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THE  PROBLEM  OF  OPTIMAL  ASSET  ALLOCATION  WITH

STABLE  DISTRIBUTED  RETURNS

SERGIO ORTOBELLI

University of Calabria, Italy

SVETLOZAR RACHEV

University of Karlsruhe, Germany and University of California at Santa Barbara

EDUARDO SCHWARTZ

Anderson School of Management, University of California at Los Angeles

This paper discusses two optimal allocation problems. We consider different hypotheses of

portfolio selection with stable distributed returns for each of them. In particular, we study the optimal

allocation between a riskless return and risky stable distributed returns. Furthermore, we examine and

compare the optimal allocation obtained with the Gaussian and the stable non-Gaussian distributional

assumption for the risky return.

KEY WORDS: optimal allocation, stochastic dominance, risk aversion, measure of risk, α  stable

distribution, domain of attraction, sub-Gaussian stable distributed, fund separation, normal distribution,

mean variance analysis, safety-first analysis.
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1. INTRODUCTION

This paper serves a twofold objective: to compare the normal with the stable non-Gaussian

distributional assumption when the optimal portfolio is to be chosen and to propose stable models for

the optimal portfolio selection according to the utility theory under uncertainty.

It is well-known that asset returns are not normally distributed, but many of the concepts in

theoretical and empirical finance developed over the past decades rest upon the assumption that asset

returns follow a normal distribution. The fundamental work of Mandelbrot (1963a-b, 1967a-b) and

Fama (1963,1965a-b) has sparked considerable interest in studying the empirical distribution of

financial assets.  The excess kurtosis found in Mandelbrot’s and Fama’s investigations led them to

reject the normal assumption and to propose the stable Paretian distribution as a statistical model for

asset returns. The Fama and Mandelbrot’s conjecture was supported by numerous empirical

investigations in the subsequent years, (see Mittnik, Rachev and Paolella (1997) and Rachev and

Mittnik (2000)).

The practical and theoretical appeal of the stable non-Gaussian approach is given by its attractive

properties that are almost the same as the normal one. A relevant desirable property of stable

distributional assumption is that stable distributions have domain of attraction.  The Central Limit

Theorem for normalized sums of i.i.d. random variables determines the domain of attraction of each

stable law.  Therefore, any distribution in the domain of attraction of a specified stable distribution will

have properties close to those of the stable distribution.  Another attractive aspect of the stable Paretian

assumption is the stability property, i.e. stable distributions are stable with respect to summation of

i.i.d. random stable variables.  Hence, the stability governs the main properties of the underlying

distribution.  Detailed accounts of theoretical aspects of stable distributed random variables can be

found in Samorodnitsky and Taqqu (1994) and Janicki and Weron (1994).

In our work, we analyze two investment allocation problems. By comparing the normal distribution

with the stable law one, it has occurred that the results performed under the examined optimal

allocation problems are generally different. They consist of the maximization of the mean minus a

measure of portfolio risk.  We propose a mean risk analysis that facilitates the interpretation of the

results.  In the first allocation problem, we consider as the risk measure the expected value of a power

absolute deviation. When the power is equal to two, we obtain the classical quadratic utility functional.
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The second allocation problem is a typical problem of the safety-first analysis where we assume as the

risk measure, the risk of the portfolio loss, (i.e. the probability that the portfolio return is under a fixed

threshold value).  We examine the optimal allocation between a riskless return and a risky stable

distributed return, then we compare the allocation obtained with the Gaussian and the stable non-

Gaussian distributional assumption for the risky return. We chose the three months LIBOR 6% annual

rate as from  December 1, 1999 for riskless return.  As a possible risky asset, we consider the stock

indexes S&P500, DAX30 and CAC40. The models’ parameters are estimated in Khindanova, Rachev

and Schwartz (1999). We show that there are significant differences in the allocation when the data fit

the stable non-Gaussian or the normal distributions.

Following the two empirical asset analysis, we propose symmetric and asymmetric stable models to

study the multivariate portfolio selection and to analyze the two proposed optimal allocation problems.

We develop three alternative stable models under the assumption that  investors allocate their wealth

across the available assets in order to maximize their expected utility of final wealth.  We first consider

the portfolio allocation between n sub-Gaussian symmetrical α -stable distributed risky assets (with

1>α ), and the riskless one.  The joint sub-Gaussian α stable family is an elliptical family.  Hence, as

argued by Owen and Rabinovitch (1984), we can use the mean dispersion analysis in this case. The

resulting efficient frontier is formally the same as Markowitz-Tobin’s mean-variance analysis, but

instead of variance as a risk parameter, we have to consider the scale parameter of the stable

distributions.  Unlike Owen and Rabinovitch, we propose a method based on the moments  to estimate

all stable parameters. The calculating efficient frontier exhibits the two-fund separation property and in

equilibrium, we obtain an α -stable version of the Sharpe-Lintner-Mossin’s CAPM.  Using the Ross’

necessary and sufficient conditions to the two-fund separation, we can link this stable version of asset

pricing to that in Gamrowski and Rachev (1999).  In order to consider the possible asymmetry of asset

returns, we describe a three-fund separation model for returns in the domain of attraction of a stable

law.  In case of asymmetry, the model results from a new stable version of the Simaan’s model, see

Simaan (1993).  In case of symmetry of returns, we obtain a version of a model recently studied by

Götzenberger, Rachev and Schwartz (1999), that can also be viewed as a particular version of the two-

fund separation of Fama’s (1965b) model.  Our model distinguishes itself from Götzenberger, Rachev

and Schwartz’s, as well as from the Simaan and Fama’s models because we consider the empirical

hypothesis of fat tails of return distributions together with the asymmetric distributional components.
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Using the stochastic dominance rules, (see the references in Levy (1992)), we show how we determine

the efficient frontier for risk averse investors.  Similarly to the sub-Gaussian approach, it is possible to

estimate all parameters with a maximum likelihood method and to compare this model with the

Simaan’s one.  One of the most severe restrictions in performance measurement and asset pricing in the

stable case is the assumption of a common index of stability for all assets.  Hence, the last model we

propose deals with the case of optimal allocation between stable distributed portfolios with different

indexes of stability. In order to overcome the difficulties of the most general case of  the stable law, we

introduce a k+1 fund separation model.  Then we show how to express the model’s multi-parameter

efficient frontier.

In Section 1, we introduce the first allocation problem.  In Section 2, we compare the stable non-

Gaussian with the normal distributional hypothesis for the first allocation problem.  Section 3

introduces the multivariate models and their application  to the proposed allocation model.  In Section

4, we introduce the second allocation problem. In Section 5 we compare stable non-Gaussian and

normal distributional hypothesis for the second allocation problem. In Section 6 we consider the

multivariate models for the second allocation problem.  In the last section, we briefly summarize the

results.

2. AN OPTIMAL ALLOCATION PROBLEM WITH STABLE  DISTRIBUTED RETURNS

Consider the problem of finding the optimal allocation λ  in an investment consisting of two

positions: a risky asset, which is assumed to be stable distributed and a risk-free asset.  The investor

wishes to maximize the utility functional

(2.1)                                                     ( )r
WEWcEWEWU )()()( −−= ,

where c and r are positive real numbers, zzW )1(0 λλ −+=  is the return on the portfolio, 0z  is the

risk-free asset return, and z  is the risky asset return. We also assume that no short sales are allowed

(i.e. ]1,0[∈λ ).

We choose to study the allocation problem (2.1) because:

1) The optimal allocation we get that solves problem (2.1), is equivalent to the following maximization

of the utility functional
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(2.2)                                                      ( )r
WEWbEWaE )()( −− ,

assuming 
a

b
c =  in (2.1) for every 0, >ba . If we assume ( )r

WEWE )(−  as the particular risk

measure of portfolio loss, then applying the optimal allocation problem (2.1), we implicitly maximize

the expected mean of the increment wealth aW, as well as minimize the individual risk

b ( )r
WEWE )(− .

2) Furthermore, when we assume r=2, the maximization of utility functional (2.1) also motivates the

mean variance approach in terms of preference relations.

We assume that z is α -stable distributed, with 1>α  (which implies the existence of the first

moment), that is:

),,( zzz

d
mSz βσα= ,

where α  is the index of stability, zσ  is the scale (dispersion) parameter, zβ  is the skewness

parameter, and zm  is the mean of z.

We know that for 1≠λ , all the portfolio returns zzW )1(0 λλ −+=  admits stable distribution

))1(,)1(,1( 0 zzz mzsignS λλβλσλα −+−− .  Because ]1,0[∈λ , then

(2.3)                       ( )( )zzz

d
mzSW )1(,,1 0 λλβσλα −+−=   for )1,0[∈λ  and W = 0z  when 1=λ .

From (2.3) we see that the portfolio mean is given by  zW mzm )1(0 λλ −+= and the portfolio scale

parameter is given by zW σλσ )1( −= , hence, since the portfolio skewness parameter is fixed, all the

solutions to the problem (2.1) can be represented in the mean-dispersion plane by

W
z

z
W

zm
zm σ

σ
0

0
−

+= ,

representing the efficient frontier for our optimization problem.

