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REVIEW

Trait matching of flower visitors and crops predicts

fruit set better than trait diversity
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Summary

1. Understanding the relationships between trait diversity, species diversity and ecosystem

functioning is essential for sustainable management. For functions comprising two trophic

levels, trait matching between interacting partners should also drive functioning. However,

the predictive ability of trait diversity and matching is unclear for most functions, particularly

for crop pollination, where interacting partners did not necessarily co-evolve.
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2. World-wide, we collected data on traits of flower visitors and crops, visitation rates to

crop flowers per insect species and fruit set in 469 fields of 33 crop systems. Through hierar-

chical mixed-effects models, we tested whether flower visitor trait diversity and/or trait match-

ing between flower visitors and crops improve the prediction of crop fruit set (functioning)

beyond flower visitor species diversity and abundance.

3. Flower visitor trait diversity was positively related to fruit set, but surprisingly did not

explain more variation than flower visitor species diversity.

4. The best prediction of fruit set was obtained by matching traits of flower visitors (body

size and mouthpart length) and crops (nectar accessibility of flowers) in addition to flower

visitor abundance, species richness and species evenness. Fruit set increased with species rich-

ness, and more so in assemblages with high evenness, indicating that additional species of

flower visitors contribute more to crop pollination when species abundances are similar.

5. Synthesis and applications. Despite contrasting floral traits for crops world-wide, only the

abundance of a few pollinator species is commonly managed for greater yield. Our results

suggest that the identification and enhancement of pollinator species with traits matching

those of the focal crop, as well as the enhancement of pollinator richness and evenness, will

increase crop yield beyond current practices. Furthermore, we show that field practitioners

can predict and manage agroecosystems for pollination services based on knowledge of just a

few traits that are known for a wide range of flower visitor species.

Key-words: agroecosystems, body size, ecosystem functioning, ecosystem services, mouthpart

length, nectar accessibility, pollination, trait evenness, trait richness

Introduction

Sustainable management of agroecosystems is a global

challenge, with more than 35% of Earth’s land area cov-

ered by farmland (FAO 2013). It has been suggested that

species diversity is critical for sustainability because it

increases the level and stability of agroecosystem function-

ing, represented by measures of ecosystem services and

agricultural production (Cardinale et al. 2012; Bommarco,

Kleijn & Potts 2013). There is a growing consensus that

such influences of species diversity on functioning are medi-

ated by changes in trait diversity (D�ıaz & Cabido 2001;

Cadotte, Carscadden & Mirotchnick 2011; Cardinale et al.

2012; Fr€und et al. 2013). However, empirical evidence for

the role of trait diversity on agroecosystem functioning is

scarce (Martins, Gonzalez & Lechowicz 2015).

Trait diversity reflects the among-species variation in

morphological, physiological and behavioural traits rele-

vant to a specific function. Hence, newly developed indices

of trait diversity are expected to better predict functioning

than traditional indices of species diversity (D�ıaz & Cabido

2001; Cadotte, Carscadden & Mirotchnick 2011; Schleun-

ing, Fr€und & Garc�ıa 2015). To become a parsimonious and

practical tool for predicting functioning, that is high good-

ness-of-fit and low complexity, trait diversity should be

based on fewer traits than species. This occurs when some

species share similar traits, known as partial functional

redundancy (Cadotte, Carscadden & Mirotchnick 2011).

Alternatively, if increased functioning is caused by numer-

ous traits with low redundancy among species, trait and

species diversity will perform similarly in explaining func-

tioning. In such cases, species diversity will be a good proxy

of trait diversity. To date, the few studies on the relation-

ship between trait and species diversity have revealed mixed

results (reviewed by Cadotte, Carscadden & Mirotchnick

2011; Schleuning, Fr€und & Garc�ıa 2015). Furthermore,

most of the evidence on the role of trait diversity is based

on studies using primary production in plant communities

as the targeted function (D�ıaz & Cabido 2001; D�ıaz et al.

2007), whereas this relationship remains unresolved for

most functions driven by plant–animal interactions

(Cadotte, Carscadden & Mirotchnick 2011; Gagic et al.

2015; Schleuning, Fr€und & Garc�ıa 2015).

