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Contour dynamics method for solving the Grad–Shafranov equation
with applications to high beta equilibria

P.-A. Gourdaina) and J.-N. Leboeuf
Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547

(Received 8 October 2003; accepted 1 June 2004; published 20 August 2004)

Numerous methods exist to solve the Grad–Shafranov equation, describing the equilibrium of a
plasma confined by an axisymmetric magnetic field. Nevertheless, they are limited to low beta or
small plasma pressure. Combining a nonconservative variational principle with a contour dynamics
approach, the approach presented in this paper converges for extreme high beta configurations. By
reducing the dimension of the problem from two to one, a compact and efficient numerical
algorithm can be developed, and a wide range of boundary shapes can be utilized. Furthermore, the
iterative nature of this technique greatly facilitates convergence at high beta while minimizing
computation times. ©2004 American Institute of Physics. [DOI: 10.1063/1.1776174]

I. INTRODUCTION

Stable high beta plasmas in magnetic confinement de-
vices such as tokamaks and stellarators1 can transform mag-
netic fusion into a clean and abundant source of energy. To
reach such a goal, magnetohydrodynamics(MHD) equilib-
rium codes are the most basic and primordial assets.

Numerous methods exist to solve the so-called Grad–
Shafranov(GSh) equation,2 describing the ideal MHD equi-
librium of an axisymmetric plasma confined by a magnetic
field. Due to the nonlinearity of this equation, all numerical
methods solving for a given plasma equilibrium are
iterative.3 Two different types of numerical codes exist. The
first sort is based on an Eulerian scheme, relying on a two-
dimensional(2D) mesh without any direct link to plasma
shape or properties.4,5 The second one is based on a Lagrang-
ian scheme using curvilinear flux coordinates to map plasma
geometry,6 involving adaptive grid,7 variational,8 or pertur-
bative approaches,9 or inverse coordinates10 methods. Never-
theless, many of these excellent methods cannot compute
asymptotic high beta equilibria such as the one presented at
the end of this paper.

The technique presented in this publication computes
high plasma beta equilibria with large outward shifts of the
magnetic axis or Shafranov shifts, while maintaining compu-
tational efficiency.11 By changing coordinate systems from
geometric space to flux space, the dimension of the deriva-
tive operator in the GSh is effectively reduced by one. This
has an important implication: a set of contours, yielding a
single gradient coordinate, can now replace an area yielding
two gradient coordinates for each quantity involved in the
equation. This technique is known in fluid dynamics as the
contour dynamics method.12 This is a generalized case of the
water-bag method introduced by Berk and Roberts.13 Potter14

used such a method to solve the GSh equation along with a
flux conserving variational principle, restricting it to a lim-
ited set of low beta equilibria. Rosenbluthet al.15 applied an
equivalent scheme to study the nonlinear evolution of kink

modes in tokamaks. By coupling of a nonconservative varia-
tional principle to the contour dynamics method, a simple
one-dimensional iteration scheme can efficiently converge to
an equilibrium solution at high beta.16

The remainder of this paper is organized as follows: In
Sec. II, the GSh equation is computed in flux space and an
intuitive approach to the contour dynamics principle intro-
duces the basic idea of the method described in this paper;
then, the algorithm to solve the GSh equation is presented in
Sec. III; numerical results obtained with this technique, in
particular for high beta plasma equilibria, are given in Sec.
IV; while Sec. V contains conclusions.

II. THE CONTOUR DYNAMICS APPLIED
TO IDEAL MHD

A. The Grad–Shafranov equation in flux space

The equilibrium of a perfectly conductive plasma con-
fined by an axisymmetric magnetic field is usually given by
the equation of Grad–Shafranov2 (GSh). This equation de-
scribes the local equilibrium between the force arising from
the static pressure of the fluid and the magnetic force locally
applied. The surfaces of constant pressure are actually nested
surfaces. The pressure increases from the interface plasma-
vacuum to the center of the plasma, called magnetic axis,
where it reaches a maximum. Figure 1 illustrates such a con-
figuration, in the vertical plane(R,Z,f). In this plane of
symmetry, the ideal magneto hydrodynamics equilibrium of
a plasma can be reduced to
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c stands for the flux of the poloidal inductionBp in the
planeZ=0. p is the pressure inside the fluid.F, the toroidal
function,17 represents the net poloidal current crossing the
planeZ=0. Furthermorep and F are functions ofc only.2

The presence ofc on both left-hand and right-hand sidesa)Electronic mail: gourdain@ucla.edu
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makes this elliptic partial differential equation nonlinear.
Only iterative methods can solve this kind of problem. Sev-
eral efficient schemes18,19 exist to find a solution for a given
pressure and toroidal function distribution.

