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A Flavorful Top-Coloron Model

R. Sekhar Chivukula,∗ Elizabeth H. Simmons,† and Natascia Vignaroli‡

Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
(Dated: August 3, 2018)

In this paper we introduce a simple renormalizable model of an extended color gauge sector in
which the third-generation quarks couple differently than the lighter quarks. In addition to a set
of heavy color-octet vector bosons (colorons), the model also contains a set of heavy weak vector
quarks. Mixing between the third-generation of quarks and the first two is naturally small, and
occurs only through the (suppressed) mixing of all three generations with the heavy vector quarks.
We discuss the constraints on this model arising from limits on flavor-changing neutral currents and
from collider searches for the colorons and vector quarks, and discuss the prospects for discovery at
the LHC.
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I. INTRODUCTION

The LHC Era has started off with a bang: not only have the experiments decisively rediscovered all of the familiar
particles of the Standard Model, confirming that the operations of the acclerator and detectors are well understood,
but both ATLAS [1] and CMS [2] have also found a new scalar particle that closely resembles the long-awaited Higgs
Boson. Since the Standard Model with one Higgs doublet is not natural up to arbitrarily high energies, and since
it leaves many questions (including the origin of flavor) unanswered, we anticipate that some physics beyond the
Standard Model remains to be discovered.

An intriguing possibility is that an extended color gauge sector may exist. In particular, new colored states beyond
the familiar quarks and gluons could be awaiting discovery at the LHC. These could reflect a variety of kinds of
theories beyond the standard model. One class of theories are those in which the strong interactions are extended
from the standard SU(3)QCD to a larger SU(3)1 × SU(3)2 group and in which spontaneous symmetry breaking
reduces the larger group to its diagonal subgroup which is identified with SU(3)QCD. These models include topcolor
[3], the flavor-universal topcolor [4], classic chiral color [5], chiral color with unequal gauge couplings [6] and a newer
flavor non-universal chiral color model [7]. Each of these models includes new heavy colored gauge bosons (colorons,
topgluons, or axigluons) transforming as a color octet. Other theories with new color octet states include theories
of new extra spacetime dimensions that incorporate Kaluza-Klein partners for the gluons, as in Refs. [8][9][10] or
technicolor models with colored technifermions that bind into color-octet techni-rho mesons [11]. An entire catalog of
possible new colored states including color sextet fermions, colored scalars, and low-scale string resonances [12] has
also been reviewed in [13].

If an extended color gauge sector does exist, then there are indications that it could be likely to couple more
strongly to the third generation than the light quarks. For instance, if the new scalar state with a mass of 125 GeV is
actually a composite, rather than a fundamental, scalar, it could potentially be a bound state of top quarks[14][15][16]
[17][18], as realized in topcolor [3], topcolor-assisted technicolor [19] and top seesaw [20][21][22] models, and as analyzed
phenomenologically in [23][24]. There is also the puzzling question of how to explain the forward-backward asymmetry
observed by the Tevatron experiments [25][26] in the production of top-quark pairs. Models involving flavor non-
universal axigluons [7] have been cited as a possible explanation, and there has been discussion in the literature
[27][28] of the degree to which the properties of those axigluons would be constrained by data on flavor-changing
neutral currents.

In this paper, we introduce a model in which the strong interactions are extended to an SU(3)1×SU(3)2 structure in
a way that causes the new heavy coloron states to couple differently to the third generation quarks than to the lighter
generations. What is novel about this model is that it also naturally addresses the experimental observation that the
third family of quarks has only a small mixing with the lighter families. This is implemented through the presence
of heavy weak-vector quarks that transform in the same way under the extended color group as the third-generation
quarks. Mixing between the ordinary quark generations occurs only because all three generations mix with the vector
quarks; the different gauge charges of the third and lighter generations of quarks thus lead to naturally small mixing
between those generations. Effectively, this model is a nice realization of next-to-minimal flavor violation [29–34].

In the next section, we will introduce the gauge and fermion sectors of the model, discuss the flavor symmetries,
and demonstrate that the model naturally reproduces the CKM structure of quark masses and mixings. In section 3,
we study how data on flavor-changing neutral currents (FCNC) constrains the model parameters and find that clear
regions remain allowed. Section 4 shows how the LHC experiments’ searches for new resonances decaying to dijets
bound the properties of the colorons in our model; section 5, likewise, shows how LHC searches for new heavy colored
fermions restrict the characteristics of the heavy vector quarks in our model. Finally, in section 6, we summarize our
conclusions and findings.

II. THE MODEL

We will now introduce the model in more detail. First, we discuss the gauge boson, scalar, and fermion content.
Then we detail the Dirac and Yukawa interaction terms and the flavor symmetries that yield the diverse masses
of the nearly-standard fermion states. Finally, we obtain explicit expressions for the fermion mass eigenstates and
demonstrate that the observed pattern of masses and CKM mixings is obtained for natural values of the model
parameters.
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A. Gauge Structure

We investigate a simple, renormalizable, model with the gauge structure SU(3)1×SU(3)2×SU(2)W ×U(1)Y . We
name the SU(3)1 × SU(3)2 gauge bosons Aa1µ and Aa2µ, respectively, and call the corresponding gauge couplings g1,
g2. The two SU(3) gauge couplings are related to the QCD coupling gS through

gS = g1 sinω = g2 cosω, (1)

where ω is a new gauge mixing angle.
Gauge symmetry breaking occurs in two steps:

• SU(3)1×SU(3)2 → SU(3)C due to the (diagonal) expectation value 〈Φ〉 ∝ u ·I, where the scalar, Φ, transforms
as a (3, 3̄) under SU(3)1 × SU(3)2 and I is the identity matrix,

• SU(2)W ×U(1)Y → U(1)em in the usual way due to a Higgs doublet φ transforming as a 21/2 of the electroweak
group, and with the usual vacuum expectation value given by v ≈ 246 GeV.