The relative abundance of a certain trait state in the

community, hereafter trait identity, may predict function-

ing independently of trait or species diversity. Trait iden-

tity should be an important predictor when there is a trait

state that performs best for a given function (D�ıaz et al.

2007; Mokany, Ash & Roxburgh 2008) and when func-

tioning increases with the abundance of species carrying

that trait state (mass ratio hypothesis) (Grime 1998). If

so, abundant species should have greater influence on trait

identity and consequently on functioning than their less

common counterparts (Grime 1998; D�ıaz et al. 2007;

Mokany, Ash & Roxburgh 2008).

For functions comprising two trophic levels, trait iden-

tity effects may depend on the matching of trait states

between interacting partners, hereafter trait matching

(Schleuning, Fr€und & Garc�ıa 2015). For example, the

effect of the abundance of herbivores on primary produc-

tion depends on the match between grazing habit and

plant life forms (Asner et al. 2004). Trait matching

© 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society, Journal of Applied Ecology, 52, 1436–1444
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between individual species of plants and animals resulting

from co-evolution has been examined in the scientific liter-

ature (e.g. Stang, Klinkhamer & van der Meijden 2006;

V�azquez et al. 2009; Junker et al. 2013), but its effects on

functioning at the community level have not (but see Fon-

taine et al. 2006); especially for crop pollination, where in

many regions, crops are exotic but pollinators are native,

without a co-evolutionary history.

Our objective was to assess whether trait diversity and/or

matching contributed to crop fruit set (functioning), above

and beyond the predictive ability of flower visitor species

abundance and diversity. Fruit set, the proportion of a

plant’s flowers that develop into mature fruits or seeds,

reflects pollination success when other resources (e.g. nutri-

ents) are not limiting (Wesselingh 2007). Fruit set is a key

component of agricultural yield and has been shown to

increase with the abundance and richness of wild insects

visiting crop flowers (Garibaldi et al. 2013). Such depen-

dency may be explained by pollinator trait diversity and/or

matching. For example, social and solitary bees visited

flowers on radishes at different times of day, suggesting

temporal complementarity among these pollinator groups

(Albrecht et al. 2012). Insects with distinctive mouthpart

lengths, hoverflies vs. bumblebees, complemented each

other in the pollination of flowers with easily accessible

rewards vs. those with rewards hidden at the bottom of a

tubular corolla, respectively (i.e. trait matching) (Fontaine

et al. 2006; Campbell et al. 2012). Small-sized bees trans-

ported less pollen to pumpkin flowers than bigger bees, but

this pollen was distributed more uniformly on the stigma

(Hoehn et al. 2008). Here, we collected data on traits of

flower visitors and crops, visitation rates to crop flowers

per insect species and fruit set in 469 fields of 33 crop sys-

tems all over the world. This synthesis provides a unique

opportunity to test the strength of the relationship between

trait and species diversity and of the relative ability of trait

vs. species indices for predicting functioning, across con-

trasting crop systems. Our results show that trait matching

between flower visitors and crops, but not trait diversity,

improves our ability beyond species abundance and diver-

sity, to predict and understand the spatial variation in crop

fruit set.

Materials and methods

FIELD SAMPLING

We collected data from crops on all continents (except Antarc-

tica) matching the following selection criteria: (i) data sampled

from at least four spatially separated fields; (ii) observations of

insect species visiting crop flowers in the sampled fields; (iii)

information on traits of flower visitors; (iv) an estimate of fruit

or seed set as the percentage of flowers setting mature fruits or

number of seeds per flower, respectively (hereafter fruit set); and

(v) at least partial dependence on flower visitors for maximum

fruit set. This led to a total of 33 crop systems distributed among

469 fields (see Appendix S1 in Supporting Information), with a

crop system defined as a single crop species in a particular region

in a single study. Eight of the 33 crop systems have not been

included in a previous synthesis (Garibaldi et al. 2013), namely

apple in the United Kingdom, black cardamom in India, car-

damom in India, field bean in the United Kingdom, oilseed rape

in Sweden, strawberry in Germany, strawberry in the United

Kingdom and strawberry in the USA (Appendix S2, Table S1).

Furthermore, for all crop systems, data on traits are presented

here for the first time. The sampled fields were subjected to a

diversity of agricultural practices, including large monocultures

and small and diverse cultivations. A wide array of annual and

perennial fruit, seed, nut and stimulant crops was included.

