
UC Irvine
UC Irvine Previously Published Works

Title
Effective and Efficient Fleet Dispatching Strategies for Dynamically Matching AVs to
Travelers in Large-scale Transportation Systems

Permalink
https://escholarship.org/uc/item/3zg7v31x

ISBN
9781728141497

Authors
Sarma, JS Navjyoth
Nam, Daisik
Hyland, Michael F
et al.

Publication Date
2020-01-23

DOI
10.1109/itsc45102.2020.9294340

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3zg7v31x
https://escholarship.org/uc/item/3zg7v31x#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/



Abstract— This paper addresses the problem of dynamically
matching automated vehicles (AVs) to open traveler requests
in a large-scale automated-mobility-on-demand (AMOD)
simulation framework. While optimization-based matching
strategies based on the linear assignment problem formulation
significantly outperform simple heuristic strategies (e.g.
nearest neighbor), the scalability of the assignment problem
limits its applicability to large problem instances. This study
proposes a fleet dispatching strategy to dynamically assign AVs
to travelers that involves the assignment problem formulation
but restricts the decision space to reduce computational time.
First, we significantly trim the decision space via only
considering the k-closest open requests around each idle vehicle
or k-closest idle vehicles around each open request. Second, we
only calculate point-to-point shortest paths for vehicles and
travelers that are close in spatial proximity. For vehicles and
travelers that are not close in proximity, we use zone-to-zone
travel time estimates. This study embeds the proposed AV fleet
dispatching strategy within Polaris--an agent-based
transportation simulation modeling framework. Within
Polaris, the restricted fleet dispatching strategy proposed in
this significantly outperforms (i) existing large-scale strategies
in terms of fleet performance and (ii) the unrestricted
assignment problem strategy in terms of computational
performance.

I. INTRODUCTION

The emergence and rapid growth of transportation
network companies (TNCs, e.g. Uber, Lyft, Didi) have
significantly disrupted passenger transportation systems in
cities. TNC services offer significant benefits to travelers as
a relatively affordable, high service quality travel mode that
does not require purchasing or parking a vehicle. However,
TNC services are also increasing vehicle miles traveled and
traffic congestion due to various travel behavior impacts and
operational inefficiencies.

Capturing the societal benefits and diminishing the
negative outcomes of TNCs falls within the purview of
transportation policymakers and planners. For example,
there are plans to implement congestion pricing in
Manhattan [1] and Manhattan already caps TNC vehicles

*Research supported by Argonne National Laboratory.

N.J.S. Sarma, D. Yang, and A. Ghaffar are PhD Students in
Transportation Systems Engineering in the Civil and Environmental
Engineering Department, University of California, Irvine, CA 92697
(email: nsarma.js@uci.edu, dingtony@uci.edu, ghaffaa1@uci.edu)

D. Nam is a postdoctoral researcher in the Civil and Environmental
Engineering Department and the Institute of Transportation Studies,
University of California, Irvine, CA 92697 USA (e-mail: daisikn@uci.edu).

[2]. Researchers have analyzed and compared other possible
TNC regulations, including a driver minimum wage, a
vehicle cap, and per-trip congestion tax [3].

Traditionally, transportation planning agencies, and to a
lesser extent, policymakers have relied on models to
understand the potential impacts of various technologies
(e.g. electrification of vehicles), plans/designs (e.g.
widening highways) and policies (e.g. congestion pricing
and TNC vehicle caps) on transportation systems. The
emergence and large presence of TNCs within transportation
systems has presented a modeling challenge as traditional
transportation system models only incorporated private
vehicle and public transit modes.

Recently researchers have embedded fleet dispatching
modules within transportation system models, including
MATSim [4], Polaris [5] and SimMobility [6], to model the
network and system impacts of TNCs as well as potential
future automated-mobility-on-demand (AMOD) services,
which are similar to TNC ridesourcing services except the
vehicles are driverless, a fixed fleet size is typically
assumed, and, the automated vehicles (AVs) are completely
controlled by a central operator [7]. Polaris and MATSim
both incorporate fleet dispatching modules and integrate
them within a larger transportation system model that
includes travel demand models and transportation network
and control models.