We will assume that the color-group symmetry breaking occurs at a scale large compared to the weak scale, u� v.1

The mass-squared matrix for the colored gauge bosons is given by

− 1

2
u2
(

g21 −g1g2
−g1g2 g22

)
. (2)

Diagonalizing this matrix reveals mass eigenstates Ga and Ca

Gaµ = sinωAa1µ + cosωAa2µ (3)

Caµ = cosωAa1µ − sinωAa2µ (4)

with masses

MG = 0 MC = u
√
g21 + g22 =

gS u

sinω cosω
(5)

If we name the color current associated with SU(3)i by the symbol Jaµi , then the gluon and coloron, respectively
couple to the following currents:

gSJ
aµ
G = gS(Jaµ1 + Jaµ2 ) (6)

gSJ
aµ
C = gS(cotωJaµ1 − tanωJaµ2 ) (7)

From this, we calculate the decay width of the coloron into massless color-triplet fermions to be

ΓC =
g2SMc

24π

(
n1 cot2 ω + n2 tan2 ω

)
(8)

where n1 and n2 correspond to the number of Dirac fermion states charged under SU(3)1 and SU(3)2 respectively.
Finally, we note that at energy scales well below the coloron mass, coloron exchange may be approximated by the
current-current interaction:

− g2S
2M2

c

JaµC JaCµ . (9)

B. Matter Fields

The matter fields of this model are summarized2 in Table I. Those coupled to SU(3)1 include one chiral quark
generation (qL, tR, and bR), which will be associated primarily with the third generation quarks, and one vectorial

quark generation (QL,R). The two remaining (chiral) quark generations (~ψL, ~uR, and ~dR) are coupled to SU(3)2
and will be associated primarily with the two light quark generations. Noting that QL and qL transform in the same

way under the gauge symmetries, we define ~QL ≡ (qL, QL) and observe that the flavor symmetries (ignoring gauge
anomalies) of the quark kinetic energy terms in this model are

U(2)~ψL
× U(2)~uR

× U(2)~dR × U(2) ~QL
× U(1)tR × U(1)bR × U(1)QR

. (10)

We will later use these flavor symmetries to simplify our analysis of the fermion masses and Yukawa couplings.

1The vacuum expectation values for φ and Φ occur for a choice of parameters in the most general, renormalizable, potential for these
fields, and the vacuum is unique up to an arbitrary global gauge transformation. We will assume that the additional physical singlet and
color-octet fields in Φ are heavy, and neglect them in what follows [35].

2The lepton fields are assigned to SU(2)× U(1) just as in the standard model. We normalize hypercharge such that Q = T3 + Y .
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Particle SU(3)1 SU(3)2 SU(2) U(1)

~QL =

(
qL

QL

)
3 1 2 +1/6

tR 3 1 1 +2/3

bR 3 1 1 -1/3

QR 3 1 2 +1/6

~ψL =

(
ψ1
L

ψ2
L

)
1 3 2 +1/6

~uR =

(
u1
R

u2
R

)
1 3 1 +2/3

~dR =

(
d1R
d2R

)
1 3 1 -1/3

φ 1 1 2 +1/2

Φ 3 3̄ 1 0

TABLE I. SU(3)1 × SU(3)2 × SU(2) × U(1) gauge charges of the particles in this model. The φ and Φ, respectively, denote
the scalars responsible for breaking the electroweak and (extended) strong sectors, while all other listed particles are fermions.

The vectors (~ψL, ~uR, ~dR, and ~QL) denote different fermion flavors with the same gauge charges, where the superscripts [1,2]
refer to the two light fermion generations.

C. Fermion Masses and Yukawa Couplings

The flavor properties of this model, which are the primary concern of this paper, depend on the fermion masses
and Yukawa couplings. The existence of the right-handed weak doublet state QR permits the Dirac mass term

~̄QL · ~MQR + h.c. , (11)

where ~M is an arbitrary two-component complex mass matrix. Using the U(2) ~QL
symmetry of the quark kinetic

terms, we will choose to work in a basis in which ~MT = (0 M) where M is real and positive. This defines what we
will mean by qL and QL in Table I from here on.

The third-generation quark Yukawa couplings are given by
√

2M

v
·
(
βbq̄LφbR + βtq̄Lφ̃tR

)
+ h.c. , (12)

where the βt,b, can be chosen to be real, using the U(1)tR × U(1)bR symmetries. The Yukawa couplings for the light
two generations are given by

√
2M

v
·
(
~̄ψLφλd ~dR + ~̄ψLφ̃λu~uR

)
+ h.c. . (13)

where λu,d are 2× 2 complex matrix Yukawa couplings. Neglecting the (small) mixing of the third-generation quarks
with the first two generations, the parameters βt,b and λu,d are just equal to the corresponding parameters in the

standard model, up to the factor of
√

2M/v which is included for later convenience.3

Mixing of the third quark generation with the first two occurs only because all three generations mix with the
(heavy) vector quarks. Mixing between the third-generation quarks and the vector quarks occurs through

√
2M

v
·
(
λ′bQ̄LφbR + λ′tQ̄Lφ̃tR

)
+ h.c. , (14)

and mixing between the first- and second-generation quarks and the vector quarks occurs through the Yukawa couplings
to the color-octet scalar

M

u
·
(
~̄ψL · ~αΦQR

)
+ h.c. . (15)

3While incorporating M into the Yukawa couplings is convenient for subsequent calcualtions, its presence obscures the decoupling properties
[36] of the theory in the limit M →∞.



