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Abstract

On Lattice-Like Subgroups of Witt Group Schemes, and Associated Moduli

Spaces

by

Frederic Theodore Nitz

In this work we define a moduli problem for subgroups of powers of Witt group schemes

which we believe to be a good analogue for the lattices used in the construction of

the classical affine Grassmannian. We then develop some tools for describing these

subgroups. With these tools in hand we are able to show that the moduli problem is

representable in general, and we construct the representing scheme in some cases.
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Chapter 1

Algebraic Geometry

In this thesis we will make extensive use of Grothendieck’s language of schemes.

This chapter should by no means be considered a complete exposition on the topic, our

goal here is only to fix notation used throughout the remainder of this text, and to

provide some less well-known results which will be essential to the remainder of the

text. For more information on this topic we would encourage the reader to seek out

Hartshorne’s text [Har77], and of course the foundational works of Grothendieck [FGA;

EGAI; EGAII; EGAIII1; EGAIII2; EGAIV1; EGAIV2; EGAIV3; EGAIV4].

Although we will only need a small amount, we will freely use the language of

category theory where appropriate. For background information in this area we suggest

the texts [ML98] and [KS06].

1.1 Essential Definitions

For our purposes, rings will be commutative with identity, and ring morphisms

will be required to preserve the identity. If p is a prime and q = pf is a power of that

prime, we will denote the field with q elements as Fq. As is standard, we will refer to

the ring of integers by Z, and the field of rational numbers by Q. For a fixed prime p

we will call the p-adic integers Zp, and the p-adic numbers Qp.

We will call the category of sets by the name Set, the category of groups Grp,

the category of rings Ring, and the category of (locally noetherian) schemes Sch. Given

a fixed scheme S we will often have call for the slice category over S which we will call

SchS. In the case that S is an affine scheme, S = Spec(R) for some commutative ring
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R, we will call the slice category SchR; in context there will be no chance for confusion.

Definition 1.1.1. A geometric point of a scheme S is a map s̄ → S with s̄ = Spec(k),

for an algebraically closed field k.

Definition 1.1.2. A geometric fiber of a map f : X→ S is the fiber Xs̄ = X×S s̄ over

a geometric point s̄→ S of S.

Definition 1.1.3. A map between schemes f : X→ S is called smooth if

(i) it is locally of finite type,

(ii) it is flat,

(iii) and it has regular geometric fibers.

We say a scheme X ∈ SchS is smooth over S if the map X→ S is smooth.

1.2 Group Schemes

Given a scheme S, a group scheme over S is a functor G : Schop
S → Grp which

is representable, that is to say there exists a scheme G, over S, such that we have a

natural isomorphism of the functors G(−) ∼= HomSchS(−,G). Although there are many

interesting examples of group schemes which are not affine, we will concern ourselves

only with affine group schemes in this text. That is, we will demand that there be a

sheaf of OS-algebras R such that G = Spec(R). Then as G is a group scheme, we will

have that R is a sheaf of (commutative) Hopf algebras over S.

For our purposes there are a few important examples of group schemes defined

over Spec(Z) that are worth discussing briefly. First there is the additive group which

we denote Ga. This group has the Hopf algebra Z[x], and for a ring R, we have that

Ga(Spec(R)) = R, where R is thought of as a group under addition. When we want

to work with Ga as a group over an arbitrary base S, we will denote it Ga/S, unless

S = Spec(A) is affine, in which case we will call it Ga/A.

We will also need to consider the multiplicative group Gm. This is the group

with Hopf algebra Z[x, y]/(xy − 1), and for a ring R we have Gm(Spec(R)) = R×, the

unit group of R. When we wish to work with Gm over an arbitrary base S, we will

denote it Gm/S, and, similarly to Ga, if S = Spec(A) is affine, we will write Gm/A.
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Considering for a moment the characteristic p setting we have that Gm/Fp
is affine, with

Hopf algebra Fp[x, y]/(xy − 1), and the endomorphism which sends x 7→ xp, y 7→ yp, is

a Hopf algebra map, which induces a group homomorphism F : Gm/Fp
→ Gm/Fp

which

we will call the relative Frobenius map for Gm/Fp
.

A wealth of examples of algebraic groups can be found under the umbrella

of matrix groups. In the work at hand we will restrict ourselves to considering the

general linear groups. As is standard we will give the name GLn to the algebraic group

which for any ring R we have GLn(SpecR) is the group of n×n invertible matrices with

coefficients in R. The Hopf algebra in this case is Z[x1,1, x1,2, . . . , xn,n, y]/(det(xi,j)y−1).

If we need to consider GLn as a group over an arbitrary base scheme S, we will denote

it GLn/S, and if S = Spec(A) is affine we will call it GLn/A. The ring homomorphism

Z[x, y]/(xy − 1) → Z[x1,1, x1,2, . . . , xn,n, y]/(det(xi,j)y − 1) which sends x 7→ det(xi,j)

and y 7→ y is a Hopf algebra morphism, and induces an algebraic group homomorphism

det : GLn → Gm.

Theorem 1.2.1. If G is an affine group scheme over a field k, then G is connected if

and only if it is irreducible.

This result is proven in [Wat79, §6.6]. Unfortunately the proof requires a fair

bit of machinery that would be too complicated to recreate here.

1.3 Moduli Problems

A common theme in algebraic geometry is the task of finding moduli spaces.

A good first example is the idea of classifying lines through the origin in the plane.

From the perspective of smooth geometry the answer is simple enough, the projective

line RP1 classifies all of the lines through the origin in R2, in that there is a bijection

between the points of RP1 and the lines in R2. From the perspective of schemes things

become somewhat more complicated, first because we no longer have a single object

which we might call the plane, but instead many candidates. Changing our idea of what

constitutes a plane will also require that we change our idea of what constitutes a line.