Existing studies and transportation system models that
incorporate fleet dispatching modules, and the fleet
dispatching policies they employ, can be classified as either
(i) large-scale simulations that employ simple heuristic
strategies for dispatching [8], or (ii) small-medium-scale
simulations that employ optimization-based strategies for
dispatching [7].

The goal of this research study is to develop a
computationally efficient yet effective (in terms of fleet
performance) AV fleet operational strategy to assign AVs to
traveler requests in large-scale transportation simulation
models. The optimization-based strategy proposed in this
study is based on the assignment problem formulation;

M.F. Hyland is an Assistant Professor in the Civil and Environmental
Engineering Department and the Institute of Transportation Studies,
University of California, Irvine, CA 92697 USA (phone: 949-824-5084; e-
mail: hylandm@uci.edu).

F. de Souza and I.O. Verbas are a postdoctoral appointee and a
computational transportation engineer, respectively, at Argonne National
Laboratory. Lemont, IL 60439 USA (e-mail: fdesouza@anl.gov,
omer@anl.gov)

Navjyoth J.S. Sarma, Daisik Nam, Michael F. Hyland (corresponding), Felipe de Souza, Dingtong
Yang, Arash Ghaffar, I. Omer Verbas

Effective and Efficient Fleet Dispatching Strategies for Dynamically

Matching AVs to Travelers in Large-scale Transportation Systems

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 18,2022 at 21:31:05 UTC from IEEE Xplore. Restrictions apply.

however, the proposed approach significantly decreases the
size of the decision space using knowledge of the spatial
distribution of AVs and open requests. Moreover, the
proposed dispatching strategy intelligently populates the
cost function in the assignment problem via only calling the
shortest path module when AVs and travelers are close in
proximity. The restricted assignment problem strategy
proposed in this study is compared against two existing
dispatching strategies in the literature for dynamically
matching AVs to traveler request. The first is a rule-based
dispatching strategy [9] and the second involves solving an
unrestricted assignment problem. For comparison, this study
embeds each of these fleet dispatching strategies within the
fleet dispatching module in Polaris—an agent-based
integrated activity-based travel demand and dynamic
network assignment modeling software [10].

The rest of the paper is organized as follows: Section II
describes the proposed assignment method. Section III
discusses the proposed dispatching strategy within
POLARIS and describes the efficiency and effectiveness
evaluation measures. Section IV compares the proposed
dispatching strategy against other dispatching strategies in
terms of computational and fleet performance. Section V
concludes the study and discusses future research directions.

II. METHODOLOGY

A. Problem statement

Given a set of trip requests 𝑃 and a fleet of AVs 𝑉 in
time step 𝜏, the problem objective is to match the AVs to the
trip requests as efficiently and effectively as possible, within
an agent-based simulation module. In this study, efficiency
is measured in terms of computational time and
effectiveness is measured in terms of fleet productivity and
average pickup distance across the entire simulation period,
not just at the current time interval 𝜏.

B. Problem Formulation

Finding the optimal assignment for a set of requests P
and a set of vehicles V involves constructing 𝑛𝑝 × 𝑛𝑣 cost

objects and solving an optimization problem with 𝑛𝑝 × 𝑛𝑣

decision variables, where 𝑛𝑝 and 𝑛𝑣 denote the number of

requests and vehicles, respectively. Hence, as the number of
vehicles and passengers increase, the size of the decision
space rapidly increases, such that large problems (e.g.
10,000 vehicles and 8,000 requests) take too long to solve in
real-time. To address the computational efficiency problem
this paper proposes several methods to reduce the decision
space, while not significantly impacting the optimal
solution.

As mentioned in the problem statement, at each time
interval in the agent-based simulation model, the fleet
dispatching module needs to assign AVs to open requests.
To do this, this study proposes repeatedly solving a modified
assignment problem with a reduced decision space until all
there are no more feasible AV-traveler matches. The
objective function of the modified assignment problem is
formulated as follows:

𝑚𝑖𝑛  ∑ (𝑇𝑐 − 𝑀)
∀ 𝑐

∗ 𝑋𝑐 (1)

where

 c=(p,v) denotes a feasible combination of an
unassigned person p and an vehicle v in the reduced
decision space (explained further in sub-section C).

 Tc denotes the travel time from vehicle v to person p in
the feasible combination c.