In each field, we measured flower visitation per unit of time

and flower for each insect species, from which we estimated spe-

cies richness and evenness. Bee taxa observed in many crop sys-

tems (Table S2) included apex-furrowed (or sweat) bees

(Halictidae), bumblebees (Apidae: Bombus spp.), carpenter bees

(Apidae: Xylocopini), plasterer bees (Colletidae), sand bees (An-

drenidae), small carpenter bees (Apidae: Ceratinini), stingless bees

(Apidae: Meliponini), the eastern honeybee Apis cerana, the giant

honeybee Apis dorsata and the western honeybee Apis mellifera.

In some crop systems, ants (Hymenoptera: Formicidae), syrphid

flies (Diptera: Syrphidae), other flies and various beetle species

(Coleoptera) were common flower visitors. We also measured

fruit set, which is usually correlated with crop yield across fields

(e.g. see Figure S1 in Garibaldi et al. (2013)). Given that we mea-

sured fruit set in several plants open to insect pollination per

field, our results properly represent field conditions and are not

biased by resource translocation among different developing

fruits within plants (Wesselingh 2007).

TRAIT DIVERSITY

If trait indices are to be employed by field practitioners for pre-

dicting and managing agroecosystem functioning, they should be

based on relatively few and relevant traits, for which there is

accessible information for a wide range of flower visitor species.

We measured eight traits of the flower visitors that were expected

to influence pollinator efficiency and therefore fruit set (Fontaine

et al. 2006; Hoehn et al. 2008; Albrecht et al. 2012; Martins,

Gonzalez & Lechowicz 2015). Sociality (yes vs. no) was defined

as colony building, including all eusocial as well as semi-social

species (Table S2). Oligolectic (yes vs. no) included flower visitors

that collect pollen from one or a few closely related plant species,

whereas polylectic species collect pollen from a variety of flowers

belonging to different plant families. Seasonal activity (complete

vs. partial) (Junker et al. 2013) was classified according to

whether the pollinator species visit the crop during the whole

flowering period or only during early or late periods. Cleptopara-

sitic (yes vs. no) was defined as flower visitors that lay eggs in the

nests of other insect species (e.g. cuckoo bees). Cleptoparasitic

insects do not actively collect pollen, which may impair their effi-

ciency as crop pollinators. Body size was defined according to the

intertegular distance (ITD), the distance between the two inser-

tion points (tegula) of the wings of female workers of each spe-

cies. Body size classes for bees were as follows: tiny (<1�5 mm

ITD, typical foraging distance <50 m), small (1�5–2�0 mm ITD,

typical foraging distance 50–300 m), medium (2–3�3 mm ITD,

typical foraging distance 300–1100 m) and large (>3�3 mm ITD,

typical foraging distance >1100 m) (Greenleaf et al. 2007). We

follow the same classification for syrphids for consistency, and

© 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society, Journal of Applied Ecology, 52, 1436–1444
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butterflies and moths were commonly classified as large. Mouth-

part length, that is tongue or proboscis, was classified as short

(<3 mm), medium (3–8 mm) or long (>8 mm; see Figure 1 in

Stang, Klinkhamer & van der Meijden (2006)). Finally, we classi-

fied flower visitors according to whether they are capable of buzz

pollination (yes vs. no), and whether they were central place for-

agers (yes vs. no). As our study represents a major effort of data

sampling at a global scale, we could not measure intraspecific dif-

ferences for all flower visitor species in all crop systems and we

focus only on interspecific differences (i.e. mean values per species

for all crop systems). However, except for size measurement

(body and mouthparts), these traits (e.g. sociality) are not likely

to vary among individuals within a species.

Crops were also classified according to four traits expected to

be relevant for pollination success (Table S1) (Fontaine et al.