Another difficulty in this equation arises from the com-
plex form of the operatorD* . The (R,Z) coordinate system
does not take advantage of the topology of the solution. One
can try to experiment with other coordinate systems in an
attempt to simplify this equation. A simple choice is to map
the nested isobar surfaces. Becausep is a function of the flux
c only, the surfaces of constant pressure are also surfaces of
constant fluxc. It is possible to build a new coordinate sys-
tem, based on flux surfaces, by using three new vectors asec,
ex, ef defined as follows:

• the c direction, given byec, is orthogonal to the flux sur-
faces in each point,

• ef is the vector defining the ignorable toroidal direction,
• the x direction is given byex=ef3ec.

These vectors define an orthogonal coordinate system
sc ,x ,fd, called “flux space,”14 shown in Fig. 1. This space
is not metric, and by using the distance invariance principle,
we obtain Eq.(2) in the geometric space(R, Z, f) and the
flux spacesc ,x ,fd. Figure 2 illustrates the similarity be-
tween the distancedr andhc along thec direction

drW2 = shcdcd2 + shxdxd2 + sRdfd2,

drW2 = sdRd2 + sdZd2 + sRdfd2. s2d

After defining the coordinate system, we can now derive
the revised form of the GSh equation in flux spacesc ,x ,fd.
The magnetic induction is always derived from the flux and
the toroidal function,

BW = BW f + BW p with BW p =
1

R
¹ c 3 eWf andBW f =

Fscd
R

eWf. s3d

Using the formula of the¹ operator given in the Appendix,
we have

BW =
Fscd

R
eWf − S 1

RhcDeWx with BW p = − S 1

RhcDeWx. s4d

Maxwell’s equations give the current density from the curl of
Eq. (4),

mJW = −
1

Rhc

dFscd
dc

eWx −
1

hchx

]
hx

Rhc

] c
eWf. s5d

Then, by using the classical static equilibrium equation(6)
between pressure gradient and current flow,

¹W p = JW 3 BW , s6d

we obtain

1

hchx

]
hx

Rhc

] c
= − SmR

dp

dc
+

1

2R

dF2

dc
D or

s7d

FIG. 1. Cylindrical coordinate system(R, Z, f) and
flux coordinate systemsc ,x ,fd.

FIG. 2. Detail of the continuous and
discrete flux spacesc ,xd.
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mJf = mR
dp

dc
+

1

2R

dF2

dc
.

Equation (7) is the GSh equation in flux space. By
changing coordinate systems, we effectively reduced the di-
mension of the derivative operator from two to one. This has
an important implication: a set of contours, yielding a single-
coordinate gradient, can now replace an area, yielding a two-
coordinate gradient, for each quantity involved in the equa-
tion. This technique is known in fluid dynamics as the
contour dynamics method.12 Despite the nonlinearity of Eq.
(7), a simple one-dimensional iteration scheme can converge
to a solution. Using this coordinate system, the following
paragraphs introduce the contour dynamics idea.

B. Physical interpretation of the contour
dynamics scheme

To understand the method depicted in this paper, it is
best to look at a discrete set of nested surfaces(p0, . . . ,pn), or
(c0, . . . ,cn). If we take an isobar surfacei at random in the
distribution from Fig. 1 and we look at the group of forces
that exists on both sides of this surface we have

dFW total = − 2pRdlsfp + pmagneticgi − fp + pmagneticgi−1deWc, s8d

wheredl represents an infinitesimal portion of the flux sur-
face along thex direction. The indexi refers to the pressure
on the inside area of the surfacei andi −1 to the pressure on
the outside area of the same surfacei. Between surfaces, the
pressure is assumed to be constant. In this framework, we
can develop Eq.(8) by replacing the value of the magnetic
pressure by the toroidal and poloidal inductions from Eq.(4),

dFW total = − Fp +
1

2m
S 1

RhcD2

+
1

2m
SF

R
D2G

i−1

i

2pRdleWc. s9d

We can introduce the linear operatord which expresses
the difference of any functionf on both sides of a flux sur-
face.d has two remarkable properties:

(1) if f is continuous across a flux surface thendf =0 across
this surface;

(2) dfg=kfldg+kgldf, wherek·l represents the average of a
function across the surface.

