
UC Irvine
ICS Technical Reports

Title
Fast optimal parallel algorithms for maximal matching in sparse graphs

Permalink
https://escholarship.org/uc/item/3zk6d29x

Authors
Asuri, Hari S.
Dillencourt, Michael B.
Eppstein, David
et al.

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3zk6d29x
https://escholarship.org/uc/item/3zk6d29x#author
https://escholarship.org
http://www.cdlib.org/

•;

Notice: This Material
n11y be protected
by Copyright Law
n••tl . 7 LJ SC} l I t.8 1 . l • I

Fast Optimal Parallel Algorithms
for Maximal Matching in Sparse Graph§_

Hari S. 4surc__!
Michael B. Dillencourt*t

David Eppstein*
George S. Lueker*t

Mariko Molodowitch**

Technical Report 92-01

January, 1992

ABSTRACT

We present optimal parallel algorithms to find maximal matchings in
two classes of sparse graphs, namely, graphs with bou.nded degree and those
which, for some p, are forbidden to have the clique Kp as a minor. This
latter class is quite large; for example, planar graphs satisfy this condition,
as do graphs with any fixed bound on their genus. Our algorithms use
O(log n) time on a CRCW PRAM for both classes of graphs. On an EREW
PRAM, our algorithms use O(log n) time for graphs with bounded degree and
O(log n log* n) time for graphs with forbidden Kp-minors.

* Department of Information and Computer Science, University of California at Irvine,
Irvine, CA 92717.

t The support of the National Science Foundation under Grant CCR 89-12063 is
gratefully acknowledged.

t The support of a UCI Faculty Research Grant is gratefully acknowledged.

** Computer Science Department, California State University at Fullerton, Fullerton,
CA 92634.

C3
h !'.), /j-1)/

Fast Optimal Parallel Algorithms for Maximal Matching in Sparse Graphs

Hari S. Asurit

1. Introduction

Michael B. Dillencourtt
David Eppstein

George S. Luekert
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92717

Mariko Molodowitch
Computer Science Department

California State University at Fullerton
Fullerton, CA 92634

Graph matching is an important and well-studied problem (see [Edmo65], [HK73],
[Gali86]). A matching for a graph G = (V, E) is a set of edges M ~ E such that no two
edges in M share a vertex. The problem of finding a maximum cardinality matching has
been widely studied (see [Gali86] for a survey). It is known that this problem is in RNC
([KUW86], [MVV87]), but whether it is in NC or not is open.

In this paper, we consider an easier problem called the maximal matching problem. A
maximal matching is a matching M such that no 9ther matching M' properly contains M.
Thus if M is maximal, each unmatched edge must share one of its vertices with a matched
edge. Finding a maximal matching has appl~cations in approximation algorithms for vertex
cover [GJ79] and also serves as a good first step for finding a maximum matching [Gali86].

There is a simple and well-known seque~tial linear-time algorithm for maximal matching.
We start with a set of unmarked vertices and an empty match set. We then repeatedly
choose any edge which has neither endpoint1 marked, add it to the match set, and mark its
two endpoints. We stop when no such edge remains. Finding a maximal matching quickly
in parallel is a considerably more difficult problem. Israeli and Shiloach [IS86] presented an
O(log3 n) CRCW PRAM algorithm using O(m + n) processors to find a maximal matching
in general graphs with n vertices and m edges. For planar graphs, the running time of the
Israeli and Shiloach algorithm can be reduced to O(log2 n) [GPS87]. Goldberg, Plotkin, and
Shannon [GPS87] presented an O(log n log* n) CRCW PRAM algorithm and an O(log2 n)
EREW algorithm for maximal matching in planar graphs, each using O(n) processors.

t The support of the National Science Foundation under Grant CCR 89-12063 is gratefully acknowledged.

t The support of a UCI Faculty Research Grant is gratefully acknowledged.
1 By the endpoints of an edge (v, w) we mean the two vertices v and w.