5

Here the λ′b,t are complex numbers, while ~α is a two-component complex vector, whose phases and orientations can
be simplified using the residual flavor symmetries in a manner that we will specify shortly.

Note that in the limit that either λ′b,t → 0 or ~α → 0, third-generation quark number is conserved separately from

quark number for the light quarks,4 and mixing between the third generation and the first two vanishes. Having the
mixing between the heavy and light quark generations be small is therefore natural in this model.

D. Quark Mass Eigenstates

The masses and Yukawa couplings above give rise to 4× 4 up- and down-quark matrices

Mu = M ·

∆u
~0 ~α

0 0 βt 0

0 0 λ′t 1

 , Md = M ·

C∆d
~0 ~α

0 0 βb 0

0 0 λ′b 1

 , (16)

in a basis where the first two components are the light-quark fields, the next is the third generation, and the last
represents the vector quarks. Here, given the small mixing of the first two generations with the others, we use
the U(2)~ψL

× U(2)~uR
× U(2)~dR symmetries to make the two-by-two matrices ∆u,d real and diagonal (and given

approximately by the masses of the light quarks), while C is approximately the real Cabbibo rotation matrix.
We will diagonalize these matrices, and find the corresponding eigenstates, in the limits

∆u,d � |~α|, |λ′b,t|, βb,t � 1 . (17)

To lowest order we find that the left-handed mass-eigenstate heavy quark field is

TL = QuL + ~α · ~ψuL , (18)

while for the heavy bottom-quark we have

BL = QdL + ~α · ~ψdL . (19)

Note that the ~ψu,d correspond to the T3 = ±1/2 states in the flavor vector ~ψ, respectively, and that we now denote
mass eigenstate fields by sanserif font. In contrast, to lowest order, the right-handed mass eigenstate heavy fields are

TR = QuR + λ
′∗
t tR , (20)

and

BR = QdR + λ
′∗
b bR . (21)

The masses of these heavy T and B states are, including second order corrections in the Yukawa couplings,

MT = M +
1

2

(
|λ′t|2 + |~α|2

)
M (22)

MB = M +
1

2

(
|λ′b|2 + |~α|2

)
M (23)

so, given the limit in Eq. (17), they are both of order M .
By “integrating out” the heavy T and B fields, we find that the effective 3 × 3 mass matrices for the up- and

down-quarks have the form

Mu = M ·
(

∆u −λ′t~α
0 βt

)
, Md = M ·

(
C∆d −λ′b~α

0 βb

)
. (24)

Since we know that mt � mu,c and mb � md,s, we can further assume that∣∣∣∣λ′t~αβt
∣∣∣∣ , ∣∣∣∣λ′b~αβb

∣∣∣∣� 1 , (25)

4In the limit λ′t,b → 0, top- and bottom-quark number is conserved separately, while in the limit ~α→ 0 it is conserved in combination with

vector-quark number.
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and we find that the left-handed third-generation mass eigenstates are approximately given by

tL = qtL −
λ′t~α

βt
· ~ψuL , (26)

bL = qbL −
λ′b~α

βb
· ~ψdL . (27)

The 3× 3 rotation matrix for up-type left-handed quarks5 is:

UL =


1 0 −α1λ

′
t

βt

0 1 −α2λ
′
t

βt(
α1λ

′
t

βt

)∗ (
α2λ

′
t

βt

)∗
1

 (28)

while the rotation matrix for down-type left-handed quarks is:

DL =


Vud Vus −α1λ

′
b

βb

Vcd Vcs −α2λ
′
b

βb(
λ
′
b

βb

)∗
(Vudα

∗
1 + Vcdα

∗
2)

(
λ
′
b

βb

)∗
(Vusα

∗
1 + Vcsα

∗
2) 1

 (29)

At leading order in α, λ′t, and λ′b the CKM mixing matrix VCKM = U†LDL is therefore

VCKM =

 Vud Vus α1d

Vcd Vcs α2d

−(Vudα
∗
1 + Vcdα

∗
2)d∗ −(Vusα

∗
1 + Vcsα

∗
2)d∗ 1

 (30)

where

d ≡ λ′t
βt
− λ′b
βb

, (31)

and the upper 2× 2 block corresponds to the previously-mentioned matrix C.
Using the third-generation quark number symmetry6, we can choose

Imλ′t
βt

=
Imλ′b
βb

, (32)

which ensures that the combination d, above, is real. We can also use the quark number symmetry for the first two
generations7 to adjust the phase of

~α ≡
(
α1

α2

)
, (33)

so that α2 is real. In this basis, the CKM matrix of Eq. (30) has the conventional form and the combination of
parameters can be compared to the Wolfenstein parameterization 1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 , (34)

5In particular, the matrix UL is defined so that U†LMUM
†
UUL is diagonal, real, and positive – and similarly for the matrix DL with respect

to the down-quark mass matrix MD.
6Rotations using this symmetry are made once U(1)~qL and U(1)tR × U(1)bR are used to make M,βt, βb all real.
7This freedom remains after U(2)~ψL