After some rearrangements, Eq.(10) replaces Eq.(9),

dFW total = −
dc

m
2pdlzW with

s10d

zW = S 1

dc
K 1

hcLdS 1

RhcD + mR
dp

dc
+

1

2R

dsF2d
dc

DeWc.

If we wish to approximatek·l by its value on one side of the
surface then we have

zW = S 1

hcdc
dS 1

RhcD + mR
dp

dc
+

1

2R

dsF2d
dc

DeWc. s11d

At the equilibrium, the total force densitydFtotal is null and
we obtain

1

hcdc
dS 1

RhcD + mR
dp

dc
+

1

2R

dsF2d
dc

= 0 or zW = 0W . s12d

Equation(12) represents the GSh equilibrium configuration
in the discrete case, which is an approximation of the con-
tinuous case of Eq.(7). So the contour dynamics scheme
describes the static equilibrium of a set of contours in an
appropriate local coordinate system, i.e., on the flux surface
itself, thus reducing the dimension of the GSh equation. A
more rigorous mathematical demonstration follows this in-
tuitive introduction where Eq.(11) will appear again.

The following sections present the algorithm based on
the contour dynamics method and its practical application for
high beta solutions. Due to the axisymmetric nature of the
problem, we will refer to “flux surfaces” as “flux lines” in
many occasions.

III. CONVERGENCE ALGORITHM

In this section, we construct an original algorithm that
solves Eq.(7) using a nonconservative variational principle,
which cannot be compared to an energy minimization prin-
ciple usually found in many variational methods.14 After the
definition of an error between the LHS and the RHS of the
GSh equation, an error reduction scheme, a numerical vis-
cosity that controls convergence and a flux correction are
presented.

A. Error definition

We define an errorzsc ,x ,Rd between the RHS and LHS
of Eq. (7) for all points of our domain of definitionV so we
can monitor the progress of the algorithm in solving for the
sought solution,

zsc,x,Rd =
1

hchx

]
hx

Rhc

] c
+ SmR

dp

dc
+

1

2R

dF2

dc
D . s13d

At the equilibriumzsc ,x ,Rd is null everywhere inside
the plasma. For all practical purposes, the problem must be
solved on a grid. A discrete set of coordinatessc0,c1, . . .cnd
is used to number our series of nested flux surfaces, as illus-
trated in Fig. 1.p andF will be considered constant between
each contourc=ci, as prescribed by the contour dynamics
discretization principle, presented in Fig. 3. At this point,
areas between lines can be ignored as we adopt a one-
dimensional point of view. In the rest of the paper we will

FIG. 3. Discretization of a continuous functiong on the discrete flux space.
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use the indexi to number thec contours andj to number the
x lines. At each pointMi,j

cxsci ,x jd of the flux space corre-
sponds a unique pointMi,j

RZsRi,j ,Zi,jd of the geometric space.
Because of their trivial correspondence, we will never distin-
guish between them and always useMi,j. Across each con-
tour in Mi,j, Eq. (13) may be transformed into

zi,j =
1

hchxdc
dS hx

RhcD + SmR
dp

dc
+

1

2R

dsF2d
dc

D . s14d

Across eachc contour,hc is discontinuous whilehx is
continuous. On the other end,hx is discontinuous whilehc is
continuous across thex lines. As discussed earlier, thed
operator acts only on discontinuous variables acrossc con-
tours, sohx disappears from Eq.(14) when discretized and
we have

