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Cross-Disorder Genome-Wide Analyses Suggest a Complex 
Genetic Relationship Between Tourette Syndrome and 
Obsessive-Compulsive Disorder

A full list of authors and affiliations appears at the end of the article.

Abstract

Obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS) are highly heritable 

neurodevelopmental disorders that are thought to share genetic risk factors. However, the 

identification of definitive susceptibility genes for these etiologically complex disorders remains 

elusive. Here, we report a combined genome-wide association study (GWAS) of TS and OCD in 

2723 cases (1310 with OCD, 834 with TS, 579 with OCD plus TS/chronic tics (CT)), 5667 

ancestry-matched controls, and 290 OCD parent-child trios. Although no individual single 

nucleotide polymorphisms (SNPs) achieved genome-wide significance, the GWAS signals were 

enriched for SNPs strongly associated with variations in brain gene expression levels, i.e. 

expression quantitative loci (eQTLs), suggesting the presence of true functional variants that 

contribute to risk of these disorders. Polygenic score analyses identified a significant polygenic 

component for OCD (p=2×10−4), predicting 3.2% of the phenotypic variance in an independent 

data set. In contrast, TS had a smaller, non-significant polygenic component, predicting only 0.6% 

of the phenotypic variance (p=0.06). No significant polygenic signal was detected across the two 

disorders, although the sample is likely underpowered to detect a modest shared signal. 

Furthermore, the OCD polygenic signal was significantly attenuated when cases with both OCD 

and TS/CT were included in the analysis (p=0.01). Previous work has shown that TS and OCD 

have some degree of shared genetic variation. However, the data from this study suggest that there 

are also distinct components to the genetic architectures of TS and OCD. Furthermore, OCD with 

co-occurring TS/CT may have different underlying genetic susceptibility compared to OCD alone.

INTRODUCTION

Obsessive-compulsive disorder (OCD) [MIM 164230] and Tourette Syndrome (TS) [MIM 

137580] are highly familial neuropsychiatric disorders with complex overlapping genetic 

etiologies (1–3). 20–60% of TS-affected individuals have co-occurring OCD, and 10–20% 

of those initially diagnosed with OCD have TS or chronic tics (CT), well over what is 

expected based on their respective population prevalences (4–6). Both disorders are 

characterized by the presence of repetitive, ritualized or stereotyped behaviors (tics and 

compulsions), often preceded by cognitive or sensory phenomena (premonitory urges and 

obsessions), and clinical differentiation of compulsions versus complex tics can be 

challenging (7). Genetic epidemiological studies suggest up to 90% shared genetic variance 

between TS/CT and OCD (8–10), and abnormalities in cortico-striatal-thalamo-cortical 

(CSTC) circuitry have been identified in both conditions (1).
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To date, most of the work aimed at elucidating the genetic causes of TS and OCD has 
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focused on candidate gene studies and linkage analyses; a few studies examining 

chromosome abnormalities and copy number variants (CNVs) have also been reported (11–

14). Recently, our group performed genome-wide association studies (GWAS) of TS and 

OCD, and for each disorder identified a number of genes and genomic regions of interest, 

most with modest significance levels. Here we report GWAS results for a combined sample 

of individuals with TS, OCD or TS+OCD, along with analyses aimed at elucidating the 

genetic architectures and genetic relationships between the two disorders. Combining these 

heterogeneous but related phenotypes in joint analyses could have one of two potential 

effects: 1) enhancement of the genetic signal as a consequence of increased power due to 

adding samples from genetically-related phenotypes; 2) reduction of the genetic signal as a 

consequence of increased genetic heterogeneity, outweighing potential benefits of increased 

sample size. Either way, given the prior evidence supporting shared genetic factors, and the 

lack of definitive susceptibility genes for either disorder, joint analyses of TS and OCD 

cases represent an important advance toward understanding the underlying causes of these 

common neuropsychiatric disorders.

