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THE PROBLEM OF OPTIMAL ASSET ALLOCATION WITH

STABLE DISTRIBUTED RETURNS

SERGIO ORTOBELLI
University of Calabria, Italy
SVETLOZAR RACHEV
University of Karlsruhe, Germany and University of California at Santa Barbara
EDUARDO SCHWARTZ

Anderson School of Management, University of California at Los Angeles

This paper discusses two optimal allocation problems. We consider different hypotheses of
portfolio selection with stable distributed returns for each of them. In particular, we study the optimal
allocation between a riskless return and risky stable distributed returns. Furthermore, we examine and
compare the optimal allocation obtained with the Gaussian and the stable non-Gaussian distributional
assumption for the risky return.

KEY WORDS: optimal allocation, stochastic dominance, risk aversion, measure of risk, a stable
distribution, domain of attraction, sub-Gaussian stable distributed, fund separation, normal distribution,

mean variance analysis, safety-first analysis.



1. INTRODUCTION

This paper serves a twofold objective: to compare the normal with the stable non-Gaussian
distributional assumption when the optimal portfolio is to be chosen and to propose stable models for
the optimal portfolio selection according to the utility theory under uncertainty.

It is well-known that asset returns are not normally distributed, but many of the concepts in
theoretical and empirical finance developed over the past decades rest upon the assumption that asset
returns follow a normal distribution. The fundamental work of Mandelbrot (1963a-b, 1967a-b) and
Fama (1963,1965a-b) has sparked considerable interest in studying the empirical distribution of
financial assets. The excess kurtosis found in Mandelbrot’s and Fama's investigations led them to
reject the normal assumption and to propose the stable Paretian distribution as a statistical model for
asset returns. The Fama and Mandelbrot's conjecture was supported by numerous empirical
investigations in the subsequent years, (see Mittnik, Rachev and Paolella (1997) and Rachev and
Mittnik (2000)).

The practical and theoretical appeal of the stable non-Gaussian approach is given by its attractive
properties that are amost the same as the norma one. A relevant desirable property of stable
distributional assumption is that stable distributions have domain of attraction. The Central Limit
Theorem for normalized sums of i.i.d. random variables determines the domain of attraction of each
stable law. Therefore, any distribution in the domain of attraction of a specified stable distribution will
have properties close to those of the stable distribution. Another attractive aspect of the stable Paretian
assumption is the stability property, i.e. stable distributions are stable with respect to summation of
i.i.d. random stable variables. Hence, the stability governs the main properties of the underlying
distribution. Detailed accounts of theoretical aspects of stable distributed random variables can be
found in Samorodnitsky and Tagqu (1994) and Janicki and Weron (1994).

In our work, we analyze two investment allocation problems. By comparing the normal distribution
with the stable law one, it has occurred that the results performed under the examined optimal
allocation problems are generally different. They consist of the maximization of the mean minus a
measure of portfolio risk. We propose a mean risk analysis that facilitates the interpretation of the
results. In the first allocation problem, we consider as the risk measure the expected value of a power

absolute deviation. When the power is equal to two, we obtain the classical quadratic utility functional.



The second allocation problem is atypical problem of the safety-first analysis where we assume as the
risk measure, the risk of the portfolio loss, (i.e. the probability that the portfolio return is under a fixed
threshold value). We examine the optimal allocation between a riskless return and a risky stable
distributed return, then we compare the allocation obtained with the Gaussian and the stable non-
Gaussian distributional assumption for the risky return. We chose the three months LIBOR 6% annual
rate as from December 1, 1999 for riskless return. As a possible risky asset, we consider the stock
indexes S& P500, DAX30 and CAC40. The models parameters are estimated in Khindanova, Rachev
and Schwartz (1999). We show that there are significant differences in the allocation when the data fit
the stable non-Gaussian or the normal distributions.

Following the two empirical asset analysis, we propose symmetric and asymmetric stable models to
study the multivariate portfolio selection and to analyze the two proposed optimal allocation problems.
We develop three alternative stable models under the assumption that investors allocate their wealth
across the available assets in order to maximize their expected utility of final wealth. We first consider
the portfolio allocation between n sub-Gaussian symmetrical a -stable distributed risky assets (with
a >1), and theriskless one. Thejoint sub-Gaussian a stable family is an elliptical family. Hence, as
argued by Owen and Rabinovitch (1984), we can use the mean dispersion analysis in this case. The
resulting efficient frontier is formally the same as Markowitz-Tobin's mean-variance analysis, but
instead of variance as a risk parameter, we have to consider the scale parameter of the stable
distributions. Unlike Owen and Rabinovitch, we propose a method based on the moments to estimate
all stable parameters. The calculating efficient frontier exhibits the two-fund separation property and in
equilibrium, we obtain an a -stable version of the Sharpe-Lintner-Mossin’s CAPM. Using the Ross
necessary and sufficient conditions to the two-fund separation, we can link this stable version of asset
pricing to that in Gamrowski and Rachev (1999). In order to consider the possible asymmetry of asset
returns, we describe a three-fund separation model for returns in the domain of attraction of a stable
law. In case of asymmetry, the model results from a new stable version of the Simaan’s model, see
Simaan (1993). In case of symmetry of returns, we obtain a version of a model recently studied by
Gotzenberger, Rachev and Schwartz (1999), that can also be viewed as a particular version of the two-
fund separation of Fama’'s (1965b) model. Our model distinguishes itself from Goétzenberger, Rachev
and Schwartz's, as well as from the Simaan and Fama' s models because we consider the empirical