zi,j =
1

hcdc
dS 1

RhcD + SmR
dp

dc
+

1

2R

dsF2d
dc

D . s15d

If we recall Eq.(10), dFtotal andzi,j are actually propor-
tional. So this error can be interpreted as the net force ap-
plied to each pointMi,j of the flux lines, within a factorRij .
When the error is null, the force on the surface is null and the
static equilibrium has been found. We can also give a physi-
cal interpretation tohc which corresponds to the distance
between two neighboring contours in flux space. Equation
(2) gives dr=hcdc along thec direction of the continuous
domain, illustrated in Fig. 2 and in the discrete case, we have

r i,j = hi,j
c sci − ci−1d. s16d

By replacinghc in Eq. (15) we obtain Eq.(17) for all points
inside the plasma,

zi,j =
1

r i,j
S ci+1 − ci

r i+1,jRi+1,j
−

ci − ci−1

r i,jRi,j
D + FmR

dp

dc
+

1

2R

dsF2d
dc

G
i,j

.

s17d

This represents the discrete form of the error defined by
Eq. (13). The variablex actually disappeared from the equa-
tion. The following paragraphs detail the utilization of this
error in the construction of the algorithm, where thex coor-
dinate will be ignored altogether.

B. Error reduction

The core of the method focuses on minimizing the error
uzi,ju for each point of the plasmaMij . Before working on
such a complicated task, it is natural to look at a simple case
first. We suppose the solution to the GSh equation has been
found. A detail view of the equilibrium configuration is
shown in Fig. 4(a). All points Mi,j

eq of the plasma verify

1

r i,j
eqS ci+1 − ci

r i+1,j
eq Ri+1,j

eq −
c j − c j−1

r i,j
eqRi,j

eq D = − FmR
dp

dc
+

1

2R

dsF2d
dc

G
i,j

eq

.

s18d

We now introduce a small perturbationdr by slightly
moving a single-pointMi,j

eq from its original equilibrium po-

FIG. 4. (a) Detail view of the equilibrium configuration,(b) infinitesimal displacementdr giving Mi,j by movingMi,j
eq.
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sition. It is reasonable to assume that a displacement along
the x direction will not affect the error, because it is inde-
pendent of this variable. Therefore, only displacements along
the c direction will be considered in this exploratory dem-
onstration. Such a displacement, orthogonal to thec flux
contour, takes the form of

drW = dr . eWc. s19d

This infinitesimal displacement transformsMi,j
eq into Mi,j,

as shown in Fig. 4(b). By inserting Eq.(18) into Eq.(17) we
obtain

zi,j =
1

r i,j
S ci+1 − ci

r i+1,jRi+1,j
eq −

ci − ci−1

r i,jRi,j
D

−
1

r i,j
eqS ci+1 − ci

r i+1,j
eq Ri+1,j

eq −
ci − ci−1

r i,j
eqRi,j

eq D . s20d

The values ofr i,j, r i+1,j, andRi,j come from Eq.(21) in vec-
torial or algebraic forms,

r i,jeWc = r i,j
eqeWc + drW, r i,j = r i,j

eq+ dr ,

r i+1,jeWc = r i+1,j
eq eWc − drW, r i+1,j = r i+1,j

eq − dr ,

Ri,jeWR = Ri,j
eqeWR + drW, Ri,j = Ri,j

eq+ drcosseWc,eWRd. s21d

Becausedr is infinitesimal, it is possible to approximate
1/r i,j, 1 /r i+1j, and 1/Ri,j by using Taylor’s expansions given
by

1

r i,j
=

1

r i,j
eq

1

1 +
dr

r i,j
eq

=
1

r i,j
eqF1 −

dr

r i,j
eq + Osdr2dG ,

1

Ri,j
=

1

Ri,j
eq

1

1 +
dr

Ri,j
eqcosseWc,eWRd

=
1

Ri,j
eqF1 −

dr

Ri,j
eqcosseWc,eWRd + Osdr2dG ,

1

r i+1,j
=

1

r i+1,j
eq

1

1 −
dr

r i+1,j
eq

=
1

r i+1,j
eq S1 +

dr

r i+1,j
eq + Osdr2dD . s22d

If we incorporate the results of Eq.(22) into Eq.(20) we
have

zi,j = Ki,jdr + Osdr2d with s23d

Ki,j =
1

r i,j
eqFS 1

r i+1,j
eq −

1

r i,j
eqD ci+1 − ci

r i+1,j
eq Ri+1,j

eq

+ F 2

r i,j
eq +

cosseWc,eWRd
Ri,j

eq Gci − ci+1

r i,j
eqRi,j

eq G .