× U(2)~uR
× U(2)~dR

is used to put the entries of Mu and Md into the form shown in Eq. (16).
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(which is good up to corrections O(λ4)). The measured values of the parameters are [37]

λ = 0.22535± 0.00065 (35)

A = 0.817± 0.015 (36)

ρ = 0.140± 0.018 (37)

η = 0.357± 0.014 . (38)

Comparing Eq. (30) and (34), we find that this model consistently reproduces the observed pattern of quark mixing
if α1 = O(λ2), α2 = O(λ3), and both λ′t/βt and λ′b/βb are of order 1. Note that, from Eq. (12), we can estimate that

βb,t '
mb,t

M
, (39)

and, therefore, βb,t and (hence λ′t,b) can be made arbitrarily small by taking the vector quark Dirac mass M to be

large enough.8

Summing up, we have found that the CKM matrix is correctly reproduced by:

Vub = α1d = α1

(
λ′t
βt
− λ′b
βb

)
= Aλ3(ρ− iη) = 0.00131− i0.00334

Vcb = α2d = α2

(
λ′t
βt
− λ′b
βb

)
= Aλ2 = 0.0415 ,

(40)

where both d and α2 are real, and where α2 is O(λ2) while α1 is O(λ3).
Reproducing CKM mixing, however, is not sufficient to insure that the model is consistent with observed flavor

physics since the model incoroporates non-standard interactions. In the next section we review the additional contri-
butions to various flavor-changing neutral current processes and consider the resulting bounds on the parameters.

III. CONSTRAINTS FROM FLAVOR-CHANGING PROCESSES

New contributions to flavor-changing neutral currents (FCNC) arise in our model from the mixing of the ordinary
fermions with the new weak vector femion states, and through the couplings of the colorons to fermions. We find that
data on b → sγ and ∆F = 2 meson mixing processes place bounds on the model parameters but leave substantial
regions of allowed parameter space.

A. Limits from b→ sγ

The top-coloron model includes additional weak vector fermions and therefore, through the mixing terms controlled
by λ′t,b as shown in Eqs. (20) and (21), induced electroweak interactions of the right-handed quarks. Such interactions
give rise to enhanced contributions to the process b → sγ. The generic form of the diagrams that contribute to this
process are sketched in Fig. 1. Some contributions due to new physics arise from the induced right-handed couplings,
WtRbR; others result when a heavy vector quark is exchanged in the loop. We consider each kind of contribution
below in turn.

We begin by computing the right-handed couplings of the mass-eigenstate fermion fields to the W -boson, which are
related to the left- and right-handed matrices that diagonalize the 4× 4 quark mass matrices in Eq. (16). To leading
order in the down quark sector we find

DL =


Vud Vus 0 α1

Vcd Vcs 0 α2

0 0 1 0

−(Vudα
∗
1 + Vcdα

∗
2) −(Vusα

∗
1 + Vcsα

∗
2) 0 1

 (41)

8Note, however, that we must ensure that the color-octet Yukawa coupling of Eq. (15) remains perturbative, M |α1,2|/u ≤ 4π.
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bR sL bR sL

γ γ

W W

W

bR sL bR sL

γ γ

W W

W

FIG. 1. Generic form of one-loop contributions to b→ sγ.

and

DR =


1 0 0 0

0 1 0 0

0 0 1 λ
′∗
b

0 0 −λ′b 1

 . (42)

There are similar expressions in the up-quark sector for rotation matrices UL,R, which are obtained from the DL,R by
setting λ′b → λ′t and Vud, Vcs → 1 and Vus, Vcd → 0.

The presence of an effective WtRbR vertex has been discussed in ref. [44]. The sketch in Fig. 2 shows that the size
of this coupling is given by

ig√
2
· (D†R)34(UR)43 =

ig√
2
·
(
λ′tλ

′∗
b

)
(43)

in this model. Given the experimental limits on the rates of b → sγ arising from induced WtRbR couplings that are
quoted in ref. [44], we conclude that

− 0.0007 ≤ Re[λ′tλ
′∗
b ] ≤ 0.0025 (44)

Note that if either λ′b = 0 or λ′t = 0, this limit is automatically satisfied without providing additional information
about the size of the other coupling.

bR

λ′
b λ′

t

tRBR TR

bR

λ′
b λ′

t

tRBR TR

W

FIG. 2. Origin of the effective WtRbR vertex
in our coloron model.

bR

λ′
b

Qd
R

W W

Qu
R Qu

L Qd
L sL

α2M

bR

λ′
b

Qd
R

W W

Qu
R Qu

L Qd
L sL

α2M

FIG. 3. Combination of effective WbRQ
u
R and WQuLsL vertices con-

tributing to b→ sγ in our coloron model

There is also an additional contribution to b → sγ due to exchange of the heavy quarks Q, which arises from the

fact that QdR mixes with bR as shown in Eq. (21) and QuL mixes with ~ψuL as shown in Eq. (19). The combination of
an effective WbRQ

u
R vertex with an effective WQuLsL vertex, as sketched in Fig. 3, yields a new contribution to the

b→ sγ decay.
To evaluate the size of the contribution from Q exchange, we start by writing down the effective Hamiltonian for

b→ sγ decay [47]