MATERIALS AND METHODS

Cases

Individuals with TS or OCD were recruited as part of collaborative efforts to conduct the 

first GWAS for these disorders (details in Scharf et al, 2013; Stewart et al, 2013) (15, 16). 

Although data were collected independently for TS and OCD, all genotyping and data 

cleaning were done together, facilitating joint analyses. Participants ≥18 years of age 

provided written, voluntary informed consent. Individuals under 18 years of age provided 

assent; written parental consent for their participation was also obtained. The study was 

approved by the Ethics Committees of all participating sites and in accordance with the 

Declaration of Helsinki. For the cross-disorder analyses, any subject with either TS or OCD 

was considered affected. See Supplementary Methods for details of the inclusion and 

exclusion criteria and assessment protocols.

TS—The TS sample consisted of 1286 individuals recruited from 20 sites in the US, 

Canada, UK, Netherlands, and Israel, and included subjects of general European (EU) 

ancestry as well as two EU-derived population isolates of Ashkenazi Jewish (AJ) and French 

Canadian (FC) descent. Co-occurring OCD symptoms were assessed in 77% of participants; 

46% of those evaluated had co-occurring OCD (N=452). OCD status was unknown for 300 

individuals with TS.

OCD—The OCD sample consisted of 1,437 OCD cases and 290 parent-child trios. While 

the original GWAS sample consisted of 1865 OCD probands recruited from 21 sites in 

North, Central and South America, Europe, the United Arab Emirates, and South Africa, 

only subjects of European ancestry (EU, AJ, and EU-derived Afrikaner (SA) descent) were 

included in the current study (16). Co-occurring TS or CT was assessed in 77% of OCD 

probands; of these, 12% had co-morbid TS or CT (N=159). TS/CT status was unknown for 

405 OCD-affected individuals.

Yu et al. Page 3

Am J Psychiatry. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Controls

The EU control sample consisted of 4975 European Caucasian controls primarily derived 

from cohorts of previously genotyped, unselected population controls (Supplementary 

Methods). Ancestry-matched controls for the FC (N=196) and SA (N=158) samples were 

collected in parallel with their respective cases (15, 16). Ancestry-matched controls for 

individuals with AJ ancestry were identified from the EU control sample based on self-

reported ancestry and principal component analysis (N=338).

Genotyping and Quality Control (QC)

Genotyping and quality control procedures have been described previously (15,16, and 

Supplementary Methods). Briefly, cases and trios with TS or OCD and controls were 

randomized across plates and genotyped on the Illumina HumanHap610 SNP array 

(Illumina, San Diego, CA) at the Broad Institute of Harvard-MIT (Cambridge, MA) or on 

the Illumina HumanHap370 at the Yale Center for Genome Analysis (New Haven, CT) 

(Supplementary Figure S1). Eighty-eight samples were genotyped on both platforms to 

allow for cross-platform concordance checks. QC analyses were performed using PLINK 

v1.07(17) and EIGENSTRAT(18). Multi-dimensional scaling (MDS) analysis was used to 

exclude case-control samples of non-European descent. Remaining EU and European-

derived isolate samples were separated into four strata (EU, AJ, FC, and SA) based on 

observed genetic ancestry (15, 16). Imputation was performed using 1000 Genomes Project 

data (June 2011 Data Release)(19) as the reference panel using IMPUTE v2.1.2(20) 

(Supplementary Methods).

Genome-Wide Association Analyses

Individual ancestry-stratified case-control genome-wide association analyses (EU, AJ, FC, 

and SA) and one case/pseudo-control analysis using the OCD trios were performed in 

PLINK (17) using logistic regression under an additive model with significant 

subpopulation-specific MDS axes included as covariates to control for residual population 

stratification (Figure S2). These population-specific analyses were then combined in a fixed-

effects model meta-analysis using case-weighting in METAL (21). SNPs with p-values 

<10−5 were annotated with details including their genomic region and location, allele 

frequencies, nearby genes and p-values from individual TS and OCD GWAS studies. 