There are several reasonable choices for both, but perhaps the best is to replace the idea

of the plane with the idea of a plane for each scheme S, what we will use is the sheaf O2
S,

and we will replace lines in the plane with rank 1 OS-submodules that have a locally free
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quotient. This definition fits well with our intuition, but allows us to define a projective

line not just for fields, but in fact for any scheme. In this way we see that the idea of a

projective line can be thought of not just as an object, but as a functor P1 : Schop → Set

where we send a scheme S to the set of rank 1 OS-submodules of O2
S with locally free

quotient and functions act by pullback. Now the question of understanding the space

of lines is transformed into the question of understanding this functor. The best way to

understand such a functor is to first hope that it is representable, and if it is, you can

examine the space that represents it.

This is a common theme in moduli problems, first you must state the problem

as a functor from Schop to Set, and then you look for an object which represents

your functor. At times finding the correct statement of the problem is just as hard as

finding the moduli space which represents the functor. One important aspect to keep

in mind when searching for a moduli problem is how the functor treats morphisms,

often a morphism of schemes becomes a morphism of sets by pullback. In this case it is

important that any properties of schemes that are used be stable under base change, so

that the moduli problem is actually a functor.

For our purposes in this text there are a couple of classic moduli problems

that will show up, and so we will define them now. First is the Grassmannian: we will

call Grdr (resp. Grd), is the functor which takes a scheme S to the set of rank r (resp.

arbitrary rank) OS-submodules of OdS with locally free quotient. Let Grdr (resp. Grd)

be the scheme that represents Grdr (resp. Grd); as a special case we at times call Grdd−1

by the alternate name Pd−1.

The other is the famous Hilbert scheme. If S is a noetherian scheme, and

X ∈ SchS is of finite type over S, then we have a functor HilbX/S : SchS → Set which

sends a scheme T to the set of all closed subschemes Y ⊂ T×S X that are proper and

flat over T. This functor is represented by the Hilbert scheme of X, denoted HilbX/S.

For more details see [Fan+05], and [FGA].
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Chapter 2

Witt Vectors

Much of the exposition in this chapter follows the presentation in Serre’s text

[Ser79]. For this chapter fix a prime number p.

If σ : Fp → Zp is a section of the quotient map Zp → Zp/pZp = Fp, then we

call the image of σ a set of representatives for Fp in Zp. Let S ⊂ Zp be such a set of

representatives; then we can write any x ∈ Zp as a power series in p with coefficients in

S

x =
∑
n≥0

anp
n with an ∈ S.

A common choice is S = {0, 1, . . . , p − 1}, but if we chose instead the Teichmüller

representatives

S = {w ∈ Zp | wp − w = 0}

then there is a description of the ring operations of Zp purely in terms of algebra in the

residue field due to Witt [Wit37], and Teichmüller [Tei36] [Tei37]. Their insight was to

consider the polynomials

Wn(X0, . . . , Xn) =
n∑
i=0

piXpn−i

i ,

which we now call the Witt polynomials, whose usefulness is found through the following

theorem.

Theorem 2.0.1. For any Φ ∈ Z[X,Y ], there exists a unique sequence (ϕ0, . . . , ϕn) of

polynomials in Z[X0, . . . Xn, Y0, . . . , Yn] such that:

Wn(ϕ0, . . . , ϕn) = Φ(Wn(X0, . . . , Xn),Wn(Y0, . . . , Yn)).
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Proof. The proof of this theorem can be found in Serre [Ser79], or Witt [Wit37].

Applying this theorem to the polynomial Φ(X,Y ) = X + Y we obtain a se-

quence we call (S0, S1, . . . ), and applying it to Φ(X,Y ) = XY we obtain a sequence we

call (P0, P1, . . . ). These polynomials can be computed recursively and the first few are

given in Tables 2.1 and 2.2. As you can see from looking at these tables, the complexity

of the polynomials in question grows rapidly as n increases, although when p is small it

is easy to work out the coefficients explicitly as in Table 2.3.

These polynomials can be used to place a novel ring structure on the set An

for any ring A, where for two elements (x0, . . . , xn−1), (y0, . . . , yn−1) ∈ An the sum and

product are given by

(x0, . . . , xn−1) + (y0, . . . , yn−1) = (S0(x0, y0), . . . , Sn−1(x0, . . . , xn−1, y0, . . . , yn−1))

(x0, . . . , xn−1) · (y0, . . . , yn−1) = (P0(x0, y0), . . . , Pn−1(x0, . . . , xn−1, y0, . . . , yn−1))

We call the resulting ring the truncated (p-typical) Witt vectors of length n over A,

which we denote Wn(A).

In the event that p is an invertible element of A, this ring structure is isomorphic

to the standard structure on An, but our interest lies in the other direction, as we are

most interested in the situation where A is an Fp-algebra.

Also of interest is the ring of Witt vectors over A which we denote W(A), and

is equal to lim←−Wn(A), which we can describe explicitly. As a set W(A) = AN, the set

of sequences of elements of A, and we add and multiply elements essentially as in the

case of the truncated Witt vectors; that is to say, given two sequences (xi), and (yi),

n Sn

0 X0 + Y0

1 X1 + Y1 +
1

p
(Xp

0 + Y p
0 − (X0 + Y0)p)

2 X2 + Y2 +
1

p

(
Xp

1 + Y p
1 −

(
X1 + Y1 +

1

p
(Xp

0 + Y p
0 − (X0 + Y0)p)

)p)
+

1

p2

(
Xp2

0 + Y p2

0 − (X0 + Y0)p
2
)

Table 2.1: The first few polynomials Sn.
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n Pn

0 X0Y0

1 Y p
0 X1 + Y1X

p
0 + pX1Y1

2 Xp2

0 Y2 +X2Y
p2

0 + pXp
1Y2 + pX2Y

p
1 + p2X2Y2

+
1

p

(
Xp2

0 Y p
1 +Xp

1Y
p2

0 + pXp
1Y

p
1 − (Y p

0 X1 + Y1X
p
0 + pX1Y1)p

)
Table 2.2: The first few polynomials Pn.