hypothesis of fat tails of return distributions together with the asymmetric distributional components.



Using the stochastic dominance rules, (see the references in Levy (1992)), we show how we determine
the efficient frontier for risk averse investors. Similarly to the sub-Gaussian approach, it is possible to
estimate all parameters with a maximum likelihood method and to compare this model with the
Simaan’s one. One of the most severe restrictions in performance measurement and asset pricing in the
stable case is the assumption of a common index of stability for all assets. Hence, the last model we
propose deals with the case of optimal allocation between stable distributed portfolios with different
indexes of stability. In order to overcome the difficulties of the most general case of the stable law, we
introduce a k+1 fund separation model. Then we show how to express the model’s multi-parameter
efficient frontier.

In Section 1, we introduce the first allocation problem. In Section 2, we compare the stable non-
Gaussian with the normal distributional hypothesis for the first alocation problem. Section 3
introduces the multivariate models and their application to the proposed allocation model. In Section
4, we introduce the second alocation problem. In Section 5 we compare stable non-Gaussian and
normal distributional hypothesis for the second allocation problem. In Section 6 we consider the
multivariate models for the second allocation problem. In the last section, we briefly summarize the

results.
2. AN OPTIMAL ALLOCATION PROBLEM WITH STABLE DISTRIBUTED RETURNS

Consider the problem of finding the optimal alocation | in an investment consisting of two
positions: a risky asset, which is assumed to be stable distributed and a risk-free asset. The investor

wishes to maximize the utility functional
(2.1 UW)=EW) - cEQW- E(W)|’),
where ¢ and r are positive real numbers, W =1 z, +(1- | )z is the return on the portfolio, z, is the
risk-free asset return, and z is the risky asset return. We also assume that no short sales are allowed
(i.e. 1 T[0,1]).

We choose to study the allocation problem (2.1) because:

1) The optimal allocation we get that solves problem (2.1), is equivalent to the following maximization

of the utility functional



(2.2) aE(W) - bEQW— E(W)|’),
. b . r . .
assuming ¢=— in (2.1) for every a,b>0. If we assume E‘IW- E(W)| ) as the particular risk
a

measure of portfolio loss then applying the optimal alocation problem (2.1), we implicitly maximize
the expected mean of the increment wealth aW, as well as minimize the individual risk
bEQW - E(W)|’).
2) Furthermore, when we assume =2, the maximization of utility functional (2.1) also motivates the
mean variance approach in terms of preference relations.

We assume that z is a -stable distributed, with a >1 (which implies the existence of the first

moment), that is:

d
2=8,(s..b..m.),

where a is the index of stability, s, is the scale (dispersion) parameter, b_ is the skewness

parameter, and m_ isthe mean of z.

We know that for | * 1, all the portfolio returns W =1 z; +(1- | )z admits stable distribution

S, (1- I'|s . sign(L- 1)b_,l g+ (1- | )m.) . Because | 1 [0,1], then

(2.3) Wisa (@-1)..b.,1zy+(@- 1)m,.) for I T [01) and W=z, when | =1.

From (2.3) we see that the portfolio meanisgiven by my,, =1 z5 + (1- | )m, and the portfolio scale
parameter is given by s, =(1- | )s ,, hence, since the portfolio skewness parameter is fixed, al the
solutions to the problem (2.1) can be represented in the mean-dispersion plane by

m, - Zg
S

mW=ZO+ SWa

representing the efficient frontier for our optimization problem.

Recall that given two random variables X and Y, X dominates Y in the sense of Rothschild-Stiglitz
(R-S), if and only if every risk averse investor prefers X to Y, that isif and only if for every concave
utility function u, we have E(u(X))2 E(u(Y)), or dternatively, if and only if E(X)=FE(Y) and

t t

Oy W)du £ Oy (u)du for every real 1, where F, is the cumulative distribution function of X, (for
-¥ -¥



details on stochastic dominance rules see Lévy (1992), Rothshild and Stiglitz (1970), Hanoch and Lévy

(1969)).
Suppose X dominates Y in the sense of R-S. Because E(X) = E(Y) and f(x)=-dx- E(X)|" isa
concave utility function, for every »1 [La), it follows that:
U(X)=E(X)- cE(X - E(X)[)3U®) "rl[La).