1

The algorithms presented here are improvements over the [GPS87] algorithm for planar
graphs; in addition, these algorithms cover a much larger class of graphs. We consider two
classes of sparse graphs: (1) bounded-degree graphs and (2) graphs which, for some fixed p,
do not contain Kp as a minor. The latter class of graphs is a substantial generalization of the
class of planar graphs; in particular, it contains all bounded-genus graphs. Note that neither
one of these classes ((1) and (2)) contains the other. For example, no planar graph contains
Ks as a minor, while there are planar graphs with vertices of unbounded degree. On the
other hand, there exist bounded degree graphs with Kp-minors for arbitrary p. Examples of
such graphs, for any p, can be constructed by starting from Kp and then by expanding the
vertices suitably such that the vertices of the resulting graph are of degree at most 3. For
these two classes of graphs, using a CRCW PRAM, we find a maximal matching in O(log n)
time with O(n/ log n) processors. Using an EREW PRAM, we find a maximal matching
for graphs of bounded degree in O(log n) time using 0(n /log n) processors, and for graphs
with forbidden Kp-minors in O(log n log* n) time using 0(n /log n log* n) processors.

2. Preliminaries

Let G = (V, E) be an undirected graph. We let IVI = n and IEI = m. Kn refers to
a complete graph on n vertices. An elementary contraction of G is obtained by selecting
two adjacent vertices v, u E V and merging them; more formally, we replace v, u, and all
incident edges by a new vertex w which is adjacent to all vertices which were adjacent to
v or u. G' is said to be a contraction of G if G' is obtained from G through a series of
elementary contractions. A graph H is said to be a minor of G if H is a contraction of a
subgraph of G. A graph G is Kp-minor-free if Kp is not a minor of G.

Our algorithms make use of several other well-known parallel algorithms. In the list
ranking problem we are given a list and required to determine the distance of each of the
items from the end of the list. List ranking can be performed optimally in O(log n) time
deterministically on an EREW PRAM (see [AM88] and [CV88]). List ranking can be used
for list contractions as well. The Euler tour technique [TV85] can be used to optimally
perform depth first search on trees, and can be applied to perform various other operations
on trees optimally. Specifically, given an unrooted tree, one can obtain an oriented (rooted)
tree in O(log n) time by using this techniq~e. Hagerup [Hage90] has presented algorithms
to find the connected components and a spanning forest of a planar graph in O(log n)
time using O(n/ log n) processors on a CRCW PRAM2• We make use of these algorithms
extensively.

An undirected graph is d-bounded if the degree of each of its vertices is bounded by
d. An orientation of G = (V, E) is a directed graph with each edge (u, v) E E replaced by
a directed edge u --7 v or v --7 u; i.e., we assign a direction to each edge. If the in-degree
of every vertex of the orientation is bounded by a constant d, then we will say that it is
a d-bounded orientation of G. Clearly any undirected graph of maximum degreed has a
d-bounded acyclic orientation. It is also known that every planar graph has a 6-bounded

2 As Hagerup points· out, his algorithm actually applies to a larger class of graphs called linearly
contractible graphs, which we will discuss in Section 5.

2

acyclic orientation, and that one can be found in linear time sequentially and optimally in
O(lognlog* n) time in parallel on an EREW PRAM [CE91].

In the adjacency list representation of an undirected graph, there are two list nodes
corresponding to each edge: one on the adjacency list of each endpoint. Call these two
nodes partners of each other. The cross-linked adjacency list representation of an undirected
graph has links between partners. We assume that graphs or directed graphs are represented
as an array of cross-linked adjacency lists; this assumption of the existence of cross-links
is common in parallel algorithms. (An adjacency list with cross links can be constructed
by means of a sorting of the undirected edges [HCD87].) Some of our algorithms require
processors to be able to write to the same shared memory location simultaneously. The write
conflicts in these cases are resolved arbitrarily, where any one of the processors performing
a concurrent write succeeds (i.e., we use the ARBITRARY CRCW PRAM model to resolve
conflicts during concurrent writes). Without loss of generality, we assume that the vertices
are numbered from 1 ton.

3. Maximal Matching in a Forest

We assume that trees are .represented by adjacency lists. In particular, we assume that
an oriented forest is represented by providing an array of lists of the children of each node.

Under these assumptions, maximal matching in an .oriented ·tree can be computed as
follows. First form the vertices into a set of linked lists by setting Link[x] to nil when x is a
leaf, and Link[x] to point to any child of x when x is an internal node. Using list ranking
we can set, for each x, Dist[x] to be the number of nodes preceding x on its linked list; i.e.,
we number the nodes in each list 0, 1, 2, Now, for each x, we place the edge (x,Link[x])
in the matching iff Dist [x] is even. This will certainly form a matching, since we are only
selecting alternate edges from a set of disjoint paths. Moreover, it must be a maximal
matching, since all internal nodes are endpofots of edges in the matching and any edge not
in the matching has an internal node as an endpoint.