Heff = −4GF√
2
V ∗tsVtb

[
C7O7 + C

′

7O
′

7

]
, (45)
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where O7 ≡ emb

16π2 s̄σ
µν 1+γ5

2 bFµν and O
′

7 ≡ emb

16π2 s̄σ
µν 1−γ5

2 bFµν . The Wilson coefficient C7 in our model is obtained by
evaluating how the new physics shown in the Fig. 3 contributes to the loop diagrams of Fig. 1. The result is

C7 = (D†R)34(DL)42
M

mb

F̃ (x)

V ∗tsVtb
,

where

F̃ (x) =
−20 + 31x− 5x2

12(x− 1)2
+
x(2− 3x)

2(x− 1)3
lnx (46)

is the loop function of x ≡ M2/M2
w calculated in [49, 50], in the context of Left-Right symmetric models. We find

that F̃ takes values between -0.46 and -0.42 for x lying in the range [(1TeV/Mw)2,∞]. The coefficient

(D†R)34(DL)42 = λ
′∗
b α
∗
2 +O(λ4)

is the product of the coefficients of the effective b̄RWQuR vertex, generated by the mixing B̄R → b̄R, and of the vertex
Q̄uLWsL, coming from BL → sL. We have thus

C7 = λ
′∗
b α
∗
2

M

mb

F̃ (x)

V ∗tsVtb
=
λ
′∗
b α
∗
2

βb

1

V ∗tsVtb
F̃ (x) = − λ

′∗
b /βb

λ
′∗
t /βt − λ

′∗
b /βb

F̃ (x) , (47)

where in the last equality we have used the identity in Eq. (40). The contribution to O
′

7 is suppressed by mass
insertions in the external quark legs and, thus, leads to weaker constraints than those from the contribution to O7.

The experimental measurement of the b → sγ branching ratio [48] leads to the following 95% C.L. limits on the
coloron model contribution to O7 at the TeV scale (Appx. A):

− 0.093 < Re[C7(1 TeV)] < 0.023 . (48)

We can use this both to constrain the relative sizes of the top-sector and bottom-sector couplings and also to place a
bound on the absolute size of the bottom-sector couplings.

To study the relative sizes of λ′t and λ′b, we recall the relation in Eq. (32). This implies both that the denominator
of the right-hand-side of Eq. (47) is real, and also that Imλ′b = (mb/mt) Imλ′t. If we neglect Imλ′b, the bound in (48)

yields the following constraints on the ratio Re[λ
′

t]/Re[λ
′

b]:

Re[λ
′

t]

Re[λ
′
b]
< −3.9

βt
βb

Re[λ
′

t]

Re[λ
′
b]
> 21

βt
βb
, (49)

which excludes the case Re[λ
′

t] = 0. Fig. 4 shows (unshaded) the region in the (Re[λ
′

t], Re[λ
′

b]) plane that is allowed
by b→ sγ after one applies the (pink, less restrictive) limits from the effective WtRbR vertex (44) and the (blue, more
restrictive) limits from Q exchange (49).

We can also find a limit on the size of the b couplings by inserting the observed values of Vts and Vtb into the middle
term of Eq. (47) and comparing it to Eq. (48). The result is

− 0.0085 <
α2Re[λ

′

b]

βb
< 0.0021 . (50)

We conclude that (in the limit where Im[λ
′

b] � Re[λ
′

b]) the maximum magnitude of

∣∣∣∣α2λ
′∗
b

βb

∣∣∣∣ is 0.0085 – a value that

will be useful later on.

B. Limits from ∆F = 2 FCNC

The couplings of the massive coloron to fermions (see Eqs. (4) and (7)) are not flavor-universal and, therefore,
coloron exchange will generate flavor-changing neutral currents. We begin by considering flavor mixing in the B-meson
system, and then turn to the stronger constraints arising from D and K meson mixing.



10

-0.4 -0.2 0.0 0.2 0.4

-0.004

-0.002

0.000

0.002

0.004

Re@Λt
'D

R
e@

Λ
b' D

FIG. 4. Region (unshaded) of the (Re[λ
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′
b]) plane that is allowed by b → sγ. The blue region (upper right and lower

left) is excluded by the bound in (49), coming from the constraint on Re[C7(1TeV)]; the small pink regions (upper left and

lower right corners) are excluded by the limit (44) on λ′tλ
′∗
b . As discussed in the text, we have assumed Im[λ

′
b] = 0 and

βt/βb = mt/mb.
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FIG. 5. Sketch of three contributions to Bs meson mixing with different dependences on the coloron mixing angle ω.

1. Mixing involving light quarks and heavy quarks

For B-meson mixing, the b-quark mass eigenstates are approximately gauge-eigenstates of SU(3)1, while the mass
eigenstates for the light quarks (s or d) are approximateliy SU(3)2 gauge-eigenstates. Therefore, neutral meson mixing
arises due to the presence, in the quark mass eigenstates tL and bL, of mixing between the top-bottom doublet qL and
light ψL states, as shown in Eq. (27).