The above inequality implies that every risk averse investor with utility functional (2.2) should choose

a portfolio W =1 zy+(L- | )z that maximizes the utility functional (2.1) for some r1 [La) and

| T [01]. Now, to solve the asset allocation problem
(2.4) max EW) - cEQW - E(W)|“),
notice first that, for al »1 [La) andl<a <2, we get

UW)=EW) - cEQW- E(W)|’)=|z0 +(1-1)m, - EW)- c(H@,b,r))@-1)s’

where
2r—la§[_ I"O - /2a
(H@.b.r) =— §1+b ?anZaelp = cosé—arctang% tang—go(—)
r(‘au "Y9n? udu 20 2 ogg

(see Samorodnitsky and Tagqu (1994), Hardin, Jr. (1984)). The above relation analyzes the stable non-

Gaussian case. When z admits normal distribution (i.e. a =2), thenfor al » >0,

Z%Ggef;lg
UWw)=EW) - CEQW- E(W)|’):| zo+ (@ 1)m, - C%’(l- | )s?

Of particular interest is the above Gaussian case for »=2. In fact, when »=2, the optimization problem
2 2 2
max E(W) - cEQW - E(V)| )= max E( cW? + (2cEW) + )W - c(E(W)) )
reduces to a maximization of the expected quadratic utility function

(2.5) u(W)=-cW?+bWw - (b ;161)2 ,

where b =2cE(W)+1. The alocation that maximizes the above problem is the same as the one that
maximizes the utility function au(W)+d for some real constant d and a >0. Optimizing the

expected value of the utility function



(2.6) v(W)=-eW? +aW
for every possible real (sign(b))a>0 and >0, we obtain the same allocation by maximizing the

e
a- 2eEW)’

expected utility function (2.5) with ¢ =

We recall that for arbitrary distributions with the finite variance, the Markowitz-Tobin mean-
variance model is based on the quadratic utility (2.6). As a matter of fact, when expected returns and
variances are finite, the quadratic utility is sufficient for asset choice to be completely described in
terms of a preference relation defined over the mean and the variance of expected returns. However,
quadratic utility displays the undesirable properties of satiation and increasing absolute risk aversion.
Thus, economic conclusions based on the assumption of quadratic utility function are often counter
intuitive and are not applicable to individuals who always prefer more wealth to less, and who treat
risky investments as normal goods. For this reason, when we assume =2, even if our optimal location
problem (2.1) motivates the mean variance analysis in terms of preference relations, we prefer to
consider different models motivated by their distributional form of returns. In appendix A, weinclude a
table that summarizes the distributional assumption used in this paper and also describes the mean-

variance and the stable mean-dispersion frontiers.

Next, we consider the optimal allocation problem for any choice of 1 [La).

2.1Caser=1: Find mlaxE(W) - cE(W - E(W)))

In this case, the first order condition of problem (2.4) shows that the optimal portfolio consists of

full investment in therisklessasset z, (i.e. | =1) when

11TT—|U=ZO- mz+c(V(a,b,1))Sz>O,

where

1H@,b) in the stable case (l1<a <2)

V(@,b,l =t
( ) M 2 in the normal case (@ =2)

t Vp



In the case ‘ET_IU =zg-m, + c(V(a,b,l))s ., <0,then | =0, i.e theinvestor should invest everything

in the risky asset. Finally, when 1%—IU=O, then for every O£1 £1, the portfolio is optimal, because in

this case E(W) - cE(W - EW)))=m,_ - cV(a,bl)s. =z, i.e it isaconstant for every | . Hence,

we found that when r=1, solving the optimization problem (2.4), we get only trivial solutions.
2.2 Case r1 (La) :Find mlaxE(W) - cE(W - EW)) .

In this case, the first order condition of problem (2.3) shows that the optimal allocation parameter is
given by
1
— x mz - ZO (-'ji‘-l

| =1- T ifm >zyand I 1[01],
resV(@,b,r) 5

where

,\:,(H(a, b,r)) in the stable case (1<a <2)

V(@ b,r)=|22cZ 10
i e 2 g

Y

Otherwise, the optimal allocation is given by

in the normal case (@ =2)

| =1 if T=U(zp) or I =0 if T=U(),

where T =max(U(z,),U(z)).