n Sn

0 X0 + Y0

1 X1 + Y1 +X0Y0

2 X2 + Y2 +X1Y1 +X1X0Y0 + Y1X0Y0 +X3
0Y0 +X0Y

3
0

3 X3 + Y3 +X7
0Y0 + 7X5

0Y
3

0 + 7X3
0Y

5
0 +X0Y

7
0 +X4

0X1Y
2

0 +X4
0Y

2
0 Y1

+X3
0X1Y

3
0 +X3

0Y
3

0 Y1 +X2
0X1Y

4
0 +X2

0Y
4

0 Y1 +X3
0X1Y0Y1 +X0X1Y

3
0 Y1

+X3
0X2Y0 +X3

0Y0Y2 +X0X
3
1Y0 +X0X2Y

3
0 +X0Y

3
0 Y2 +X0Y0Y

3
1

+X0X1X2Y0 +X0X1Y0Y2 +X0X2Y0Y1 +X0Y0Y1Y2 +X3
1Y1 +X1Y

3
1

+X1X2Y1 +X1Y1Y2 +X2Y2

Table 2.3: The first few polynomials Sn with p = 2.
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the ith coefficient of their sum will be Si(x0, . . . , xi, y0, . . . , yi), and the ith coefficient of

their product will be Pi(x0, . . . , xi, y0, . . . , yi).

2.1 Important Functions

There are several functions related to Witt vectors that are of essential impor-

tance. The first is truncation: given two natural numbers m,n, with m > n, we have a

map Trm−nm : Wm(A)→Wn(A) which takes the element (x0, . . . , xm−1) and truncates

it to (x0, . . . , xn−1), this is a ring homomorphism. When m − n = 1 we will omit the

superscript, and when the domain is clear from context we will omit the subscript.

The next is the Verschiebung, or shift, map. Again given two natural numbers

m,n with m > n we have a map V m−n
n : Wn(A) → Wm(A) which takes an element

(x0, . . . , xn−1), and shifts it to the right, prepending 0s as necessary to fill, to give us

(0, . . . , 0, x0, . . . , xn−1); when there is no chance for confusion, we will omit the sub-

script and call the function simply V m−n, furthermore when m−n = 1 we will omit the

superscript as well, and call the function simply V . Verschiebung is not a ring homo-

morphism, but it is an additive map between rings; it does have some good properties

with respect to multiplication which we will discuss in Section 2.2.1. At times we will

need to consider preimages of subsets under Verschiebung, and in these cases we will use

the alternate name V −n for (V n)−1.

For any natural number n, we also have the multiplicative representative map

r : A →Wn(A) which sends an element a to the Witt vector (a, 0, . . . , 0). This is not

an additive map (unless n = 1), but it is multiplicative, and so it is sometimes useful to

think of it as a group homomorphism on the unit groups: r : A× →Wn(A)×.

In the case thatA is an Fp-algebra we have one more useful ring homomorphism,

the relative Frobenius homomorphism F : Wn(A)→Wn(A) which sends (x0, . . . , xn−1)

to (xp0, . . . , x
p
n−1).

Lastly, if A and B are two rings, and f : A→ B a ring homomorphism, then we

have an induced homomorphism Wn(f) : Wn(A) → Wn(B) which sends the element

(x0, . . . , xn−1) to (f(x0), . . . , f(xn−1)). This is a ring homomorphism as our multipli-

cation and addition are defined by polynomial maps with integer coefficients, and ring

homomorphisms commute with polynomials. With this it is easy to see that Wn is in

fact an endofunctor on Ring.
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Interestingly, for any Fp-algebra A, when n > 1 the ring Wn(A) is not of

characteristic p. In fact multiplication by p on Wn(A) is given by Tr ◦ V ◦F, a map we

will call mp.

2.2 Witt Vectors as Group Schemes

In order to frame Witt vectors in the language of algebraic group schemes,

the best approach is to consider the functor Wn defined in the previous section, and

recognize that it is representable, in fact Wn(R) = HomRing(Z[x0, . . . , xn−1], R) with a

ring structure coming from extra functions that make Z[x0, . . . , xn−1] into a Hopf algebra,

and also functions that encode the multiplicative structure. From this we can build a

functor Wn : Schop → Ring by calling the scheme Wn = Spec(Z[x0, . . . , xn−1]) and,

for any scheme S, having Wn(S) = HomSch(Wn,S). This is more than an algebraic

group scheme, it’s an algebraic ring scheme, but we can apply the forgetful functor

U : Ring→ Grp to it to get a functor Wn : Schop → Grp.

When we wish to work in the category of schemes over a fixed base scheme S

we will use instead the functor defined by Wn/S = Wn ×Z S.

As Wn/S is a ring scheme, we can construct new group schemes by composing

other group schemes with it. For our purposes the most interesting of these is GLd/S ◦
Wn/S, because of its natural action on Wd

n/S.

It is important to note that every function discussed in Section 2.1 can be

viewed not just as functions on points Wn(A). In fact each can be defined as coming

from a Hopf algebra morphism on Z[x0, . . . , xn−1]. We will call these Hopf algebra

morphisms by the same names as the ring morphisms. We have for m > n that

Trm−nm : Z[x0, . . . , xn−1]→ Z[x0, . . . , xm−1]

is the inclusion homomorphism. For Verschiebung we have

V m−n : Z[x0, . . . , xm−1]→ Z[x0, . . . , xn−1]

is reduction modulo the ideal (x0, . . . , xm−n−1), followed by the relabeling xi 7→ xi−m+n.

Using these Hopf algebra homomorphisms we can obtain algebraic group homomor-

phisms V m−n : Wn →Wm, and Trm−nm : Wm →Wn.

9



In this context it is best to view the multiplicative representative map as a map

r : Z[x0, . . . , xn−1]→ Z[x, y]/(xy − 1)

which sends xi 7→ xp
i
, and thus gives a scheme theoretic map r : Gm → Wn, that

restricts to a map of group schemes Gm →W×
n , which we can use to define an action

of Gm on Wn

αn : Gm ×Z Wn →Wn

which can be thought of either as being r× Id followed by the ring multiplication, or as

coming from the ring theoretic map

Z[x0, . . . , xn−1]→ Z[x, y](xy − 1)⊗ Z[x0, . . . , xn−1]

which sends xi 7→ xp
i⊗xi. In either case this induces a grading on Z[x0, . . . , xn−1] where

xi is given degree pi.