This approach easily generalizes to any undirected graph G without cycles, since we can
first divide G into trees, orient each tree, and then apply the algorithm described above to
each tree. This is summarized in Algorithm, 1.

Algorithm 1: Maximal Matching in a Forest
Input: A Forest F

1. Divide F into trees and select a root for each tree.

2. Direct the edges of the trees away from the roots.

3. Let each internal node choose (arbitrarily) one of its outgoing edges, forming a set of paths.

4. List rank each path.

5. In each path, select alternate edges beginning with the first.

Lemma 1. Algorithm 1 can be implemented to perform maximal matching in an undirected
forest in O(log n) time optimally on a CRCW PRAM. If the input is an oriented forest, we
can perform the maximal matching in O(log n) time optimally on an EREW PRAM.

3

~i

Proof: Step 1 can be done using Hagerup's connected component algorithm [Hage90]
optimally in O(log n) time on a CRCW PRAM. Step 2 can be done in O(log n) time
optimally on a CRCW PRAM using an Euler tour of the graph (see [KR88]). Steps 3-5
(which are all that is necessary if the input is an oriented forest) can be done in O(log n)
time optimally on an EREW PRAM using an optimal list ranking algorithm (see [CV88]
and [AM88]). •

4. Bounded Degree Graphs

We now consider maximal matching in a bounded degree graph.

Theorem 1. Algorithm 2 finds a maximal matching in ad-bounded graph on an EREW
PRAM optimally in O(log n) time.

Algorithm 2: Maximal Matching in Bounded Degree Graphs
Input: Ad-bounded graph G

1. M = 0.
2. Orient the edges in such a way that each edge points from a higher numbered vertex to a lower

numbered vertex.

3. Initialize all edges to be unmarked.

4. Repeat d times:

4a. for each vertex, choose the first unmarked in-edge (if any) on the vertex's adjacency list; let the
directed subgraph formed by the chosen edges be called G'.

4b. use steps 3-5 of Algorithm 1 to find a maximal matching M' for G'; set M- MUM'.

4c. mark all edges which are incident upon endpoints of edges in M'.

Proof: The marks can be interpreted as indicating that an edge is ineligible for the
matching. The final result must be a matching, since each time we add a set M' of edges to
the matching we mark as ineligible all edges which share a vertex with an edge in M'. To
see that it is maximal, first note that we do eventually mark all edges, since each adjacency
list has at most din-edges, and each iteration of step 4 causes at least one of them to be
marked if any remain. Then since each marked edge is either placed into Mor is ineligible
since it shares a vertex with an edge in M, the matching must be maximal.

Note that the orientation formed in step 2 is acyclic. Hence, after step 4a, since each
vertex chooses one in-edge, the resulting graph G' is a directed out-forest (where the edges
are directed away from the roots).

Assume that we have oriented the graph G by simply placing a flag in each node of the
adjacency lists to indicate whether it corresponds to an in-edge or out-edge. In Step 4a,
after selecting the edges that form G', we wish to obtain an adjacency list representation for
G', i.e., we wish to obtain an adjacency list of out-edges for each vertex from the selected
in-edges. This can be done easily and quickly in the case of bounded degree graphs as
follows.

Let H be a copy of G such that every edge e = (v, w) in the adjacency lists of G and
its copy in the adjacency lists of Hare linked to one another. (This enables us to access an

4

I;

edge in H from the same edge in G and vice versa in constant time.) When an in-edge is
selected in Gin Step 4a, we :flag the partner of the copy of the edge in H (notice that the
partner is an out-edge). By contracting the adjacency lists of H to retain all the :flagged
edges, we obtain the required representation for G'. Since the adjacency lists of H are
bounded, the required adjacency representation for G' can be obtained in constant time on
an EREW PRAM using O(n) processors.

For Step 4c, we first flag all vertices which are endpoints of M', then mark all nodes
on the adjacency lists of flagged vertices, and finally propagate this information to partners
via the cross-links. Thus this step can also be done in constant time ~sing O(n) processors
because of the degree bound.

By Lemma 1, step 4b can be done optimally on an EREW in O(log n) time. Hence
Algorithm 2 can be implemented to run in O(log n) time using 0(n /log n) processors on an
EREW PRAM. •

5. Maximal Matching in Kp-Minor Free Graphs

In this section we describe algorithms to perform maximal matching in graphs which
are Kp-minor free for fixed p. This covers a number of interesting classes of graphs; for
example, for p ~ 5, a graph of genus g is Kp-minor-free if g < f(p - 3)(p - 4)/121 (see
[CL86, Section 4.4, Theorem 4.26]).