Heterogeneity tests were also conducted to assess subpopulation differences using 

Cochran’s Q and I2 statistics. As is standard in GWAS for complex traits, a genome-wide 

threshold of p<5×10−8 was considered statistically significant evidence of association (22, 

23).

Enrichment analyses

GWAS results were examined for enrichment of functional SNPs previously associated with 

gene expression levels in several brain regions (i.e., expression quantitative trait locus SNPs, 

eQTLs) or with variation in gene methylation levels (methylation QTLs, mQTLs). eQTL 

data were generated from cerebellum, parietal, and frontal cortex (Supplementary Methods). 

mQTLs were derived from adult cerebellum (24). Only GWAS SNPs meeting high 

stringency criteria for eQTLs or mQTLs (p<10−6) were considered. For each phenotype (TS, 
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OCD, combined), a quantile-quantile (Q-Q) plot of GWAS disease association p-values was 

generated for eQTL and mQTL SNPs and compared to a standard Q-Q plot of GWAS p-

values expected under the null assuming no enrichment. A leftward shift in the eQTL/mQTL 

Q-Q plot relative to the diagonal line (representing the null distribution) indicates 

enrichment of eQTLs/mQTLs. The level of enrichment of eQTLs or mQTLs in each brain 

tissue associated with TS or OCD was then quantified using a false discovery rate (FDR) of 

<0.25, i.e., 75% of observed SNPs represent true disease associations (Supplementary 

Methods).

Polygenic score analysis

Polygenic score analyses were conducted in PLINK using genotyped SNPs to test the 

hypothesis that multiple genes of small effect jointly contribute to TS and OCD 

susceptibility and to explore the genetic relationships between these disorders(25). Samples 

were divided into non-overlapping discovery and target samples (Supplementary Methods). 

For the primary OCD polygenic analysis, cases were restricted to subjects without known 

co-occurring TS/CT (OCD - TS/CT). SNPs with GWAS p-values passing pre-determined 

significance thresholds (p<0.01, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively) in the discovery 

sample were extracted along with their risk alleles and odds ratios, and then LD pruned 

(r2<0.5). For each significance threshold, a quantitative aggregate risk score was calculated 

for each individual in the target sample, defined as the sum of the number of risk alleles 

present at each locus weighted by the log of the odds ratio for that locus estimated from the 

discovery sample. The relationship between aggregate risk score and case-control status in 

the target sample was examined at each significance threshold using logistic regression. The 

percentage of phenotypic variance explained by the aggregate risk score (Nagelkerke’s 

pseudo-R2) was estimated.

Two separate statistical approaches were used to determine the significance of the observed 

differences in polygenic risk score prediction between discovery samples. First, permutation 

testing was conducted to derive an empirical significance of the magnitude of change in R2 

between polygenic risk scores derived from the OCD - TS/CT discovery sample compared 

to those derived from the “All OCD” sample (OCD +/− TS/CT). Second, risk alleles from 

each discovery sample were used to calculate the difference in polygenic risk scores 

between the transmitted (case) alleles and the untransmitted (pseudo-control) alleles in the 

OCD Trio target sample. The degree of risk score elevation (Risk Scoretransmitted − Risk 

Scoreuntransmitted) was then standardized ([RStrans−RSuntrans]/RSuntrans), and compared 

between different discovery samples using two-sided paired t-tests. See Supplementary 

Methods for further details of both approaches.

RESULTS

Combined TS/OCD GWAS

The final combined TS/OCD dataset consisted of 2723 cases (1310 with OCD, 834 with TS, 

579 with OCD+TS/CT), 5667 controls, and 290 OCD trios. A total of 7,659,573 SNPs 

(439,840 genotyped and 7,219,733 imputed) were included in the meta-analysis. The 
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genomic control λ showed no evidence of residual population stratification or systematic 

technical artifacts (λGC=1.030; Figure S3).

