and EcoRI-HF restriction 
enzymes (New England Biolabs), and ligated into a pTrcHisC plasmid (Invitrogen). 

6.6.3 Expression and Purification of Fusion Constructs 

Fusion proteins were expressed in Origami B E. coli, which is capable of forming 
disulfide bonds.  Top10 chemically competent E. coli cells (Invitrogen) were transformed with 
the product of each ligation reaction and grown on LB plates containing 100 mg/L of 
Carbenicillin.  A subset of the resulting colonies were checked for error-free plasmids via 
sequencing, and an error-free plasmid for each construct was used to transform Origami B E. coli 
(Novagen).  For each construct, a plasmid-containing colony of Origami B was grown up 
overnight in LB media containing 50 mg/L of Carbenicillin (37°C shaker).  Approximately 20 ml 
of overnight culture was used to inoculate 2 L of LB media, which was grown in a 37°C shaker 
in the dark.  The 2L cultures were induced at an OD600 of approximately 0.65 with 1 mM IPTG, 
and induction was carried out for 18 hours in the dark.  Stopped cultures were spun down in 1 L 
centrifuge tubes at 6000 rpm for 25 minutes, and pellets were lysed with a homogenizer. 

 Fluorescent fusion proteins were purified with a fast protein liquid chromatography 
system (ATKA Explorer, GE Healthcare) in the dark.  Cell lysate from each 2 L culture was 
equilibrated with sodium phosphate buffer (20 mM sodium phosphate, 500 mM NaCl, pH 8.10), 
and the final mixture was filtered with a 0.45 µm sterile filter.  This solution was loaded onto a 5 
mL His-FF column (GE Healthcare) attached to a refrigerated FPLC, and the purified protein 
was eluted with a stepwise gradient of sodium phosphate buffer containing imidazole (20 mM 
sodium phosphate, 500 mM NaCl, 500 mM Imidazole, pH 8.10).  The eluted fraction was 
concentrated with a 10 kDa centrifuge concentrator and resuspended in Tris-HCl buffer (20 mM 
Tris-HCl, 200 mM NaCl, 2 mM CaCl2, pH 7.2).  To remove the polyhistidine tag from each 
fusion construct, recombinant light chain enterokinase (New England Biolabs) was incubated 
with each protein solution in a ratio of 0.001 wt/wt % (enterokinase/protein) for 8 hours at room 
temperature in the dark.  The resulting solution was again loaded onto the 5 ml His-FF column, 
and the flow-through was collected.  In several cases where this flow-through showed 
contaminants on an SDS-denaturing gel stained with Coomassie Blue, an additional Mono Q 
10/100 GL anion exchange column was used to ensure single band purity (gradient elution with 
25 mM HEPES, pH 7.35, 1.0 M NaCl).  Non-fluorescent fusion proteins were purified in an 
identical manner, but without the protection from light. 
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6.6.4 Instrumentation for PALM 

 PALM imaging was performed on an Olympus IX81 inverted microscope that was 
customized as in reference (34).  Imaging was carried out with a 63X 1.49 N.A. oil immersion 
objective with Type DF nondrying immersion oil (Cat. No 16242 Cargille Laboratories) and 
glass coverslips (No. 1.5, VWR 48336-227).  The arrangements of the 561 nm laser (Coherent 
compasss-561-100) and 488 nm laser (Coherent Sapphire 488-100) were similar within this setup.  
Beams from each of these lasers were passed through laser clean up filters (Semrock #LL02-561-
12.5 and Semrock #LL01-488-12.5 respectively) and expanded to beam diameters of 
approximately 3mm.  A mixing filter (Semrock #LM01-552-25) was used to combine these 
beams onto a mutual path that passed through an acousto-optic tunable filter or AOTF (AA 
optoelectronic AOTFnC-VIS).  The AOTF allowed for pulsed laser imaging and facilitated 
adjustments to laser power reaching the sample. The 405nm laser (Coherent cube-405-100) was 
passed through a clean up filter (Semrock LD01-405/10-12.5), expanded to approximately 3mm 
and combined with the 561nm and 488nm beams using another laser mixing filter (Semrock 
LM01-427-25). This combined beam was then expanded and passed through a series of lenses to 
provide an appropriately–sized TIRF spot on the microscope objective (Olympus APON 
60X0TIRF). 

6.6.5 Imaging Procedure for PALM 

 Sample preparation for PALM imaging took approximately 2.5 hours.  For each sample, 
a 500-µL suspension with the following composition was prepared in a 1.5 ml Eppendorf tube: 
40 mg/L cotton, 1X PBS buffer (137 mM NaCl, 10 mM Phosphate, 2.7 mM KCl, and 200 µM 
CaCl2, pH 7.4), and 4.8 or 9.6 nM mEos2-CBM construct, depending on whether or not the 
loading was 0.12 or 0.24 µmol/g.  This suspension was incubated in the dark (covered in foil) at 
room temperature for 2 hours on a rocking platform.  After this time, 400 µL of suspension was 
mixed with 4 µL of 25 nm gold nanorods (550 LSPR, Nanopartz), and the resulting mixture was 
spun down in an imaging well containing a 22x22 mm glass coverslip (No. 1.5, VWR 48336-
227) at 2500 rpm for 20 minutes at 18°C. 

 Imaging was performed in TIRF mode at ~18°C.  Under illumination from approximately 
12mW of 561 nm laser light, a cotton section was identified that contained both (1) a 
fluorophore-coated region spanning several microns and (2) detectable gold nanorods (for drift 
correction).  This image was photographed under bright field illumination.  Under TIRF mode, 
this section was then subjected to 561 nm laser again for 5 minutes prior to imaging.   Through 
this process, many of the mEos2 fluorophores activated through exposure to the bright field light 
were bleached out.  Imaging was then carried out through simultaneous illumination with 12mW 
561 nm and 2mW of 405 nm light; illumination was pulsed at 20 Hz with an AOTF.  The 
dichroic and emission filters were Chroma T495Ip and Semrock optics 617/73, respectively.  
Twenty images were captured every second for 85 minutes.  During this period, when the 
frequency with which activated mEos2 molecules were detected began to dwindle, the power of 
the 405 nm laser was increased. 

 For the dual color image, several subsequent steps were taken.  After the 85-minute 
illumination period, the 405 nm laser was turned off for 5 minutes, and recording was continued.  
During this period, much of the activated mEos2 was bleached out.  The 488 nm laser, set to 
10mW, was then turned on, and the dichroic and emission filters were changed to Semrock 
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FF562-Di02 and Chroma HQ525/50M, respectively.  The 561 nm laser was turned off, and the 
488 nm laser was held on for 5 minutes to bleach out the previously activated PSCFP2 molecules.  
Imaging began with simultaneous illumination with 488 and 405 nm lasers (at 10 and 4 mW, 
respectively) for 85 more minutes; illumination was pulsed at 20 Hz with the AOTF as before.  
During this period, when the frequency with which activated PSCFP2 molecules were detected 
began to dwindle, the power of the 405 nm laser was increased. 

 Drift correction was accomplished through tracking of 25 nm gold nanorods (550 LSPR, 
Nanopartz), which were visible in each channel.  Localization and image rendering was carried 
out as described elsewhere (15, 34). 