Following Hagerup [Hage90], we say a class g of graphs is linearly contractible if for all
G = (V,E) in Q,

a) IEI = O(IVI), and

b) every minor of G is also in g.

In particular, if (a) can be replaced by IEI ~;clVI,, we will say g is linearly contractible with
parameter c.

It is known that every graph with 2P-3 IVI or more edges has a Kp minor (see [Boll78,
Chapter -7, Theorem 1.14]), so if G = (V, E) is a Kp-minor-free graph we must have
IEI < 2P-3 1VI. Thus the class of Kp-mfoor-free graphs is linearly contractible, for fixed p.

5.1. A CRCW PRAM algorithm

We begin with the following observation.

Lemma 2. If G is a connected Kp-minor-free graph, then the graph induced by the leaves
of any spanning tree of G is Kp-1-minor-free.

Proof: Let T be a spanning tree of G, and let G' be the graph induced by the leaves of T.
Suppose for a contradiction that Kp-1 is a minor in G'. By contracting all internal nodes of
T i:Ilto a single vertex we obtain Kp as a minor in G, giving the desired contradiction. •

Note that it follows immediately that if G is a Kp-minor-free graph, then the graph
induced by the leaves of any spanning forest of G is Kp-1-minor-free.

Theorem 2. For fixed p, maximal matching in a I<p-minor-free graph G can be performed
in O(log n) time using O(n/ log n) processors on a CRCW PRAM.

5

Proof: Generate a sequence of graphs Go = G, Gi, ... , Gt, where each Gi is obtained from
Gi-1 by

i) computing a spanning forest Fi-1'

ii) computing a maximal matching Mi-1 in Fi-1 using Algorithm 1, and then

iii) letting Gi be the subgraph of Gi-l induced by the unmatched vertices.

Since only a subset of leaves remain after a maximal matching is computed for a forest, from
Lemma 2 we know that Gi is Kp-i-minor-free. After t = p - 3 iterations, the remaining
graph Gt is K3-minor-free, which implies that Gt must be a forest. Algorithm 1 can then
be applied to obtain a maximal matching of this forest.

Since G and its successors are Kp-minor-free, and hence linearly contractible, Hagerup's
algorithm can be used to obtain a spanning forest and label connected components in
O(log n) time using O(n/ log n) processors on a CRCW PRAM. Each application of
Algorithm 1 also requires O(log n) time using 0(n/ log n) processors. After computing Mi-1
in the forest Fi-1' we mark all the vertices (and edges) in Gi-1 that are also in Mi-1· We
then compute Gi from Gi-1 by contracting every adjacency list using list ranking. This
process of computing Gi can be done optimally in O(log n) time.

The number of iterations is t = O(p), which is 0(1) since we assume pis fixed. Hence
the whole procedure operates within the stated resource bounds. •

5.2. An EREW PRAM algorithm

We now obtain a slightly slower algorithm that can be run optimally on an EREW
PRAM. First we show how a graph G which is Kp-minor-free and hence linearly contractible
can be oriented such that the in-degree of any node in the graph is bounded. Algorithm 3 is
a straightforward generalization of Chrobak and Eppstein's [CE91] optimal O(log n log* n)
EREW PRAM algorithm to find 6-bounded acyclic orientations for planar graphs, which,
in turn, is very similar to the parallel 5-coloring algorithm for planar graphs presented in
[HCD87].

Theorem 3. Given an undirected graph G = (V, E) which is linearly contractible with
parameter c, Algorithm 3 will orient it to be acyclic and have in-degree bounded by 4c.
Moreover, this algorithm can be implemented to run optimally in O(log n log* n) time on an
EREW PRAM.

Proof: The computation is in O(log n) phases. In phase i, we find a set Si of vertices of
degree at most 4c. Now we construct a graph Hi = (Si, Fi), where (u, v) E Fi if either
(u, v) E E or u and v have a common neighbor x such that the edges (u, x) and (v, x) are
consecutive in the adjacency list of x. We then compute a maximal independent set Vi in Hi.
Since Hi is a bounded degree graph, IV'il = O(ISil) (see [HCD87], and [GPS87]). Selecting
independent vertices in this manner enables us to perform Step 2d in constant time as the
list contraction process involved in obtaining Gi+l can be performed in constant time.