3. STABLE VERSUS NORMAL OPTIMAL ALLOCATION: A COMPARISON

In this section, we analyze the differences in optimal allocations when the investor chooses:
Q) Normal distribution,
or,
(i) Stable (non-Gaussian) distribution, as amodel for the asset returnsin his’her portfalio.
We examine index-daily returns for the S&P 500, DAX30 and the CAC40 (see Table | reporting the

same data used by Khindanova, Rachev and Schwartz (1999)). The riskless return is 6% p.a. Using the



estimated daily index parameters (see Table I) we can compute the coefficient

m; - Zg

V@a,bDs,

c=

Thus every investor that maximizes the utility functional E(W)- cE(W - E(W)|) ,

1) invests all in the risky asset if c<c ,
2) invests al in the riskless asset when c>c.
In Table Il we report the threshold value: ¢, for the normal case and ¢, for the stable case. It
follows that for the three indexes considered, all investors that maximize the utility functional
E(W)- cE(W - E(W)|) with ¢, <c<G,

two situations can be considered:

a) if thedatafit the normal distribution, consequently the riskless asset is chosen;

b) if the datafit the stable distribution, therefore the risky asset is chosen.

Instead, for the three indexes considered, all investors that maximize the utility functional
E(W)- cE(W - E(V)|) with c<c, or ¢ >z,

two further situations can be examined:

c) if ¢<g fitfor thenormal or the stable, the risky asset is chosen;
d) if ¢>c, fitfor thenormal or the stable, the riskless asset is chosen.

When a >r >1, we then obtain the following optimal allocation for the problem

mlaxE(W) - cE(w- EW)") .

In table I11, we listed the optimal allocation | for the normal and the stable fit. Recall that | is the
optimal proportion of funds invested in the risk free asset. We have chosen » =15 and » =1.35 s0
that r is strictly less than all indexes of stability in the data set. On the other hand, we want » to be
large, far away from 1, because for » =1, we obtain the trivia allocation computed previously.

The analysis of table |11 shows that the optimal alocation in the normal and in the stable case is more
sensitive to smaller risk aversion coefficient ¢. In particular, the optimal allocation can be up to 40%,
(see S& P 500). Our results also show that in the stable non-Gaussian case, the riskless asset allocation
is greater than the normal one (except for DAX30 when » =1.35). Thisfact isindeed due to the fat tails

of the stable distribution. Recall that tail behavior of every stable non Gaussian



d
distribution X =, (s ,b,m), with 1<a < 2, is given by

1£b o

lim xX*P(xX >x)=C
@ ( 1) =G

+¥
1-a . In particular, EQXY): OPOXV >x)dx,itfollowsthat
G(2- a)cos(pa/2) 0

where C, =

EQX- E(X)|’)<¥ for r<a,
and EQX- E(X)|r)=¥ for r3a.

Hence, the weight of the risk measureEQW— E(W)|'") for »1 [La), is generaly greater for the

investors who use stable laws for asset returns. This aso implies that when investors fit normal
distributions for return assets, they miss an important component of portfolio risk. On the contrary, the
investor who fits stable distributions for return assets, implicitly tries to approximate the additional
component of risk related to the heavy fat tailedness as returns distributions. We also observe another
conseguence of the above relation, (see for example the DAX30 index). When r is more distant from
the stability parameter, we have to expect that the max difference in the allocation is lower (about 10%
in DAX30) and is more influenced by the differences in the trivial allocation. This fact can easily be
confirmed in all the above indexes considering the lower r =1.35, in the allocation problem. In this
sense, the stability index plays a strategic role in the optimal portfolio selection and for this reason, it
becomes very significant as an accurate estimation of this parameter. Conversdly, » in the above
optimization problem can be an opportune measure of the power to be given to the component of risk
due to the heavy-tailedness of asset returns. The importance given to 7 is intuitively linked to the
conditions of the market in which the investor operates.

Hence, this empirical analysis shows that the component of risk due to heavy-tail distributions and

the stability property can be extremely important in the choice of the optimal portfolio.
4. THE MULTIVARIATE EXTENSION

In this section we consider different multivariate estimable stable models in the study of the

portfolio selection. In particular, we analyze the problem of optimal alocation (I ,x)T R’**, xT R”,

10



| =1- x'e, among n+1 assets: n of those assets are stable distributed risky assets with returns
z=[z,,.,2,]", ad the (n+1)th asset is risk-free. No short selling is allowed, (i.e. 1 T [0,1], x;3 0,
this also implies that the x, £1). Therefore, when the investor wishes to maximize the utility
functional U(W) = EW) - cEQW - E(W)|r), where ¢ and  are positive real numbers, W =1 z, +x'z,
zy IS the risk free asset return, and x'z is the risky portfolio asset return, we study and analyze the
possible optimal allocations for the following stable models of asset returns.