6.6.6 Confocal Imaging for Fig. 6.1B 

 Sample preparation for confocal imaging took approximately 2 hours.  A 500-µL 
suspension with the following composition was prepared in a 1.5 ml Eppendorf tube: 40 mg/L 
cotton, 1X PBS buffer as above, and 9.6 nM each of mEos2-CBM28 and PSCFP2-
CBM1TrCel6A construct, for a loading of 0.24 µmol each construct/g cotton.  This suspension 
was incubated in the dark (covered in foil) at room temperature for 2 hours.  After this time, 30 
µL of suspension was placed onto a glass microscope slide (Fisherbrand 12-550-343) and 
covered with a glass coverslip (Fisherbrand 24X30-1.5X) prior to imaging. Confocal imaging 
was carried out with a 63X PL APO N.A. 1.2 W objective attached to a Leica DIM6000B 
microscope equipped with a CSU-X1 confocal scanner unit (Yokogawa), a Quantum 512 SC 
camera (Photometrics), and 442 and 488 nm lasers controlled by Metamorph Software. Under 
DIC, 442 nm confocal, and 488 nm confocal imaging conditions, 30 z-sections of thickness 
0.384 µm/section were collected separately; 20 from each illumination condition were 
reassembled with ImageJ (http://rsbweb.nih.gov/ij/). 

6.6.7 Hydrolysis Assays of GH5-CBM Constructs on Cotton Linters 

 Hydrolysis assays were conducted in round-bottom 96-well plates.  Each plate consisted 
of 100-µL reactions containing 50.8 mg/L cotton, sodium acetate buffer (50 mM sodium acetate, 
500 µM CaCl2, pH 4.85), and either 6 nM or 12 nM of GH5-CBM enzyme, depending on 
whether the enzyme/cellulose loading was 0.12 or 0.24 µmol/g, in the ratios described in Table 3.  
All reactions of a given loading were conducted in triplicate within a single plate.  The remaining 
15 reactions consisted of an enzyme-free control conducted in triplicate, and three known 
concentrations of glucose (0 µM, 5 µM, and 10 µM) conducted in quadruplicate.  A thermal 
sealer was used to seal each plate with foil prior to incubation at 18°C for 45 hours or 50°C for 5 
hours.  A total of four 96-well plates were used, one at each loading for each temperature. 

6.6.8 Glucose Oxidase / Horseradish Peroxidase Assay 

 The glucose-equivalent concentration of soluble sugars released by the activity of GH5-
CBM enzymes on cotton was measured with the glucose oxidase / horseradish peroxidase/ 
Amplex Red assay.  From each 100 µL reaction, 16 µL of solution was withdrawn and reacted 
with 16 µL of 5 g/L β-glucosidase solution in a separate black, round-bottom 96-well plate at 
room temperature for 1 hour.  During this period, the β-glucosidase hydrolyzed all soluble cello-
oligosaccharides into glucose.  To the resulting mixture, 64 µL of a solution containing 12.5 U 
glucose oxidase, 12.5 U horseradish peroxidase, 62.5 µM Amplex UltraRed reagent (Invitrogen), 
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and 125 mM HEPES buffer (pH 7.3) was added.  This mixture was given 20 minutes to react in 
the dark, and the fluorescence at 595 nm was measured in a Paradigm plate reader (Beckman 
Coulter).  Glucose concentrations were calculated from fluorescence intensity measurements 
based on known glucose concentrations that were subjected to the same treatment as the reaction 
mixtures. 

For each of the four 96-well plates used in the hydrolysis assays, the soluble sugar assay 
was conducted four times.  The values that are reported in Fig. 6.A7 correspond to interquartile 
averages of the 12 data points corresponding to the activity of each binary mixture assayed under 
a given set of conditions.  Standard rules for error propagation were used to calculate error for 
synergy and average synergy calculations. 

 
Fig. 6.A7 A comparison of soluble sugars released (measured in glucose equivalent) from 50.8 mg/L of cotton 
linters at pH 4.85 by the GH5-CBM combinations listed in Table 6.A3 under different reaction conditions.  The x-
axis corresponds to the soluble sugars released by a total GH5-CBM loading of 0.12 µmol/g cellulose (1X) for 45 
hours at 18°C.  The y-axes correspond to the soluble sugars released by (A) 0.24 µmol enzyme/g cellulose (2X) for 
45 hours at 18°C, (B) 0.12 µmol enzyme/g cellulose (1X) for 5 hours at 50°C, and (C) 0.24 µmol enzyme/g cellulose 
(2X) for 5 hours at 50°C.  The correlation coefficients for the lines are 0.88 (A), 0.82 (B), and 0.85 (C). 
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6.7 Appendix 1: Filtration of Data 

 Points that were weakly detected or likely to be erroneous were removed prior to analysis.  
Weakly detected points were removed through the exclusion of fluorophores that were localized 
with less than 14 photons or with a Gaussian fit standard deviation of 2 pixels or more.  Bright 
contaminants such as gold nanorods and dirt were removed through the exclusion of 
fluorophores that were localized with more than 162 photons.  Double counting of reactivated 
fluorophores, which have been shown to occur with mEos2 (35), was prevented through the 
removal of points occurring within 11 nm of any point within a 30-second time period after its 
initial appearance. 

6.8 Appendix 2: Detail of Mathematical Analysis 

  Points within each PALM image were subjected to a mathematical analysis designed to 
reveal the directional dependence of CBM organization on the cellulose surface.  This analysis 
consisted of the following steps: 

1. Calculation of the principal component of all points within the image using the 
MATLAB function princomp.  The vector returned is normalized (a unit vector). 

2. Calculation of seven additional unit vectors located at multiples of 22.5° to the principal 
component: 
𝑃!(𝜃)′
𝑃!(𝜃)′

= 𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 × 𝑃!

𝑃!
   (6.A1) 

where (P1,P2) is the principal component unit vector, and (P1(θ)’,P2’(θ)) is a unit vector 
located at angle θ to the principal component.  Values of θ included 67.5°, 45°, 22.5°, 0°, 
-22.5°, -45°, and -90°.  Thus, a total of eight unit vectors were calculated. 

3. Selection of the eight densest regions with a diameter of 14 pixels (3.1µm).  These have 
no relation to the eight unit vectors. 

4. Projection of the points within each circle onto each of the eight unit vectors: 

 
𝑃!(𝜃)′ ∙ 𝑃!(𝜃)′ 𝑃!(𝜃)′ ∙ 𝑃!(𝜃)′
𝑃!(𝜃)′ ∙ 𝑃!(𝜃)′ 𝑃!(𝜃)′ ∙ 𝑃!(𝜃)′

×
𝑥! 𝑦!
⋮ ⋮
𝑥! 𝑦!

!

= 𝑥!′ ⋯ 𝑥!′
𝑦!′ ⋯ 𝑦!′

    (6.A2) 

 where each (xi’,yi’) pair corresponds to each (xi,yi) pair.   

5. Construction of a pair correlation function within each circular region for the points along 
each axis: 
𝑔!(𝑥) = 𝜌! 𝑥 𝑑𝑥  (6.A3) 
where gθ is a pair correlation corresponding to the axis located at angle θ to the principal 
component, and ρθ is the number density of the points projected along the axis. 

6. Calculation of the difference in y-intercepts of the pair correlation functions gθ and gθ’ 
which have the greatest difference in y-intercept.  This number, which we term the “CBM 
order parameter” and represent as Ω, indicates the local directional dependence of a 
CBM’s organization on the cellulose surface.  The local emphasis is a result of the y-
intercept, which weights the organizational differences of nearest neighbors. 

Note that steps 4,5, and 6 are carried out separately for each circular region.   
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 After steps 1-6 were carried out for all 36 PALM images, order parameters corresponding 
to anomalous circular regions (e. g., those located off the main fiber or near blanked gold 
nanorod locations) were removed through two steps: 

1. Removal of data from circular regions on cellulosic material that was not located on 
the main cotton linter within a PALM image. 

2. Removal of order parameter values lower than 0.15 and higher than 1.5, which 
appeared to correspond to discontinuities in an range of order parameter values that 
was otherwise continuous between these two limits (Fig. 6.A1). 

 
Figure 6.A1 Order parameter values from 0.12 and 0.24 µmol protein/g cellulose loadings are plotted from smallest 
to largest.  Plots include various subsets as follows: (A) all order parameters, (B) order parameters lower than 0.3, 
and (C) order parameters between 0.15 and 1.5 (the order parameter values used in our analysis). 
 