Recall that given two random variables X and Y, X dominates Y in the sense of Rothschild-Stiglitz

(R-S), if and only if every risk averse investor prefers X to Y, that is if and only if for every concave

utility function u, we have ))(())(( YuEXuE ≥ , or alternatively, if and only if )()( YEXE =  and

duuFduuF
t

Y

t

X )()( ∫∫
∞−∞−

≤  for every real t, where XF  is the cumulative distribution function of X, (for
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details on stochastic dominance rules see Lèvy (1992), Rothshild and Stiglitz (1970), Hanoch and Lèvy

(1969)).

Suppose X dominates Y in the sense of R–S. Because )()( YEXE =  and 
r

XExcxf )()( −−=  is a

concave utility function, for every ),1[ α∈r , it follows that:

),1[)())(()(:)( α∈∀≥−−= rYUXEXcEXEXU
r

.

The above inequality implies that every risk averse investor with utility functional (2.2) should choose

a portfolio zzW )1(0 λλ −+=  that maximizes the utility functional (2.1) for some ),1[ α∈r  and

]1,0[∈λ .  Now, to solve the asset allocation problem

(2.4)                                               ( )r
WEWcEWE )()(max −−

λ
,

notice first that, for all ),1[ α∈r  and 21 << α , we get

( ) ( ) r
z

rr
z

r
rHcWEmzWEWcEWEWU σλβαλλ )1(),,()()1()()()( 0 −−−−+=−−=

where

( ) 


















































+







 −Γ
=

∫
∞ −−

−

2
tantanarccos

2
tan1

sin

12

),,(

2
22

0
21

1

απ
β

α
απ

β
α

βα
α

r

uduur

r

rH

r

r

r

r

(see Samorodnitsky and Taqqu (1994), Hardin, Jr. (1984)).  The above relation analyzes the stable non-

Gaussian case.  When z  admits normal distribution (i.e. 2=α ), then for all 0>r ,

( ) ( ) r
z

r

r

z
r

r

cmzWEWcEWEWU σλ
π

λλ −







 +
Γ

−−+=−−= 1
2

1
2

)1()()()(

2

0 .

Of particular interest is the above Gaussian case for r=2. In fact, when r=2, the optimization problem

( ) ( )222
))(()1)(2(max)()(max WEcWWcEcWEWEWcEWE −++−=−− ,

reduces to a maximization of the expected quadratic utility function

(2.5)                                                   
c

b
bWcWWu

4

)1(
)(

2
2 −

−+−= ,

where 1)(2 += WcEb .  The allocation that maximizes the above problem is the same as the one that

maximizes the utility function  dWau +)(   for some real constant d and 0>a .  Optimizing the

expected value of the utility function
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(2.6)                                                              aWeWWv +−= 2)(

for every possible real (sign(b))a>0  and e >0, we obtain the same allocation by maximizing the

expected utility function (2.5) with 
)(2 WeEa

e
c

−
= .

We recall that for arbitrary distributions with the finite variance, the Markowitz-Tobin mean-

variance model is based on the quadratic utility (2.6).  As a matter of fact, when expected returns and

variances are finite, the quadratic utility is sufficient for asset choice to be completely described in

terms of a preference relation defined over the mean and the variance of expected returns.  However,

quadratic utility displays the undesirable properties of satiation and increasing absolute risk aversion.

Thus, economic conclusions based on the assumption of quadratic utility function are often counter

intuitive and are not applicable to individuals who always prefer more wealth to less, and who treat

risky investments as normal goods. For this reason, when we assume r=2, even if our optimal location

problem (2.1) motivates the mean variance analysis in terms of preference relations, we prefer to

consider different models motivated by their distributional form of returns. In appendix A, we include a

table that summarizes the distributional assumption used in this paper and also describes the mean-

variance and the stable mean-dispersion frontiers.

Next, we consider the optimal allocation problem for any choice of ),1[ α∈r .

2.1 Case r=1 :  Find ))(()(max WEWcEWE −−
λ

In this case, the first order condition of problem (2.4) shows that the optimal portfolio consists of

full investment in the riskless asset 0z  (i.e. 1=λ ) when

( ) 0)1,,(0 >+−=
∂
∂

zz Vcmz
U

σβα
λ

,

where







=

<<
=

)2(
2

)21()1,,(
)1,,(

α
π

αβα
βα

casenormalthein

casestabletheinH
V .
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In the case ( ) 0)1,,(0 <+−=
∂
∂

zz Vcmz
U

σβα
λ

, then 0=λ  , i.e. the investor should invest everything

in the risky asset. Finally, when 0=
∂
∂

λ
U

, then for every 10 ≤≤ λ , the portfolio is optimal, because in

this case 0)1,,())(()( zcVmWEWcEWE zz =−=−− σβα , i.e. it is a constant for every λ .  Hence,

we found that when  r=1, solving the optimization problem (2.4), we get only trivial solutions.

2.2 Case ),1( α∈r :Find ))(()(max
r

WEWcEWE −−
λ

.

In this case, the first order condition of problem (2.3) shows that the optimal allocation parameter is

given by

1

1

0

),,(
1

−










 −
−=

r

r
z

z

rVrc

zm

βασ
λ  if 0zm z >  and ]1,0[∈λ ,

where

( )











=







 +
Γ

<<

=

)2(
2

1
2

)21(),,(

),,( 2

α
π

αβα

βα

casenormalthein

r

casestabletheinrH

rV
r

r

.

Otherwise, the optimal allocation is given by

)(1 0zUTif ==λ  or )(0 zUTif ==λ ,

where  ))(),(max( 0 zUzUT = .

3. STABLE  VERSUS  NORMAL OPTIMAL  ALLOCATION:  A COMPARISON

In this section, we analyze the differences in optimal allocations when the investor chooses:

(i) Normal distribution,

or,

(ii) Stable (non-Gaussian) distribution, as a model for the asset returns in his/her portfolio.

We examine index-daily returns for the S&P 500, DAX30 and the CAC40 (see Table I reporting the

same data used by Khindanova, Rachev and Schwartz (1999)). The riskless return is 6% p.a. Using the



9

estimated daily index parameters (see Table I) we can compute the coefficient

z

z

V

zm
c

σβα )1,,(
0−

=  .

Thus every investor that maximizes the utility functional ))(()( WEWcEWE −− ,

1) invests all in the risky asset if                              cc <  ,

2) invests all in the riskless asset when                    cc > .

In Table II we report the threshold value: 1c for the normal case and 2c  for the stable case. It

follows that for the three indexes considered, all  investors that maximize the utility functional

))(()( WEWcEWE −− with 21 ccc <<

two situations can be considered:

a) if the data fit the normal distribution, consequently the riskless asset is chosen;

b)  if the data fit the stable distribution, therefore the risky asset is chosen.

Instead, for the three indexes considered, all investors that maximize the utility functional

))(()( WEWcEWE −− with 1cc <  or 2cc >

two further situations can be examined:

c) if 1cc <  fit for the normal or the stable, the risky asset is chosen;

d)  if 2cc >  fit for the normal or the stable, the riskless asset is chosen.

When 1>> rα , we then obtain the following optimal allocation for the problem

))(()(max
r

WEWcEWE −−
λ

.

In table III, we listed the optimal allocation λ  for the normal and the stable fit.  Recall that λ  is the

optimal proportion of funds invested in the risk free asset.  We have chosen  5.1=r  and  r =1.35 so

that r is strictly less than all indexes of stability in the data set. On the other hand, we want r to be

large, far away from 1, because for  r =1, we obtain the trivial allocation computed previously.

The analysis of table III shows that the optimal allocation in the normal and in the stable case is more

sensitive to smaller risk aversion coefficient c. In particular, the optimal allocation can be up to 40%,

(see S&P 500).  Our results also show that in the stable non-Gaussian case, the riskless asset allocation

is greater than the normal one (except for DAX30 when r =1.35).  This fact is indeed due to the fat tails

of the stable distribution. Recall that tail behavior of every stable non Gaussian



10

distribution ( )mSX
d

,, βσα= , with 21 << α , is given by

α
α

α σ
β

2

1
)(lim

±
=>±

+∞→
CxXPx

x
,

where 
)2cos()2(

1

παα
α

α −Γ
−

=C  .  In particular, ( ) ( )∫
+∞

>=
0

dxxXPXE
rr

, it follows that

( ) ∞<− r
XEXE )(  for α<r ,

and ( ) ∞=− r
XEXE )(  for α≥r .