 Xc is a binary decision variable indicating whether the
feasible combination c is chosen for matching or not.

 M is the maximum pickup travel time from an
unassigned vehicle v to unassigned person p--a constant
set by the TNC vehicle operator

In the modified assignment problem, each request can be
assigned to at most one vehicle.

∑ 𝑋𝑐
∀ 𝑐

∗ 𝑃𝑝𝑐 ≤ 1 ∀ 𝑝 (2)

where 𝑃𝑝𝑐 = 1  𝑖𝑓 𝑝 ∈ 𝑐 and 0 otherwise.

Moreover, each vehicle can be assigned to at most one
request.

∑ 𝑋𝑐
∀ 𝑐

∗ 𝑉𝑣𝑐 ≤ 1 ∀ 𝑣 (3)

where 𝑉𝑣𝑐 = 1  𝑖𝑓 𝑣 ∈ 𝑐 and 0 otherwise.

To prevent conflicting constraints that may arise based
on the spatial distribution of vehicles and requests it is
necessary to set both request and vehicle assignment
constraints as inequality constraints. An objective function
that minimizes total cost with inequality assignment
constraints would result in no matches being made with an
objective value of 0. The presence of the maximum pickup
travel time term M in the objective function ensures that the
solver assigns requests to vehicles that are within the
maximum pickup time, even with inequality constraints for
both requests and vehicles.

Figure 1 shows an overview of the proposed vehicle-
request matching algorithm executed at each time interval in
the agent-based simulation model. The algorithm is divided
into the following steps:

i. Input Pre-processing: This step involves finding the list
of vehicles and requests eligible for assignment in each
zone, and computing zone-zone cost matrices.
Vehicles and requests that are unassigned at the
beginning of a time step are eligible for assignment.

ii. Assignment Method Selection: This step involves
choosing the method to build the restricted search
space of feasible person-vehicle combinations to pass
to the optimization problem. Based on the number of
unassigned vehicles and requests (from Step i) The
choice is between building combinations of either k
nearest vehicles to all requests or k nearest requests to
all vehicles.

iii. Optimization Pre-processing: This step involves
finding the k nearest vehicles or requests based on the
method chosen in the previous step and constructing
cost objects for all unique person-vehicle combinations
in the k nearest set. The travel cost between vehicles
and requests is obtained by either indexing from a Zone

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 18,2022 at 21:31:05 UTC from IEEE Xplore. Restrictions apply.

to Zone skim matrix, or by computing the point-to-
point shortest paths between vehicles and travelers.

iv. Solving the Optimization Problem: This step involves
solving one stage of the modified assignment problem
with the reduce decision space for the feasible vehicle-
traveler combinations from Step iii.

v. Post-processing: This step involves updating the
statuses of assigned requests and vehicles, and
updating the list of eligible requests and vehicles in
each zone. If eligible vehicle-request combinations still

exist, then go to Step
i. If not, then the
process is complete.

C. Computation
Time Reduction

Solving a
matching problem
with a reduced
decision space of k
nearest vehicles to all
requests or k nearest
requests to all
vehicles reduces the
number of decision
variables in the
optimization problem
and hence the
computation time and

memory
requirements. The
overall computation
time of the algorithm
is influenced by the
following three
factors.

Figure 1: Overview of Request-Vehicle Matching Algorithm

The first is the choice of Assignment Method. The number
of requests and vehicles determine the entity (person or
vehicle) around which k nearest search is to be performed to
reduce the feasible decision space. Performing the k nearest
search around the entity which is smaller in size results in
fewer feasible person-vehicle combinations and hence takes
less computation time and memory. Thus, if the number of
requests is less than number of vehicles, a reduced decision
space is constructed by finding the k nearest vehicles
associated with each requests.

The second is building the heap of k nearest
requests/vehicles. Finding k nearest requests to a vehicle (or
vice versa), involves building a min heap from the request to
all vehicles and popping the root of the heap k times.
Building a heap of n objects takes O(n) time complexity.
Each time the root of a heap is popped, it takes O(log n) time
complexity to re-adjust the min heap to set a new root. Thus,
finding k nearest vehicles to a single request takes a time
complexity of O(n+klogn).