Sixty-eight SNPs with p<1×10−5, representing 16 independent genomic regions, were 

identified, though none reached the genome-wide significance threshold of p<5×10−8 (Table 

1,Figure 1; Table S1). The most significant association was found in rs4988462 on 3p11 

(p=3.72×10−7, OR=1.18). This SNP lies within an intron of POU1F1, though the entire 279 

kb region of association in linkage disequilibrium (LD) with rs4988462 contains 16 

additional SNPs with p<1×10−5 and includes CHMP2B and POU1F1, as well as the 

microRNA MIR4795. Regional association and forest plots from the top five independent 

GWAS signals are provided in Figures S4–S8. Eleven of the 68 SNPs were also identified in 

the original OCD GWAS with p<1×10−5; none of these SNPs were identified in the TS 

GWAS at p<1×10−5 (15, 16) (Table S1).

Enrichment analyses

For TS, OCD, and the combined sample, we examined the subset of disease association p-

values for SNPs meeting stringent criteria for eQTLs (peQTL<10−6) derived from 

cerebellum, parietal cortex and frontal cortex, as well as cerebellar mQTLs (pmQTL<10−6) 

(Figure 2). Using the field standard FDR threshold of <0.25, we identified 38 cerebellar 

eQTLs from five LD-independent loci for TS, 161 cerebellar mQTLs (19 LD-independent 

loci) for OCD, and 53 parietal cortex eQTLs (four LD-independent loci) for the combined 

GWAS (Table 2).

Polygenic risk score analysis

Polygenic score analyses were conducted to test two related hypotheses: 1) that both TS and 

OCD individually harbor multiple, small effect, common risk alleles across the genome; 2) 

that TS and OCD may have shared common risk alleles (cross-disorder analyses). In the 

individual disorder analyses, risk scores derived from the “OCD - TS/CT” discovery sample 

strongly predicted case-control status in the OCD target sample (p=2.1×10−4), explaining 

3.2% of the phenotypic variance (Figure 3, Table S3). In contrast, risk scores derived from 

the TS discovery sample demonstrated only weak prediction in the TS target sample 

(p=0.06; R2=0.6% variance explained). Risk scores derived from the combined TS/OCD 

discovery sample also predicted case-control status in the OCD target sample (p=0.0075, 

R2=1.7%), though less robustly than those derived from the OCD discovery sample alone 

(p=0.01, Figure 3, inset). Risk scores derived from the TS/OCD combined sample could not 

discriminate between cases and controls in the TS target sample (p=0.4, Figure 3, Table S3).

In cross-disorder analyses, risk scores derived from the TS discovery sample did not predict 

case-control status in the OCD target sample (p=0.66), nor did OCD-associated risk scores 

predict into the TS target sample (p=0.37) (Figure 3, Table S3).

To explore the influence of phenotype co-morbidity on polygenic risk score prediction, an 

additional “All OCD” discovery sample was created which included the primary OCD 

discovery sample plus 345 additional cases with OCD + TS/CT. As expected, the polygenic 

score using risk alleles derived from this discovery sample predicted case-control status in 
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the OCD target sample (p=2.3×10−3) (Figure 3). However, the proportion of variance 

explained by the “All OCD” risk score was significantly attenuated compared to the risk 

score derived from the primary “OCD - TS/CT” discovery sample, despite the 30% increase 

in sample size (“OCD - TS/CT”, n=1154, R2=3.2%; “All OCD”, n=1499, R2=2.1%; 

permutation p=0.01, Figures 3 and S9).

In addition, the magnitude of elevation in the polygenic risk scores (risk score elevation) 

between transmitted risk alleles and untransmitted non-risk alleles in the OCD trios was 

calculated using risk alleles from the different OCD discovery samples and compared 

(Figure 3, inset). The risk score elevation in the OCD trios was highest when the primary 

“OCD - TS/CT” discovery sample was used to derive the risk score compared either to the 

“All OCD” sample or the combined TS/OCD sample (paired t-test; p=0.022 and p=0.010, 

respectively), consistent with a dilution of risk when either OCD cases with TS/CT or TS 

cases without OCD were incorporated in the discovery sample.