Furthermore, Eq.(18) leads to a new analytic expression
of Ki,j where the current density appears,

Ki,j =
1

r i,j
eqF 1

r i+1,j
eq

ci+1 − ci

r i+1,j
eq Ri+1,j

eq + F 1

r i,j
eq +

cosseWc,eWRd
Ri,j

eq G
3

ci − ci−1

r i,j
eqRi,j

eq + mJfi,jG . 0. s24d

Becausec increases withi, all factors ofKi,j are positive and
any infinitesimal displacementdr changing the position of
Mi,j can be defined by the errorzi,j as

drW =
1

Ki,j
zW i,j + Osdr2deWc, wherezW i,j = zi,jeWc. s25d

The preceding equation reveals that any random infini-
tesimal displacementdr is proportional to the vectorial error
zi,j it generated, and they both have the same orientation
along thec direction. The major implication arises whendr
is actually unknown. In this case,Ki,j cannot be computed.
Nevertheless,Ki,j is not a function ofdr and can be consid-
ered constant. Because Eq.(17) gives the value ofzi j for any
position of Mi,j, it is always possible to compute and mini-
mize the erroruzi,ju by successively movingMi,j between
Mi−1,j

eq and Mi+1,j
eq along thec direction. This gives back the

equilibrium positionMi,j
eq and totally definesdr. Figure 5 il-

lustrates the concept where at each iterationm we use an
intermediary displacementdrm given by

drWm = − hi,j
mzW i,j

m with s26d

zW i,j
m = S 1

r i,j
mF ci+1 − ci

r i+1,j
m Ri+1,j

eq −
ci − ci−1

r i,j
mRi,j

m G
+ FmR

dp

dc
+

1

2R

dsF2d
dc

G
i,j

mDeWc.

The positive multiplicative factorhi,j
m is a numerical vis-

cosity that controls the speed of the convergence. The orien-
tation of drm is the opposite of the unknown displacement’s
orientation given by Eq.(25). This guarantees thatMi,j

m

FIG. 5. Successive displacementsm of the pointMi,j which minimizeuzi,ju
and give backMi,j

eq.
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moves closer toMij
eq when it is displaced bydrm. Finally we

demonstrated that, for any unknown infinitesimal disturbance
introduced in the equilibrium, this iterative method can re-
cover the original configuration by only knowing the posi-
tion of the disturbed pointMi,j relatively toMi−1,j

eq andMi+1,j
eq .

After studying the simple case where a single point is
disturbed, we can extend the method to a whole flux line. We
can apply a set of unknown infinitesimal displacementssdr jd
to all the pointsMi,j of a single flux contouri. By applying
the preceding principle to this set of points, it is easy to
extrapolate that the equilibrium position of the flux contour
can be readily obtained.

Finally, in the more realistic case where the whole mesh
distribution is far from the equilibrium, the previous idea can
be generalized so the series of infinitesimal displacements
sdr0,dr1, ... ,drm, ...d from Eq. (27) will solve the GSh equa-
tion for a givenp andF,

drWi,j
m = − hi,j

mzW i,j
m with

zW i,j
m = S 1

r i,j
mF ci+1 − ci

r i+1,j
m Ri+1,j

m −
ci − ci−1

r i,j
mRi,j

m G
+ FmR

dp

dc
+

1

2R

dsF2d
dc

G
i,j

mDeWc. s27d

The theory of the calculus of variations demonstrates
that this series converges20 after a finite numberm of itera-
tions for a given error«m,

«m = max
i,j

uzi,ju at the iterationm. s28d

In the preceding paragraphs, we defined the errorzi,j in
Eq. (17). Then we constructed an error reduction method by
studying the behavior of one point, extending it to a whole
flux surface, and finally to the whole domain. Equation(27)
gives the generic form of the reduction scheme by using
infinitesimal displacements. Only the viscosityhi,j was left
aside, and it is discussed in greater details below.