The 4-fermion operator
(
b̄Lγ

µsL
)2

receives three types of contribution from coloron exchange, depending on which
quarks are directly interacting with the coloron:

• g2S (cotωJaµbL )
2

(DL)232, as in Fig. 5(a)

• g2S (− tanωJaµsL )
2

(D†L)232, as in Fig. 5(b)

• 2g2S (− tanωJaµsL ) (cotωJaµbL ) (DL)32(D†L)32, as in Fig. 5(c)
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where DL is the matrix in (29). As shown in Sec. II D, to an accuracy of O(λ4) we can explicitly write:

(DL)32 =

(
λ′b
βb

)∗
(Vusα

∗
1 + Vcsα

∗
2) =

(
λ′bα2

βb

)∗
(D†L)32 = −

(
λ′bα2

βb

)∗ (51)

Summing over the three contributions, we get the Wilson coefficient9 of the operator (b̄Lγ
µsL)2 for Bs-mixing:

C1
Bs =

1

6

g2S
M2
C

[
cot2 ω

((
α2
λ′b
βb

)∗)2

+ tan2 ω

((
α2
λ′b
βb

)∗)2

+ 2 cotω tanω

(
α2
λ′b
βb

)∗(
α2
λ′b
βb

)∗]

=
1

6

g2S
M2
C

((
α2
λ′b
βb

)∗)2

[cotω + tanω]
2

(52)

The coefficient C1
Bd for Bd meson mixing is analagous, but depends instead on

(DL)31 =

(
λ′b
βb

)∗
(α∗1 − λα∗2) +O(λ4)

(D†L)31 = −
(
α1
λ′b
βb

)∗ (53)

The UTFit collaboration has provided a valuable summary of limits on operators producing flavor-changing neutral
currents; the original review is [41] and the most recent update is in [42]. Applying their results to our case we find
the limits

MC > 175 gS

∣∣∣∣λ′bβb
∣∣∣∣ · ∣∣∣∣(α∗1 − λα∗2) cotω + α∗1 tanω

∣∣∣∣ TeV , (54)

from constraints on additional contributions to Bd-mixing, and

MC > 41 gS

∣∣∣∣α2λ
′
b

βb

∣∣∣∣ · ∣∣∣∣ cotω + tanω

∣∣∣∣ TeV (55)

from Bs-mixing.
Note that these bounds are proportional to λ′b. Recall that to reproduce CKM mixing, we need only satify

α2λ
′
t

βt
− α2λ

′
b

βb
= Aλ2

which leaves open the possibility that λ′b = 0, in which case the model would not be constrained by B mixing or by
b → sγ (as discussed previously). For non-zero λ′b, we expect the constraint from contributions to Bs-mixing to be
stronger than that from Bd, since O(α1) ' λO(α2). If we take the maximum value |α2λ

′
b/βb| = 0.0085 from Eq. (50),

we get the following bound on the coloron mass from the BsBs mixing:

MC > 0.35 gS | cotω + tanω| TeV (56)

The corresponding exclusion region is shown in Fig. 6. As indicated by Eq. (55), the size of the upper bound would
scale linearly with |α2λ

′
b/βb| as one reduced this ratio below its maximum allowed value.

2. Mixing involving light quarks only

In K- and D-mexon mixing processes, all of the quarks are light and, to leading order, transform under the
same color group. Coloron exchange contributions to neutral meson mixing arise from the mixing of the left-handed
components of the light-quarks with the heavy quarks, QL and ψL states, as shown in equations (18) and (19).

9Here we follow the notation of [41].
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FIG. 6. Left: Exclusion regions on the plane (cotω,MC) from the ATLAS search for dijet resonances (pink region, beneath the

short upper curve) and from Bs mixing, as in Eq. (56), assuming that

∣∣∣∣α2λ
′
b

βb

∣∣∣∣ takes on the maximum value allowed by b→ sγ

(blue region, beneath the long lower curve). In addition, the bound on contributions to Im[C1
K] in Eq. (61) excludes the region

below the dashed line whose label matches the value of |α2|; a larger value yields a stronger bound.

Following the same reasoning as above, we find that this results in the operators

1

6

g2S
M2
C

((D†L)14(DL)42)2 cot2 ω(d̄Lγ
µsL)2 (57)

1

6

g2S
M2
C

((U†L)14(UL)42)2 cot2 ω(ūLγ
µcL)2 (58)

where DL is the rotation matrix in Eq. (41) and UL is the corresponding matrix for up-quarks (obtained from DL by
setting λ to zero). We find

(D†L)14(DL)42 = α1α
∗
2 + λ(α1α

∗
1 − α2α

∗
2)− λ2(α2α

∗
1 + α1α

∗
2)− λ3

2
(α1α

∗
1 − α2α

∗
2) +O(λ4) .

Inserting the known value of the ratio α1/α2 from Eq. (40), we obtain

(D†L)14(DL)42 = −|α2|2(0.190 + i0.0804) +O(λ4) , (59)

(U†L)14(UL)42 = +|α2|2(0.0316− i0.0804) . (60)

We again draw on the UTFit data [41] and find that their limits translate as follows:

• The constraint from additional contributions to CP-violation in K-meson mixing (based on Im[C1
K]) implies

that

MC > 1.4 · 103 gS |α2|2 cotω TeV . (61)

• The constraint from contributions to K-mexon mixing (based on Re[C1
K]) implies that

MC > 82 gS |α2|2 cotω TeV . (62)

• The limit from D-meson mixing (based on C1
D) implies that

MC > 39 gS |α2|2 cotω TeV . (63)

We see that the strongest constraint comes from the limit on CP-violating contributions to K-meson mixing in Eq.
(61), and this constraint is plotted (for various values of |α2| = O(λ2)) in Fig. 6.10

10The corrections to the process Z → bb̄ yield constraints weaker than those considered above. In particular, the tree-level contribution
arises from a process similar to that shown in Fig. 2, and is of order O(λ′b)

2. It is therefore negligible due to the constraints from b→ sγ
displayed in Fig. 4. At one-loop order, vertex corrections are suppressed both by loop factors as well as mixing of the sort illustrated in
Fig. 5, and hence are even smaller.
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FIG. 7. Branching ratios for coloron decay as a function of cotω, for MC = 1 TeV. The blue upper curve is for dijet plus bb̄
decays; the purple lower curve is for decays to top-quark pairs.