Each of the final order parameter values listed in Table 6.2 corresponds to an interquartile 
average of at least 15 order parameters calculated from circular regions within three separate 
PALM images. 
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6.9 Appendix 3: Model of CBM Adsorption to cellulose 

 A model was employed to investigate the connection between binding site locations and 
order parameter values.  Adsorption of CBMs with varying degrees specificity for crystalline and 
amorphous regions was modeled by representing cellulose as a square where these morphologies 
were present within ridge and non-ridge sections, respectively (Fig. 6.A2).  The CBMs were 
partitioned onto ridge and non-ridge regions in accordance with the preference for binding each, 
but their position within each type of region was random.  Order parameters for the point 
distributions produced by the model were calculated in a fashion identical to that used for  
PALM images.   

 
Figure 6.A2 Diagram of the heterogeneous cellulose square upon which CBM adsorption was modeled.  A close-up 
shows the Z-profile of the surface.  Ridge regions have cross-sections which resemble equilateral triangles.  When 
viewed from overhead, the ridge area available for a CBM to bind is twice that of the observable area (the area of 
the triangle base). 
 
 The enhanced surface area associated with ridge-like features, which protrude into the z-
direction of the 100-nm thick imaging plane, was simulated by modeling ridges as having 
equilateral triangle cross-sections (Fig. 6.A2).  When viewed from overhead, a ridge will appear 
to have a surface area equal to that of its base area.  To account for this within the model, each 
triangular ridge was given an area equal to twice that of its base (the area observed); this is the 
area of the two exposed ridge sides when the angle between them is 60°.  This accounting is 
important to the adsorption calculations below. 

 Adsorption was modeled under dilute conditions.  The linear regime of a two-site 
Langmuir binding isotherm was assumed: 

𝐶𝐵𝑀∗ ≈ 𝐾! ∗! ! 𝐶𝐵𝑀 + 𝐾! ∗! ! 𝐶𝐵𝑀                        (6.A4) 

Equivalently, 

𝐶𝐵𝑀∗ ≈ !! ∗! ! !"# !
!!!! ∗! !!!! ∗! !

+ !! ∗! ! !"# !
!!!! ∗! !!!! ∗! !

                    (6.A5) 
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where *c and *a represent the total number of binding sites located within the ridge and non-ridge 
regions, respectively, and Kc and Ka are the associated binding constants for these regions; 
[CBM*] is the total concentration of adsorbed CBM (ridge and non-ridge regions).   Based on 
the discussion in Appendix 5, we further assume that all of the CBM adsorbs to the cellulose 
surface: 

𝐶𝐵𝑀∗ ≈ !! ∗! ! !"# !
!! ∗! !!!! ∗! !

+ !! ∗! ! !"# !
!! ∗! !!!! ∗ !

                              (6.A6) 

where 

!! ∗! !
!! ∗! !!!! ∗! !

= 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑏𝑜𝑢𝑛𝑑  𝑡𝑜  𝑟𝑖𝑑𝑔𝑒𝑠                               (6.A7) 

and 

!! ∗! !
!! ∗! !!!! ∗! !

= 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑏𝑜𝑢𝑛𝑑  𝑡𝑜  𝑛𝑜𝑛 − 𝑟𝑖𝑑𝑔𝑒  𝑟𝑒𝑔𝑖𝑜𝑛𝑠           (6.A8) 

Within the model, Eqs. S4 and S5 are used to distribute CBMs onto ridge and non-ridge regions 
of a 13.33 x 13.33 µm square of cellulose containing two 1.33 x 13.33 µm ridges spaced 2.66 µm 
apart (Fig. 6.A2).  These dimensions are similar to the dimensions of surface features revealed by 
PALM images.  Values of [*c]0 and [*a]0 were calculated as follows: 

∗! ! ∝ 𝑎𝑟𝑒𝑎  𝑜𝑓  𝑟𝑖𝑑𝑔𝑒𝑠 = 2× 2×1.33×13.33   𝜇𝑚!  (6.A9) 

∗! ! ∝ 𝑎𝑟𝑒𝑎  𝑜𝑓𝑓  𝑟𝑖𝑑𝑔𝑒𝑠 = 13.33 !  𝜇𝑚! − 2×1.33×13.33   𝜇𝑚! (6.A10) 

Scenarios examined by the model correspond to different CBM/cellulose loadings and varying 
levels of preference for binding ridge regions over non-ridge regions (Kc/Ka).  Loadings of 5,000, 
10,000, and 20,000 CBMs were used for the seven different Kc/Ka values listed in Table 6.A1. 

                           Table 6.A1 Spatial adsorption model results 
Kc/Ka Order Parameter 

with 10,000 
proteins bound 

Order Parameter 
with 20,000 

proteins bound 
10 2.24 2.25 
5 1.97 1.92 
2 1.17 1.18 
1 0.63 0.43 

0.5 0.17 0.15 
0.2 0.25 0.20 

0.05 0.16 0.11 
Table 6.A1.  Order parameters calculated for spatial point patterns modeled at two different loadings on a 13.33 x 
13.33 µm cellulose square with two 1.33 x 13.33 µm crystalline regions.  The Kc/Ka value represents the relative 
preference of the CBM to bind crystalline sites within these regions over amorphous sites outside of them. 
 
The images produced by this model are shown in Figs.  6.A4-6.A6.  The results of the 10,000 
and 20,000 CBM loadings are given Table 6.A1.  Order parameter trends were consistent with 
our interpretation of the experimental order parameter results: Ω values were highest for CBMs 
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with the highest preference for binding ridge regions and lowest for those with a preference for 
binding inter-ridge regions. 

Figure 6.A4 

 
Figsures 6.A4-6.A6. Images showing the arrangement of CBMs adsorbed to the model cellulose surface described 
in Fig. 6.A2.  The scenarios that are depicted differ by the total number of adsorbed CBM and by the relative affinity 
of that CBM for crystalline cellulose over amorphous cellulose.  The left, middle, and right columns correspond to 
scenarios with 5,000, 10,000, and 20,000 adsorbed CBMs.  The Kc/Ka ratios for the images are as follows: 10 for 
4A-4C; 5 for 4D-4F, 2 for 4G-4I; 1 for 5A-5C, 0.5 for 5D-5F; 0.2 for 5G-5I; and 0.05 for 6A-6C. 
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Figure 6.A5 

 
 
Figure 6.A6 
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6.10 Appendix 4: Arrhenius Basis of Reaction Times 

 The activity of AcGH5 on insoluble cellulose has been shown to obey the Arrhenius 
relationship: 

𝑘 = 𝐴𝑒!!!/!"  (6.A11) 

where k is the catalytic constant, A is the pre-exponential factor, Ea is the activation energy, R is 
the ideal gas constant, and T is the temperature (in Kelvin).  Using data from three previous 
investigations showing the influence of temperature on the activity of either AcGH5 
endoglucanase REF 30 (36, 37) or of the secreted A. cellulolyticus cellulolytic mixture (28), we 
used the Arrhenius equation to estimate time periods likely to occur within the initial-rate regime 
of AcGH5-catalyzed cellulose hydrolysis at 18° and 50°C.  A study by Kim et al showed that the 
activity of AcGH5-CBM chimeras on Avicel was constant for 5-10 hours at 70°C (29).  We 
based our calculations on a conservative 2-hour initial-rate regime using the following equation: 

𝑡𝑖𝑚𝑒 𝑇! = 𝑡𝑖𝑚𝑒(𝑇!) ∙
!(!!)
!(!!)

 (6.A12) 

where T1= 343.15 K (or 70°C), time(T1) = 2 hours, and k(T2) was value of k at 70°C predicted 
by the Arrhenius fit from each of the aforementioned references.  The reaction durations 
resulting from this calculation are reported in Table 6.A2; the final reaction durations (45h for 
18° and 5h for 50°C) are based on averages of the three extrapolated durations from each of the 
three references. 