C. Numerical viscosity definition

The success of the algorithm depends on the control of
oscillations arising when the flux lines are moved simulta-
neously. The numerical viscosityhi,j introduced earlier, gives
efficient oscillation damping over many plasma configura-
tions, especially at high beta. This viscosity has three com-
ponents which depend on the iterationm:

(1) a saturation componentai,j, preventing flux lines to
overlap when moved;

(2) a directional componentji,j, reducing flux line displace-
ments when the direction of the motion reverses;

(3) a global deceleration componentg, slowing down the
flux lines when close to the solution.

The numerical viscosityhi,j is a nonlinear directional
viscosity.11 The following discussion deals with each compo-
nent separately.

The saturation component ensures the integrity of the
mesh from one step to the next by preventing a vertex from
one line to crossover another line,

ai,j =
1

2

min
k=i+1,i−1

iMi,j − Mk,ji

max
j

uzi,ju
. s29d

As the convergence approaches,zi,j becomes negligible
and this condition is no longer necessary. Thus we can define
a maximal positive factora, which limits the upper values of
ai,j,

ai,j = min11

2

min
k=i+1,i−1

iMi,j − Mk,ji

max
j

uzi,ju
,a2 . s30d

Keeping the integrity of the mesh is a necessary require-
ment, but reducing numerical oscillations is also important.
At the iteration stepm, the directional component takes into
account the motion of the pointMi,j at the previous steps
m−1 andm−2 to damp oscillations, arising as the motion
reverses,

If drWi,j
m−1 · drWi,j

m−2 . 0 then at stepm,ji,j = 1,

If drWi,j
m−1 · drWi,j

m−2 , 0 then at stepm,ji,j ! 1. s31d

Finally the last component ofhi j controls the speed of
the convergence. Aszi,j diminishes, it is prudent to slow
down the convergence to prevent small oscillations around
local minima. This technique is known as simulated
annealing.21,22 When repetitious oscillations appear, the
value of g is reduced, pushing further the convergence. An
oscillation counterQ is set up and we have the following
condition at the iteration stepm:

If Q . G, gm ,
9
10gm−1 elsegm = gm−1. s32d

The initial value forg0 can be 1. The maximum number
of oscillationsG depends on the geometry of the problem. In
generalG=10 gives good results. IfG is too small, the flux
lines will converge to a local minimum; ifG is too big, the
convergence may be jeopardized as oscillations are not
damped.

The overall viscosityhi,j needs to couple the actions of
these three components simultaneously. The simple form re-
tained is given by

hi,j = gai,jji,j . s33d

This viscosity gives rapid and accurate solutions for both
low beta and high beta cases. It provides a robust control of
oscillations without preventing fast convergence. The control
of the numerical oscillations is hereby resolved. Nevertheless
another task still remains. The following paragraphs deal
with the consistency between the flux coordinate system and
the magnetic flux.
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D. Flux correction

The ultimate goal of the algorithm is to find the magnetic
flux distribution sc0,c1. . . ,cnd that suits the input functions
p andF. Unfortunately, far from the equilibrium, the fluxc
may not correspond to the actual magnetic flux. Insteadc
should be considered as a regular coordinate which is used in
the computational process. Standard methods often compute
the flux distribution from the current distribution. Hence the
computational fluxc and the magnetic flux represent the
same quantity at each iteration.

On the other hand, the contour dynamics scheme obtains
the flux distribution at the iterationm from the one found at
the iterationm−1 through a set of infinitesimal displace-
ments. Therefore, it is improbable to have a correspondence
between the computational flux and the magnetic flux com-
puted from the actual current distribution.

To ensure that the computational flux converges to the
magnetic flux, the poloidal inductionBp found in Eq.(4) has
to verify Ampère’s law, i.e.,

UE
plasma boundary

S 1

RhcDdlUm

= UE E
plasma

SmR
dp

dc
+

1

2R

dF2

dc
DdSUm

. s34d

While the fluxc does not correspond to the actual mag-
netic flux, Eq.(4) fails to give the poloidal induction and Eq.
(34) is not verified. So we have the nontrivial form,

Unm =E S 1

RhcDdlUm

− UE E SmR
dp

dc
+

1

2R

dF2

dc
DdSUm

.

s35d

The factornm can be used to scale the computational
flux. This correction has to be infinitesimal to prevent nu-
merical oscillations and the evolution of the fluxc at the step
m is controlled by

ctotal
m = s1 − tm nm−1dctotal

m−1, with tmnm−1 ! 1 and

s36d
ctotal = ucn − c0u.