2006). Flower diameter at the widest part of the flower was classi-

fied as small (1–10 mm), medium (>10–35 mm) or large

(>35 mm). Nectar accessibility, high vs. low, reflected the accessi-

bility of the nectar resources (nectaries) to the flower visitors

(Fontaine et al. 2006; Stang, Klinkhamer & van der Meijden

2006; Junker et al. 2013). Crops with low nectar accessibility had

narrow or tubular flowers and showed a ratio of flower diameter

(mm) to the distance of the nectaries to the anthers (mm) lower

than 1�5. Generally, crops with less accessible nectar are expected

to suffer a greater degree of nectar robbery (e.g. see page 178 for

oilseed rape in Free 1993). For acerola and annatto, crops that

do not secrete nectar, the classification refers to accessibility of

oil and pollen, respectively. Pollinator dependence was defined as

the percentage of yield reduction in the absence of pollinators

(Klein et al. 2007). We also classified crops according to their

typical duration of flowering into short (<10 days per plant),

medium (10–25 days) or long (>25 days).

We chose three complementary, uncorrelated, trait diversity

indices (Lalibert�e & Legendre 2010; Mouchet et al. 2010) and cal-

culated these indices using the eight traits of flower visitors

described above as predictors of fruit set. Trait richness, defined

as the total branch length of a trait dendrogram, measures the

extent of trait complementarity among species (Petchey & Gaston

2006). This index is highly correlated with the trait richness

proposed by Vill�eger, Mason & Mouillot (2008) but allows

quantification of assemblages with low species richness. Trait

evenness is defined as the regularity of the abundance distribution

in the volume of the trait space occupied by the pollinator assem-

blage (Vill�eger, Mason & Mouillot 2008). Trait dispersion is

defined as the mean distance in multidimensional trait space of

individual species to the centroid of all species and is mathemati-

cally related to Rao’s Q (Lalibert�e & Legendre 2010).

The community-weighted mean (hereafter, CWM) is a single

trait index that provides an estimate of the trait states that domi-

nate in a community (i.e. trait identity; D�ıaz et al. 2007). It is calcu-

lated by weighting the measure of a trait by the relative abundance

of all species carrying that trait and summing over all trait states.

For example, CWMs for body size range from zero when all species

in a field are tiny to four when all species are large, whereas CWMs

for sociality range from zero when all species are solitary to one

when all species are social. Package FD (R Development Core

Team 2013) and publicly available code (https://github.com/ibar-

tomeus/fundiv) were used to calculate all indices.

STATISTICAL ANALYSES

Observations for fruit set and each predicting variable (y) in each

field (i) of each crop system (j) were standardized using z-scores

(zij ¼ ðyij � �yJ=SDjÞ) to allow comparisons among crop systems,

despite contrasting means (�yJ) and standard deviations (SDj), and

differences in methodology. Unlike other standardizations, such

as logarithms, z-scores do not modify the form (e.g. linear or

curvilinear) of the relationship between response and predicting

variables. Furthermore, z-scores allow for direct comparison of

the values of the partial regression coefficients and therefore are

useful for understanding the relative effects of predicting vari-

ables.

We evaluated how trait richness varied with species richness

across fields (and the same for trait and species evenness). In case

of functional redundancy, trait richness would increase with spe-

cies richness across sites with a regression coefficient <1. Alterna-

tively, in the case of little functional overlap between species, an

approximately one-to-one relationship would be expected (see In-

troduction). Because both trait and species richness are random

variables, model I regressions (e.g. through ordinary least

squares) will underestimate the slope of the linear relationship

(see section 10�3�2 of Legendre & Legendre (1998)). Instead, we

performed model II regressions, as the emphasis was not on fore-

casting trait richness but on estimating the correct value of the

slope for the relationship between trait and species richness (R
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Fig. 1. Globally, trait and species richness

(or evenness) of insect visitors to crop

flowers are strongly linked. Left panel:

trait richness of flower visitors increases

with species richness at an indistinguish-

able rate (solid line) from a 1 : 1 relation-

ship (broken line) indicating low

functional redundancy among species.

Right panel: trait evenness also increases

with species evenness at an indistinguish-

able rate (solid line) from a 1 : 1 relation-

ship (broken line). The solid line is the

overall regression where each point is a

field in a crop system. Data from individ-

ual crop systems were standardized by z-

scores prior to analysis, permitting com-

parison of fields across crop systems.
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software version 3.0.2, lmodel2 package, lmodel2 function) (R

Development Core Team 2013; Legendre 2014). Among the esti-

mation methods for model II regressions, we chose major axes

because both variables were in the same units (z-scores), variance

of error was about the same for both variables, and distribution

was approximately bivariate normal (Legendre & Legendre 1998).