 Initial-rate regime periods at various temperatures 
Temperature 

(°C) 
Dai et al 

(36) 
Tucker et al 

(28) 
Lindenmuth et 

al (37) 
Average 

Time 
Time 
Used 

70 2 2 2 2 2 
50 5.5 4.0 7.1 5.5 5 
18 37.9 14.4 77 43 45 

Table 6.A2 Arrhenius-based extrapolations of initial-rate regime periods for A. cellulolyticus GH5 endoglucanase at 
various temperatures. 
 
6.11 Appendix 5: Derivation of Dilute Adsorption Equation 

The insensitivity of GH5-CBM cellulase performance to the enzyme loadings and 
temperatures examined in this work evidences a dilute adsorption regime where the 
concentrations of total and adsorbed enzyme are approximately equal.  This connection is best 
explained through the derivation of an equation for CBM adsorption under dilute conditions.  
Several groups have showed that CBMs adsorb to high and low affinity sites on cellulose (23, 
38).  Under low CBM/cellulose loadings, the CBMs adsorb primarily to high affinity sites, and 
adsorption can be represented by a one-site Langmuir isotherm: 

𝐶𝐵𝑀∗ ≈ ! ∗ ! !"#
!!! !"#

                                             (6.A13) 

where [CBM*], [CBM], and [*]0 are the volumetric concentrations of bound CBM, free CBM, 
and total adsorption sites, respectively.  The binding constant, K, represents a CBM’s affinity for 
a particular site: 



	
   152	
  

𝐾 = !"#∗

[∗] !"#
                                                            (6.A14) 

where [*] is the concentration of free adsorption sites.  Within the linear regime of a Langmuir 
isotherm, the concentration of free protein is low enough that K[CBM]<<1.  In this scenario, the 
concentration of bound protein is proportional to the concentration of free protein: 

𝐶𝐵𝑀∗ ≈ 𝐾 ∗ ! 𝐶𝐵𝑀                                        (6.A15) 

Equivalently, 

𝐶𝐵𝑀∗ ≈ ! ∗ ! !"# !
!!! ∗ !

                                         (S16) 

where [CBM]0 is the volumetric concentration of total protein.  The insensitivity of relative 
GH5-CBM mixture activities to total enzyme loading suggests that this bound protein/total 
protein proportionality holds for all six constructs (Fig. 6.A7); for each GH5-CBM variant, a 
doubling in enzyme concentration leads to the same increase in concentration of GH5-CBM on 
the cellulose surface.  The applicability of a linear adsorption regime was confirmed by a 
separate experiment where seven different concentrations of each GH5-CBM construct were 
assayed against 50.8 mg/L cotton linters for 5 hours at 50°C and pH 4.85 (50 mM sodium acetate 
buffer with 500 µM CaCl2).  The relationship between activity and enzyme loading was linear 
for all constructs (Fig. 6.A3).  

 
Figure 6.A3 Plot showing the influence of enzyme/cotton loading on the concentration of soluble sugars released by 
each GH5-CBM construct acting on 50.8 mg/L cotton linters at 50°C for 5 hours (pH 4.85).  The glucose-equivalent 
concentration of soluble sugars is plotted against the enzyme/cotton in loading, which is given in µmol/g cellulose.  
The symbols correspond to GH5-CBM1TrCel7A (open circle), GH5-CBM1TrCel6A (filled circle), GH5-CBM2A 
(filled triangle), GH5-CBM3A (open square),  GH5-CBM17 (open diamond), and GH5-CBM28 (filled diamond). 
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A special case of Eq. S16 where adsorption is additionally insensitive to temperature may 
apply to the loading and temperature conditions examined in this work.  When K[N]0>>1, Eq. 
S16 can be approximated as follows: 

𝐶𝐵𝑀∗ ≈ 𝐶𝐵𝑀 !                                              (6.A17) 

In such a scenario, changes in K resulting from changes in temperature do not significantly alter 
adsorption behavior.  Such a regime is one possible explanation for the insensitivity of the 
relative performance of GH5-CBM mixtures to the temperatures examined in the present study. 
This insensitivity could also be the result of binding constants that are not heavily influenced by 
temperature, but previous calorimetry studies of CBM adsorption to cellulose have shown that 
temperature dependencies can vary greatly between CBMs.  The adsorption of amorphous-
specific CBMs is heavily influenced by enthalpic effects (39), and the adsorption of crystalline-
specific CBMs is heavily influenced by entropic contributions (38); binding constants of 
crystalline-specific CBMs have stronger temperature dependencies (39, 40).  Thus, the 
insensitivity of relative GH5-CBM mixture performance to temperature is likely the result of a 
binding scenario where most of the enzyme is bound to the cellulose surface.  In such a regime, 
changes in K occur, but they are not significant enough to change the applicability of the 
approximation given by Eq. S17, and the relative performance of the different GH5-CBM 
mixtures will remain similar at 18°C and 50°C. 

6.12 Appendix 6: Synergy Calculation for Binary Mixtures 

The synergy exhibited by each binary combination was calculated as the concentration of 
soluble sugars released by the enzyme combination divided by the concentration of sugars 
expected from purely additive behavior between the two enzymes: 

𝑆𝑦𝑛𝑒𝑟𝑔𝑦 = !"# !"!!!"#$  !"#  !"!!!"#"
!
! !"# !"!!!"#$!

!
! !"# !"!!!"#"

  (6.A18) 

where Geq is the glucose equivalent concentration of soluble sugars released from the cotton 
linters, and CBMA and CBMB are two non-identical CBMs. 

As an example, we calculate the synergy exhibited by the mixture of GH5-CBM17 and 
GH5-CBM28 enzymes.  At 0.12 µmol enzyme/g cellulose, when exposed to 50.8 mg/L of cotton 
linters for 5 hours at 50°C, GH5-CBM17 produced 1.16 µM glucose-equivalent soluble sugars, 
GH5-CBM28 produced 0.95 µM, and an equimolar mixture of both produced 1.51 µM.  If the 
enzymes act independently of each other when present simultaneously, the concentration of 
soluble sugars expected to be released by a binary mixture containing half the concentration of 
each would be 1/2*1.16+1/2*0.95 = 1.055 µM.  The synergy that the mixture of both enzymes 
exhibits as a result of them not acting independently is then 1.51/1.055=1.43.  Synergy values 
such as this one were calculated in an identical fashion for each binary mixture under the four 
sets of conditions investigated within the present work. 
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6.13 Appendix 7: Calculation of Nyquist Resolution and Localization Precision 

 The localization precision and Nyquist spatial resolution were calculated with standard 
procedures.  The two-dimensional localization precision of a point source of light is given by the 
following (41):  

𝜎!"! = !!!!!/!"
!

+ !!!!!!

!!!!
 (6.A19) 

Where σxy is the localization precision, s is the standard deviation of the fitted Gaussian 
approximation of the PSF, N is the total number of photons collected, p is the effective size of an 
image pixel within the focal plane, and b is the background noise per pixel.  When background 
noise is negligible relative to the collected signal, the following approximation can be made: 

𝜎!"! = !!

!
 (6.A20) 

Eq. S20 was used to calculate the localization precision for each of densest eight 3.1-µm circles 
identified within each of the 32 images used for analysis.  The mean localization precision was 
32 nm +/- 7 nm.  Though not as fine as localization precision values reported for other systems 
studied with PALM (15, 42), this value is adequate for our imaging system: 63X N.A. 1.49 
objective with a glass coverslip (No. 1.5, VWR 48336-227).  A 100X N.A. 1.65 objective and a 
sapphire coverslip, which were used in reference 11, would have permitted a higher localization 
precision by enhancing the cone of light entering the microscope from any given fluorophore 
(i.e., more photons/localized protein); however, this system requires immersion oil to be replaced 
hourly, and it does not allow for a large enough field of view to isolate multiple densely labeled 
regions within a single sample.  Moreover, there is no evidence to suggest that a twofold increase 
in localization precision would impact the results of this study. 