The parametertm prevents oscillations caused by the cor-
rectionnm−1 during the successive iterations. This computa-
tion is compatible with Jourdain’s variational principle for
nonconservative systems.20 While the variation ofc is not
quite monotonic in this case, it does not violates Jourdain’s
principle. When we are close to the solution, Eq.(36) be-
comes quasimonotonic which guarantees theoretical conver-
gence. This correction is not possible with d’Alembert prin-
ciple, used by Potter,14 where ctotal= ucn−c0u has to stay
constant throughout the whole equilibrium computation. This
scheme implies that the input functionsp or F have to evolve
during the computation so Ampère’s law is satisfied. If one
desires to impose input profiles, this flux conserving tech-
nique is not appropriate. Furthermore, flux conservation pre-
vents the convergence at high beta.23 The present algorithm
is based on Jourdain’s variational principle for nonconserva-

tive systems wherec can vary monotonically. In this case,p
andF are kept constant during the computation and the flux
c varies.

Here we have reached the end of the description regard-
ing the different parts of the contour dynamics scheme for
solving high beta equilibria. All the tools described in the
preceding paragraphs can now be integrated in the conver-
gence algorithm presented next.

E. Convergence procedure

For given p and F profiles, the algorithm goes as fol-
lows:

(1) guess an initial computational flux distribution
sc0,c1, . . . ,cnd;

(2) computezi,j for all the points inside the plasma using
Eq. (17);

(3) computehi,j for all the points inside the plasma using
Eqs.(30)–(32);

(4) correct the fluxc using Eq.(36) and compute the new
distribution sc0,c1, . . . ,cnd;

(5) move all the vertices using Eq.(27).

The steps 2 through 5 are repeated until the convergence
is achieved, i.e.,«m,«max!1. The computation time for
each vertex is reduced to a minimum, involving only geo-
metrical calculations. This algorithm includes an error calcu-
lation, a nonlinear directional viscosity, a flux correction, and
a displacement of the grid mesh to reduce the error previ-
ously computed. This allows the convergence towards the
solution to the GSh equation for the given functionsp andF.
The following section validates this algorithm by comparing
several solutions to analytic or numerical results of the GSh
equation, obtained by other methods.

IV. NUMERICAL RESULTS

This section focuses on validating the method presented
in this paper. First, we will use an analytic solution of the
GSh equation and compare it with the contour dynamics so-
lution. Then, we will define the functionsp andF in a man-
ner convenient for code inputs, using polynomials ofc.
Next, we will use numerical solutions to deal with more
realistic plasma configurations. Finally, we will present an
extreme beta case to demonstrate the versatility of the algo-
rithm. For practical reasons, we will use the geometry of the
high aspect ratio Electric Tokamak(ET)24 at UCLA (Bf

=0.25 T,R=5 m, a=1 m, k=1.5).

A. Comparison with an analytic solution

To demonstrate the accuracy of the method with simple
current distributions, we can compare the equilibria obtained
numerically with an analytic solution for high aspect ratio
circular plasmas, first investigated by Haas.25 Because the
GSh equation determines the poloidal field, and the toroidal
field balances the radial pressure, Haas coupled the pressure
and the toroidal function, and introduced a new functionf so
an analytic solution could be found,
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F2scd = R0
2B0
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2m0pscd

B0
2 +

2fscd
B0

G . s37d

If we considerp and f linear in c, then the solution to
the GSh equation is given by

csr,ud =
A

4
sr2 − a2d +

C

8
sr3 − a2rdcosu,

dp

dc
= −

C

2m0R0
and

df

dc
= −

A

R0
2B0

, s38d

whereR0 is the position of the magnetic axis,a the minor
radius,r the distance to the magnetic axis, andu the angle
with the horizontal plane with the magnetic axis as origin.A
andC are now the “free functions” of the GSh equation. In
Fig. 6, we show comparative results between analytic and
numerical solutions. The error stays below 1% with a rela-
tively coarse mesh of 1400 points equally distributed on 10
flux lines. We were able to limit the number of vertices to a
minimum because of the quasicircular shape of the flux lines.