In general, building a min heap for a request to all vehicles
is a computationally intensive process especially when the
number of vehicles is high. The computation time is reduced

by incrementally constructing a min-heap from the request
to all eligible vehicles within the same spatial zone and
expanding the search to the next closest zone until a min
heap with at least k vehicles to the request is built. This
significantly reduces the time to find the k nearest entity to
complexity O(K+klogK), where k is a whole number
typically in the range of 1 to 20 based on the search space,
and K is the total number of eligible vehicles in each
searched zone, starting from the request zone, k<=K<=n.
This procedure requires zone-wise lists of eligible persons
and vehicles to be initialized during pre-processing and
updated at the end of each iteration of solving the
optimization problem.

The third is building the vehicle-request cost objects. The
cost term Tc in the objective function (Eqn. 1) can be found
between each request and vehicle by either using zonal cost
skims or by computing a point to point shortest path from
the vehicle to the request. Zonal cost skims are pre-estimated
and stored, hence accessing them is quite fast. However,
using zonal cost skims may result in poor matches especially
for vehicle-request assignments within the same zone or
adjacent zones. Finding point to point costs for each feasible
person-vehicle combination is computationally intensive,
especially to build paths between persons and vehicles that
are not close to each other. Hence, the proposed algorithm
determines point to point costs only for feasible
combinations that are within a zonal cost threshold. For all
feasible combinations beyond the threshold, the inter-zonal
cost is used to approximate the cost of travel between the
vehicle and request. This proposed hybrid approach
improves fleet performances by making better matches of
feasible combinations that are close to each other and also
leverages the time efficiency of zonal costs for other feasible
combinations.

Figure 2 illustrates the procedures described above to
efficiently find the k nearest vehicles to a single request and
construct cost objects for the feasible request-vehicle
combinations to be passed as an input to the optimization
problem.

III. NUMERICAL EXAMPLE

A. Case Study

The proposed algorithm is applied in the city of
Bloomington, Illinois, USA to match on-demand requests to
vehicles. It is a medium-scale network that consists of 2,540
nodes, 7,023 links and 185 Traffic Analysis Zones (TAZs).
The network also includes 2,833 activity locations that
generate or attract trips. We assume that the fleet size is fixed
at 1000 vehicles as current AV-based ridesourcing
companies such as Waymo plan to operate the their own AV
fleet [11]. Figure 3 shows the Bloomington network on
which the assignment methods are run.

B. Agent-based simulation framework

The proposed ride-matching algorithm is implemented
as a Dynamically Linked Library (DLL) to the Polaris agent-
based modeling framework [10]. Polaris synthesizes the
population and trips for the region for a 24-hour simulation
period starting from 12 am. TNC trip requests are generated
by running the mode choice model. The TNC vehicle fleet

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 18,2022 at 21:31:05 UTC from IEEE Xplore. Restrictions apply.

size is set as a constant throughout the day and the vehicle
locations and movements are tracked by Polaris in each time
step. The proposed ride-matching DLL is invoked by Polaris
in a 60 second interval, passing unassigned requests and all
vehicle agents as arguments. The optimal ride matching
DLL was developed in C++ making use of the CPLEX
optimization package. The proposed algorithm is iteratively
run in each time step until there are no feasible request-
vehicle combinations remaining and the results are updated
in Polaris.

Figure 2: Finding k nearest feasible vehicles for a single request

C. Matching Strategies and Performance Measures

The study compares three assignment strategies:

i. A1 - Non-optimal assignment: Unassigned requests
are matched to unassigned vehicles on a First Come
First Serve (FCFS) basis in each time step using
zonal skims. This is the algorithm currently in use in
Polaris.

ii. A2 - Optimal K Nearest Hybrid with Zonal Skims:
The algorithm proposed in Figure 2 is run by
building feasible combination objects using zonal
cost skims only.

iii. A3 – Optimal K Nearest Hybrid Assignment with
Point to Point and Zonal Skims: The algorithm
proposed in Figure 2 is run by using point-to-point
costs for feasible vehicle-request pairs that are
within a zonal cost threshold of 15% of maximum
pickup cost M in equation (1), and zonal skims for
costs beyond the threshold.

iv. A4 – Global Optimal Assignment. This algorithm
assigns requests to vehicles using Point to Point
travel skims, without reducing the decision space
[17].