Hence, the weight of the risk measure ( )r
WEWE )(−  for ),1[ α∈r , is generally greater for the

investors who use stable laws for asset returns.  This also implies that when investors fit normal

distributions for return assets, they miss an important component of portfolio risk.  On the contrary, the

investor who fits stable distributions for return assets, implicitly tries to approximate the additional

component of risk related to the heavy fat tailedness as returns distributions.  We also observe another

consequence of the above relation, (see for example the DAX30 index). When r is more distant from

the stability parameter, we have to expect that the max difference in the allocation is lower (about 10%

in DAX30) and is more influenced by the differences in the trivial allocation.  This fact can easily be

confirmed in all the above indexes considering the lower  r =1.35, in the allocation problem.  In this

sense, the stability index plays a strategic role in the optimal portfolio selection and for this reason, it

becomes very significant as an accurate estimation of this parameter.  Conversely, r in the above

optimization problem can be an opportune measure of the power to be given to the component of risk

due to the heavy-tailedness of asset returns.  The importance given to r is intuitively linked to the

conditions of the market in which the investor operates.

Hence, this empirical analysis shows that the component of risk due to heavy-tail distributions and

the stability property can be extremely important in the choice of the optimal portfolio.

4. THE MULTIVARIATE EXTENSION

In this section we consider different multivariate estimable stable models in the study of  the

portfolio selection.  In particular, we analyze the problem of optimal allocation 1),( +
+∈ nRxλ , nRx +∈ ,
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ex I−= 1λ , among  n+1 assets: n of those assets are stable distributed risky assets with returns

I
nzzz ],...,[ 1= , and the (n+1)th asset is risk-free.  No short selling is allowed, (i.e. ]1,0[∈λ , 0≥ix ,

this also implies that the 1≤ix ). Therefore, when the investor wishes to maximize the utility

functional ( )r
WEWcEWEWU )()()( −−= , where c and r are positive real numbers, zxzW I+= 0λ ,

0z  is the risk free asset return, and zx I  is the risky portfolio asset return, we study and analyze the

possible optimal allocations for the following stable models of asset returns.

Let us assume that the vector [ ]I
nzzz ,...,1=  is sub-Gaussian α -stable distributed ( 21 << α ),

whose characteristic function has the following form

(4.1)          ( ) 







∫ +−=




 +−==Φ

nS
IIIII

z itdsstitQttzitEt µγµ
αα

)(expexp))(exp()(
2

,

where 







=

2
ijR

Q  is a positive definite −× )( nn matrix, µ  is the mean vector, and )(dsγ  is the spectral

measure with support concentrated on { }1: =∈= sRsS n
n . The term ijR  is defined by

α

αα
−

=
2~]~,~[

2 jji
ij zzz

R
 ,

where the covariation α]
~,~[ ji zz  between two jointly symmetric α stable random variables iii zz µ−=:~

and jz~  is given by

∫
−

=
2

)()sgn(]~,~[
1

S
jjiji dsssszz γ

α
α ,

in particular, α
α

α
α

α
γ

1
1

)]~,~([)(~

2

ji
S

ii zzdssz =












= ∫ . Here the spectral measure )(dsγ has support on

the unit circle 2S .

This model can be considered as a special case of the Owen-Rabinovitch’s elliptical1 model (see Owen

and Rabinovitch (1984)). However,  no estimation procedure of the model parameters is given in the

elliptical models with non-finite variance.  In our approach we use (4.1) to provide the statistical

estimator of the stable efficient frontier. To estimate the efficient frontier for returns given by (4.1) we

need to consider one estimator for the mean vector µ  and  one estimator for the dispersion matrix Q.
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The estimator of µ is given by the vector µ̂ of sample averages. Using lemma 2.7.16 in Samorodnitsky

and Taqqu (1994) we can write for every p such that α<< p1

(4.2)                                                           
( )








=
>−<

p
j

p
ji

j

ji

zE

zzE

z

zz

~

~~

~

]~,~[ 1

α

α

α 1

where the scale parameter jσ  can be written 
α

σ jj z~= . Then jσ  can be valued with the moment

method suggested by Samorodnitsky and  Taqqu (1994) (property 1.2.17) in the case 0=β

)1(2

)(
~

1
0

21

α

µ

σ
α p

udusinupzE

z
p

pp
jj

p
j

p
j

−Γ

−

==
−

∞
−−∫

It follows from (4.2)

( )







=
>−<

p
j

p
ji

j
ij

zE

zzER

~

~~

2

1
2σ .

The above suggests the following estimator 











=

2

ˆ
ˆ ijR

Q  for the entries of the unknown covariation

matrix Q

∑

∑

=

=

−

=
N

k

pk
j

N

k

pk
j

k
i

j
ij

z

zz
R

1

)(

1

1)()(

2

~

~~

ˆ
2

ˆ
σ ,

where the 2
jσ  is estimated as follows

p

p

N

k

ppk
j

jj
j

p

udusinupz
NR

2

1
1 0

21)(

2

)1(2

~1

2

ˆ
ˆ





















−Γ
==

−
=

∞+
−−∑ ∫
α

σ .

The moments estimator is meaningful mostly for each fixed p. The rate of convergence of the

empirical matrix 











=

2

ˆ
ˆ ijR

Q  to the unknown (to-be-estimated) matrix Q, will be faster if p is as large as

possible,  see Rachev (1991).

                                                                                                                                                                     
See footnotes 1and 2.
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Consider two α  stable distributed random variables 1W , and 2W  with 1>α , equal skewness

parameter 
21 WW βββ == , and equal mean mWEWE == )()( 21 . However, suppose that 

21 WW σσ > .

Then, mXW W

d

+=
11 σ  and mXW W

d

+=
22 σ , where )0,,1( βαSX

d

= , and thus

dt
mt

XP
mt

XPdttWPtWPuG
u

WW

u

∫∫
∞−∞−

−
≤−

−
≤=≤−≤= ))()(())()(()(

12

12 σσ
.

Then, )(uG  is the negative decreasing function for every mu ≤ , and )()()( mGuGuf −= is the

positive increasing function for every mu > .  As  1W , and 2W  are integrable random variables

( 1>α ), integrating by part )(uG , we get 0))()(())()((lim)(
1212

=−−−=+∞ ∫
∞−∞→

u

WWWW
u

tFtFtduFuFuG .

Then, for every mu > , )(uf  cannot be greater than )(mG−  and 0)( ≤uG  for every real u.  That is:

(4.3)                                         RudttWPtWP
u

∈∀≤≤−≤∫
∞−

0))()(( 12 .

Hence, 2W  dominates 1W  in the sense of R-S.

In view of what stated before, when the returns [ ]I
nzzz ,...,1=  are jointly α  stable distributed, (non

necessarily sub-Gaussian), we obtain the efficient frontier of the risk averse investors as a solution of

the following optimization problem:

(4.4)                                          














=

=−+
=≥≤≤

*,

,)1(
,...,10,10

min

0

ββ

µ

σ

W

W
II

i
I

W
x

mzexx
nixandex ,

where zxzexW II +−= 0)1( . Hence, every risk averse investor will choose an optimal portfolio

among all portfolios described by the above three parameters efficient frontier; the three parameters are

the mean Wm , the scale parameter Wσ , and the skewness parameter Wβ .

Now, in view of our optimization problem, let us recall that in the sub-Gaussian case every portfolio

satisfies the relation

),,(
zxzxzx

d
I

III mSzx βσα=

and furthermore, W= 0z  when 0=x , otherwise, ))1(,,()1( 00 zx
I

zxzx

d
II

III mzexSzxzexW +−=+−= βσα ,

where α  is the index of stability , Qxx I
zx I =σ  is the scale (dispersion) parameter , 0=

zx Iβ  is the
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skewness parameter, and µI
zx

xm I =  is the mean of zx I .

Furthermore, in the sub-Gaussian case, all solutions to the optimization problem

( )r

x
WEWcEWE )()(max −−

for some ),1[ α∈r , belong to the mean-dispersion frontier

(4.5)                                      













<
+−

−
−

≥
+−

−

=

0
2
00

0

0
2
00

0

2

2

zmif
CzBzA

zm

zmif
CzBzA

zm

σ  ,

where )(zE=µ ; 0zxm I λµ += ; ex I−= 1λ  is the proportion of funds invested in the riskless asset;

Ie ]1,...,1[= ; µµ 1−= QA I ; µ1−= QeB I ; eQeC I 1−= , and Qxx I=2σ . Besides, the optimal portfolio

weights x takes the following form:

(4.6)                                             ( )
2
00

0
0

1

2 CzBzA

zm
ezQx

+−

−
−= − µ .

Note that (4.5) and (4.6) have the same forms of mean-variance efficient frontier. In particular, (4.6)

exhibits the two-fund separation property for both the stable and the normal case, but the matrix Q and

the parameter σ  have different meaning.  In the normal case, Q is the variance-covariance matrix and

σ  is the standard deviation, while in the stable case Q is a dispersion matrix (see (4.1)) and σ is the

scale (dispersion) parameter, Qxx I=σ .  From the two-fund separation property of the sub-Gaussian

α -stable approach, we can assume the market portfolio equal to the risky tangent portfolio under the

equilibrium conditions (as in the classic-variance Capital Asset Pricing Model (CAPM)). Therefore,

every optimal portfolio can be seen as the linear combination between the market portfolio

(4.7)                                                         
0

1
0 )(

CzB

zQez
zx

I
I

−
−

=
−µ

 ,

and the riskless asset return 0z .  Following the same arguments as in Sharpe-Lintner-Mossin’s mean-

variance equilibrium model, the return of asset i is given by:

(4.8)                                                    ))(()( 0,0 zzxEzzE I
mii −+= β ,

where 
xQx

eQx
I

iI

mi =,β , with ie , the vector with 1 in the i-th component and zero in all the other

components.  As a consequence of Ross’ necessary and sufficient conditions of two-fund separation
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(see Ross (1978)), the above model admits the form

niYbz iiii ,....,1, =++= εµ ,

where 0)/( =YE ε , and the vector ε+bY  is sub-Gaussian α -stable distributed with zero mean.