B. Comparison with a numerical solution

When we depart from simple current distributions, the
GSh equation does not have any analytic solution. For the
numerical applications of this method, we will consider the
input functionsp andF as polynomials of the flux, defined as

psCd = pboundary+
paxis− pboundary

o
i.0

ai

o
i.0

aiC
i ,

F2sCd = Fboundary
2 +

Faxis
2 − Fboundary

2

o
i.0

bi

o
i.0

biC
i ,

C =
c − cboundary

caxis− cboundary
. s39d

It is very convenient to use such forms forp and F
because this concise decomposition can match a lot of real
plasma configurations.

We have calculated several types of equilibria using the
“direct-type solver” resistive stability toroidal equilibrium
(RSTEQ) code26 developed at the Oak Ridge National Labo-
ratory. It can be used rather efficiently to benchmark the
present method at average betas, i.e., below 20%. The equi-
librium profilesp, F, andc were computed using the contour
dynamics scheme. They were used as inputs to the RSTEQ
code to check the consistency of the results. In Fig. 7, we
present a comparison between the two methods. The error
does not go above 1.5% with a relatively coarse mesh of
4400 nodes.

FIG. 6. Comparison between analytic and contour dynamics solutions with
10 flux lines and 140 points per lines. The maximum relative error between
the two methods is 0.8% with an average of 0.5%. The two solutions are
almost indistinguishable. If more precision is needed, a finer mesh has to be
used.

FIG. 7. Comparison between the contour dynamics scheme(top) and
RSTEQ(bottom) equilibria for medium average beta, 200 vertices per lines,
and 22 flux lines(only 11 lines shown). The maximum error stays below
1.5%.
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C. High beta case

For high beta, few codes achieve good performances.9

As the flux lines get squeezed on the low field side, linear
system inversion becomes difficult and successive errors
tend to increase. The method presented does not include such
mathematical techniques and is designed to diminish succes-
sive errors. So convergence exists for a wide range of bound-
ary shapes and current profiles.

If we take equilibria with extreme Shafranov shift, in-
spired by Cowley,16 the code converges for shifts greater
than 80% at unity peak beta, as shown in Fig. 8. The core
solution and boundary layer27 are clearly visible. Inside the
core, the flux lines depend onR only. It should be noted that
the only stability criterion applied to this equilibrium is
q.1. Here we do not present stable or unstable configura-
tions but equilibrium solutions that demonstrate code capa-
bilities. Other shaped equilibria can be readily computed us-
ing this method. Here we have presented only the classical
circular version of high beta plasmas.

V. CONCLUSION

This work has described a method for solving the Grad–
Shafranov equation. It uses the contour dynamics approach
to simplify the mathematical tools to resolve this nonlinear
problem. By combining a variational principle with an ad-
equate coordinate system readjustment, high, hence low, beta
plasma equilibria can be computed over a wide range of
fixed boundary shapes. To obtain reliable results, strict con-
vergence control is enforced using a nonlinear directional
viscosity. Convergence is very fast for standard plasma beta
and remains adequate as beta is increased toward unity. So-
lutions can be found for Shafranov shifts which correspond
to a substantial fraction of the minor radius. We note that

such equilibria have eluded RSTEQ when increasing plasma
beta through a flux conserving sequence.23 Even though this
is beyond the scope of this paper, we add that the method can
be readily extended to free boundary equilibria at high
plasma beta.11
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APPENDIX: GRADIENT AND CURL OPERATORS

In an orthogonal systemse1,e2,e3d with coordinates
sq1,q2,q3d and metricsh1,h2,h3d, we have

¹W U =
1

h1

] U

] q1
eW1 +

1

h2

] U

] q2
eW2 +

1

h3

] U

] q3
eW3, sA1d

¹W 3 AW =
1

h2h3
S ] sh3A3d

] q2
−

] sh2A2d
] q3

DeW1 +
1

h2h3
S ] sh1A1d

] q3
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