Lastly, if we work in SchFp
then we have a map

F : Wn/Fp
→Wn/Fp

,

called the relative Frobenius homomorphism, induced by the ring homomorphism

F : Fp[x0, . . . , xn−1]→ Fp[x0, . . . , xn−1]

that sends xi 7→ xpi .

2.2.1 Basic Facts

For any natural numbers r, n, and d these functions give us a Gm-intertwining

short exact sequence of group schemes

0 Wd
r Wd

r+n Wd
n 0

Gm ×Wd
r Gm ×Wd

r+n Gm ×Wd
n,

αr ◦ (Fn × Id)

Id× V n

αr+n

Id× Trrr+n

αn

V n Trrr+n

(2.2.1)

where the first row is the short exact sequence, and the Gm actions are given by the

vertical arrows.

10



Lemma 2.2.1. For natural numbers r < n ≤ m we have Trnm+r ◦V r
m = V r

m−n ◦Trnm, as
functions from Wm to Wm+r−n.

Proof. This is simply the statement that we can either shift the indices of our indetermi-

nates down by d and then add m−n more to the end, or add m−n more indeterminates

and then shift the indices. This is clear as long as we have at least d indeterminates to

begin with.

For more details on Witt vectors see [Ser79, Chapter 2 §6], or [Haz78].
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Chapter 3

Results

3.1 Lattices

Inspired by the work of Haboush in [Hab05], we would like to describe the

space of Zp-lattices in Qp vector spaces, and hopefully be able to obtain a geometric

Satake like correspondence in this mixed characteristic case. However Kreidl raises some

objections to Haboush’s methods in [Kre10], and so we need to be cautious about the

representability of the moduli problem we construct. To that end we will make a slightly

unconventional definition of what constitutes a (truncated) lattice, describe some nice

properties of our definition through some easy results, and in Section 3.2 prove that with

this definition our moduli problem is indeed representable.

Definition 3.1.1. Let S be a scheme over Fp. A lattice in Wd
r/S is a closed S-subscheme

X ↪→Wd
r/S, such that

(i) X is a subgroup scheme of Wd
r/S.

(ii) X is smooth as a scheme over S.

(iii) X is stable under the action of Gm/S on Wd
r/S.

Proposition 3.1.2. Let S′ → S be a morphism of schemes. If X ↪→Wd
r/S is a lattice,

then base extension to S′ gives a lattice XS′ ↪→Wd
r/S′

Proof. That XS′ is smooth over S′ is well known, [EGAIV4, 17.3.3(iii)], and it is a

Gm-stable subgroup scheme of Wd
r/S′ by transport of structure.
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Definition 3.1.3. Let Latdr be the covariant functor from SchFp
to Set, sending any

scheme S over Fp to the set of lattices in Wd
r/S.

Proposition 3.1.4. Latdr is a sheaf on the big Zariski site over Fp.

Proof. What needs to be shown is that for any scheme S over Fp, affine open cover

{Ui = Spec(Ri)}i∈I of S, and collection {Xi ∈ Latdr(Ri)} such that

∀i, j, Xi ×Ui (Ui ∩ Uj) = Xj ×Uj (Ui ∩ Uj) ;

then the scheme X obtained by gluing the Xi is a lattice, that is to say X ∈ Latdr(S).

We have that X is a Gm-stable subgroup scheme of Wd
r/S by transport of

structure, and the map X → S is smooth since smoothness is a local condition on the

target. Therefore X ∈ Latdr(S) as desired.

Our definition of a lattice can be difficult to work with at times, and the

properties we chose may seem to be lacking, but in fact they are quite restrictive, as

they imply many other desirable properties for our lattices. In Proposition 3.1.7 we will

see an equivalent set of properties that define a lattice that can be easier to work with

in practice.

Proposition 3.1.5. Let S be a scheme over Fp. Let X ↪→Wd
r/S be a closed subgroup

scheme over S, stable under the action of Gm/S. Then X has connected geometric fibers.

Proof. The Gm-orbit of any point x in a geometric fiber Xs̄ is the image of a connected

set under a continuous map, and is therefore connected. Taking the closure of such an

orbit gives a Zariski closed, Gm-stable subset of Xs̄, which is therefore the zero locus of a

graded ideal I = (p1, . . . , pt), with each pi homogeneous. As the grading is positive, and

x ∈ V (I), we must have that the degree of each pi > 0, and so we also have 0 ∈ V (I).

Thus the closure of the orbit is a connected set that contains both x and 0. So every

point x must lie in the connected component of 0, and therefore the entire geometric

fiber must be connected.

Corollary 3.1.6. Let S be a scheme over Fp. Let X ↪→ Wd
r/S be a closed subgroup

scheme over S, stable under the action of Gm/S. Then X has irreducible geometric

fibers.
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Proof. By Theorem 1.2.1, an affine algebraic group scheme over a field is irreducible if

and only if it is connected.

Proposition 3.1.7. Let S be a scheme over Fp. Let X ↪→Wd
r/S be a closed subgroup

scheme over S. The following conditions are equivalent:

(i) X is smooth over S.

(ii) X is flat over S and the morphism X→ S has reduced geometric fibers.

Proof. First, if X → S is smooth, then it is also flat with geometric fibers that are

smooth varieties, and are therefore reduced.

Conversely, if X is flat over S and X → S has reduced geometric fibers, then

for any geometric point Spec(k̄)→ S, we have that Xk̄ is a reduced group scheme over

a field, which by [Wat79, §11.6] is smooth, therefore X is smooth, as smoothness can be

checked at geometric points.