Hence, our sub-Gaussian α -stable version of CAPM, is not much different from the Gamrowski-

Rachev (1999) version of the two-fund separation α -stable model.  As a matter of fact, Gamrowski

and Rachev (1999) propose a generalization of Fama’s α -stable model assuming

,iiii Ybz εµ ++= for ni ,....,1= , where iε  and Y are α -stable distributed and 0)/( =YE ε .  By their

assumptions,

))((
~

)( 0,0 zzxEzzE I
mii −+= β

where 
α

αα

αα
β

]~,~[

]~,~[]~,~[

]~,~[

1~
, zxzx

zxz

x

zxzx

zxzx II

I
i

i

II

IImi =
∂

∂
= .

Furthermore, the coefficient 
α

α

]~,~[

]~,~[

zxzx

zxz
II

I
i  can be estimated as shown in (4.2).

Now, we see that in the above sub-Gaussian symmetric α stable model ( ) α
α

2
]~,~[ zxzxxQx III =  and

( )
i

II
iI

x

zxzx
Qex

∂

∂
=

α
α

2
]~,~[

2

1
 ,  thus, we get the equivalence between the coefficient mi,β  of model

(4.8) and mi,
~
β  of Gamrowski-Rachev’s model i.e.:

miII

I
i

i

zx

zx
I

iI

mi
zxzx

zxz

xxQx

Qex I

I
,,

~

]~,~[

]~,~[1
β

σ

σ
β

α

α ==
∂

∂
== ,

where zx Iσ  is the scale parameter of market portfolio.

In our optimal allocation problem, we suppose that 0≥ix  because we assume that no short sale is

allowed. If 0<ix  for some index i, we can exclude that asset by our allocation problem.  Hence, the

optimal solution of the problem in the important case ),1( α∈r , (recall that the case r=1 gives trivial

solution: either the riskless asset or the market portfolio), is given by

1

1

0

),0,(
1

−










 −
−=

r

r
zx

zx

rVrc

zm

I

I

ασ
λ  if 0zm

zx I >  and )1,0(∈λ ,

and xx )1( λ−= ,

where x  is given by (4.7) and
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( )


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
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
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)21(),0,(
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π
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r

casestabletheinrH
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Furthermore, the optimal risky portfolio 
0

1
0 )(

CzB

zQez
zx

I
I

−
−

=
−µ

 has mean 
0

0

CzB

BzA
m

zx I

−
−

=  and scale

parameter 
0

212
00 )2(

CzB

CzBzA
zx I

−
+−

=σ .

Again, one should expect that the optimal allocation would be different because the constant

),0,( rV α and the matrix Q are different in the stable non-Gaussian and in the normal case.

Next, suppose that the returns [ ]I

nzzz ,...,1=  are jointly α -stable distributed with 21 << α , i.e., their

joint characteristic function is given by

( )( ) 




 ∫ +−−=Φ

nS
III

z itdsstistt µγπα
α

)(2tan)sgn(1exp)( ,

where α  is the index of stability, )(dsγ  is the spectral measure concentrated on nS .

Under this assumption, every portfolio zx I  is distributed as

),,(
zxzxzx

d
I

III mSzx βσα=

where, 
αα

γσ
1

)( 




= ∫

n
I S

I
zx

dssx  is the scale parameter , 
α

α

σ

γ
β

zx

S

I

zx
I

n
I

dssx∫
=

)(
 is the skewness

parameter, and µI
zx

xm I =  is the mean of zx I .  In this case, we are not able to find a closed form to

the solution of the problem

(4.9)                                          ))(()(max
r

x
WEWcEWE −−  for ),1[ α∈r ,

where zxzexW II +−= 0)1( .  We can only state that the solution of (4.9) is one of  the solutions of the

optimization problem (4.4) varying the admissible Wm  and Wβ  (4.1).  In order to find an analytical

version of a three parameter stable model, we can consider the following three-fund separation model of

security returns:

(4.10)                                                   niYbz iiii ,....,1, =++= εµ ,
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where the random vector I
n ),...,,( 21 εεεε =  is independent from Y  and follows a joint sub-Gaussian

1α -stable distribution ( 21 1 << α ), with zero mean and characteristic function






−=Φ

21

exp)(
α

ε Qttt I ,

where Q is the definite positive dispersion matrix.  Besides, )0,,(
2 YY

d

SY βσα=  is 2α -stable distributed

random variable ( 21 2 << α ) with zero mean. A testable model, in which Y is 2α -stable symmetric

distributed (i.e. 0=Yβ ), was recently studied by Rachev and Schwartz (1999).  Moreover, when Y is

non symmetric (i.e. 0≠Yβ ), the model is a stable version of Simaan’s one (1993).  Simaan assumes

that conditional on Y, the random vector ε  follows a joint-elliptical distribution with characteristic

function )()(/ Qttgt I
Y =Φ ε , but in his considerations, he implicitly assumes the dispersion matrix Q

independent of the random variable Y. Hence, Shiman’s results are true if and only if

I
n ),...,,( 21 εεεε =  is independent by Y, as in our case. When 0=Yβ  and 21 αα = , our model leads to

the two-fund separation Fama’s model.  Thus, the model (4.10) distinguishes itself from the

Götzenberger, Rachev and Schwartz’s model, the Simaan’s model, and Fama’s because it incorporates

asymmetric heavy-tailed distributional asset returns. Moreover under the assumptions of (4.10) all

portfolios are in the domain of attraction of an ( 21 ,αα )-stable law.

The characteristic function of the vector of returns I
nzzz ],...,[ 1=  is given by:

(4.11)  ( ) 




 +−−−=ΦΦ=Φ µπαβσ

ααµ
ε

II
YY

IIitI
Yz itbtibtQttebttt

I

)2/tan)sgn(1(exp)()()(
21 2

where I
nbbb ],...,[ 1=  is the coefficient vector and I

n ],...,[ 1 µµµ = is the mean vector.

Next we shall estimate the parameter in model (4.10), (4.11). First, the estimator of µ is given by

the vector µ̂ of sample averages. Then we consider as factor Y a centralized index return. Therefore,

given the sequence of observations )(kY , we estimate its stable parameters. Observe that the random

vector ε admits a representation as a product of two independent random variables: VG=ε . G is a

Gaussian vector with null mean and variance covariance matrix Q, and AV = , where A is an 21α -

stable subordinator, that is 



























= 0,1,
4

cos
1

1

2
1

2

α

α
πα

SA .  Then we can generate values kA  k=1,…,N
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of A independent of G. We address to Paulauskas and Rachev (1999) the problem of generating such

values kA . Regressing the centralizing returns iii zz µ̂~ −= on Y we obtain the following ML estimators

for I
nbbb ],...,[ 1=  and Q:

∑

∑

=

==
N

k

k

k

k
i

k
N

k k
i

Y
A

zY
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b

1

2)(

)()(

1

)(
1

)~(
1

ˆ     and    ∑
=

−−=
N

k

Ikkkk

k

YbzYbz
AN

Q
1

)()()()( )ˆ~)(ˆ~(
11ˆ .

The selection of 1α  is a separate problem. A possible way to estimate 1α  is to consider the OLS

estimator  

∑

∑

=

==
N

k

k

N

k

k
i

k

i

Y

zY

b

1

2)(

1

)()(

)(

~
~

 and then to evaluate the sample residuals )()()( ~~~ kkk Ybz −=ε . If these

residuals are heavy tailed, one can take the tail exponent as an estimator for 1α . The asymptotic

properties of the above estimators can be derived arguing in a similar way to Paulauskas and Rachev

(1999) and Götzenberger, Rachev and Schwartz (1999).

From (4.11) we see that when 21: ααα == , every portfolio zx I  is an α  stable distribution and has

the distributional form

),,(
zxzxzx

d
I

III mSzx βσα=

and W = 0z  when 0=x  otherwise ))1(,,()1( 00 zx
I

zxzx

d
II

III mzexSzxzexW +−=+−= βσα , where

(4.12)            ααα σσ )()( 2
Y

II
zx

bxQxxI += , 
α

α

σ

βσ
β

zx

Y
I

Y
I

zx
I

I

bxbx )sgn(
= , and µI

zx
xm I = .