Let us assume that the vector z :[zl,...,zn]l is sub-Gaussian a -stable distributed (1<a <2),

whose characteristic function has the following form

(4.1) F.(1) = E(exp(it'z)) = exp? (tth)a/ 4 it[mg= expg:‘ a |t1s|ag(ds) +ir 2,
" 4]

€r; U o - . . . -
where O = G?Jl] isapositive definite (n” n) - matrix, m isthe mean vector, and g(ds) isthe spectral
e«

measure with support concentrated on S, = {sT R":||s| = ]} Theterm R, is defined by

Rif ~ o~ ~ ||12-2a
5 FEELEL
where the covariation [z;,z;], between two jointly symmetric a stable random variables z; := z, - m)

and z, isgiven by

- . a-
[ziz]a = 09:'|Sj|
S2

"sgn(s ) (ds)

& 1
= =([z1,z;1a)? . Here the spectral measure g(ds) has support on

&®
in particular, ||z, = g Js[" 9(ds)

esz

the unit circle S, .

This model can be considered as a specia case of the Owen-Rabinovitch’s ellipticall model (see Owen
and Rabinovitch (1984)). However, no estimation procedure of the model parameters is given in the
elliptical models with non-finite variance. In our approach we use (4.1) to provide the statistical
estimator of the stable efficient frontier. To estimate the efficient frontier for returns given by (4.1) we

need to consider one estimator for the mean vector m and one estimator for the dispersion matrix Q.

11



The estimator of mis given by the vector mof sample averages. Using lemma 2.7.16 in Samorodnitsky

and Tagqu (1994) we can write for every p such that 1< p <a

l
~|a 76
FL  £Elg
a J g

where the scale parameter s ; can bewritten s ; =||'z' f”a .Then s ; can be valued with the moment

1

w2 EEIN e

method suggested by Samorodnitsky and Tagqu (1994) (property 1.2.17) inthecase b =0

¥
E(|zj - mj|p)p(‘y' P Ysinudu
0

a 2/ 'G(L- pfa)
It follows from (4.2)

R, o2 E(’z"z‘<P )

2 E§"|p° '

éR u
The above suggests the following estimator Q &80 for the entries of the unknown covariation
E

g2
matrix Q
. éN k)‘~(k)"’l
_l'j §2 k=1
2 4 éV ~(k)P
a|z; ‘
k=1
wherethe s ]2 is estimated as follows
.2/ p
@1 Y- o
- Q—é (k)‘ p(y P Yin?udu ~
~2 Rjj CN =1 -
S] :_:Q p-1 -
2 ¢ 2 G(l- p/a) +
2

§

The moments estimator is meaningful mostly for each fixed p. The rate of convergence of the

. €R.uU
empirical matrix Q = > 60 to the unknown (to-be-estimated) matrix O, will be faster if p isaslarge as
E

(‘D’D> >(‘D

possible, see Rachev (1991).

See footnotes 1and 2.
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Consider two a stable distributed random variables W, and W, with a >1, equal skewness

parameter b =b,, =b, , and equa mean E(W,) = E(W,) =m . However, suppose that s, >s, .

d d d
Then, Wy =s,, X +m and W, =s ,, X +m ,where X =S, (1,b,0) , and thus

t

M P e
S S A

W, W,

Glu)= §POV, £1)- POV, £1))dr = (P(X £

Then, G(u) is the negative decreasing function for every u£m, and f(u) =G(u)- G(m) is the

positive increasing function for every u>m. As W,, and W, are integrable random variables
(a >1), integrating by part G(u), we get G(+¥) :ll@)rrg u(Fy, () - Fy, () - _éj‘d(FWZ (1) - Fy, (1)) =0.
Then, for every u >m, f(u) cannot be greater than - G(m) and G(u) £0 for every red u. Thatis:
4.3) PO, £0)- POV, E0)dt£0 " ul R.

-¥

Hence, 7, dominates W, in the sense of R-S.

In view of what stated before, when the returns z = [zl,...,zn]l are jointly a stable distributed, (non

necessarily sub-Gaussian), we obtain the efficient frontier of the risk averse investors as a solution of

the following optimization problem:

mins ,
Ofx'e£l and x;30i=1...,n,
x'm+(1- x"e)z, =m,,,

b, =b*,

—_— — —

(4.9

—_—— —

where W =(1- x'e)z, +x'z. Hence, every risk averse investor will choose an optimal portfolio

among all portfolios described by the above three parameters efficient frontier; the three parameters are

the mean m,, , the scale parameters ,, , and the skewness parameter b, .