To forecast fruit set, we estimated the influences of a priori

selected combinations of predicting variables through general lin-

ear mixed-effects models (R software version 3.0.2, nlme package,

lme function, with Gaussian error distribution) (R Development

Core Team 2013; Pinheiro et al. 2014), which are effective for inte-

grated analysis of data from many sources (Qian et al. 2010). This

approach produces similar results to Bayesian hierarchical models

when uninformative priors are employed, especially with large sam-

ples, as in our case (Gelman & Hill 2007; Qian et al. 2010). By

including crop system as a random variable, our models estimated

intercepts (aj) for each system (j) to account for the hierarchical

data structure and differences among systems (random intercept

models) (Gelman & Hill 2007; Qian et al. 2010). Each partial

regression coefficient (b+) was considered a fixed effect reflecting

the influence of a predicting variable on fruit set over all crop sys-

tems. We tested the Gaussian and homoscedasticity assumptions

for the standardized residuals of the models with graphical analyses

and Kolmogorov–Smirnov tests (type I error rate = 0�05). These
assumptions were valid in all cases.

To test whether trait diversity better predicts fruit set than spe-

cies diversity, we compared Akaike’s Information Criterion (here-

after, AIC) values for three a priori models (Table S3). All

models included visitation rate to control for abundance variation

among fields, combined with either species richness and evenness

based on Pielou’s J (model A), trait richness and evenness (model

B), or trait dispersion (model C) as predicting variables. Model B

is conceptually equivalent to model A but used trait instead of

species diversity indices, whereas model C was included to be

comprehensive in the trait indices employed (see previous sec-

tion). In the three models, we estimated all possible interactions

among predicting variables. We expected models B and C to

show lower AIC than model A (see second paragraph of the

Introduction). We also present a fourth ‘best’ model, which was

the one with the lowest AIC, after evaluating the models resulting

from all possible combinations of the six predicting variables (vis-

itation rate, species richness, species evenness, trait richness, trait

evenness and trait dispersion) and their paired interactions

(MuMIn package, dredge function) (Barton 2014). The four mod-

els were compared to a fifth, ‘null’ model without any fixed pre-

dicting variable to understand whether they provide any relevant

fit. The five models did not present multicollinearity, and all vari-

ance inflation factors (VIFs) were lower than 1�4 (see also

Table S4). AIC values were obtained based on maximum-likeli-

hood estimates of regression coefficients, because models differed

in the fixed structure but shared the same random structure (ran-

dom intercepts for different crop systems), whereas parameter

estimates for models presented in tables and figures were

obtained using the restricted maximum-likelihood method (Zuur

et al. 2009).

It is important to note that evenness indices have different

approaches for weighting rare and common species and this can

influence the results (Ricotta & Avena 2003; Marini et al. 2014).

Therefore, we repeated the analyses using nine other evenness

indices, including Evar, inverse of Simpson index and seven even-

ness profiles covering the entire spectrum of weights for dominant

species (Ricotta & Avena 2003; Marini et al. 2014). These analy-

ses did not modify our conclusions based on Pielou’s J (data not

shown).

Finally, we evaluated how individual traits of flower visitors and

crops (trait identity and matching) might increase our ability to

predict fruit set. Specifically, we compared AIC of four a priori,

mixed-effects models of the influences of selected crop traits,

CWM of flower visitor traits and their interaction on fruit set

(Table S5). An interaction between crop traits and flower visitor

traits indicates trait matching, whereas no interaction indicates that

a given trait is best for all crops (i.e. only trait identity). In addi-

tion, the models always included all the fixed effects of the best

model tested in Table S3. Among the eight traits measured for

flower visitors, we selected three for which we had a priori expecta-

tions (Fontaine et al. 2006; Stang, Klinkhamer & van der Meijden

2006; Hoehn et al. 2008; Albrecht et al. 2012; Martins, Gonzalez

& Lechowicz 2015) and for which we found variation within and

across studies, namely sociality, mouthpart length and body size

(e.g. little variation was found for cleptoparasitism, as most flower

visitors were noncleptoparasitic, see Results section). Similarly, we

selected four relevant crop traits: nectar accessibility, degree of pol-

linator dependence, flower diameter and flowering length. The four

models included the three selected flower visitor traits but varied in

the crop trait considered to evaluate trait matching. We always

estimated all possible interactions among predicting variables. We

also compared these four a priori models with the previous best

model, with the null model and with the model with the lowest

AIC after evaluating the models resulting from all possible combi-

nations of the predicting variables and their pair interactions

(MuMIn package, dredge function) (Barton 2014). None of the

models presented multicollinearity, and all VIFs were lower than 2

(see also Table S4).