Consider two portfolios zx I  and zy I  with the same mean µµ II yx = , the same parameter bybx II =

and such that QyyQxx II > .  Then, )0,0,1(/
1α

εε
S

Qyy

y

Qxx

x
YX

d

I

Id

I

Id

===  and thus, for every real u:
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where Yf  is the density of Y .  It follows that zy I dominates zx I  in the sense of R-S. In addition,

when unlimited short selling is allowed, the efficient frontier of non-dominated portfolios is given by

the solution of the following quadratic programming problem:













=
=−+

*,

)1(
2

1
min

0

bbx

mzexx

Qxx

I
W

II

I

x

µ .

We know that generally the efficient set does not present an analytical form.  In particular, Dybwig

[1985], Markowitz [1959], and Bawa [1976-1978] show that the mean variance efficient set for the risk

averse investors and for the non-satiable investors with restrictions on short sales, consists of segments

which are parabolic or horizontal line segments.  In addition, kinks in the efficient sets are the rule

rather than the exception.  We cannot expect the multi-parameter efficient set to take a simpler form.

Under our assumptions, we obtain the efficient frontier for the risk-averse investors by solving the

above optimization problem that gives the following optimal portfolios

(4.14)                               
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that is a linear combination of the riskless portfolio 0z , and the risky portfolios
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In particular, if we assume short sale restrictions in the market, then

011 32 ≥−−≥ λλ , and  0),(1 32 ≥≥ λλix  i=1,…, n

where 
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Similar to the Simaan’s model, with the three-fund separation model, we get a pricing linear relation for

asset returns:

nibbz kiii ,....,2,1,
~~

3,22,0 =++= δδµ ,

where pδ  for p=1,2 are the risk premiums relative to a market factor and a skewness factor.

Note that the efficient portfolio of Simaan’s three-moment model admits a similar form (4.14) of the

above stable model (4.10). Whereas, the matrix Q and the parameters I
nbbb ],...,[ 1=  have different
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meaning.  In the Simaan’s model, Q is the variance covariance matrix of z, and the parameters ib  are

estimated considering the third central moment

 ( ) ( )
31

1

3)(
3

~1








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=

N

k

kz
NYE

b ,

where )(~ iz  for  i=1,…,N are centralized observations of the vector z and the random Y is a fixed non

symmetric random variable.

If we try to solve analytically the optimization problem (4.9), in the stable case with 21: ααα == ,

we have to solve the following two-parameter optimal allocation problem
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are respectively the scale parameter, the mean and the skewness parameter, of the optimal risky

portfolio zx I ),( 32 λλ .  In order to solve the allocation problem (4.9) in the more general case when 1α

is not necessarily equal to 2α , we can approximate the optimal allocation solving the following

optimization problem

( ) ∑
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32
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where )(~ iz  for  i=1,…,N are centralized observations of the vector z. This is the typical way to

approximate the solution when the efficient frontier admits the form

)(yfx =  where kRBy ⊆∈ .

Then, according to the Law of Large Numbers, we know that an investor with utility function u can find

an approximating solution to his portfolio selection problem in the portfolio weights

*)(* yfx = ,
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where ∑
=∈

=
s

i

i

By
zyfu

s
y

1

)( ))'((
1

maxarg(*  and )(iz  i=1,…, s are independent observations of the vector of

the gross returns.

We draw our conclusion on the three- fund separation model, underlining that in the three-moment

model, the solution of the allocation problem (4.9) depends on the choice of the non-symmetric random

variable Y.  Clearly, one should expect that the optimal allocation will be different assuming that asset

returns are in the domain of attraction of an ( 21 ,αα )-stable law, or depending on the three moments.

As empirical studies show, one of the most severe restrictions in performance measurement and

asset pricing in the stable case is the assumption of a common index of stability for all assets –

individual securities and portfolio alike.  It is well recognized that asset returns are not normally

distributed.  We also know the return distributions do not have the same index of stability.  Recent

studies have shown how to define the efficient frontier for risk averse investors who wish to allocate

their initial wealth between n investments whose returns are in the domain of attraction of ),...,( 1 kαα -

stable law, see Ortobelli and Rachev (1999).  In these cases, it is not generally possible to find a closed

form to the efficient frontier.  Instead, generalizing the above model, we get the following k+1 fund

separation model, (for details on k fund separation models see Ross (1978)):

(4.15)                                     niYbYbz ikkiiii ,....,1,... ,22, =++++= εµ .

Here 2≥≥ kn , the vector I
n ),...,,( 21 εεεε =  is independent from kYY ,...,2  and follows a joint sub-

Gaussian 1α -stable distribution with 21 1 << α , zero mean, and characteristic function






−=Φ

21

exp)(
α

ε Qttt I , and the random variables )0,,(
jjj YY

d

j SY βσα= , j=2,…, k are jα -stable

distributed with 21 << jα  and zero mean. If we want to insure the separation obtains in situations

where the above model degenerates into a p-fund separation model with p<k+1, then we need the rank

condition (see Ross (1978)).

Using similar arguments of (4.3) and (4.13), we can prove that zy I dominates zx I  in the sense of

R-S for every couple of portfolios zx I  and zy I  with the same mean µµ II yx = , and the same

parameters jj
I

j
I cbxby == •• ,, , kj ,...,2= , where I

jnjj bbb ],...,[ ,,1, =• , and such that QyyQxx II > .

Hence, when unlimited short selling is allowed, the efficient frontier of non dominated portfolios is

given by the solution of the following quadratic programming problem:
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(4.16)                                                     
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By solving the optimization problem (4.16), we obtain that the riskless portfolio and other k risky

portfolios span the efficient frontier for the risk averse investors. It follows that portfolio efficient

frontier is given by
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In order to estimate the parameters, we can still use the above maximum likelihood method, but we

need to know the joint distribution  of the vector ),...,( 2 kYY .  For example, we can simply assume

independent random variables jY   j=2,…, k, then the characteristic function of the vector of returns

I
nzzz ],...,[ 1=  is given by µ

ε

I

j

it
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j
j

I
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2
, )()()( .

Given that kαααα ==== ...: 21  and  the random variables jY   j=2,…, k, are independent, the

following k-parameter optimal allocation problem correspondent to (4.9) has to be solved:
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More generally, when the stability indexes 1α , 2α , kα  are not necessarily equal, and the random

variables jY   j=2,…, k, are not necessarily independent, we can approximate the optimal allocation of

the problem (4.9) solving the following optimization problem:

∑
=

++ −+−−
++

N

k

rk
k

I
zxk zx

N
cmz

k
I

k 1

)(
132),...,,(0132

,...,

~),...,,(
1

),...,1(max
132

132

λλλλλλ λλλλλλ

where )(~ iz  for  i=1,…,N are centralized observations of the vector z.

We recall that all the above multivariate models are motivated by arbitrage considerations as in the

Arbitrage Pricing Theory (APT) (see Ross (1976)).  In this context we do not intend to go into details,

however, it should be noted that there are two versions of the APT for α -stable distributed returns,

namely a so-called equilibrium (see Chen and Ingersoll (1983), Dybvig (1983), Grinblatt and Titman

(1983)) and an asymptotic version (see Huberman (1982)).  Besides, Connor (1984) and Milne (1988)

introduced a general theory which encompassed the equilibrium APT as well as the mutual fund

separation theory for returns belonging to any normed vector space (hence also α -stable distributed

returns). Whereas Gamrowski and Rachev (1999) provide the proof for the asymptotic version of α -

stable distributed returns.  Thus, it follows from Connor and Milne’s theory that the above random law

of the returns is coherent with classic arbitrage pricing theory and the mean returns can be approximated

by the linear pricing relation

,....2,1,... ,22,0 =+++≈ ibbz kkiii δδµ ,

where pδ , for kp ,...,1= , are the risk premiums relative to the different factors.

As it follows from the above discussion, all the multivariate models introduced here can be

empirically tested and will be summarized in Appendix A.  It must be pointed out that in this section,

we proposed a maximum likelihood method to estimate the parameters of the stable models, see also

Rachev and Mittnik (2000) for some alternative methods.  A more general empirical analysis with

further discussions, studies and comparisons of the above multivariate cases does not enter in the

objective of this paper and it will be the subject of future research.
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5.  A SAFETY FIRST OPTIMAL ALLOCATION PROBLEM

WITH STABLE DISTRIBUTED RETURNS

In this section we analyze the optimal allocation problem of a non-satiable investor who wishes to

maximize the utility functional

(5.1)                                                 )()()( VaRWcPWEWV −≤−= ,

where c is a positive real number and VaR  is a real number. Many are the reasons why we propose to

study the above allocation problem. However, in our opinion the most important reasons are:

a) In accordance with the above allocation problem, we are able to propose an alternative mean-risk

analysis of portfolio selection.  In fact, the optimal allocation that we get solving the following problem

(5.2)                                                    )()(max VaRWcPWE
AW

−≤−
∈

,

where A is the set of all the admissible returns, is equal to one in which we maximize the utility

functional

)()( VaRWbPWaE −≤− ,

for every 0, >ba , assuming in (5.2) 
a

b
c = .  If we assume )( VaRWP −≤  as the particular risk

measure of portfolio loss, then using the optimal allocation problem (5.2), we can find the optimal

portfolios that maximize the expected mean of the increment wealth aW as well as minimizing the

individual risk of loss )( VaRWbP −≤ .

b) The allocation problem (5.2) can be considered a safety first optimal allocation problem. In fact,

every non-satiable investor with increasing utility function

(5.3)                                                          )()( ][ xcIxxu VaRx −≤−=

tends to choose portfolios that maximize the utility functional (5.1). At the same time the investor, who

uses the increasing utility function (5.3), maximizes the expected value as well as the probability of

survival of his portfolio, as postulated in the safety first principles (for references on the safety first

principles see Roy (1952), Tesler (1955/6), Bawa (1978)).