The correctness of the algorithm can be seen easily. Note that since each Vi is an
independent set, aHedges will run between vertices with different labels, and hence the
algorithm produces an acyclic graph. Now if v is an arbitrary vertex with label i, then

6

Algorithm 3: Orienting a Linearly Contractible Graph to Have Bounded In-Degree
Input: An undirected graph G which is linearly contractible with parameter c

1. Go +- G; i +- 0.

2. While Gi contains any vertices do

2a. Let Si be the set of all vertices of degree less than 4c in Gi.

2b. Let Vi be a maximal set of independent vertices among Si, such that if v, u E V;, and (v, x), (u, x) E
E, then v and u are not consecutive elements in the adjacency list of x.

2c. Assign the label i to each vertex in V;.

2d. Eliminate Vi from Gi to obtain Gi+l ·

2e. Increment i.

3. Orient the edges in such a way that each edge points from a higher numbered vertex to a lower
numbered vertex; Obtain adjacency lists consisting of just in-edges.

v E Vi and all in-edges of v must have been present in Gi, so since all vertices in Vi had
degree at most 4c, the in-degree of v is bounded by 4c.

Next we show that there are only O(log n) iterations in step 2. Let ni be the number
of vertices in Gi. First note that the set Si must contain at least ni /2 vertices, since the
total of the degrees of the vertices in Gi is at most 2cni. Thus at each iteration we remove
a constant fraction of the vertices (as IVil = f!(ni)), so -it takes only O(log n) iterations to
remove them all.

Finally, we show that the algorithm can be implemented to run within the given bounds.
Step 1 is straightforward. Aside from 2b, the substeps within step 2 can be done in constant
time with 0(n) work, since we only need constant time to scan adjacency lists of length
bounded by 4c.

Each execution of Step 2b can be done in O(log* n) time using 0(n) processors or in
(logn) time using O(n/logn) processors ([HCD87], [GPS87]). We use the second method
for the first O(log* n) iterations. The total work done during these O(log* n) iterations is
0(n) as the size of the graph decreases by a constant factor each time. We then switch to
the faster method. Again, the total work done is 0(n) as the size of the graph decreases by
a constant factor after each iteration. The total time taken is O(log n log* n).

In order to obtain an optimal algorithm, we use Brent's theorem [Bren74] and reduce
the number of processors. Reduction in the number of processors requires a scheduling
method to balance the work load among the smaller number of processors. We can achieve
this by keeping a list of remaining vertices and edges and by compacting the list to get rid
of deleted vertices and edges. The list compaction can be done using a prefix computation
[LF80], which takes O(log n) time and does O(n) work. We perform the compaction at
appropriate intervals to achieve the O(log n log* n) time using 0(n /log n log* n) processors
[CE91]. •

When we orient an input graph G with Algorithm 3, we obtain a directed graph G'
with the in-degree of each vertex bounded by a constant (namely, 4c). This does not enable
us to apply the result of Theorem 1 directly, since that theorem requires that the degree
ofthe undirected graph be bounded by a constant. Fortunately, a variation of Algorithm 2

7

· .. I

'~1

i
)

j
J

.

.

I;

can be used to find a maximal matching for G; we omit step 2 and take extra care in the
implementation of step 4. Step 2 can be omitted since the graph has already been oriented
as needed, and the desired adjacency in-lists have been obtained. Most of step 4 can readily
be done optimally. After performing Step 4a, as in the bounded-degree case of Section 4,
we obtain an adjacency list consisting of out-edges from the selected in-edges. Unlike in the
bounded-degree case, the adjacency lists of G may not be of bounded length; but we can
still perform the necessary operations (such as flagging edges and compacting lists) within
the resource bounds of O(log n) time and 0(n /log n) processors. In Step 4c, some care is
needed when we mark all edges incident with the endpoints of edges of M'.

Assume that when we create the oriented graph (call it H) in Algorithm 3, we keep a
copy of the original graph G. Assume also that whenever we add a directed edge e = (v, w)
(e is directed from v to w) to the adjacency list of w in H, we let the corresponding edge on
the adjacency list of w in G point to e. We can now mark all edges in H which are incident
with endpoints of M' as follows.

i) using list ranking, mark all edges on the adjacency lists in G of all vertices which are
endpoints of M'.

ii) using the cross links, mark the partners of each marked edge in G.

iii) for each marked edge in G which points to an edge e in H, mark e.

This process can be done optimally in O(log n) time, and step 4 is iterated only 0(1)
times. Thus we obtain the following:

Corollary. Maximal matching can be performed on any linearly contractible class of
undirected graphs optimally in O(log n log* n) time on an EREW PRAM.