Now, in view of our optimization problem, let us recall that in the sub-Gaussian case every portfolio

satisfies the relation
d
x'z=8,(s ,.,b, ,m,)
. d
and furthermore, W=z, when x=0, otherwise, W =(1- x'¢)z, +x'z=S,(s ._,b ,_,(1- x'€)zy +m ),

where a istheindex of stability , s =/x'Ox isthe scale (dispersion) parameter , b . =0 isthe

13



skewness parameter, and m_,_ =x'm isthemean of x'z .

Furthermore, in the sub-Gaussian case, all solutions to the optimization problem

)

max EO7) - cE(p - £G7)
for some 1 [La), belong to the mean-dispersion frontier
b moz
(45) S:"ﬁz?%ifg

[

|

1

I

T. 70
{ JA- 2Bz, +Cz¢

where m=E(z); m=x"m+| z,; | =1- x'e isthe proportion of funds invested in the riskless asset;

if m3 z,

if m<z,

e=[1..0"; A=m'Q'm; B=e'Q'm; C=e'Q e, and s 2 =x'Ox . Besides, the optimal portfolio
weights x takes the following form:

4.6 x= '1m-ze&.

(48) ¢ ( O)A-ZBZO+CZS

Note that (4.5) and (4.6) have the same forms of mean-variance efficient frontier. In particular, (4.6)
exhibits the two-fund separation property for both the stable and the normal case, but the matrix O and

the parameter s have different meaning. In the normal case, Q is the variance-covariance matrix and

s isthe standard deviation, while in the stable case QO is a dispersion matrix (see (4.1)) and s isthe

scale (dispersion) parameter, s =4/x'QOx . From the two-fund separation property of the sub-Gaussian

a -stable approach, we can assume the market portfolio equal to the risky tangent portfolio under the
equilibrium conditions (as in the classic-variance Capital Asset Pricing Model (CAPM)). Therefore,

every optimal portfolio can be seen as the linear combination between the market portfolio

47) 7o = (M 20) 07
B- Cz,

and the riskless asset return z,. Following the same arguments as in Sharpe-Lintner-Mossin’'s mean-

variance equilibrium model, the return of asset i is given by:

(48) E(z)=2,+b,,(EE'2) - z,),

i,m

=/ i
x_lLi, with ¢', the vector with 1 in the i-z2 component and zero in al the other

where b, , =
' X Ox

components. As a consequence of Ross' necessary and sufficient conditions of two-fund separation

14



(see Ross (1978)), the above model admits the form

z,=m+bY +e, i=l.,n,
where E(e/Y) =0, and the vector Y +e issub-Gaussian a -stable distributed with zero mean.
Hence, our sub-Gaussian a -stable version of CAPM, is not much different from the Gamrowski-
Rachev (1999) version of the two-fund separation a -stable model. As a matter of fact, Gamrowski
and Rachev (1999) propose a generdlization of Famas a -stable model assuming
z,=m+bY+e,, for i=1...,n,where e, and Y are a -stable distributed and E(e/Y) =0. By their
assumptions,

E(z) =z, +b,,, (E(x'2)- z,)

1 Mx'z.%'7], _ [2.%'7],

a[x'z,%'z], T  [x'z.xX'z],

where Ei,m =

[z, x'Z],

— ]~ —]~

Furthermore, the coefficient
[x'z,x'z],

can be estimated as shown in (4.2).

Now, we see that in the above sub-Gaussian symmetric a stable model x'Qx = ([)_c’z,x’z]a )2a and

o afEEEE, f | g
x' Qe :ET , thus, we get the equivalence between the coefficient b, ,, of model

(4.8) and Ei’m of Gamrowski-Rachev’s model i.e.:

Yloe 1 Tso. _ [5.3'7,

— — —_—f~ — [~ .! !
xlox s o T [x[z,xlz]a o

b. =

i,m

x

where s 1., isthe scale parameter of market portfolio.

z

In our optimal alocation problem, we suppose that x; 3 O because we assume that no short sale is
alowed. If X, <0 for some index i, we can exclude that asset by our allocation problem. Hence, the
optimal solution of the problem in the important case »1 (1,a), (recal that the case =1 gives trivial

solution: either the riskless asset or the market portfolio), is given by

1

Or-1

x -
m;,z Zy s

I =1-¢

S 0 = i, >zoand 11 (0,0,
gres 1.V(@,0.r) o

and x=(1- | )x,

where x isgiven by (4.7) and
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(H(a .0, r))r in the stable case (1<a <2)

i

I )
V@0.r) =i 226E F19

1'- €2 g in the normal case (@ =2)

Y

. . _ - z0e)' O7F A- B
Furthermore, the optimal risky portfolio x'z :w has mean m_, = %0 and scale
B- Cz, Y2 B-(Cz,

parameter s _, = (4- 2Bz, +Cz§)™
¥z B- Cz,

Again, one should expect that the optimal allocation would be different because the constant

V(a,0,r) and the matrix Q are different in the stable non-Gaussian and in the normal case.