Some recent studies proved that there are many reasons why the safety first approach should be

considered as an alternative to the classic mean-volatility one in portfolio selection theory. Principally,

the main motivations leading to safety first portfolio choice are the following:
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1) we can consider a portfolio selection for returns with unknown distributions;

2) it is possible to develop a multi-parameter safety first analysis of optimal choices in  the market;

3) safety first analysis provides a representation of the efficient frontier in function of the threshold

VaR,

4) some efficient programming methods approximate optimal safety first portfolios;

5) the market trend can be studied and analyzed,

(see Ortobelli (1999a-b-c), Ortobelli and Rachev (1999-2000)).  In appendix B, we include a brief

summary of the basic results on safety first portfolio selection.

We first assume zzW )1(0 λλ −+= , where 0z  is the risk-free asset return and z  is the risky asset

return, that is, α -stable distributed, with 1>α , that is: ),,( zzz

d
mSz βσα= .

To solve the allocation problem (5.2) we first note that,

)()1()()()( 0 VaRcFmzVaRWcPWEWV Wz −−−+=−≤−= λλ ,

where WF  is the cumulative distribution function of W.  Clearly, we are interested in the non-trivial

solution of the problem )1,0(∈λ  given by the solution of the first order condition with risk aversion

parameter c. When )1,0[∈λ , ( ) ))1(,,1( 0 zzz

d
mzSW λλβσλα −+−= , then V(W)  is given by:

a) in the stable non-Gaussian case, for 12 >> α ,
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Here, βα ,F  is the cumulative distribution function of the stable random variable

( ))2tan(,,1 παββα −zS , (see Nolan (1998) and Zolatorev (1986)) defined by:
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and ( ) ( )
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b) in the normal case for 2=α
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Thus, we can find a numerical solution of the maximization problem, see (5.4) and (5.5), as well as the

stable non-Gaussian and the normal optimal allocation )1,0(∈λ .

6. COMPARISON BETWEEN STABLE NON-GAUSSIAN AND

NORMAL OPTIMAL ALLOCATIONS

In this section, we analyze the difference that occurs when the investor fits normal and stable (non-

Gaussian) distributions in the above safety first optimal allocation.  In Table 1, we have chosen the

same empirical VaR for the risky indexes S&P 500, DAX30, CAC40 provided by Khindanova, Rachev

and Schwartz (1999) for the various index-daily returns (see Table IV).  This permits us not only to

compare the different allocation in the stable and Gaussian case for different values of VaR, but  also to

see how important it is in relation to the choice of the risk aversion coefficient c in the optimal

allocation )()(max VaRWcPWE −≤−
λ

.  Moreover, we choose the empirical VaR (95% and 99%) for

the different indexes because they are the most used in VaR analysis.  In some sense, our allocation

problem (5.2) can be considered the inverse problem of VaR analysis. Since in VaR analysis, we

analyze the VaR of a given portfolio for a fixed probability of loss.  Here we choose a portfolio that

minimizes the (non-fixed) probability of loss.

In table V we have listed the optimal proportion of funds invested in the bond,  λ  for the normal

and the stable fit when we use the above empirical VaR.  The riskless return is given by the current

value of three months LIBOR, 6% p.a.  We use Mathematica (S. Wolfram) to evaluate the optimal

allocation in the normal case, and we use Stable (Nolan’s (1998) program) to find a numerical solution

of the stable optimal allocation.

The analysis of table V shows that the differences between optimal allocation in the normal case

and in the stable one can be up to 60%.  In fact, we observe two significant differences.



27

1) In the case of  lower risk aversion coefficient c, the “normal investor”(i.e. an investor who fits data

with normal distributions)  invests more in the riskless return, (this difference can be up to the

30%). This diversity is due to the “kurtosis effect”. In fact, the stable distributions are more peaked

around the mean than the normal one. Consequently the investor, who fits the data using the stable

distribution and who is not too much averse to the risk of loss, gives more importance to the mean

than the “normal investor” with the same coefficient of aversion to the risk of loss. The latter

prefers a lower mean for a lower risk of loss instead. Hence, the “normal investor” loses some

opportunities of earning because of the kurtosis effect.

2) In the case of greater risk aversion coefficient c, it is the “stable non-Gaussian investor” who

invests more in the riskless asset.  This second difference (about the 60% in the allocation on the

riskless asset) is due to the “tail effect”. In this context, the normal tail, the probability

)( VaRWP −≤  tends to zero exponentially and for higher riskless component the probability

)( VaRWP −≤  is almost null. Therefore, the “normal investor’s allocation” in the riskless asset

improves only using a very high coefficient c. This does not happen to the “stable non Gaussian

investor”. As a result, the behavior of the “normal investor” can be very dangerous. The fact of

maximizing the utility functional (5.1) is equivalent to choose the return, that maximizes its

expected value plus the expected value of a gamble in which the investor has to pay c if his return

will be lower than a prefixed threshold –VaR. Now, the normal investor is not too much interested

in improving the value c because he prefers the higher mean, being the probability

)( VaRWP −≤ almost null. Hence, because of the tail effect the “normal investor” does not

consider that returns have heavy tail and so he risks more than the “stable non Gaussian investor” .

In some sense, we must expect very different optimal allocation in this problem. As a matter of fact,

here we have a direct presence of the tail risk measure given by the )( VaRWP −≤ . Since the above

safety first utility functional suits the non-satiable, investors not necessarily risk averse, it underlines

and exalts the differences, beyond the greater adherence to the data of stable non Gaussian

distributional approach. This comparison highlights that the choice of stable distributions for asset

returns is more recommendable in the above safety first optimization problem. As a matter of fact, the

safety first utility functional, considered in the comparison, suits the non-satiable not necessarily risk

averse investors. Whereas stable distributional assumption presents a more protective behavior,
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especially considering the component of risk due to heavy tails.  Hence, the differences among the

stable distributions having different stability indexes explain the big diversities in the allocation

problem, and we see the crucial effect of the stable non-Gaussian distribution having heavy tails.

7. CONSIDERATIONS ON THE SAFETY FIRST OPTIMIZATION PROBLEM

FOR THE MULTIVARIATE MODELS

In this section, we consider the problem of optimal allocation among  n+1 assets: n of those assets

are stable distributed risky assets with returns I
nzzz ],...,[ 1=  and the (n+1)th asset is risk-free.

Suppose the investor wishes to maximize the utility functional )()()( VaRWcPWEWV −≤−= , where

c is a positive real number, zxzexW II +−= 0)1( , 0z  is the risk-free asset return, and zx I  is the risky

portfolio asset return.

In the case the vector of risky returns [ ]Inzzz ,...,1=  is sub-Gaussian α -stable distributed with

21 << α , then the portfolio weight efficient frontier is given by (4.6) and the optimal portfolios are a

linear combination between the market portfolio 
0

1
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 and the riskless asset return

0z . Hence, we can find the optimal allocation ( λ , x) solving

(7.1)                                                         )()(max VaRWcPWE −≤−
λ

,

where zxzW I)1(0 λλ −+= .  Thus, under the “no short sale” assumption ( λ , 0≥ix ), the optimal

allocation will be given by )1,0(∈λ , and xx )1( λ−=  that maximize
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Here 0,αF  is the above defined cumulative distribution function of the stable random variable

( )0,0,1αS ; 
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==σ  are respectively the mean and the

scale parameter of the optimal risky portfolio zx I , and µµ 1−= QA I ; µ1−= QeB I ; eQeC I 1−= .
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According to safety first portfolio selection theory (see Ortobelli and Rachev (1999)), we know that

all the portfolio weights of the risk averse efficient frontier (4.6) are static points of the optimization

problem

(7.2)                                    ))1((min)(min 0 tzxzexPtWP II

xx
≤+−=≤

for some real t. In particular, the solutions of (7.2) for 0zt ≥  are all the portfolio weights belonging to

the portfolio weight non-satiable risk-averse efficient frontier.  Thus, for every optimal allocation

( λ , x), solving (7.1), there exists a value 0

_____~ zVaRt ≥−=  such that









−≤+−=−= ))1((minarg)1(

_____

0 VaRzxzexPxx II

x
λ ,

and the portfolio weight efficient frontier for non satiable risk averse investors can be expressed as a

function of t~  (the safety first representation of the efficient frontier).  Moreover, when we consider

short sale restrictions ( )1,0(∈λ , 0≥ix ), the set of optimal portfolios for non-satiable investors

contains only the efficient frontier for non-satiable risk averse investors, (see Bawa (1978) and

Ortobelli and Rachev (1999)).