DISCUSSION

The goal of this study was to leverage phenotypic and genotypic data of two phenotypically-

related and frequently co-occurring neurodevelopmental disorders, TS and OCD, to explore 

the hypothesis that these disorders share common genetic susceptibility variants by: 1) 

combining the samples in a joint GWAS, 2) examining their patterns of eQTL/mQTL 

enrichment, and 3) exploring cross-disorder polygenic signals. Although limited by small 

sample sizes, the results of these diverse analytic approaches suggest a complex genetic 

relationship between TS and OCD.

While our previous work in this sample provides evidence of genetic sharing between TS 

and OCD, with a genetic correlation of 0.41 between the two disorders (10), we did not 

identify any genome-wide significant variants for the combined TS/OCD phenotype in this 

GWAS analysis, despite the increase in sample size. However, the combined GWAS signals 

were significantly enriched for functional alleles (parietal eQTLs), suggesting that these 

subthreshold variants contain some proportion of TS/OCD risk loci that are not simply due 

to stochastic variation. In the presence of genetic heterogeneity (see below), the current 

sample is underpowered to determine whether these loci contribute to both TS and OCD 

susceptibility, or to one or the other individually. As with any genetic association result, 

replication in an independent sample is required to know whether any of the individual 

eQTLs identified here are truly shared TS/OCD susceptibility variants (9, 26, 27).

However, the results of the polygenic analyses do provide strong evidence that OCD and TS 

have at least some distinct genetic risk factors. First, the individual disorder analyses 

confirm that OCD has a significant polygenic component. The proportion of OCD variance 

explained by directly interrogated SNPs (3.2%) is similar to the findings in schizophrenia 

(3–6%) and bipolar disorder (2.8%)(25), indicating that OCD likely arises from the joint 

influence of a large number of susceptibility genes spread across the genome, either as 

common variants or as rare variants in tight linkage disequilibrium with GWAS SNPs. This 

result is consistent with a parallel heritability study of the same datasets using mixed linear 
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modeling which found that OCD heritability is concentrated in common variants with minor 

allele frequencies (MAF)>30% (10).

In contrast, the proportion of TS variance explained was substantially lower (0.6%). 

Although some of the difference in polygenic risk prediction between OCD and TS may be 

due to the smaller discovery sample size for TS, a sensitivity analysis in which the OCD 

discovery sample size was reduced to match that of the TS sample (“Downsized OCD”), still 

detected a larger, and statistically significant, OCD polygenic signal than the comparable TS 

signal (p=0.01) (Figure 3, Table S3). The TS discovery sample was also too small to 

examine polygenic signals in TS subgroups (TS+OCD vs. TS-OCD); thus, it is possible that 

the TS polygenic signal could increase if “TS only” discovery and target samples were 

available. The TS polygenic signal may also have been attenuated by restricting polygenic 

risk score SNPs to those with MAF>5% (done to reduce bias due to undercalling of rare 

variants, see Supplementary Methods), as this class of SNPs has been shown to account for 

~20% of the variance in liability to TS, with 80% attributable to common variants (10). Both 

the investigation of TS subgroups and the analysis of polygenic signal including SNPs with 

MAF ≤ 5% may be possible in the future as the number of subjects with available GWAS 

data increases.

The cross-disorder polygenic analyses also provide evidence for genetic heterogeneity 

between OCD and TS. First, the polygenic risk scores generated from the individual OCD 

and TS discovery samples did not predict case-control status of the other disorder. Second, 

the combined TS/OCD sample was a worse predictor of OCD or TS status than either 

disorder alone, suggesting that the degree of genetic heterogeneity generated by combining 

the two phenotypes outweighs any improvement in statistical power due to increased sample 

size. As noted above, however, we are likely underpowered to detect a modest shared signal, 

which we have previously identified in this sample using a mixed-model approach (10).