Next, suppose that the returns z =[zl,...,zn]l arejointly a -stable distributed with 1<a < 2, i.e,, their

joint characteristic function is given by
F. @) =exp§ 3 |t’s|a (1 isgn(t's) tan(pa/Z)b(ds)Ht’mg,
where a istheindex of stability, g(ds) isthe spectral measure concentrated on S, .
Under this assumption, every portfolio x’z isdistributed as
d
x'z=8,(s ,.,b, ,m,)

Q,, |x1s|ﬁl o(ds)

s?

X'z

.
where, s =@ |x’s| g(ds)g is the scale parameter , b, = is the skewness

z

parameter, and m , = x'm isthe mean of x’z. Inthis case, we are not able to find a closed form to
the solution of the problem

(4.9) max EGW)- cE(W - EGW)|") for r1 [La),

where W = (1- x’e) z, +x'z . We can only state that the solution of (4.9) isone of the solutions of the
optimization problem (4.4) varying the admissible m,, and b, (4.1). In order to find an analytical

version of athree parameter stable model, we can consider the following three-fund separation model of
security returns:

(4.20) z,=m+b,Y +e,, i=1...,n,
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where the random vector e = (e,,€,,...€,)" isindependent from ¥ and follows a joint sub-Gaussian
a,-stable distribution (1<a, <2), with zero mean and characteristic function

a,/2 6]
bl

Fo()=epf | or

where Q isthe definite positive dispersion matrix. Besides, YiS512 (s,.b,,0) is a,-stable distributed
random variable (1<a, <2) with zero mean. A testable model, in which Y is a, -stable symmetric
distributed (i.e.b, =0), was recently studied by Rachev and Schwartz (1999). Moreover, when Y is
non symmetric (i.e. b, * 0), the model is a stable version of Simaan’s one (1993). Simaan assumes
that conditional on Y, the random vector e follows a joint-elliptical distribution with characteristic
function F_,, (£) = g(¢' Qf), but in his considerations, he implicitly assumes the dispersion matrix Q
independent of the random variable Y. Hence, Shiman's results are true if and only if
e=(e,e,,.,e,)" isindependent by ¥, asin our case. When b, =0 and a, =a,, our model leads to

the two-fund separation Fama's model. Thus, the model (4.10) distinguishes itself from the
Gotzenberger, Rachev and Schwartz's model, the Simaan’s model, and Fama's because it incorporates
asymmetric heavy-tailed distributional asset returns. Moreover under the assumptions of (4.10) all

portfolios are in the domain of attraction of an (a,,a , )-stable law.

The characteristic function of the vector of returns z =[z,,...,z,]" isgiven by:

(411) F.(0)=F.(OF (') =exp |t/ 0 Vs,

**(1- ib, syn(z'b) tan(pa / 2)) +it’m%

where b =[b,,...,b,]" isthe coefficient vector and m=[m,...,m,]" isthe mean vector.
Next we shall estimate the parameter in model (4.10), (4.11). First, the estimator of mis given by

the vector mof sample averages. Then we consider as factor Y a centralized index return. Therefore,

given the sequence of observations Y*) | we estimate its stable parameters. Observe that the random
vector e admits a representation as a product of two independent random variables: e =VG. G is a
Gaussian vector with null mean and variance covariance matrix Q, and ¥ =+/4 , where 4 is an a,;/2-

B apa, 60
stable subordinator, that is 4 =S, /zggcongl+i 10
& €7

IO

. Then we can generate values 4, k=1,....N

Q

17



of 4 independent of G. We address to Paulauskas and Rachev (1999) the problem of generating such

values 4, . Regressing the centraizing returns z; = z; - i} on Y we obtain the following ML estimators

for b=[b,,....b,]" and O:

1y~

af(Y()Z-())
~ = A l I N R N A AN
=% ad 9=—8& (W - hyW)EW - hy W)
B S R N j=1 4y

a— ") -

k=1 A4

=

The selection of a; is a separate problem. A possible way to estimate a, is to consider the OLS

y®O3®
1

estimator b

1

T Qo=

[y

and then to evaluate the sample residuals 6% =z® - p¥® _|f these

Qo=
—~~
h<
=
N

=~
1
uy

residuals are heavy tailed, one can teke the tail exponent as an estimator for a;. The asymptotic

properties of the above estimators can be derived arguing in a similar way to Paulauskas and Rachev

(1999) and Gotzenberger, Rachev and Schwartz (1999).