Analogously to section 4, we can assume the three-fund separation stable model (4.10) for the risk

returns.  We obtain the optimal allocation solving

)()(max
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Assuming that no short sale is allowed (i.e. ( ) 01 32 ≥−− λλ , 0),( 32 ≥λλix ), then the optimal

allocation is given by )1,0(∈λ , and ),( 32 λλx  that maximize )()()( VaRWcPWEWV −≤−= . Hence,

we can approximate the optimal allocation on the efficient frontier solving the following optimization

problem
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where )(iz  for  i=1,…,N are observations of the vector z. In particular, when 21: ααα == , we can
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solve numerically the following two-parameter optimal allocation problem
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respectively, the skewness parameter, the scale parameter, and the mean of the optimal risky portfolio

zx I ),( 32 λλ .

As a further generalization, we can assume the (k+1) fund separation stable model (4.15) as the risk

returns. Thus, we obtain the optimal allocation solving
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Assuming that no short sale is allowed (i.e. λ , 0),...,,( 32 ≥kix λλλ ), then the optimal allocation is

given by )1,0(∈λ , and ),...,( 12 +kx λλ , that maximize )()()( VaRWcPWEWV −≤−= . Therefore, we

can approximate the optimal allocation on the efficient frontier by solving the following optimization

problem:
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Similarly to the three fund separation model, when kααα === ...: 1 , we can solve numerically the

allocation problem using the analytical formulation of the cumulative distribution function.
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Under the assumptions of the model (4.15), given two portfolios zx I  and zy I  with the same mean

µµ II yx =  and the same parameters j
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kYYf ,...,2
 is the joint density of ),...,( 2 kYY , the last inequality

can be proved using similar arguments as in (4.3).  It follows that zy I dominates zx I  in the sense of

R-S.  Next, we can obtain the efficient frontier for the risk averse investors when unlimited short

selling is allowed, as the solution of the alternative following the quadratic programming problem:
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where )0,0,1(/
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kYYf ,...,2
 is the joint density of ),...,( 2 kYY  and g is an increasing

function.  As a consequence, if the portfolio 0)1( zexzx II −+  maximizes the probability of survival

for a fixed threshold s and fixed parameters kjc
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there is no portfolio 0)1( zeyzy II −+  such that

00 )1()1( zeyyzexx IIII −+=−+ µµ  and QxxQyy II < .

With similar arguments, we can prove that every portfolio that minimizes the probability of survival for

a fixed threshold s and fixed parameters kjc
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,...,2~, ==• , is a portfolio that minimizes the

volatility for fixed mean and fixed parameters kjc
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,...,2~, ==• , (i. e. it is a non-dominated

portfolio in the sense of R-S). However, the opposite is also true, (comparing the solutions of (4.16)

with the static points of the following optimization problem (7.4) proves it). As in the sub-Gaussian

stable case, when unlimited short selling is allowed, all the portfolios of the risk averse efficient

frontier (4.17), are static points of the optimization problem
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varying s*, and kjc j ,...,2~ = . In particular, the solutions of (7.4) for 0zs ≥  are all the portfolio

weights belonging to the portfolio weight efficient frontier for the non-satiable risk-averse investors.
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Furthermore, the portfolio weight efficient frontier for the non-satiable risk averse investors can be
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expressed as a function of s~  and kjc j ,...,2* = , (the safety first representation of the multi-

parameter efficient frontier).  Also in this case, when we consider short sale restrictions, the set of

optimal portfolios for the non-satiable investors generally contains (in the strict sense) the efficient

frontier for the non-satiable risk averse investors.

8. CONCLUSIONS

In first analysis, the comparison made between the stable non-Gaussian and the normal approach to

the allocation problems has indicated that the stable non-Gaussian allocation is more risk preserving

than the normal one. Precisely the stable approach, differently from the normal one, considers the

component of risk due to the fat tails. Other differences can be seen in the allocation as due to the

different kurtosis in  the stable and normal distributions. In this case a “stable investor”, not too averse

to the risk of loss, invests more in the risky assets than a “normal investor”. Therefore, we found that

the two main differences (tails and kurtosis) between Gaussian and stable non Gaussian approaches

imply important differences in the allocation problems. Taken into account that the stable approach is

more adherent to the reality of the market, then, as argued by Götezenberger, Rachev and Schwartz

(1999), we can obtain models that improve the performance measurements with the stable

distributional assumption.

In second analysis, we study, analyze and discuss portfolio choice models considering returns with

heavy tailed distributions. The first distributional model considered: the case of sub Gaussian α  stable

distributed returns permits a mean risk analysis pretty similar to the Markowitz-Tobin mean variance

one. As a matter of fact, this model admits the same analytical form for the efficient frontier, but the

parameters in the two models have a different meaning . Therefore, the most important difference is

given by the way of estimating the parameters. In order to present heavy tailed models that consider the

asymmetry of the returns, we study a three fund separation model where the portfolios are in the

domain of attraction of an ),( 21 αα  stable law. Finally, we analyze the case of k+1 fund separation

model with portfolios in the domain of attraction of an ),...,,( 21 kααα  stable law. For all models we

explicate the efficient frontier for the risk averse investors. Then, we show how to estimate all

parameters and  to determine the safety first representation of the multi-parameter efficient frontier. In
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this context, we have shown that if the stable optimal portfolio analysis is stable, our approach is

theoretically and empirically possible.  Indeed, this work should be viewed only as a starting point for

new empirical and theoretical studies on the topic of optimal allocation.  In order to know which stable

model is preferable, the market conditions in which the investors operate must be analyzed .

Furthermore, the numbers of parameters can be increased in the model so to achieve a better

approximation, although it can be far more “expensive” in the calculation time.  Finally, as far as  the

choice of the best indexes to choose in the k+1 fund separation model, we can refer to Ross’ analysis

on this issue.

APPENDIX  A

In table VI we summarize the different models used in this paper.

APPENDIX  B: ON SAFETY FIRST PORTFOLIO CHOICE

Roy [1952], Bawa [1976, 1978], Pyle and Turnowsky [1970, 1971] suggest the safety first rules as

a criterion for decision making under uncertainty.  The practical appeal of the generalized safety first

rules is demonstrated by Bawa [1979].  In the context of realistic portfolio selection problems where

the distributions of portfolio returns are unknown, safety first rules can be used by applying them to the

empirical distribution of portfolio returns used in lieu of the true, but unknown, distributions.  More

recently, Ortobelli and Rachev (2000) also showed that the Young (1998) minimax principle is a

particular case of the more general safety first principle.  Moreover, the safety first portfolio selection

rules suggest consistent statistics to approximate optimal portfolios for the non-satiable investors and

the non-satiable risk averse investors.  These criteria maintain almost the same advantages of the

minimax method.  Hence, the developed programming methods to determine safety first portfolio

selection have the potential to make portfolio optimization a tool very accessible to any financial

manager.

Pyle and Turnovsky [1970, 1971], Bawa [1976, 1978] and more recently Ortobelli [1999b-c],

Ortobelli and Rachev (1999-2000) showed that when the returns belong to an elliptical family of

distributions, then safety first analysis provides a representation of the mean dispersion efficient

frontier in function of the threshold VaR.  In this case it appears more realistic to assume sub-Gaussian
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stable distributions of the returns in safety first analysis.  Moreover, the equivalence of the efficient

frontiers is not only a consequence of the elliptical distributional approach, in fact, Ortobelli (1999b-c),

Ortobelli and Rachev (1999-2000) realize the Pyle and Turnowsky’s conjecture and generalize safety

first analysis to a multi-parameter portfolio selection.  Hence, under some regularity conditions on the

distributions of returns, we have equivalence rules between the non stochastically dominated sets, the

sets of safety first portfolios and the moments efficient frontiers.  These correspondences also imply

that safety first analysis is an alternative and can be more general than moments analysis because it

does not necessarily require distributional restrictions.  In Ortobelli and Rachev (2000), the concept of

stochastic bounds of the market is introduced, where cumulative distributions can be obtained as

envelope of optimal portfolio cumulative distributions.  The studies on the stochastic bounds permit to

give a modern interpretation of equilibrium and to analyze the trend of a complete market with short

sale restrictions.
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FOOTNOTES

1) We recall that Chamberlein (1983) shows that the families of elliptical distributions with finite

variance are necessary and sufficient for the expected utility of final wealth to be a function only of the

mean and the variance.

2) tx :=
t

xx)(sgn .
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TABLES

Table I. Estimated daily index parameters

The following table was obtained by Khindanova, Rachev and Schwartz (1999). It summarizes the

estimated parameters of the normal and the stable fit the sample distribution of z when z is either the

index  S&P 500 or DAX30 or CAC40.