 The 2-dimensional Nyquist spatial resolution was calculated within the densest 0.44-µm 
diameter circular regions within each of the 3.1-µm diameter circles using a standard equation 
based on the Nyquist criterion for two-dimensional patterns: 

𝑟! =
!
!
 (6.A21) 

where rN is the Nyquist resolution (in nm), and ρ is the density of localized fluorophores within 
the circle (points/nm).  The mean Nyquist resolution was 77 +/- 21 nm. 

 The Nyquist resolution may not be the most appropriate resolution measure for our 
analysis. The CBM order parameters are calculated from distances between localized 
fluorophores, and they are weighted towards nearest neighbor distances.  Thus, the localization-
based resolution, which represents the smallest structure that can be imaged by PALM, may be a 
more applicable resolution measure.  The localization-based resolution is defined as follows 
(43):  

𝑟! = 𝜎!"! + 𝑟!!!  (6.A22) 
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where rL is the localization-based resolution and rNN is the nearest neighbor distance between 
fluorophores.  When rNN>>σxy, as we find in the current study, this equation can be approximated 
as follows: 

𝑟! = 𝜎!" (6.A23)  

Thus, while the Nyquist resolution was only 81 +/- 25 nm, the localization-based resolution, 
which is more directly related to the nearest neighbor distances used in the order parameter 
calculation, was 32 nm +/- 7 nm. 

6.14 Appendix 8: Compositions of GH5-CBM Mixtures Assayed Against Cotton 

GH5-CBM  1TrCel7A 1TrCel6A 2A 3A 17 28 
1TrCel7A 1:0 1:1      
1TrCel6A 1:0 1:1 1:1     

2A 1:0 1:1 1:1 1:1    
3A 1:0 1:1 1:1 1:1 1:1   
17 1:0 1:1 1:1 1:1 1:1 1:1  
28 1:0 1:1 1:1 1:1 1:1 1:1 1:1 

Table 6.A3 The compositions of GH5-CBM mixtures that were assayed against 50.8 mg/L of cotton under loadings 
of 0.12 and 0.24 µmol total enzyme/g cotton at pH 4.85 (50 mM sodium acetate with 500 µM CaCl2).  The 1:1 
combinations represent binary mixtures where each enzyme is present at a 0.06 or 0.12 µmol/g to achieve total 
loadings of 0.12 and 0.24 µmol/g, respectively; the 1:0 combinations represent single enzyme reactions at half 
loadings where each GH5-CBM is present at 0.06 or 0.12 µmol/g cotton.  Combinations highlighted in orange 
yielded greater than 20% synergy. 
 
6.15 Appendix 9: Synergy values and associated order parameter differences 

ΩCBMA-ΩCBMB Synergy Synergy σ  CBMA CBMB 
0.00 1.00 0.03 CBMi CBMi 
0.03 1.01 0.05 3A 17 
0.11 0.99 0.07 2A 3A 
0.11 1.05 0.08 1Cel6A 1Cel7A 
0.11 1.33 0.06 17 28 
0.14 1.23 0.08 2A 17 
0.14 1.42 0.11 3A 28 
0.16 1.27 0.07 1Cel6A 2A 
0.24 1.49 0.11 2A 28 
0.27 1.06 0.07 1Cel6A 3A 
0.27 0.97 0.06 1Cel7A 2A 
0.30 1.13 0.07 1Cel6A 17 
0.38 1.27 0.09 1Cel7A 3A 
0.41 1.00 0.09 1Cel7A 17 
0.41 0.99 0.07 1Cel6A 28 
0.51 0.97 0.13 1Cel7A 28 

Table 6.A4 Synergy values of various GH5-CBM combinations listed by increasing difference in the order 
parameters of the associated CBMs (ΩCBMA-ΩCBMB).  The CBM termed CBMi corresponds to any individually 
acting CBM. 
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Chapter 7: Conclusions and Future Directions 
 
  In this section, we discuss additional experiments and improvements to the hydrolysis 
model that are suggested by our results and by the results of other recently published 
investigations of cellulolytic enzymes. 
 
7.1 The Cellobiohydrolase 
 
  Most, if not all, enzymes that enhance the activity of cellulolytic mixtures do so by 
allowing cellobiohydrolases to work more effectively.  Cellobiohydrolases comprise the largest 
component of cellulolytic mixtures likely to be implemented in industrial biofuels processes (1); 
in the Ascomycete fungus Trichoderma reesei, the industrial standard for cellulase production, 
cellobiohydrolase I (Cel7A) and cellobiohydrolase II (Cel6A) make up over 80% of the 
secretome (2).  In recent years, evidence has mounted that these enzymes, which are unique in 
their ability to degrade crystalline cellulose at substantial rates, experience rate limitations 
imposed by physical phenomena, not intrinsic kinetics (3-5).  By functioning to alleviate these 
kinetic impediments, companion enzymes can enhance cellobiohydrolase-catalyzed hydrolysis 
rates and thus the activity of cellulolytic mixtures. 
 
  Our work with Talaromyces emersonii endoglucanase II (TemGH5) evidences two main 
mechanisms by which enzymes can enhance cellobiohydrolase activity (4): (1) free end 
generation and (2) obstacle removal.  By estimating initial- and processive-cut products of the 
Trichoderma longibrachiatum cellobiohydrolase Cel7A (TlCel7A) during catalysis, we showed 
that the rate of TlCel7A-catalyzed hydrolysis of crystalline cellulose is limited by the rate of 
enzyme complexation with glycan chains, a rate that can be enhanced by endoglucanase-
generated free ends.  We also gave evidence that TlCel7A processive length is impeded by 
surface morphological obstacles, which can be removed by endoglucanase enzymes or 
potentially overcome by the concerted action of multiple cellobiohydrolases engaging parallel 
chains.  Recent kinetic and atomic force microscopy studies have also shown that 
cellobiohydrolase processivity can be arrested by cellulose- and protein-based obstructions (3, 
5). 
 
  Focused enzyme activities may be advantageous for cellulolytic enzyme mixture 
optimization strategies.  We worked with an endoglucanase enzyme (TemGH5) that was capable 
of accomplishing both free end generation and obstacle removal, but we hypothesize that two 
enzymes optimized to carry out only one of these tasks could be more effective than one enzyme 
that accomplishes both.  The ratio of these enzymes could be tuned to overcome substrate-
specific challenges: absence of free ends or excess of pseudo-amorphous obstacles. 
 
  The polysaccharide monooxygenases (PMO) is a recently discovered example of an 
enzyme that has been optimized to generate free ends (6, 7).  PMOs cleave internal glycosidic 
bonds located within crystalline regions; their free-end-generating activity is tightly focused on 
the cellulose surfaces that are most susceptible to cellobiohydrolase action.  Though PMO crystal 
structures showing different cellulose surface targets suggest that synergistic behavior is likely to 
vary between different PMO-cellobiohydrolase combinations, PMOs demonstrate the extent to 
which focused behavior can be accomplished within cellulolytic mixtures (8).  Future 
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mechanistic investigations that reveal precisely how cellobiohydrolase activity is enhanced by 
specific companion enzymes are likely to yield new strategies for enzyme design and mixture 
optimization. 
 
7.2 An Optimal Cellulase Cocktail 
 
  Optimal cellulolytic mixture compositions are dependent on the nature of the cellulosic 
substrate and the conditions under which it is hydrolyzed.  We have shown how surface 
characteristics such as degree of polymerization, particle shape, and surface area can 
dramatically influence the kinetics of enzymatic cellulose hydrolysis (9, 10); we have 
demonstrated that morphological targeting plays a critical role in enzyme-enzyme synergy (4, 
11); and we have shown that slow catalysis at 37°C eclipses potential gains from S. cerevisiae 
consumption of the cellobiose inhibitor during SSF (12).  These results suggest strategies for 
optimizing enzymatic cellulose hydrolysis. 
 