Results

Crop flower visitors were typically polylectic, nonclep-

toparasitic, central place foragers and active during the

whole flowering period of the crop (Table S2). However,

flower visitors had contrasting mouthpart lengths, body

sizes, social behaviour or buzz pollination behaviour.

Community-weighted means for these traits did not differ

among crops with high vs. low nectar accessibility

(Fig. S1), different flower diameter, pollinator dependence

or flowering length, as linear mixed-effects models includ-

ing crop traits as predictors of CWMs showed no

improvement (lower AIC) to null models. On average,

fields with bigger flower visitors (CWMs for body size)

also had greater dominance of flower visitors with larger

mouthparts (CWMs for mouthpart length; Fig. S2,

Table S4).

Trait and species richness were strongly and positively

associated across fields, indicating low redundancy among

species of flower visitors (Fig. 1). Similarly, trait and spe-

cies evenness were positively associated across fields. In

both cases, the slopes of the model II regressions did not

differ from a one-to-one relationship (Fig. 1), as denoted

by the 95% confidence intervals (CI richness: 0�90–1�13;
CI evenness: 0�85–1�34). We found no clear improvement

(lower AIC) when considering curvilinear relationships
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between trait and species richness (or evenness), and

therefore, we present only models with linear form. In

addition, there was no benefit of including crop system-

specific slopes or intercepts (Fig. S3).

Fruit set increased with trait and species diversity of

flower visitors across fields world-wide (models A and C in

Table S3). However, trait diversity did not improve model

fit on fruit set beyond species diversity, as models including

trait diversity indices did not achieve lower AIC (compare

models B and C to model A). The model with the lowest

AIC included visitation rate, species richness, species even-

ness using Pielou’s J and richness 9 evenness interaction

(model ‘best’). Fruit set increased linearly with species rich-

ness of flower visitors, but richness effects were greater in

fields with high species evenness as denoted by a positive

richness 9 evenness interaction (Fig. 2). The relationships

of fruit set with species richness and evenness were indepen-

dent of visitation rate, which was also positively associated

with fruit set and showed the highest partial regression

coefficient. In our synthesis, richness ranged between 0

(zero visits recorded in those fields) and 28 species, with a

mean value of seven species per field (the median was six

species per field). For evenness, we found all the possible

range of values for Pielou’s J (from 0 to 1) showing a mean

of 0�67 per field (the median was 0�73 per field). For visita-

tion rate and species richness, we tested models with both

linear and curvilinear (i.e. second order polynomial) forms.

We found no clear improvement (lower AIC) when consid-

ering curvilinear relationships in mixed-effects models, and

therefore, we present only models with linear form. In addi-

tion, inclusion of system-specific partial regression coeffi-

cients (bj) for each of the predicting variables (random

slopes) in the best model did not decrease AIC, showing

that the fixed effects (b+) considered explained the hetero-

geneity of responses among crop systems.

In contrast to trait diversity, models including informa-

tion on trait identity and matching increased model fit

beyond species diversity and visitation rate (see models in

Table S5). Specifically, the model with the lowest AIC

(model ‘best’) included as predictors of fruit set the CWM

of sociality, body size, and mouthpart length, the nectar

accessibility of the flowers, and the interactions (trait

matching) of CWM for body size and mouthpart length

with the nectar accessibility, in addition to visitation rate,

species richness, species evenness, and richness 9 evenness

interaction. Fruit set of crops with less accessible nectar

decreased at fields with flower visitors of larger bodies

and shorter mouthparts (Fig. 3; Fig. S4), whereas crops

with more accessible nectar showed the opposite pattern

(Fig. 3; Fig. S5). The values (in z-score scale) of the par-

tial regression coefficients (b+) for the interactions (trait

matching) of CWM for body size and mouthpart length

with the nectar accessibility were the greatest (Table S5).