Proposition 3.1.8. If X is a lattice in Wd
r/S, then for all m < r, V −m(X) is a lattice

in Wd
r−m/S.

Proof. As V m is a smooth group homomorphism we have that V −m(X) is a subgroup of

Wd
r−m/S, and is also smooth over S. What remains is to ensure that V −m(X) is stable

under the action of Gm/S on Wd
r−m/S. The Gm-action is given by αr : Gm/S×SW

d
r/S →

Wd
r/S, then following subsection 2.2.1 we have αr ◦ (Fm × V m) = V m ◦ αr−m. Then

αr−m(Gm/S ×S V
−m(X)) = V −m(αr([F

m × V m](Gm/S ×S V
−m(X))))

= V −m(αr(F
m(Gm/S)×S X))

⊆ V −m(X),

So V −m(x) is stable under the Gm-action.

Corollary 3.1.9. We have that V −m is a natural transformation from Latdr to Latdr−m.

Proof. This follows immediately from Proposition 3.1.8.

As a last stop before moving on to some results about this functor, there is

a technical result in algebraic geometry we will need about subgroup schemes of Witt

schemes.
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Lemma 3.1.10. If X is an affine algebraic group over an algebraically closed field k

with a Gm-action, then X is reduced if and only if its projectivization with respect to the

Gm-action, P, is reduced.

Proof. Let A be the graded K-algebra such that Spec(A) = X, then Proj(A) = P, and

if x0 ∈ X is the point corresponding to the irrelevant ideal of A, we have a morphism

X \ x0 → P, as X is the affine cone over P. If X is reduced, then so is X \ x0, and

therefore so is P, as it is the scheme-theoretic image of X \ x0 under this map.

For the converse, consider a point (closed or not) p ∈ P which corresponds

to a homogeneous prime ideal in A. The stalk of the structure sheaf of P at p is just

Op = A(p) – the localization of the ring A at the prime ideal p.

Thus if P is reduced, than there exists a point p ∈ X such that A(p) is reduced

– just view the homogeneous prime ideal as a prime ideal. It follows that A(m) is reduced

for any maximal ideal m containing p.

But now, since X is an algebraic group, we have a translation isomorphism

αx : X → X for every x ∈ X(k). It follows that X is reduced at αx(m) as well. Hence

A(m) is reduced for all maximal ideals m. This implies that A is reduced, since the

homomorphism:

φ : A→
∏
m

A(m)

is injective; an element of A is determined by its images in all localizations at all maximal

ideals. If a ∈ A were nilpotent, then φ(a) would be nilpotent, hence zero.

Theorem 3.1.11. Let S be a Noetherian scheme over Fp. Then for any Gm-stable

subgroup scheme X ⊂Wd
n/S with X→ S flat, the subset U ⊂ S of points for which the

fiber of X has reduced geometric fibers is open.

Proof. It suffices to work affine locally on the base, so assume S = Spec(A) with A a

Noetherian ring of characteristic p; then X is affine, cut out by a homogeneous ideal J

in A[x1,0, . . . , xd,n−1] with the appropriate Witt grading.

If s ∈ S (a scheme-theoretic point, i.e. a prime ideal p ⊂ A), write Xs for

the fiber of X over s. We say Xs is geometrically reduced if for any A/p → k with

k an algebraically closed field, the base change Xk is reduced. Equivalently, Xs is

geometrically reduced if, for every geometric point of S in the closure of s, the fiber at

the geometric point is reduced (i.e., reduced geometric fibers on the closure of s).

15



Let P denote the projectivization of X with respect to the Gm-action. In

other words, locally on S, take Proj of the graded ring A[x1,0, . . . , xd,n−1]/J . Then as

the Gm-action comes from a positive grading, P→ S is proper, flat, and locally of finite

presentation. Moreover, by Lemma 3.1.10, for any s ∈ S, Ps is geometrically reduced if

and only if Xs is geometrically reduced.

So consider the set U ⊂ S consisting of those s for which Xs (equivalently Ps

by Lemma 3.1.10) is geometrically reduced. By [EGAIV3, Theorem 12.2.1 (viii)] (with

X = P and Y = S and F equal to OP), the set U is open.

3.2 Representability

Theorem 3.2.4 is the main result of this section, but we will first prove the

representability of a broader moduli problem, and see how our problem can be cut out

of that broader problem as the intersection of an open and a closed subset.

Proposition 3.2.1. Let HSdr : Schop
Fp
→ Set be the functor that takes a scheme S to the

set of closed, flat over S, Gm/S-stable subschemes of Wd
r/S. There exists a scheme HSdr

over Fp which represents the functor HSdr .

Proof. By the proof of Proposition 3.1.4, we can see that HSdr is a sheaf on the big

Zariski site, and so it is enough to prove that it is representable on the subcategory of

affine schemes. To show this we consider the related functor ĤSdr : Ring → Set, which

sends a ring R to the set of homogeneous ideals

I ⊂ R⊗ Z[x1,0, . . . , xd,r−1],

such that the rank of (R ⊗ Z[x1,0, . . . , xd,r−1])a/Ia is finite for each a ∈ N, subject to

the Witt grading on Z[x1,0, . . . , xd,r−1] (which gives degree pj to xi,j); and show that it

is representable, which establishes the result.

This is a direct consequence of Theorem 1.1 of [HS04], by taking A = Z,

S = Z[x1,0, . . . , xd,r−1], and taking the union over all possible Hilbert functions.

Lemma 3.2.2. The subfunctor of HSdr consisting of the subschemes that are subgroups

is represented by a closed subscheme of HSdr .
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Proof. Consider the automorphism σ : Wd
r×Wd

r →Wd
r×Wd

r = W2d
r given by (x, y) 7→

(x− y, y). Note that the subgroup schemes of Wd
r are exactly the subschemes X ⊂Wd

r

such that σ(X×X) ⊂ X×X. We have that σ respects the Gm action (as Wd
r is a ring

scheme), and therefore gives an automorphism σ̄ of HS2d
r . The subscheme of HSdr we

are interested in is exactly the preimage under the diagonal map ∆: HSdr → HS2d
r of

the closed subscheme Y ⊂ HS2d
r of points fixed by σ̄, which is closed.