 The performance of the above algorithms is evaluated
in terms of: Total number of assigned travelers across

24 hours, Average Pickup Distance (feet), Polaris Run
Time (seconds), and Fleet Productivity (%). Polaris Run
Time is the time it takes for Polaris to execute the entire
simulation for the Bloomington network invoking the
vehicle-request matching algorithm. Fleet Productivity
is the percentage of TNC vehicle miles with a passenger
on board. Table 1 shows an overview of the three
assignment strategies compared in this study.

Figure 3: Bloomington, IL – USA Network

D. Model Scenarios

The request-vehicle matching algorithms listed in Table
1 are run for the following scenarios:

i. Base Scenario: TNC trips are generated based on the
taxi mode choice parameters for Home Based Work,
Home Based Other and Non-Home Based trips. The
fleet size for the base model is 1000 vehicles. The
entire fleet is in service during the 24-hour simulation
period.

ii. Other scenarios: The assignment strategies A1, A2 and
A3 are run for other scenarios with varying fleet size
from 500 to 3000. Mode choice parameters are also
changed for each fleet size scenario to capture system
performance at different demand-supply imbalances.

Table 1: Overview of Matching algorithms

Algorithm
Optimization-

based?

K-

Nearest?
Cost Objects

A1
Non-Optimal

[9]
No NA Zonal skims

A2

Optimal K Nearest

Hybrid with Zonal

Skims

Yes Yes Zonal Skims

A3

Optimal K Nearest

Hybrid with Point to

Point and Zonal Skims

Yes Yes

Point-to-Point

and

Zonal Skims

A4

Unrestricted Assgn.

Problem with Point-to-
Point Skims [7]

Yes No

Point-to-Point

Skims

For all scenarios, the maximum pick up cost (M) in the
objective function (Eqn. 1) is set as 20 minutes. A k value of
10 is used in the optimal K nearest hybrid strategies. An
inter-zonal cost of 15% of M is used as threshold to switch
from using point-to-point costs to zonal costs in the third
assignment strategy (A3).

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 18,2022 at 21:31:05 UTC from IEEE Xplore. Restrictions apply.

IV. RESULTS AND INFERENCES

A. Base Scenario

Table 2 shows the results of running the four assignment
strategies for the base scenario.

Table 2: Evaluation of Matching methods for Base Scenario

Algorithm A1 A2 A3 A4

Fleet Size 1000 1000 1000 1000

Assigned Travelers 92,162 101,504 103,464 105,934

Polaris Run Time
(sec)

1104 1138 1291 92,960

Avg Pickup
Distance (feet)

3,021 1,994 1,855 1,271

Fleet Productivity
(%)

68.4 76.7 78.5 83.3

The assignment results show that the Optimal K Nearest
hybrid algorithm with Point to Point and Zonal skims (A3)
provides a significant improvement in terms of
computational efficiency compared to the global optimal
assignment algorithm A4. A3 reduces the total Polaris run
time by around 98% compared to A4, and performs the best
in terms of the average pickup distance, fleet productivity,
and the total number of assignments when compared to A1
and A2. A3 reduces the average pick up distance by almost
40% compared to the non-optimal solution (A1), with a 16%
increase in total computation time. Using point to point
travel times for feasible combinations of nearby requests
and vehicles reduces the average pickup distance by 7%
compared to using zonal skims for all feasible combinations
(A2). Algorithm A1 serves the fewest travelers over a 24-
hour period in the base scenario. Asside from A4, A3 makes
the most assignments and has the highest fleet productivity.

Even though Algorithm A4 perfoms the best in terms of
average pickup distance, its very high Polaris Run Time of
92,690 seconds (25.8 hours), makes it unviable for use in
dynamic assignment for large fleets. The proposed
algorithm A3 provides a significant improvement in terms
of computational efficiency compared to A4. Other
computational tests illustrate that the fleet performance
associated with A3 does not notably decrease relative to A4.