  A cellulolytic mixture can be tuned to match cellulose surface characteristics with (1) 
modification of cellulase architecture and (2) changes in mixture composition.  We found that 
endoglucanase enzymes can enhance the behavior of cellobiohydrolases both by generating free 
ends and by removing surface obstructions, and we demonstrated that combinations of enzymes 
differing only in their CBM domains can exhibit activities significantly higher than individual 
enzymes (4, 11).  Enzymes designed to function by (1) primarily clearing away surface 
obstructions, (2) primarily generating free ends, or (3) focusing their activity within specific 
morphologies may be advantageous within enzyme cocktails optimized to efficiently degrade 
particular cellulose structures.  On lignocellulosic substrates, enzymes less prone to inhibition by 
hemicellulose or lignin, which have been shown to lower hydrolysis rates (13), would also be 
advantageous.  Future investigations that probe the influence of specific enzyme-surface 
interactions on the overall kinetics of multi-enzyme mixtures acting on heterogeneous substrates 
are likely to reveal new strategies for optimizing cocktail composition. 
 
  Mixture compositions and enzyme activities can also be adjusted to meet particular 
process goals.  Our results suggest that the combined residence time for hydrolysis and 
fermentation might be lowered by cellobiohydrolases that have been engineered to be more 
resistant to cellobiose inhibition; these enzymes could lower the β-glucosidase requirement 
during hydrolysis, increase the cellobiose/glucose ratio in the fermentation feed stream, and 
lower glucose inhibition of xylose uptake in an S. cerevisiae strain engineered to consume 
glucose, cellobiose, and xylose.  The lower β-glucosidase requirement and faster xylose 
fermentation might result in a cost savings.  Alternatively, to reduce the risk of microbial 
contamination during hydrolysis, cellulase mixtures can be designed for optimal performance 
above 65° (14).  As binding behavior is temperature sensitive, and as half-lives are enzyme-
specific, such mixture compositions are likely to be temperature-dependent.  In general, in 
addition to substrate characteristics, overall reactor engineering and materials cost considerations 
can also be used to guide the design of optimal cellulase cocktails with particular capabilities.  
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7.3 Particle Shape 
 
  Particle shape influences the kinetics of enzymatic cellulose hydrolysis by affecting the 
initial substrate surface area and the manner in which that surface area evolves throughout 
depolymerization.   In our model, cellulose particles are represented as spheres.  We have given 
evidence that polydisperse distributions of spheres can be used to capture the initial volume, 
initial surface area, and the time-dependent surface evolution of any particle shape (9); however, 
we do not supply a mathematical algorithm to generate such distributions.  In future versions of 
the kinetic model, we must (1) evaluate the influence of particle shape on the relative 
performance of different enzyme mixtures and (2) generate methods for mapping specific shapes 
to polydisperse distributions of spheres. 
 
  We must explore the first objective before assigning priority to the second.  The shape-
dependent evolution of surface area affects the amount of substrate that is exposed to enzymatic 
attack at any point in the reaction.  As this surface is exposed to all enzymes, the relative 
performance of different enzymes will not necessarily be shape-dependent.  If, however, 
cellulose is represented with different morphologies, which are differentially targeted by the 
various components of cellulolytic mixtures, the evolution of particular cellulose architectures 
and thus the activities of different enzymes will be shape-dependent.  Future versions of the 
kinetic model that include multiple morphologies will be necessary to assess the influence of 
particle shape on reaction kinetics and thereby justify attempts to capture shape behavior with 
mathematical rigor. 
 
  There are two main strategies for mapping the time-dependent evolution of a particular 
shape to the time-dependent evolution of a polydisperse distribution of spheres.  A well-defined 
equation could be developed: f(number of particles, particle shape, particle volume) = (number 
of sphere of radius r1, r2,…).  Alternatively, an iterative computational approach could be used; 
surface-area-dependent shrinking of a given shape can be fit to surface-area-dependent shrinking 
of several spheres with the same total initial surface area and volume.  Though unnecessary for 
studying the general influence of particle shape on the kinetics of enzymatic hydrolysis, such 
methods are needed to examine the hydrolysis of a particular particle shape such as one based on 
the image of a real particle.  Future applications of the model to experimental scenarios may 
require shape matching. 
 
7.4 Surface Heterogeneities 
 
  Our results indicate that surface heterogeneities must be incorporated into future versions 
of the kinetic model.  Using photoactivation localization microscopy to localize CBMs bound to 
the surface of cotton, we mapped CBM binding targets onto a morphological spectrum (11).  By 
fusing these CBMs to an identical catalytic domain, we also showed that these morphological 
targets influence enzyme activity and enzyme-enzyme synergy.  These results, in addition to the 
aforementioned findings that endoglucanases and polysaccharide monooxygenases enhance 
cellobiohydrolase activity in a morphology-dependent manner, reveal the critical role of surface 
structure in guiding interactions between different cellulolytic mixture components.  Estimates of 
morphology distributions throughout cellulosic substrates and of morphology-specific enzyme-
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cellulose binding constants will be necessary to generate a hydrolysis model that captures the 
influence of surface heterogeneities. 
 
  Lignin and hemicellulose must be incorporated into the kinetic model if it is to be used 
with lignocellulosic substrates.  These polymers are hypothesized to influence cellulase behavior 
by (1) serving as non-productive surfaces for enzyme adsorption, (2) lowering the effective 
cellulose surface area, and (3) impeding the processive action of cellobiohydrolases (5, 13).  In 
analogy to the multiple morphology case, lignin/hemicellulose distributions within 
lignocellulosic substrates and lignin/hemicellulose binding constants will be necessary to 
generate a hydrolysis model that is compatible with lignocellulosic substrates. 
 
7.4.1 Multiple Types of Sites 
 
  Multiple morphologies can be incorporated into the existing hydrolysis model through 
the introduction of multiple sites.  For example, for a two-site model (crystalline and 
amorphous), the cellobiohydrolase-substrate material balances can be modified as follows: 
 
One site model: 
d[ECBH−adsCi

' ]
dt

= +kcomp−CBH−celθCBH [ECBH−ads
' ][Ci

' ]

− (kdecomp−CBH−cel + kcat−CBH )[ECBH−adsCi
' ]

+ kcat−CBH [ECBH−adsCi+2
' ]   (7.1)

 

 
Two site model: 
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dt

= kcomp−CBH−cel
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'1 ][Ci

'1]
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'1 Ci

'1]

+ kcat−CBH
1 [ECBH−ads

'1 Ci+2
'1 ]

+ kcomp−CBH−cel
2 θCBH

2 [ECBH−ads
'2 ][Ci

'2 ]

− (kdecomp−CBH−cel
2 + kcat−CBH

2 )[ECBH−ads
'2 Ci

'2 ]
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2 [ECBH−ads

'2 Ci+2
'2 ]  (7.2)

 

 
Superscripts in Eq. 7.2 represent amorphous (7.1) and crystalline (7.2) sites.  In all model 
equations, the surface concentration terms for cellulose chains, adsorbed enzymes, and adsorbed-
complexed enzymes become morphology-specific.  In a two-site model, there will be 
approximately twice as many surface species terms and equations as in a one-site alternative 
(depending on the difference in the average degree of polymerization for both morphologies). 
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  Parameter estimation presents the largest challenge for an expanded model.  For each 
morphology, there are 4 parameters relating to degree of polymerization and surface 
concentration, 8 parameters relating to the surface activity of each cellobiohydrolase, and 6 
parameters relating to the surface activity of each endoglucanase (Table 7.1). 
 