Lemma 3.2.3. The subfunctor of HSdr consisting of the subschemes for which the struc-

ture has reduced geometric fibers is represented by an open subscheme of HSdr .

Proof. If we take X to be the universal family sitting over HSdr , and apply Theo-

rem 3.1.11, we get that the subset U of HSdr that corresponds to X having reduced

geometric fibers is open.

Theorem 3.2.4. The functor Latdr is representable by a locally closed (i.e., intersection

of a closed and open) subscheme of HSdr . We will call this subscheme Latdr .

Proof. By Lemma 3.2.2 we have a closed subscheme X ⊂ HSdr corresponding to sub-

groups of Wd
r , and by Lemma 3.2.3 we have an open subscheme Y ⊂ HSdr which

corresponds to those subschemes of Wd
r with reduced geometric fibers. Therefore the

intersection Latdr = X ∩ Y corresponds to the Gm-stable, closed, flat over the base,

subgroup schemes of Wd
r with reduced geometric fibers which, by Proposition 3.1.7, is

exactly the set of lattices in Wd
r .

Note that the action of GLd ◦Wr on Wd
r commutes with the Gm-action, in

fact Gm acts as scalar matrices, which lie in the center of GLd ◦Wr. Also the action is

smooth, and therefore the image of a lattice under the action will again be a lattice, so

we obtain an action of GLd ◦Wr on Latdr . In fact as lattices are stable under the Gm

action, the center of GLd acts trivially, and so the GLd-action descends to an action of

PGLd ◦Wr on Latdr .

3.3 The Shape of a Subgroup

3.3.1 Definition and Basic Results

Let k be an algebraically closed field of characteristic p, and G be an algebraic

subgroup in Wd
n/k. For i ≤ n we give the name Gi to the subgroup V i−n(G) in Wd

i/k,
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and set G0 = 0. If we identify Wd
i/k with its image under V n−i in Wd

n/k, then this is

the same as defining Gi = G ∩Wd
i/k. We will use this identification to consider Gi as

a subgroup of G, and at times Wd
i/k as a subset of Wd

n/k. Then we define the shape of

G to be the sequence ~d = (d0, d1, . . . , dn−1) of natural numbers, given by

di = dim(Gn−i)− dim(Gn−i−1).

Considering k-points we have a commutative diagram of abelian groups with

exact rows:

0 Wd
i−1(k) Wd

i (k) kd 0

0 Gi−1(k) Gi(k) Si 0.
V Tri−1

i

V Tri−1
i

(3.3.1)

We have identified Wd
1(k) = kd, and defined Si to be the image of Gi(k) under

Tri−1
i . Note that Si is closed under addition as it is a subgroup, andGm-stable, therefore

it is a vector subspace of kd. Considering the second row we have that

dimk(Si) = dim(Gi)− dim(Gi−1)

= dn−i,

and also as Si ⊂ kd we have 0 ≤ dn−i ≤ d.

Proposition 3.3.1. If G is a subgroup of Wd
n/k of shape (d0, . . . , dn−1) and H is a

subgroup of G of shape (e0, . . . , en−1), then ei ≤ di for all 0 ≤ i < n.

Proof. Since H ⊂ G, we also have Hi ⊂ Gi for all i. Then we can considere the diagram

0 Hi−1(k) Hi(k) Ti 0

0 Gi−1(k) Gi(k) Si 0

0 Wd
i−1(k) Wd

i (k) kd 0.

α

V

V

V

Tri−1
i

Tri−1
i

Tri−1
i

(3.3.2)
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By identifying spaces with their image under V , we can see that

Hi−1(k) = Hi(k) ∩Wd
i−1(k)

= Hi(k) ∩Gi−1(k).

If t ∈ Ti is mapped to 0 by α, then it comes from an element x of Hi(k), which after

embedding in Gi(k), truncates to 0; and therefore is in the image of V . Then x is in

Gi−1(k), and Hi(k), so it is in Hi−1(k), and then by exactness of the first row t = 0.

Thus showing that α is injective, and therefore ei = dimk(Ti) ≤ dimk(Si) = di, exactly

as desired.

Theorem 3.3.2. For all 0 ≤ i < n− 1 we have di ≤ di+1.

Proof. If we replicate the second row of Diagram 3.3.1 forGi, andGi−1, use the fact that

mp gives not just a map from Gk to itself, but has an image lying inside of the subgroup

Gk−1, and apply the snake lemma to the resulting map of short exact sequences we get

the following diagram:

0 0 0

I J K

0 Gi−1(k) Gi(k) Si 0

0 Gi−2(k) Gi−1(k) Si−1 0

L M N

0 0 0.

ϕ

mp mp f

V

V

Tri−1

Tri−2

(3.3.3)

Here I, J, and K are the kernels of the relevant maps; and L,M, and N are their

cokernels. The rows and columns are exact, and our goal is to show the map labeled f is

19



an injection. We will do this by showing that K = 0, and for this it suffices to show that

ϕ is a surjection and L = 0. First, over a perfect field mp is surjective, and so L = 0;

also as V is an injection, F is a bijection, and mp = F ◦V ◦Tr: we have that the kernel

of mp in Gi−1(k) is the kernel of Tr on [V ◦ F ](Gi−1(k)) ⊂ Gi(k) but the kernel of Tr

sits in the image of V , so ϕ is in fact a surjection, thus K = 0, as desired. This gives

that f is an injection, and therefore dimk(Si−1) ≥ dimk(Si), or dn−i+1 ≥ dn−i, exactly

as desired.

3.3.2 Applications to Latdr

For ~d a shape of length r, we will give the name Latd
r,~d

to the subfunctor of Latdr
of subgroups of shape ~d at every geometric fiber. We then have the following results.

Theorem 3.3.3. There is an isomorphism of functors given by V :

Latdr,(0,d1,...,dr−1)
∼= Latdr−1,(d1,...,dr−1).