6. Conclusion

We have presented fast parallel algorithms for maximal matching for a large class of
sparse graphs. Using a CRCW PRAM, we can find a maximal matching for these sparse
graphs in O(log n) time. Using an EREW PRAM, we can find a maximal matching in
O(log n) time for graphs of bounded degree, and in O(log n log* n) time for the Kp-minor-free
graphs. All these algorithms are optimal, i.e., they require only O(n) work. For general
graphs the previously best known algorithm was that of Israeli and Shiloach [IS86] which
used O(log3 n) time and O(mlog3 n) work. Even for planar graphs, which are a small subset
of the class we consider, the previously best known algorithm on a CRCW [GPS87] used
O(log n log* n) time with 0(n) processors.

Acknowledgements

We are grateful to Dan Hirschberg for helpful comments on an earlier draft .

References

[AM88] R. J. Anderson and G. L. Miller. Deterministic Parallel List Ranking.
Algorithmica 6 (6), pages 859-868, 1991.

[Boll78] B. Bollobas. Extremal Graph Theory. Academic Press, London, 1978.

8

(Bren74] R. P. Brent. The Parallel Evaluation of General Arithmetic Expressions. J.
Assoc. Comput. Ma.ch. 21, pages 201-206, 1974.

[CL86] G. Chartrand and L. Lesniak. Graphs & Digraphs. The Wadsworth &
Brooks/Cole Mathematics Series. Wadsworth, Inc., Monterey, California,
second edition, 1986.

(CE91] M. Chrobak and D. Eppstein. Planar Orientations with Low Out-degree and
Compaction of Adjacency Matrices. Theoretical Computer Science, 86:243-
266,1991.

[CY88] M. Chrobak and M. Yung. Fast Parallel and Sequential Algorithms for Edge­
Coloring Planar Graphs (extended abstract). In J. H. Reif, editor, VLSI
Algorithms and Architectures: 3rd Aegean Workshoop on Computing, pages 11-
23, Corfu, Greece, June/ July 1988. Springer-Verlag. Lecture Notes in Computer
Science 319.

[CV88] R. Cole and U. Vishkin. Optimal Parallel Algorithms for Expression Tree
Evaluation and List Ranking. In J. H. Reif, editor, VLSI Algorithms and
Architectures: 3rd Aegean Workshoop on Computing, pages 91-100, Corfu,
Greece, June/ July 1988. Springer-Verlag. Lecture Notes in Computer Science
319.

[Edmo65] J. Edmonds. Paths, Trees and Flowers. Canadian Journal of Ma.thematics,
17:449-467, 1965.

(Gali86] Z. Galil. Efficient Algorithms for Finding Maximum Matching in Graphs. ACM
Computing Surveys, 18(1):23-38, March 1986.

(GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York, 1979.

[GPS87] A. V. Goldberg, S. A. Plotkin, arid G. E. Shannon. Parallel Symmetry-breaking
in Sparse Graphs. In Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, pages 315~324, 1987.

[Hage90] T. Hagerup. Optimal Parallel Algorithms on Planar Graphs. Information and
Computation, 84:71-96, 1990.

[HCD87] T. Hagerup, M. Chrobak, and K. Diks. Optimal 5-coloring of Planar Graphs.
SIAM Journal on Computing, 18:288-300, 1989.

[HK73] J. E. Hopcroft and R. M. Karp. A n512 Algorithm for Maximum Matching in
Bipartite Graphs. SIAM Journal on Computing, 2(4):225-231, December 1973.

[IS86] A. Israeli and Y. Shiloach. An Improved Algorithm for Maximal Matching.
Information Processing Letters, 22(2):57-60, January 1986.

[KR88] R. M. Karp and V. Ramachandran. Parallel Algorithms for Shared-Memory
Machines. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science.
Volume A: Algorithms and Complexity, Chapter 17, pages 869-941, Elsevier,
Amsterdam, 1990.

(KUW86] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a Perfect Matching is in
Random NC. Combina.torica., 6(1):35-48, 1986.

9

~i

[LF80]

: . ~

R. E. Ladner and M. J. Fischer. Parallel Prefix Computation. J. Assoc. Comput.
Mach. 27, pages 831-838, 1980.

[MVV87] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as Easy as Matrix
Inversion. Combinatorica, 7(1):105-113, 1987.

[TV85] R. E. Tarjan and U. Vishkin. An Efficient Parallel Biconnectivity Algorithm.
SIAM Journal on Computing, 14(4):862-874, November 1985. -

10