The b+ values for visitation rate, species richness and spe-

cies evenness were similar to the ones obtained from a

previous model (‘best’ in Table S3) that did not include as

predicting variables aspects of trait identity and matching,

reflecting their independent contribution to model fit on

fruit set. Similarly, our results were not confounded by

differences in crop management system (Table S6). The

effects of CWM for sociality on fruit set were not clear.

Discussion

If trait diversity indices predict functioning better than

species diversity indices, it suggests that there is a subset

of traits shared across species that are overwhelmingly

important for functioning. Contrary to this idea, here we

demonstrate that although trait diversity indices were pos-

itively related to crop fruit set (functioning), they did not

provide greater model fit compared to species diversity

indices (including both richness and evenness). Further-

more, we found very low functional redundancy among

flower visitor species, suggesting that there is not enough

sharing of important traits among species to make the

trait diversity indices more useful than species diversity.

World-wide, we found positive and linear (one-to-one)

relationships between trait and species richness across 33

crop systems. It is important to note that trait richness

increases, and functional redundancy decreases, with the

number of traits included in richness indices (Cadotte,

Carscadden & Mirotchnick 2011). In our synthesis, the low

functional redundancy across flower visitor species was

mainly related to different combinations of mouthpart

lengths, body sizes, social behaviour and buzz pollination

behaviour. Therefore, our results cannot be explained by

an excess of traits, but by the variation across species in the

a priori selected morphological and behavioural traits
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Fig. 2. Fruit set increases with species richness of flower visitors at

a higher rate in assemblages with high (blue: fields with evenness

higher than the 3rd quartile) than low evenness (orange: fields with

evenness lower than the 1st quartile). The solid line is the overall

regression where each point is a field in a crop system. Data from

individual crop systems were standardized by z-scores prior to

analysis, permitting comparison of fields across crop systems.
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known to affect pollination efficiency (Fontaine et al. 2006;

Hoehn et al. 2008; Albrecht et al. 2012; Campbell et al.

2012; Martins, Gonzalez & Lechowicz 2015). In contrast,

previous evidence indicated that the relationship between

trait and species diversity was complex and context depen-

dent (Cadotte, Carscadden & Mirotchnick 2011). This lack

of consistency across studies may reflect different criteria

for trait selection, a limitation that was overcome in our

synthesis.

The failure of trait diversity indices to improve predic-

tions of fruit set is not explained by a lack of information

on key traits in our synthesis, because we did find impor-

tant trait effects, as specific combinations of individual

traits of flower visitors and crops (i.e. interactions)

increased model fit to species diversity. Specifically, flower

visitors with large bodies and short mouthparts were more

effective on crops with high rather than low nectar

accessibility (i.e. trait matching). These results agree with

previous studies on wild plants that thoroughly discussed

the benefits of longer pollinator mouthparts for narrow or

tubular flowers (Fontaine et al. 2006; Campbell et al.

2012). However, here we could test the effects of body

size and mouthpart length on functioning after accounting

statistically for the covariation between both, and our

findings on body size are in contrast to previous studies

that could not separate these effects (Fontaine et al. 2006;

Campbell et al. 2012). Larger bodies may deposit more

pollen (e.g. Hoehn et al. 2008) and can increase the prob-

ability that pollinators contact the reproductive parts of

crops with open flowers and accessible nectar. Examples

in our data include the larger bodies but similar mouth-

parts of Xylocopa frontalis and X. grisescens vs. Apis mel-

lifera making the former more effective pollinators of

passion fruit (Fig. S5, Table S2). Such benefit of increased

body size for improved pollination may not be shared in

crops with more compact flower structures and less acces-

sible nectar. Reasons for this may be related to nectar

robbery and flower damage (Morris, V�azquez & Chacoff

2010; Aizen et al. 2014), which are more likely by larger

insects possessing stronger mandibles. For example, rates

of raiding the relatively inaccessible nectar of field bean

flowers can be higher for larger Bombus terrestris when

compared to the smaller Apis mellifera, despite similar

mouthpart lengths (Fig. S4, Table S2; for nectar robbery

data see Garratt et al. (2014)). These potential mecha-

nisms should be tested in experimental studies.