  The 18 parameters that must be estimated for each type of site in a two-enzyme system 
can be divided into two categories: (1) those that must be estimated from a morphologically 
homogeneous substrate (green in Table 7.1) and (2) those that can be estimated from any 
cellulosic substrate (blue in Table 7.1).  The first category consists of degree of polymerization 
estimates and of all parameters describing complexation and catalysis events on the cellulose 
surface. The average degree of polymerization of a given cellulose sample is estimated by 
measuring the total concentration of reducing ends or dissolved cellulose chains (2), and 
complexation/catalytic constants are estimated by fitting the model to solid substrate hydrolysis 
results (9, 10).  All of these parameters are measured through system averages; if they were 
measured on a substrate of mixed morphology, their calculated values would reflect an average 
of all morphological influences.  The second category of parameters, by contrast, can be 
estimated from morphology-specific observables.  The initial concentration and surface area 
associated with a particular binding site morphology can be estimate from binding isotherms of 
morphology-specific CBMs on any cellulosic sample (15, 16); similar constructs can be used to 
calculate the on rates, off rates, and/or equilibrium binding constants of these CBMs and, by 
analogy, the enzymes to which they are attached. 
 
  Multi-site models that extend beyond two kinds of sites (crystalline and amorphous) 
would be difficult to support with experimentally determined parameters.  Crystalline cellulose is 
typically prepared with sodium hydroxide extraction or dilute acid pretreatment of bacterial 
cellulose to produce bacterial microcrystalline cellulose (2, 17); and amorphous cellulose is 
typically prepared with concentrated phosphoric acid treatment of Avicel to produce phosphoric 
acid pretreated cellulose (PASC) (2).  While both BMCC and PASC are enriched in ordered and 
disordered sites, respectively, they are far from homogeneous.  Competitive binding isotherms 
have revealed several types of binding sites on each type of preparation (16, 18); additionally, 
while there are CBMs with higher binding affinities for one type over the other, there are none 
that exclusively bind only to one.  The existence of structural overlap between these two 
drastically different cellulose surfaces suggests that attempts to parameterize intermediary 
morphologies with intermediary preparations may be difficult. 
 
  If representation of more than two morphologies within the model is desired, extension of 
parameters from only category 2 above (blue in Table 7.1) may be sufficient.  Many of the 
parameters for enzyme complexation and catalysis on the cellulose surface (category 1) are 
governed by amino acids involved in substrate binding near the active site; thus the influence of 
surface structure on their values may be small.  Category 1 parameters could either be held 
constant or extended to two sets of values, depending on whether a particular site was more 
amorphous-like or crystalline-like.  Clearly, parameter estimation for a multi-site model presents 
a time-consuming challenge; the model’s sensitivity to particular parameters should be examined 
to priority to such representations. 
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Table 7.1: Parameters relating to surface reactions 
Parameter Description Estimation Strategy 

DP0
p Initial degree of polymerization for 

morphology type p 
Reducing end assay 

DPp
max

 Maximum degree of polymerization for 
morphology type p 

Based on the Poisson distribution 

*’p
T0

 Initial surface concentration of free sites 
of morphology type p (mol dm-1) 

Binding isotherms with eGFP-CBM constructs 

Sp
0 Initial surface area of morphology type p 

(dm2 g-1) 
Binding isotherms with eGFP-CBM constructs 

kp
CBH-ads 

kp
EG-ads 

Adsorption of a cellobiohydrolase or 
endoglucanase onto a cellulose surface of 
morphology type p (L mmol-1 s-1) 

Short period binding experiments on a specific 
cellulosic sample. 

kp
CBH-des 

kp
EG-des

 
Desorption of a cellobiohydrolase or 
endoglucanase onto a cellulose surface of 
morphology type p (L mmol-1 s-1) 

Short period binding experiments on a specific 
cellulosic sample. 

kp
cat-CBH-cel, 

kp
cat-EG-cel 

Catalytic constant for a cellobiohydrolase 
or endoglucanase acting on a solid 
cellulose chain of morphology type p (s-1) 

Fit to experimental data collected on a 
morphologically homogeneous substrate 

kp
cat-EG-term Catalytic constant for an endoglucanase 

acting the terminal glycosidic linkage of a 
cellulose chain of morphology type p (s-1) 

Fit to experimental data collected on a 
morphologically homogeneous substrate 

kp
comp-CBH Kinetic rate constant for complexation of 

a cellobiohydrolase with the end of a solid 
cellulose chain of morphology type p (m2 
mmol-1 s-1) 

Fit to experimental data collected on a 
morphologically homogeneous substrate 

kp
decomp-CBH Kinetic rate constant for decomplexation 

of a cellobiohydrolase with the end of a 
solid cellulose chain of morphology type p 
(s-1) 

Fit to experimental data collected on a 
morphologically homogeneous substrate 

Kp
comp-EG Complexation equilibrium constant for 

endoglucanase with a cellulose chain of 
morphology type p (mmol m-2) 

Fit to experimental data collected on a 
morphologically homogeneous substrate 

Kp
comp-EG-term Complexation equilibrium constant for 

endoglucanase with a terminal glycosidic 
linkage of a cellulose chain of 
morphology type p (s-1) 

Fit to experimental data collected on a 
morphologically homogeneous substrate 

pp
i where 

i=1,2,3 
Probability of initial catalytic event of a 
cellobiohydrolase after Complexation will 
form an i length cello-oligosaccharide 

Fit to experimental data collected on a 
morphologically homogeneous substrate 
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7.4.2 The Spatial Arrangement of Sites  
 
  In chapter 6, we measured the spatial distributions of cellulose morphologies on the 
surface of cotton and showed that they were non-identical (11).  Unfortunately, the existing 
kinetic model contains no spatial dependencies.  An improved model could make use of 
estimates of the spatial distribution of various morphologies supplied by PALM results, but it 
would also require directionality to be incorporated into all mechanistic steps on the surface.  In 
essence, the kinetic model would have to be recreated.  Before such an effort is undertaken, a toy 
model should be developed to assess the sensitivity of hydrolysis kinetics to particular site 
arrangements in a simplified cellulase-cellulose system. 
 
7.5 Cellulase Glycosylation 
 
 Recently, evidence has emerged that cellulase glycosylation may influence binding 
behavior.  Several modeling studies suggest that N-linked glycosylation on CBM domains and 
O-linked glycosylation on linkers can enhance cellulase binding affinities for crystalline 
cellulose (19, 20).  As many CBM studies rely on bacterial expression systems that do not 
glycosylate, these findings bring the validity of some experimental results (including our own) 
into question. 
 

Binding isotherms of eGFP-CBM fusions expressed in E. coli and N. crassa could be 
used to investigate the influence of glycosylation on binding behavior.  Using the family 1 CBM 
domains from T. reesei Cel7A and Cel6A cellobiohydrolases, we have constructed two eGFP-
CBM fusions containing T. reesei Cel7A linkers.  When expressed in N. crassa, these constructs 
should be glycosylated on their CBM (N-linked) and linkers (O-linked); when expressed in E. 
coli, they will have no glycosylation.   Binding isotherms of constructs expressed in each 
organism will be non-identical if glycosylation imparts an enhanced or reduced cellulose affinity 
to these CBMs.  The glycosylation sites most responsible for either effect can then be pinpointed 
through selective site removal via mutation by site-directed mutagenesis.  The results of such 
studies are likely to be regime specific; many CBMs bind to both high and low affinity sites, 
occupying the latter only at large CBM/cellulose loadings.  As the low affinity sites tend to 
overlap between different CBMs, binding to these regions may involve fewer specific 
interactions and may thus be more easily influenced by glycosylation.  Regardless of the 
interactions most affected, the impact of glycosylation-influenced binding on the kinetics of 
hydrolysis could be explored in a multi-site model.  In addition to revealing the importance of 
using fungal expression systems to express constructs for PALM and adsorption studies, 
investigations of the role of glycosylation on CBM and cellulase binding to low and high affinity 
cellulose sites may inform new strategies for enzyme design, which has previously been limited 
to amino acid sequence adjustments. 
 