B. Other Scenarios

Figure 4 shows the Polaris run time associated with

algorithms A1 (▲), A2 (♦), and A3(X) over different fleet

sizes (500 to 3000 vehicles) and demand levels (40,000 to
175,000 riders). The plot shows that the matching algorithm
A3, which yielded the best objective value in the base
scenario, takes the most time to compute over different
scenarios. It takes about 20% more time to run Polaris
invoking the algorithm A3 compared to using strategy A1.
The total computation time for A2 is only slightly more than
A1 over different fleet sizes and demand.

For a given fleet size, the computation time of all
algorithms increases with higher demand. Specifically,
algorithm A3 requires more computation time as demand
increases due to the need for higher resolution of the spatial
distribution of both vehicles and requests. In addition,
Polaris calculates point-to-point travel times from a vehicle
to a location of the request by building a network path. In
other words, Polaris only stores a zone-to-zone travel time

skim matrix for efficient memory management and
calculates point-to-point travel times on request. Since the
point-to-point shortest path calls take significantly more
computational time compared to indexing from an inter-
zonal cost table, algorithm A3 consistently has a higher
computation time compared to A2.

Figure 4: Comparison of Polaris Run Time

 Figure 5 compares the average pickup distances (in feet)
across the 3 assignment strategies for various fleet sizes and
demand levels. The algorithm A3 performs the best of all
algorithms across different fleet sizes and demands with
consistently lower pickup distances.

Figure 5 also indicates that for a fixed fleet size, the
average pickup distance decreases for the algorithms that use
optimization (A2 and A3). Since assignments are made
myopically in A1, average pick up distance does not tend to
decrease with increasing demand for a given fleet size.

Figure 5: Comparison of Avg Pickup Distances

Figure 6 compares the fleet mile productivity across the
assignment strategies over different scenarios of fleet size
and demand. A3 consistently outperforms A1 and A2 in
terms of productive fleet miles. A1 has the worst fleet
productivity percentages across all scenarios. A3 has higher
productivity than A2 since it makes better matching
decisions for vehicles and requests that are close to each
other by considering point-to-point travel costs instead of
zonal skim approximations.

While the fleet productivity increases with increasing
demand under fleet sizes for A2 and A3, this trend is not
visible in very high fleet sizes (2500 and 3000). This trend
could be because A2 and A3 do not yield a globally optimal
solution (where all vehicle-request combinations are passed
to the optimization solver). Especially in cases where the
fleet size is very large, better matches may be missed out by
just considering the k nearest vehicles or requests. In other

900

1000

1100

1200

1300

1400

1500

1600

40 57 61 63 45 87

10
6

11
3

46

10
0

13
1

14
4

46

10
3

14
5

16
2

45

10
3

15
0

17
3

46

10
3

15
1

17
5

500 1000 1500 2000 2500 3000

co
m

p
u

ti
n

g
ti

m
e

(s
ec

o
n

d
s)

A1 A2 A3# of vehicles

o
f

ri
d

er
ss

(1
,0

0
0

)

900

1400

1900

2400

2900

3400

3900

40 57 61 63 45 87

10
6

11
3

46

10
0

13
1

14
4

46

10
3

14
5

16
2

45

10
3

15
0

17
3

46

10
3

15
1

17
5

500 1000 1500 2000 2500 3000

A
vg

 P
ic

k
u

p
 d

is
ta

n
ce

(f
ee

t)

A1 A2 A3# of vehicles

o
f

ri
d

er
ss

(1
,0

0
0

)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 18,2022 at 21:31:05 UTC from IEEE Xplore. Restrictions apply.

words, k value is a critical factor in addressing the
spatiotemporal density of passengers and vehicles. Our
experiments, however, set the constant k value over the
scenarios.

Figure 6: Comparison of Productive Fleet Miles (%)

The results in Figure 6 are particularly valuable from a
transportation planning perspective. The policy implications
associated with TNC/SAV fleets having a productivity rate
around 75-85% are much different than TNC/SAV fleets
having a productivity rate between 60-70%.

V. CONCLUSION

This study proposed a computationally efficient AV fleet
dispatching strategy to dynamically match AVs to traveler
requests within a large-scale agent-based travel demand-
dynamic network simulation model. Computational
efficiency was achieved by solving a restricted assignment
problem considering a reduced decision space of k nearest
elements. Applying the algorithm to a medium scale
network of Bloomington indicated significant reduction in
computation time compared to the global optimal solution,
with improved fleet performance compared to a rule-based
heuristic. The proposed fleet dispatching study is currently
being tested on the very large-scale Chicago regional
network with promising results in terms of both fleet and
computational performance.