Our results agree with studies on wild plants that

emphasize the role of trait matching in structuring plant–
pollinator networks (Stang, Klinkhamer & van der Meij-

den 2006; V�azquez et al. 2009; Junker et al. 2013). Here,

we further demonstrate that trait matching increases func-

tioning at the agroecosystem level across crops world-

wide, independently of the positive contribution of species

abundance, richness or evenness. Moreover, in relative

terms, the effects (partial regression coefficient values) of

trait matching on functioning were even greater than the

effects of species abundance, richness or evenness.

The positive effect of species richness on fruit set was

stronger in fields with high species evenness, suggesting that

additional species contribute more to agricultural function-

ing when their abundances are more similar. Effects of spe-

cies richness and evenness were independent from those of

visitation rate (abundance), which agrees with other results

suggesting that increasing pollinator diversity enhances pol-

lination (e.g. Schleuning, Fr€und & Garc�ıa 2015). These

effects are expected because of different nonexclusive

mechanisms (Tscharntke et al. 2005), including pollination

niche complementarity (Hoehn et al. 2008; Fr€und et al.

2013), interspecific interactions such as synergism (Green-

leaf & Kremen 2006; Carvalheiro et al. 2011; Brittain et al.

2013) or sampling effects (Cardinale et al. 2006; Schleun-

ing, Fr€und & Garc�ıa 2015). However, our study contrasts

with previous evidence (Garibaldi et al. 2013) in finding an

effect of richness that is statistically independent from

Fig. 3. Flower visitors with large bodies and short mouthparts

are more effective on crops with high (open flowers) rather than

low (narrow, tubular flowers) nectar accessibility. Data show fruit

set of crops with high (orange) and low (blue) nectar accessibility

as a function of community-weighted means (CWMs) of flower

visitors for body size (upper panel) and mouthpart length (lower

panel). The solid line is the overall (fixed effect) prediction from

the best model (Table S5), where each point is a field in a crop

system. Data from individual crop systems were standardized by

z-scores prior to analysis, permitting comparison of fields across

crop systems. Flowers of almond (left) and red clover (right) are

shown as examples of crops with high or low nectar accessibility,

respectively (colours indicate nectar location within the flowers).
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visitation rate (abundance), which could be a consequence

of the different set of studies included in our synthesis (see

Materials and methods). Furthermore, here we show for

the first time an ubiquitous and strong positive interaction

between the effects of richness and evenness. Pollinator

evenness may enhance fruit set via pollination complemen-

tarity among flower visitors or diminish it if a dominant

species is the most effective pollinator (Hillebrand, Bennett

& Cadotte 2008). Our results clearly point to the former,

positive effect of species evenness on functioning. More-

over, a positive interaction between richness and evenness

may further suggest synergistic interactions among species

of flower visitors, such as has been found between honey-

bees and wild insects in the few studies on this topic (Green-

leaf & Kremen 2006; Carvalheiro et al. 2011; Brittain et al.

2013). Previous studies have shown that agricultural expan-

sion and intensification reduces both species richness of pol-

linator assemblages and wild insect visitation (e.g.

Garibaldi et al. 2011). In contrast, the effects of agricul-

tural expansion and intensification on species evenness have

been rarely accounted for (Marini et al. 2014), but may also

drive ecosystem functioning (Bommarco et al. 2012).

Sustainable intensification of agroecosystems represents

one of the greatest challenges for humanity (Bommarco,

Kleijn & Potts 2013). To succeed in this challenge, it is criti-

cal to quantify the relationships between trait diversity, spe-

cies diversity and agroecosystem functioning (Schleuning,

Fr€und & Garc�ıa 2015). Here, we show that crop fruit set,

an important component of agricultural yield, can be

increased through both higher species richness (showing a

linear increase, ranging from 0 to 28 species in our synthe-

sis) and evenness (ranging from 0 to 1 in our synthesis) of

flower visitors. Fruit set might be further enhanced by agri-

cultural practices targeted to promote specific flower visi-

tors with traits that match those of the focal crop. Indeed,

trait matching showed the greatest influence on fruit set.

Current management practices for greater pollination, how-

ever, focus mostly on enhancing flower visitor abundance,

often of a single species, namely Apis mellifera. Although

greater abundance is an important contributor to pollina-

tion function, our results show that it cannot replace the

additional benefits of species richness, species evenness and

trait matching between flower visitors and crops.
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