7.6 Oxidative Enzymes 
 
 Oxidative enzymes can be easily incorporated into the hydrolysis model.  What follows is 
a plan for incorporating kinetic steps for cellobiose dehydrogenase (CDH) and polysaccharide 
monooxgenase (PMO) enzymes; this plan is based on current theories of PMO and CDH 
mechanism (6, 7).  Before engaging in catalysis, a CDH undergoes the same kinetic steps as a 
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cellobiohydrolase: while in solution, it complexes with the reducing end of a soluble 
cellooligosaccharide; while adsorbed on cellulose, it complexes with the reducing end of a 
soluble cellooligosaccharide or a surface cellulose chain.  Then, the CDH generates a lactone and 
decomplexes from its substrate.  A PMO engages in similar catalytic steps to an endoglucanase, 
but its adsorption and complexation steps are not separate: it (1) adsorbs and complexes, (2) 
cleaves a glycosidic bond, and (3) decomplexes and desorbs.  The remaining details relate to (1) 
binding site preference and (2) electron transfer.  The crystalline-specific activities of PMOs can 
be accommodated with the multi-site model discussed above, and the single electron transfer 
steps from CDHs to PMOs can be represented as bimolecular reactions between the two enzymes 
(on the surface or in solution).  As mechanistic details pertaining to the action and interaction of 
these two enzymes continue to evolve, their associated kinetic steps may need to be modified 
within the model; however, as these changes are unlikely to involve behaviors that are 
significantly different from those of cellulase enzymes pre-catalysis, modifications to model 
equations are likely to be minor. 
 
7.7 Conclusion 
 

We conclude by noting that the hydrolysis model is intended to be a useful tool to 
understand and engineer cellulolytic enzymes; it is not intended to recreate reality.  The 
motivation for introducing non-spherical particles, multiple sites, or oxidative enzymes does not 
stem from a general desire to recreate in silico the complexity of natural lignocellulosic 
substrates in vivo, it arises from our desire for a more complete understanding of the manner in 
which different binding behaviors or morphology-specific enzyme activities influence the overall 
hydrolysis kinetics of cellulolytic enzyme mixtures acting on heterogeneous substrates.  
 
 The investigations discussed in this work have been part of a general effort to investigate 
the kinetic impediments encountered by cellulase enzymes as they catalyze the hydrolysis of 
cellulose.  Our results suggest that cellobiohydrolase activity on crystalline cellulose is limited 
by its rate of complexation with cellulose chains and by its tendency to encounter physical 
impediments to processivity; we further posit that the kinetics of enzymatic cellulose hydrolysis 
are limited by cellobiohydrolase activity and that enzymes capable of enhancing the activity of 
cellulolytic mixtures likely do so by allowing cellobiohydrolases to work more effectively.   
With regard to such enzyme capabilities, we find that substrate particle shape, surface area, 
degree of polymerization, and heterogeneity play a critical role in influencing enzyme activity 
and enzyme-enzyme synergy.  Our results reveal strategies for using morphological targeting to 
enhance the activity of cellulolytic mixtures, and they motivate experimental investigations and 
modeling studies that probe the molecular level details of specific enzyme-surface interactions 
and the influence of those interactions on the performance of multi-enzyme systems. 
 
 
7.8 References 
 
1. L. R. Lynd, P. J. Weimer, W. H. van Zyl, I. S. Pretorius, Microbial cellulose utilization: 

fundamentals and biotechnology. Microbiol Mol Biol Rev 66, 506 (Sep, 2002). 
2. Y. H. Zhang, L. R. Lynd, Toward an aggregated understanding of enzymatic hydrolysis of 

cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88, 797 (Dec 30, 2004). 



	
   166	
  

3. M. Kurasin, P. Valjamae, Processivity of cellobiohydrolases is limited by the substrate. J Biol 
Chem 286, 169 (Jan 7, 2011). 

4. J. M. Fox, S. E. Levine, D. S. Clark, H. W. Blanch, Initial- and processive-cut products reveal 
cellobiohydrolase rate limitations and the role of companion enzymes. Biochemistry 51, 442 (Jan 
10, 2012). 

5. K. Igarashi et al., Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. 
Science 333, 1279 (Sep 2, 2011). 

6. W. T. Beeson, C. M. Phillips, J. H. Cate, M. A. Marletta, Oxidative cleavage of cellulose by 
fungal copper-dependent polysaccharide monooxygenases. Journal of the American Chemical 
Society 134, 890 (Jan 18, 2012). 

7. C. M. Phillips, W. T. Beeson, J. H. Cate, M. A. Marletta, Cellobiose dehydrogenase and a copper-
dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. 
ACS Chem Biol 6, 1399 (Dec 16, 2011). 

8. X. Li, W. T. t. Beeson, C. M. Phillips, M. A. Marletta, J. H. Cate, Structural basis for substrate 
targeting and catalysis by fungal polysaccharide monooxygenases. Structure 20, 1051 (Jun 6, 
2012). 

9. S. E. Levine, J. M. Fox, H. W. Blanch, D. S. Clark, A mechanistic model of the enzymatic 
hydrolysis of cellulose. Biotechnol Bioeng 107, 37 (Sep 1, 2010). 

10. S. E. Levine, J. M. Fox, D. S. Clark, H. W. Blanch, A mechanistic model for rational design of 
optimal cellulase mixtures. Biotechnol Bioeng 108, 2561 (Nov, 2011). 

11. J. M. Fox et al., Superresolution Images Reveal Binding Targets for the Cooperative Action of 
Cellulolytic Enzyme Mixtures. Submitted,  (2012). 

12. J. M. Fox, S. E. Levine, H. W. Blanch, D. S. Clark, An evaluation of cellulose saccharification 
and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose 
utilization. Biotechnol J,  (Jan 9, 2012). 

13. S. P. Chundawat, G. T. Beckham, M. E. Himmel, B. E. Dale, Deconstruction of lignocellulosic 
biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2, 121 (2011). 

14. C. M. Dana et al., Biased clique shuffling reveals stabilizing mutations in cellulase Cel7A. 
Biotechnol Bioeng 109, 2710 (Nov, 2012). 

15. J. Hong, X. Ye, Y. H. Zhang, Quantitative determination of cellulose accessibility to cellulase 
based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its 
applications. Langmuir 23, 12535 (Dec 4, 2007). 

16. B. W. McLean et al., Carbohydrate-binding modules recognize fine substructures of cellulose. J 
Biol Chem 277, 50245 (Dec 27, 2002). 

17. N. R. Gilkes et al., The adsorption of a bacterial cellulase and its two isolated domains to 
crystalline cellulose. J Biol Chem 267, 6743 (Apr 5, 1992). 

18. A. B. Boraston, E. Kwan, P. Chiu, R. A. Warren, D. G. Kilburn, Recognition and hydrolysis of 
noncrystalline cellulose. J Biol Chem 278, 6120 (Feb 21, 2003). 

19. G. T. Beckham et al., Harnessing glycosylation to improve cellulase activity. Curr Opin 
Biotechnol 23, 338 (Jun, 2012). 

20. C. B. Taylor et al., Computational investigation of glycosylation effects on a family 1 
carbohydrate-binding module. J Biol Chem 287, 3147 (Jan 27, 2012). 

 
 


	Thesis Cover
	Thesis Abstract
	Thesis_Table_Contents
	Chapter 1 Introduction
	Chapter 2 Model Paper 1
	Chapter 2 Model Paper 1.2
	Chapter 2 Model Paper 1.3
	Chapter 3 Model Paper 2
	Chapter 4 SSF Paper
	Chapter 5 Initial Proc Paper NonCor
	Chapter 6 PALM Paper
	Chapter 7 Conclusions Future Directions