Although we were not able to examine TS subgroups, we were able to examine the 

polygenic composition within OCD subgroups (i.e., OCD +/− TS/CT). These results clearly 

suggest that OCD with and without chronic tics have different genetic architectures. When 

OCD cases with co-occurring TS/CT were added to the OCD discovery sample, the 

polygenic signal in the independent OCD target sample was attenuated by 35% (permutation 

p=0.01), despite the 30% increase in sample size. Similarly, the risk score elevation between 

transmitted and untransmitted alleles dropped substantially with the addition of these 345 

OCD cases with TS/CT (p=0.022).

The hypothesis that OCD may be genetically heterogeneous, with some individuals and 

families segregating OCD without tics and others a subtype of OCD with tics that may share 

genetic risk with TS, was originally proposed by Pauls and colleagues in 1986 (27), and 

more recent epidemiologic studies have provided additional support for this concept (9, 26, 

28). Although not yet studied, these genetic differences may also correlate with well-

documented differences in treatment outcomes of patients with OCD alone compared to 

OCD with tics, in which the latter are more refractory to treatment and may require 

neuroleptic augmentation (29–31).
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Limitations

The primary limitation of this study relates to sample size. While our study represents the 

largest genetic sample of either disorder studied to date, the total sample of 3013 cases and 

5957 controls has 67% power to detect a disease variant with an odds ratio of 1.25 

(assuming risk allele frequency is 20% in the general population), and only 25% power to 

detect a variant with an odds ratio of 1.20. Recent studies of other psychiatric disorders with 

evidence of genetic overlap have required substantially larger sample sizes in order to detect 

individual variants that contribute to both disorders (32, 33). Therefore, caution is necessary 

when drawing conclusions about the genetic architecture of TS and OCD based exclusively 

on the results of the combined GWAS. However, we have more confidence in our 

interpretation of the polygenic analyses, where demonstrated significant differences between 

the aggregate polygenic risk for the TS/OCD phenotypes despite comparatively small 

sample sizes. Of note, aggregate polygenic signals have been successfully detected with a 

comparable number of subjects in other cross-disorder studies as well (32, 33).

In addition, although we propose that the differences in polygenic risk prediction between 

TS and OCD and between OCD with and without tics are due to divergent genetic 

architectures, alternative explanations should be considered, such as diagnostic 

misclassification or differences in case ascertainment between study sites or over time. It is 

also important to note that we focused on common variation, and that rare inherited 

variation, unique mutations within individual families, de novo mutations, structural 

variation and/or epigenetic and non-genetic factors are all likely contributors to the overall 

etiology of these related disorders. While our initial studies suggested that common variants 

account for most of the heritability of TS and OCD (10), it is still extremely important to 

explore all of these potential contributors to disease in order to acquire a full understanding 

of their relative contributions to TS and OCD.

Finally, interpretation of the eQTL/mQTL analyses are limited by the fact that the tissues 

analyzed represent a convenience sample based on currently available data, and thus, 

conclusions about tissue-specificity should be reserved until larger eQTL datasets across the 

full range of brain regions and developmental time periods are available.

Summary

Overall, our results argue that, in addition to some shared genetic variants contributing to 

susceptibility of either TS or OCD, genetic variants likely exist which provide phenotypic 

specificity for each disorder. This observation contrasts with the hypothesis that genes 

contributing to neuropsychiatric disorders provide a “generalist” framework of neuronal 

connections from which non-genetic factors determine specific phenotypes, as has been 

proposed to explain the wide range of phenotypes observed in patients with similar large 

recurrent CNVs across various regions of the genome (34, 35). Furthermore, the apparent 

difference between OCD with and without tics supports the importance of detailed 

phenotypic characterization to identify future subtype-specific risk alleles. Collection of 

additional samples through ongoing collaboration will be crucial to further elucidate the 