The study also found that the spatial distribution of
requests and vehicles affect the number of assignments
made in each iteration of the algorithm for a given value of
k. Further research may explore setting of optimal value of k
based on the spatio-temporal distribution of requests and
vehicles, at each time interval. Another area of future
research involves testing various regulations/policies related
to TNCs in urban areas as well as evaluating the impact of
TNCs at the network level (congestion) and system level
(mode choice, activity location choice, etc.).

ACKNOWLEDGEMENT

This research was sponsored by the U.S. Department of
Energy Vehicle Technologies Office under the Systems and
Modeling for Accelerated Research in Transportation
Mobility Laboratory Consortium, an initiative of the Energy
Efficient Mobility Systems Program. The authors remain
solely responsible for this paper.

REFERENCES

[1] W. Hu, “Confused About Congestion Pricing?

Here’s What We Know,” The New York Times, New

York City, 24-Apr-2019.

[2] T. Bellon, “Uber to limit drivers’ app access to

comply with NYC regulation,” Reuters. 16-Sep-

2019.

[3] S. Li, H. Tavafoghi, K. Poolla, and P. Varaiya,

“Regulating TNCs: Should Uber and Lyft set their

own rules?,” Transportation Research Part B:

Methodological, vol. 129, pp. 193–225, Nov. 2019.

[4] M. Maciejewski, J. Bischoff, S. Hörl, and K. Nagel,

“Towards a testbed for dynamic vehicle routing

algorithms,” in Communications in Computer and

Information Science, 2017, vol. 722, pp. 69–79.

[5] J. A. Auld et al., “Exploring the mobility and energy

implications of shared versus private autonomous

vehicles,” in 2019 IEEE Intelligent Transportation

Systems Conference (ITSC), 2019, pp. 1691–1696.

[6] R. Basu et al., “Automated Mobility-on-Demand vs.

Mass Transit: A Multi-Modal Activity-Driven

Agent-Based Simulation Approach,”

Transportation Research Record: Journal of the

Transportation Research Board, p.

036119811875863, May 2018.

[7] M. Hyland and H. S. Mahmassani, “Dynamic

autonomous vehicle fleet operations: Optimization-

based strategies to assign AVs to immediate traveler

demand requests,” Transportation Research Part C:

Emerging Technologies, vol. 92, pp. 278–297, Jul.

2018.

[8] D. J. Fagnant, K. M. Kockelman, and P. Bansal,

“Operations of Shared Autonomous Vehicle Fleet

for Austin, Texas, Market,” Transportation

Research Record: Journal of the Transportation

Research Board, vol. 2536, pp. 98–106, Sep. 2015.

[9] D. J. Fagnant and K. M. Kockelman, “The travel and

environmental implications of shared autonomous

vehicles, using agent-based model scenarios,”

Transportation Research Part C: Emerging

Technologies, vol. 40, pp. 1–13, Mar. 2014.

[10] J. Auld, M. Hope, H. Ley, V. Sokolov, B. Xu, and

K. Zhang, “POLARIS: Agent-based modeling

framework development and implementation for

integrated travel demand and network and

operations simulations,” Transportation Research

Part C: Emerging Technologies, vol. 64, pp. 101–

116, Mar. 2016.

[11] Waymo, “Waymo’s fully self-driving vehicles are

here,” Medium, 2017. [Online]. Available:

https://medium.com/waymo/with-waymo-in-the-

drivers-seat-fully-self-driving-vehicles-can-

transform-the-way-we-get-around-75e9622e829a.

[Accessed: 07-Nov-2017].

60

65

70

75

80

85

40 57 61 63 45 87

10
6

11
3

46

10
0

13
1

14
4

46

10
3

14
5

16
2

45

10
3

15
0

17
3

46

10
3

15
1

17
5

500 1000 1500 2000 2500 3000

P
ro

d
u

ct
iv

it
y(

%
)

A1 A2 A3# of vehicles

o
f

ri
d

er
ss

(1
,0

0
0

)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 18,2022 at 21:31:05 UTC from IEEE Xplore. Restrictions apply.