IV. COLLIDER MASS LIMITS ON COLORONS

The LHC experiment CMS [58] has set a limit on the mass of a flavor-universal coloron or axigluon (one that couples
to all six ordinary quark flavors in the same way) in a recent paper, based on the data collected at a center-of-mass
energy of 8 TeV. The flavor-universal axigluon or coloron model gives the same cross-section prediction as our more
general coloron model when cotω takes on the value 1 (or, equivalently when cosω = 1/

√
2). So from this CMS paper

we can see immediately that the limit they set on colorons in this model for cotω = 1 is about 3.3 TeV.
ATLAS [59] has also presented limits on new resonances decaying to dijets, based on 8 TeV data. In that paper

they did not happen to show the theoretical prediction for a flavor-universal axigluon or coloron in their plots or quote
a limit on such a state. However, since they did provide a plot showing how they set limits on hypothetical narrow
particles, using simplified Gaussian models, we can just overlay our model’s predicted cross-section curve on that plot
and see the approximate limit from the new data ourselves.

In order to understand which data set can probe which values of the coloron mixing angle ω, we have calculated
the decay rates for the colorons into various final states:

Γ(C → jj) =
1

6π
g2SMC tan2 ω

Γ(C → tt̄) =
1

24π
g2SMC cot2 ω

√
1− 4

m2
t

M2
C

(
1 + 2

m2
t

M2
C

)
Γ(C → bb̄) =

1

24π
g2SMC cot2 ω

Γ(C → ψ1,2
L Q̄L) = O(α2)

(64)

where j = u, d, c, s. Note that a coloron has no tree-level three-point coupling to gluons. In the following we will
neglect O(α2) terms and we will assume MC < 2M ; therefore we will be considering only the coloron’s decays into
ordinary quarks. Fig. 7 shows the coloron decay branching ratios as a function of cotω, for MC = 1 TeV. Fig. 8
shows the coloron total decay width as function of cotω, for MC = 1, 2, 4 TeV, where gS has been evaluated at MC .

Each experiment’s dataset applies to a certain range of dijet resonance widths, and, therefore, to a certain range of
cotω values. The CMS analysis [58] on resonances decaying to dijets applies to narrow resonances, with a half-width
smaller than the CMS resolution. Since this resolution is ∼ 5 %, the CMS limits will apply to the coloron in the
cotω range [0.8, 1.7] for MC = 2 TeV and in the range [0.75, 1.8] for MC = 4 TeV. The ATLAS analysis encompasses
broader dijet resonances and therefore probes a wider range of cotω, approximately 0.5 ≤ cotω ≤ 2.5.

We have used MADGRAPH to calculate the cross sections for the process pp→ Ca → jj in this model at the 8 TeV
LHC as function of MC and for different cotω values. Moreover, we have multiplied our theoretical cross-sections by
the appropriate acceptance values for the coloron signal in the ATLAS and CMS analyses. For the ATLAS analysis,
we have calculated the acceptances by following the procedure described in [61], in which we have considered the same
kinematic cuts applied in the ATLAS analysis (detailed in [60]), and we have obtained an acceptance value of 0.44,
independent of the coloron mass in the range [1.5 TeV, 4.5 TeV]. For the CMS analysis, we have taken into account
the same acceptance value of 0.6, independent of the coloron mass, that was employed in the CMS analysis.
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middle, and lower curves). The right-hand plot is a close-up of the low Γ/M region of the left-hand plot.
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FIG. 9. Cross-section times branching ratio times acceptance for pp → C → jj at the 8 TeV LHC as function of MC for
different values of cotω (dashed colored curves) and the observed 95% C.L. bounds from the ATLAS analysis [59] on Gaussian
resonances (solid black curve). The left-hand plot is for σ/M = 0.10; the right-hand plot is for σ/M = 0.15.

Fig. 9 compares our theoretical curves (including acceptance factors) to the observed 95% C.L. bounds from the
ATLAS analysis [59] of Gaussian resonances decaying to dijets with σ/M = 0.10 (left) and σ/M = 0.15 (right).
Likewise, Fig. 10 shows the theory cross-section curves compared with the CMS data from [58]. As noted earlier, the
ATLAS analysis is sensitive to a broader range of cotω values, but the two data sets give quite consistent results in
their region of overlap. We see that the lower bound on the coloron mass ranges from Mc ≥ 2.4 TeV for cotω ≈ 2.5,
when the coloron couples mainly to third-generation quarks, all the way to Mc ≥ 4.3 TeV for cosω ≈ 0.5, when the
coloron couples more strongly to first and second generation quarks. This bound is overlaid on those from FCNC in
Fig. 6.

Finally, we note that the ATLAS [45] and CMS [46] searches for resonances decaying to tt̄ put weaker bounds on
the coloron mass than the searches for resonances in dijets. Fig. 11 compares theoretical curves for the coloron decay
into tt̄ with the observed 95% C.L. bounds from the ATLAS analysis [45] of the production of a massive KK-gluon
(with Γ/M = 15%) decaying to tt̄.