specific underlying susceptibility genes for TS and OCD, both shared and unique.
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FIGURE 1. Manhattan Plot of All Genotyped and Imputed Single-Nucleotide Polymorphisms 
for 3,013 Tourette’s Syndrome-Obsessive-Compulsive Disorder European Ancestry Cases and 
5,957 Controlsa

a Red and blue lines indicate significance thresholds of 5×10−8 and 1×10−5, respectively.
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FIGURE 2. Q-Q Plot of Nominal Disease Association p Values Versus Expected p Values Among 
the Cis eQTLs and mQTLs in Different Brain Tissues in the Tourette’s Syndrome, Obsessive-
Compulsive Disorder (OCD), and Combined Genome-Wide Association Study (GWAS)a
a eQTL=expression quantitative loci. A horizontal shift to the left from the diagonal line (of 

complete concordance between the observed p values and expected p values) in the Q-Q plot 

indicates enrichment.
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FIGURE 3. Individual Disorder and Cross-Disorder Polygenic Score Analysis in Tourette’s 
Syndrome and Obsessive-Compulsive Disorder (OCD)a
a The variance explained in two target samples (OCD European ancestry [EU] parent-child 

trios and Tourette’s French Canadian [FC] cases) is based on risk scores derived from an 

aggregated sum of weighted single-nucleotide polymorphism risk allele effect sizes 

estimated from discovery samples at six significance thresholds. The y axis indicates 

Nagelkerke’s pseudo R2. The p value under each discovery sample indicates how well the 

risk scores derived from the discovery sample can predict the illness phenotype in the target 

sample. N is the number of cases in each discovery sample. Negative R2 values indicate a 

negative correlation between risk scores and illness status in the target sample. OCD EU 

without known Tourette’s/chronic tics=European-ancestry OCD genome-wide association 

study (GWAS) samples after removing samples with known co-occurring Tourette’s/chronic 

tics; all OCD EU=European-ancestry OCD GWAS samples plus additional EU GWAS 

samples with co-occurring OCD and Tourette’s/chronic tics; combined Tourette’s/OCD 

EU=all European-ancestry Tourette’s GWAS samples and OCD GWAS samples; downsized 

OCD EU=randomly selected subset of OCD EU samples to match the number of cases in 

the Tourette’s EU discovery sample; Tourette’s EU=European-ancestry Tourette’s GWAS 

samples; OCD EU trios=the OCD EU parent-child trio probands and matched pseudo-

control data derived from nontransmitted alleles; Tourette’s FC=Tourette’s French Canadian 

cases and matching controls. A permutation test was carried out to determine the 

significance of the difference in R2 between risk scores derived from OCD EU without 

known Tourette’s/chronic tics and all OCD EU, resulting in a two-sided empirical p value of 

0.01. The inset box at upper right demonstrates the risk score elevations (difference in risk 

scores of transmitted alleles and untransmitted alleles in the OCD EU trios, standardized by 

the risk score of the untransmitted alleles) derived from three discovery samples: OCD EU 

without known Tourette’s/chronic tics, all OCD EU, and combined Tourette’s/OCD EU. 

Two-sided paired t tests were conducted for the pairwise comparisons of risk score 

elevations derived from three discovery samples.
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Table 2

Number of associated eQTLs/mQTLs with False Discovery Rate (FDR) <0.25 in the TS, OCD, and Combined 

GWAS eQTL, expression quantitative trait locus; mQTL, methylation quantitative trait locus;

Tissue Functional Subset

# of QTLs (# of loci*)

TS GWAS OCD GWAS Combined GWAS

Frontal Cortex eQTLs 0 (0) 0 (0) 0 (0)

Parietal Cortex eQTLs 0 (0) 0 (0) 53 (4)

Cerebellum eQTLs 38 (5) 0 (0) 0 (0)

Cerebellum mQTLs 0 (0) 161 (18) 0 (0)

*
Number of LD-independent loci among the identified eQTLs.
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