Proof. If G is a lattice in Latdr,(0,d1,...,dr−1), then V provides an isomorphism Gr
∼= Gr−1,

as d0 = 0. Therefore V −1 is the desired isomorphism of functors.

Theorem 3.3.4. There is an isomorphism of functors given by Tr:

Latdr,(d0,...,dr−2,d)
∼= Latdr,(d0,...,dr−2).

Proof. Any lattice in Latdr,(d0,...,dr−2,d) is the preimage under truncation of a unique lattice

in Latdr−1,(d0,...,dr−2).

3.4 Description of Latd1

Theorem 3.4.1. There is an isomorphism of functors Latd1 ∼= Grd which preserves

dimension in such a way that Latd1,(m)
∼= Grdm, and therefore Latd1,(m)

∼= Grdm.

Proof. When r = 1 we have that HSd1 = HilbPd−1 and so by Theorem 3.2.4 Latd1 is

a locally closed subfunctor of HilbPd−1 . If we fix a noetherian S and take a subgroup

scheme X corresponding to an element x ∈ Latd1(S) then if we call Y = (X \ e(S))/Gm,

where e : S→ X is the unit of the group, and e(S) is the closure of the scheme-theoretic

image of S under e. We have Y ⊂ Pd−1, and as Y is flat over S we have that the Hilbert
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polynomial of Y considered as a family over S is constant on irreducible components. If

we take a geometric point of S, τ : Spec(k)→ S for some algebraically closed k, then we

can consider the base change Yk = Y×S Spec(k), and detect the Hilbert polynomial of

Y by considering Yk. As Yk is smooth over k, we have that Yk(k) is Zariski dense in

Yk, but Yk(k) = (Xk(k)\{0})/Gm(k), and Xk(k) is an additive subgroup of the vector

spaceGd
a/k(k) which is stable under the action of k×, and is therefore a vector subspace of

Gd
a/k(k). This implies that Xk = Xk(k) is a linear subscheme of Gd

a/k. Thus the Hilbert

polynomial of Yk (and also Y) is that of a linear subspace, and therefore x ∈ Grd(S).

Together this shows that Latd1(S) ⊂ Grd(S) when S is noetherian, and so when restricted

to the full subcategory of noetherian schemes, SchN , Latd1 is a subfunctor of Grd.
Conversely for an element x ∈ Grd(S) we have a subscheme X ⊂ Gd

a/S cut out

by linear homogeneous polynomials locally on the base. This is clearly a closed subgroup

of Gd
a/S, and Gm/S-stable. It is smooth over S by the properties of the Grassmannian,

therefore Grd is a subfunctor of Latd1.
It is clear from the construction that this isomorphism preserves dimension,

and so gives an isomorphism Latd1,(m)
∼= Grdm for any m.

Notice that the action of PGLd on Latd1 is exactly the normal action of PGLd

on Grd, and is therefore transitive on every component Grdm.

3.5 Description of Lat2n

The two theorems 3.3.3 and 3.3.4 allow us to reduce understanding of Lat2
n

to the case of understanding Lat2
1,(0), Lat

2
1,(2), and the schemes Lat2

n,(1,1,...,1). The first

two, as well as the n = 1 case of the third are addressed by Theorem 3.4.1. All that

remains is to describe the remaining schemes Lat2
n,(1,1,...,1) for n > 1.

Lemma 3.5.1. If we call the total space of the line bundle O(p) over P1 by the name

E(p), then we have a morphism of schemes ϕ : E(p) ↪→ Lat2
2,(1,1) such that the following
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diagram commutes:

E(p) Lat2
2,(1,1)

P1 Lat2
1,(1)

P1.

V −1

∼

F

ϕ

(3.5.1)

Here the arrow from E(p) to P1 is the standard bundle map, and the arrow from P1 to

Lat2
1,(1) is defined to make the bottom triangle commute. Additionally for any Fp-algebra

R the induced map of sets ϕ : E(p)(R) → Lat2
2,(1,1)(R) is an injection, therefore ϕ is a

universally injective morphism of schemes.

Proof. Every object in the picture is a sheaf on the big Zariski site, so it is enough to

define ϕ on affine schemes. Let R be an Fp algebra, we will begin by defining coordinates

on E(p)(R) which we will use to define the map ϕ. Let λ ∈ P1(R), then λ defines a

locally free rank 1 quotient of R2; by passing to an open cover {Spec(Ri)} of Spec(R),

we can assume that the quotient is free, rather than only locally free. In this case we can

view λ as a map λ : R2 → L where L is free of rank 1. By picking an isomorphism L ∼= R

we obtain a pair α = λ(1, 0), and β = λ(0, 1). These satisfy the property (α, β) = (1).

Changing the isomorphism changes the pair α, β to a new pair uα, uβ for some u ∈ R×.
Then for any g ∈ (R[x, y]/(αx+ βy))p homogeneous of degree p we can identify

E(p)(R) = {(α, β, g) | α, β ∈ R such that (α, β) = 1, g ∈ (R[x, y]/(αx+ βy))p}/ ∼,

where ∼ is the equivalence relation (α, β, g) ∼ (uα, uβ, upg) for u ∈ R×.
For any (α, β, g) ∈ E(p)(R) we define the ideal

Iα,β,g = (αx0 + βy0, g(x0, y0) + αpx1 + βpy1) ⊂ R[x0, x1, y0, y1].
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Note first that if (α, β, g) ∼ (uα, uβ, upg) then we have

Iuα,uβ,upg = (uαx0 + uβy0, u
pg(x0, y0) + (uα)px1 + (uβ)py1)

= (u (αx0 + βy0) , up (g(x0, y0) + αpx1 + βpy1))

= (αx0 + βy0, g(x0, y0) + αpx1 + βpy1)

= Iα,β,g,

so the definition makes sense. Next notice that for distinct elements g, h ∈ (R[x, y]/(αx+

βy))p we have that Iα,β,g 6= Iα,β,h.