V. VECTOR FERMION PHENOMENOLOGY

LHC data also provides a lower bound on the masses of the heavy quark states that are mostly composed of the
vector fermions. Eq. (14), or equivalently the mixing between vector fermions and tR, bR SM quarks described in
Eqs. (20) and (21), implies the following interactions of the Q = (T,B) vector fermions with the electroweak gauge
bosons:
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FIG. 10. Cross-section times branching ratio times acceptance for pp → C → jj at the 8 TeV LHC as function of MC for
different values of cotω (dashed colored curves) and the observed 95% C.L. bounds from the CMS analysis [58] (solid black
curve).
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FIG. 11. Cross-section times branching ratio times acceptance for pp → C → tt̄ at the 7 TeV LHC as function of MC for
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− g√
2
λ
′

bT̄Rγ
µW+

µ bR −
1

2

g

cos θW
λ
′

tT̄Rγ
µZµtR +

√
2M

v
λ
′

tT̄LhtR

− g√
2
λ
′

tB̄Rγ
µW−µ tR +

1

2

g

cos θW
λ
′

bB̄Rγ
µZµbR +

√
2M

v
λ
′

bB̄LhbR .

(65)

In the limit λ
′

b � λ
′

t, which is favored by constraints on the process b→ sγ, we see that mass-eigenstate heavy fermions
decay into a weak boson (W , Z, or h) plus a right-handed nearly-standard fermion (tR, bR) with the following branching
ratios:

BR(B→W tR) ' 1

BR(T→ ZtR) ' BR(T→ htR) ' 0.5 .
(66)

The last equality arises because the decay T→ ZtR is largely to longitudinally polarized Z-bosons, and the equality
is a consequence of the Equivalence Theorem.

The heavy B, T can be produced at the LHC in pairs via gluon-gluon fusion [51–53] or singly, through their
interactions with W , Z, or h as in Eq. (65) [52, 54, 55]. The ATLAS search in these channels [56] for a 4th generation
down-type quark, which decays predominantly into Wt, puts a limit on the 4th generation quark mass that we can
directly apply to the B vector fermion mass:
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MB & 0.67 TeV (67)

Analogously, the T vector fermion can be discovered at the LHC through its double production in the final states:
ZZtt̄, Zhtt̄, hhtt̄ or via its single production in the final states: Ztt̄+jets, htt̄+jets. The CMS search for a vector-like
charge-2/3 quark that decays predominantly into Zt [57], yields a somewhat milder constraint on MT,

MT & 0.475 TeV . (68)

VI. CONCLUSIONS AND OUTLOOK

We have introduced a simple renormalizable model based on an extended color gauge sector that couples differently
to the third generation than to the lighter-generation quarks. In addition to the usual SM gauge bosons, there is
also a color-octet of top-colorons that single out the third generation quarks. Mixing between the third-generation of
quarks and the first two is naturally small, and occurs only through the (suppressed) mixing of all three generations
of ordinary quarks with a set of heavy weak-vector quarks. Because the third generation and vector quarks transform
under one SU(3) group and the light quarks transform under the other, the pattern of quark masses and CKM mixings
is reproduced naturally under the conditions summarized in Eq. (40).

Moreover, this flavorful top-colorn model, which exemplifies next-to-minimal flavor violation, is also consistent with
current experimental limits from FCNC, searches for new dijet or top-pair resonances, or searches for new heavy
fermions. Fig. 4 illustrates the range of Yukawa coupling space that is consistent with b → sγ, while Fig. 6 shows
how limits from b → sγ, neutral meson mixing, and dijet resonance searches restrict the mass and coupling of the
top-colorons.

Not only is this model consistent with current data, but it also offers promising avenues for future exploration at
the LHC. Present limits tell us that the top-coloron mass must be in the TeV range, while the new heavy vector
quarks must have masses greater than 670 GeV. These values leave the new colored states well within the range of
the LHC’s upcoming high energy run. We look forward to seeing what the experiments will discover!
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Appendix A: Derivation of bound on C7

The Standard Model prediction and the experimental measurement [48] of the b → sγ branching ratio are respec-
tively:

BRth = (315± 23)10−6 (A1)

BRex = (343± 21± 7)10−6 (A2)

The b→ sγ decay rate, including both Standard Model (SM) and New Physics (NP) contributions is:

Γtot ∝ |C7(µb)|2 + |C′7(µb)|2 ≈ |CSM7 (µb) + CNP7 (µb)|2 + |C′NP7 (µb)|2 (A3)

If we consider only the C7 contribution (since we have found the C ′7 piece to be suppressed in our model), we obtain:

Γtot
ΓSM

= 1 + 2
Re(CSM7 (µb)∗CNP

7 (µb))

|CSM7 (µb)|2
+O([CNP7 ]2) . (A4)

For µb = 5 GeV, µW = MW , αS ≡ (g2S/4π) = 0.118, the SM contribution to C7 at the scale µb reads [47]:

CSM7 (µb) = 0.695CSM7 (µW ) + 0.086CSM8 (µW )− 0.158CSM2 (µW ) = −0.300 . (A5)
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The scaling factor of the New Physics contribution to C7 from the scale µW to the scale µb is:

CNP7 (µb) =

(
αS(µW )

αS(µb)

) 16
23

CNP7 (µw) = 0.695 CNP7 (µw) ; (A6)

that from the scale m∗ = 1 TeV to the scale µW is:

CNP7 (µW ) =

(
αS(m∗)

αS(mt)

) 16
21
(
αS(mt)

αS(µW )

) 16
23

' 0.79 CNP7 (m∗) (A7)

and we obtain at 95% C.L.:

−0.093 < Re[CNP
7 (m∗)] < 0.023
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