  Series                   Normal                                                                                  Stable

                      Mean           Standard           Method                  α                β                    µ              σ
                                         Deviation

S&P 500        0.032              0.930                   ML                 1.708           0.004              0.036        0.512

DAX30          0.026             1.002                    ML                 1.823          -0.084              0.027        0.592

CAC40          0.028              1.198                    ML                 1.784          -0.153              0.027       0.698

Table II: Coefficient c  for the normal and the stable case in the allocation problem

))(()(max WEWcEWE −−
λ

.

This table computes the coefficient

z

z

V

zm
c

σβα )1,,(
0−

=

where 
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
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=

<<
=

)2(
2

)21()1,,(
)1,,(

α
π

αβα
βα

casenormalthein

casestabletheinH
V , 0z  is the riskless rate three months

LIBOR 6% annual rate (daily 
360

06.0
60001.00 ==z ) and z is either the index  S&P 500 or DAX30 or

CAC40. In particular, we point out with 1c  and 2c  the coefficient c  respectively for the normal and

the stable case.
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               Series                                  Normal case                                             Stable case

                                                           coefficient  1c                                           coefficient  2c

             S&P 500                                   0.043                                                           0.051

             DAX30                                     0.032                                                           0.036

             CAC40                                     0.029                                                           0.030

Table III: Optimal allocation for the normal and the stable fit the optimization problem

))(()(max
r

WEWcEWE −−
λ

 when r=1.5 or r=1.35.

This table computes the optimal allocation λ  in the riskless return three months LIBOR 6% annual

rate (daily  
360

06.0
60001.00 ==z ) for different risk aversion coefficient c of the optimization problem

))(()(max
r

WEWcEWE −−
λ

where zzW )1(0 λλ −+= and  z is either the index  S&P 500 or DAX30 or CAC40. In particular, we

analyse the normal and the stable when r=1.5 or r=1.35.
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                          Coefficient   “c”                          Normal                                          Stable

SERIES       of the optimization                Optimal Allocation λ                   Optimal Allocation λ
                             problem                                        With                                            With
                                                                    r=1.35                 r=1.5                  r=1.35                  r=1.5

S&P500               c=0.0276                        0.000                   0.006                   0.000                   0.415
                             c=0.03                            0.000                   0.159                   0.000                   0.505
                             c=0.032                          0.069                   0.261                   0.096                   0.565
                             c=0.033                          0.148                   0.305                   0.172                   0.591
                             c=0.034                          0.217                   0.345                   0.240                   0.615
                             c=0.036                          0.335                   0.416                   0.356                   0.656
                             c=0.038                          0.430                   0.476                   0.447                   0.691
                             c=0.04                            0.508                   0.527                   0.522                   0.721
                             c=0.045                          0.649                   0.626                   0.659                   0.780
                             c=0.05                            0.740                   0.697                   0.748                   0.822
                             c=0.055                          0.802                   0.750                   0.808                   0.853
                             c=0.065                          0.877                   0.821                   0.881                   0.895
                             c=0.1                              0.964                   0.924                   0.965                   0.955

DAX30                 c=0.021                          0.000                   0.096                   0.000                   0.193
                             c=0.022                          0.000                   0.176                   0.000                   0.265
                             c=0.023                          0.012                   0.247                   0.000                   0.327
                             c=0.024                          0.126                   0.308                   0.021                   0.382
                             c=0.025                          0.222                   0.362                   0.129                   0.431
                             c=0.027                          0.375                   0.453                   0.301                   0.512
                             c=0.0285                        0.465                   0.509                   0.401                   0.562
                             c=0.03                            0.538                   0.557                   0.482                   0.605
                             c=0.033                          0.648                   0.634                   0.606                   0.673
                             c=0.035                          0.702                   0.675                   0.667                   0.709
                             c=0.04                            0.797                   0.751                   0.772                   0.778
                             c=0.05                            0.893                   0.841                   0.880                   0.858
                             c=0.1                              0.985                   0.960                   0.983                   0.964

CAC40                 c=0.017                          0.000                    0.063                   0.000                  0.401
                             c=0.018                          0.000                    0.164                   0.029                  0.466
                             c=0.019                          0.000                    0.250                   0.168                  0.520
                             c=0.02                            0.085                    0.323                   0.281                  0.567
                             c=0.0205                        0.148                    0.356                   0.330                  0.588
                             c=0.0215                        0.256                    0.414                   0.416                  0.625
                             c=0.023                          0.387                    0.488                   0.518                  0.673
                             c=0.024                          0.457                    0.530                   0.573                  0.699
                             c=0.025                          0.517                    0.567                   0.620                  0.723
                             c=0.028                          0.650                    0.655                   0.725                  0.779
                             c=0.033                          0.781                    0.751                   0.828                  0.841
                             c=0.04                            0.874                    0.831                   0.901                  0.892
                             c=0.1                              0.991                    0.973                   0.993                  0.983
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Table IV: Estimated empirical VaR of risky indexes  

The following table was obtained by Khindanova, Rachev and Schwartz (1999). It summarizes the

estimated empirical VaR (95% and 99%) for the daily risky indexes  S&P 500, DAX30 and CAC40.

               Series                           Empirical VaR %99                                Empirical VaR %95

             S&P 500                                   2.293                                                           1.384

             DAX30                                     2.564                                                           1.508

             CAC40                                     3.068                                                           1.819

Table V: Safety first optimal allocation for the normal and the stable fit using riskless rate three

               months LIBOR 6% annual rate (daily  
360

06.0
60001.00 ==z ).

This table computes the optimal allocation λ  in the riskless return three months LIBOR 6% annual

rate (daily  
360

06.0
60001.00 ==z ) for different risk aversion coefficient c of the optimization problem

)()(max VaRWcPWE
AW

−≤−
∈

where zzW )1(0 λλ −+= and  z is either the index  S&P 500 or DAX30 or CAC40. In particular, we

distinguish the normal and the stable fit when we have the empirical VaR (95% and 99%) estimated in

table IV.
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                        Coefficient  “c”                          Normal                                             Stable

SERIES     of the optimization                 Optimal Allocation λ                     Optimal Allocation λ
                           problem                                        WITH                                               WITH
                                                              VaR=1.384 ;        VaR=2.293;          VaR=1.384 ;    VaR=2.293

S&P500       c=0.173                                0.035                      0.000                     0.000                 0.000
                     c=0.2                                    0.182                     0.000                      0.000                 0.000
                     c=0.25                                  0.277                     0.000                      0.000                 0.000
                     c=0.3                                    0.325                     0.000                      0.000                 0.000
                     c=1                                       0.483                     0.064                      0.496                 0.000
                     c=2                                       0.530                     0.168                      0.724                 0.267
                     c=7                                       0.588                     0.284                      0.946                 0.819
                     c=15                                     0.613                     0.332                      0.981                 0.937
                     c=150                                   0.667                     0.432                      0.999                 0.998
                     c=5000                                 0.717                     0.521                      1.000                 1.000

                     c= 10105 ⋅                              0.810                     0.682                      1.000                 1.000

                                                            VaR=1.508 ;        VaR=2.564;            VaR=1.508 ;    VaR=2.564

DAX30          c=0.14                                0.022                    0.000                         0.000                0.000
                      c=0.16                                0.167                    0.000                         0.000                0.000
                      c=0.2                                  0.266                    0.000                         0.000                0.000
                      c=0.25                                0.325                    0.000                         0.118                0.000
                      c=0.5                                  0.432                    0.000                         0.355                0.000
                      c=1                                     0.495                    0.064                         0.514                0.000
                      c=1.5                                  0.521                    0.125                         0.589                0.126
                      c=7                                     0.591                    0.271                         0.917                0.736
                      c=15                                   0.616                    0.319                         0.967                0.894
                      c=1700                               0.703                    0.484                         1.000                1.000
                      c=170000                           0.748                    0.564                         1.000                1.000

                      c= 10105 ⋅                            0.809                    0.672                         1.000                1.000

                                                           VaR=1.819 ;        VaR=3.068;             VaR=1.819 ;    VaR=3.068

CAC40          c=0.16                               0.095                     0.000                         0.000                 0.000
                      c=0.17                               0.147                     0.000                         0.000                 0.000
                      c=0.2                                 0.231                     0.000                         0.000                 0.000
                      c=0.3                                 0.341                     0.000                         0.187                 0.000
                      c=0.5                                 0.419                     0.000                         0.375                 0.000
                      c=1                                    0.484                     0.052                         0.562                 0.017
                      c=1.5                                 0.512                     0.115                         0.679                 0.205
                      c=7                                    0.585                     0.266                         0.923                 0.819
                      c=15                                  0.610                     0.314                         0.978                 0.930
                      c=150                                0.663                     0.415                         0.999                 0.996
                      c=5000                              0.713                     0.505                         1.000                 1.000

                     c= 10105 ⋅                            0.806                     0.671                         1.000                  1.000
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Table VI:A summary of the models considered in our discussion.

This table summarizes the different models used in this paper.
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