We define ϕ to send the point (α, β, g) ∈ E(p)(R) to

X/R = Spec(R[x0, x1, y0, y1]/Iα,β,g),

which we claim is an element of Lat2
2,(1,1)(R). First note that as Iα,β,g is a homogeneous

ideal for the Witt grading, X is Gm-stable. Also as Iα,β,g is prime, X is geometrically

reduced. Also as dim X = 2, and V −1(X) = Spec(R[x0, y0]/(αpx0, β
py0)), all that

remains is to show that X is a subgroup of W2
2; or equivalently that Iα,β,g is a Hopf

ideal, that is to say

∆(Iα,β,g) ⊂ Iα,β,g ⊗R[x0, x1, y0, y1] +R[x0, x1, y0, y1]⊗ Iα,β,g

for the Witt comultiplication function

∆: R[x0, x1, y0, y1]→ R[x0, x1, y0, y1]⊗R[x0, x1, y0, y1].

As the GL2 ◦W2-action on Lat2
2,(1,1) descends to a transitive action of GL2 ◦W1 on

Lat1
2,(1)

∼= P1, we can perform this calculation with α = 1, and β = 0 without loss of

generality.

In this setting we can take the representative g(x0, y0) = cyp0 for some c ∈ R.
Then I1,0,g = (x0, cy

p
0 + x1), and we only need compute

∆(x0) = x0 ⊗ 1 + 1⊗ x0

⊂ I1,0,g ⊗R[x0, x1, y0, y1] +R[x0, x1, y0, y1]⊗ I1,0,g;
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and

∆ (cyp0 + x1) = c (y0 ⊗ 1 + 1⊗ y0)p + x1 ⊗ 1 + 1⊗ x1

+
xp0 ⊗ 1 + 1⊗ xp0 − (x0 ⊗ 1 + 1⊗ x0)p

p

= cyp0 ⊗ 1 + 1⊗ cyp0 + x1 ⊗ 1 + 1⊗ x1 +
1

p

p−1∑
i=1

(
p

i

)
xi0 ⊗ x

p−i
0

= (cyp0 ⊗ 1 + x1 ⊗ 1) +

(
1⊗ cyp0 + 1⊗ x1 +

1

p

p−1∑
i=1

(
p

i

)
xi0 ⊗ x

p−i
0

)
⊂ I1,0,g ⊗R[x0, x1, y0, y1] +R[x0, x1, y0, y1]⊗ I1,0,g.

Thus Iα,β,g is a Hopf ideal, and X ∈ Lat2
2,(1,1)(R) as desired.

Theorem 3.5.2. The map ϕ : E(p)→ Lat2
2,(1,1) defined in Lemma 3.5.1 is surjective on

geometric points.

Proof. Let Spec(k) → Lat2
2,(1,1) be a geometric point, then we wish to show that it

factors through ϕ : E(p)→Lat2
2,(1,1). That is to say let X ⊂ W2

2/k be a lattice in

Lat22,(1,1)(k), and call by the name I the ideal in k[x0, x1, y0, y1] which defines X. Then

if we call V −1(X) = X′, we have X′ ⊂ W2
1/k in Lat21,(1)(k), and therefore, by Theo-

rem 3.4.1 we have that X′ is cut out of k[x0, y0] by an ideal of the form I ′ = (ax0 + by0).

As X is a lattice it is Gm-stable, and therefore irreducible by Corollary 3.1.6, so I is a

homogeneous prime ideal. As V −1(X) = X′, we have that V (I) = I ′, so it must be that

I = (fi(x0, x1, y0, y1), g(x0, y0) + ax1 + by1)

for some homogeneous polynomials fi, and g, with g of degree p all contained in the

ideal (x0, y0). As X is a subgroup, p ·X ⊂ X, and therefore

(axp0 + byp0) = (fi(0, 0, x
p
0, y

p
0), g(0, 0) + axp0 + byp0) = p(I) ⊂ I.

As k is algebraically closed there exist α, and β such that αp = a, βp = b. Then we have

axp0 + byp0 = (αx0 + βy0)p ∈ I, and since I is prime we have αx0 + βy0 ∈ I. As the

dimension of X is 2, the height of I is 2, and so

I = (fi(x0, x1, y0, y1)) mod (g(x0, y0) + ax1 + by1))
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must be of height one, and therefore principal. So it must be that fi − fj ∈ (g(x0, y0) +

ax1 +by1) for any pair i, j, therefore we can write I = (f1(x0, x1, y0, y1), g(x0, y0)+ax1 +

by1). Now, as αx0 + βy0 ∈ I, we must have polynomials P and Q such that

αx0 + βy0 = P · f1 +Q · (g + αpx1 + βpy1)

As the left hand side is of degree 1, and both f1 and g + αpx1 + βpy1 are homogeneous,

we must have that the degree of f1 is either 1 or 0. If f1 is of degree 0, then I =

k[x0, x1, y0, y1], and X is trivial, which cannot be. So we must have f1 is homogeneous

of degree 1, and then P must have degree 0, so we may as well replace f1 with αx0 +βy0.

So I = (αx0+βy0, g(x0, y0)+αpx1+βpy1) with g ∈ (R[x0, y0]/(αx0+βy0))p homogeneous

of degree p. This is exactly the ideal Iα,β,g defined in the proof of Lemma 3.5.1, which

is by definition in the image of ϕ.

This shows that all of the geometric points of Lat2
2,(1,1) lie in the image of ϕ

as desired.

We suspect that the schemes Latdn are normal, in which case the results of

Lemma 3.5.1, and Theorem 3.5.2 would imply that ϕ is in fact an isomorphism of

schemes.

The techniques in this Section may generalize to provide descriptions of the

spaces Lat2
n,(1,1,...,1) with n ≥ 3, but it seems that increasingly more complicated ideal

computations are likely an inefficient way to describe those schemes. It is more likely

that an approach through the theory of Dieudonné modules (see for example [Car62])

would prove more fruitful in order to describe these spaces.
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