From (4.11) we see that when a :=a, =a,, every portfolio x'z isan a stable distribution and has

the distributional form

d

xlz:Sa (s x,z,b , ,mx,z)

d
and W=z, when x =0 otherwise W = (1- x'e)z, +x'z=S,(s ,_,b_,_,(- x'e)z, +m _,_) , where

(4.12) _(x Qx)a/2+(| 1b|S ) |x bs | son(x’ b)b, andm =xim.

a X'z
S

X[Z

Consider two portfolios x’z and y'z with the same meanx’m= y’m, the same parameter x'b=y'b

and such that x’Ox > y'Qy. Then, X/Y=———=S _(1,0,0) and thus, for every real u:

l(l‘)(P(y’z £5)- P(x'z £ 5))ds =
-¥

u Culme ! W P
(4.13) - (\)dP(XES y m- y'bt /Y:t)-P(XES x'm- x'bt 1Y =00/, (Odds =
¥R vy Oy X Ox
u L I S |
= 0o £ XY oy por g XNy = s (0de £0
R-¥ vy Oy X' Ox
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where f, isthe density of Y. It follows that y’zdominates x’z in the sense of R-S. In addition,

when unlimited short selling is allowed, the efficient frontier of non-dominated portfolios is given by
the solution of the following quadratic programming problem:
1y
min=x" Ox
x 2 Q
I

m+ (1- xle)zo =my .
x'b= b,

i
1
!
| X
:
i
7
We know that generally the efficient set does not present an analytical form. In particular, Dybwig
[1985], Markowitz [1959], and Bawa [1976-1978] show that the mean variance efficient set for the risk
averse investors and for the non-satiable investors with restrictions on short sales, consists of segments
which are parabolic or horizontal line segments. In addition, kinks in the efficient sets are the rule
rather than the exception. We cannot expect the multi-parameter efficient set to take a smpler form.
Under our assumptions, we obtain the efficient frontier for the risk-averse investors by solving the

above optimization problem that gives the following optimal portfolios

210 (m-ze) | 2'Q7'D

4.14 1-1,-1 I ,
( ) ( 2 lg)zo + ZelQ'l(m- 2.0) 3€1Q>1b

that isalinear combination of the riskless portfolio z,, and the risky portfolios

70 - 210 H (M- z4e) and 7@ = 2o _
elQ'l(m- zge€) o )
In particular, if we assume short sale restrictions in the market, then
131-1,-1,%0,and 13 x,(l ,,15)30i=1,...,n

Q-l(m' Zoe) +1 QElb

where x(I ,,1 ;) =1 .
( 2 3) ZeIQ.]_(m_ zoe) 361Q-1b

Similar to the Simaan’s model, with the three-fund separation model, we get a pricing linear relation for

asset returns:
m =z, +l;i,2d2 +l;i,3dk’ i=12,...,n,
where d , for p=1,2 are the risk premiums relative to a market factor and a skewness factor.
Note that the efficient portfolio of Simaan’s three-moment model admits a similar form (4.14) of the

above stable model (4.10). Whereas, the matrix Q and the parameters b =[b,,...,b,]" have different
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meaning. In the Simaan’s model, Q is the variance covariance matrix of z, and the parameters b, are

estimated considering the third central moment

O
w

e

b= !
§Eiy3 jN P

where @ for i=1,...,N are centralized observations of the vector z and the random Y is a fixed non

oy

1

Qo=

Q-

symmetric random variable.

If we try to solve analytically the optimization problem (4.9), in the stable case with a :=a, =a,,

we have to solve the following two-parameter optimal allocation problem

E%E(W)' CEQW' E(W)| )zlrr;aé(l- l2-13)z0 tM LT C(H(a’bx’(lz,l 3)2"’)}3.x’(|2,|3)z
where,

Sy = (6020 0 W0 )2+ (0t s [, =5 ol m

(1500 )bs | san(x! (15,1 )b)by
2la)z a
x! (I2.13)2

and bxl(l

are respectively the scale parameter, the mean and the skewness parameter, of the optimal risky
portfolio x’ (I 2.1 3)z. Inorder to solve the allocation problem (4.9) in the more general case when a,
is not necessarily equal to a,, we can approximate the optimal alocation solving the following

optimization problem

1 év I ~k)|"
(|2y|3)z'cﬁa X (I 2’|3)Z '

max E(W) - CEQW- E(W)|’): max(L- | ,- 1 3)zg +m ,
PN 1s x pt

I
where @ for i=1,...,N are centralized observations of the vector z. This is the typical way to
approximate the solution when the efficient frontier admits the form

x = f(y) where yT Bi R,
Then, according to the Law of Large Numbers, we know that an investor with utility function « can find

an approximating solution to his portfolio selection problem in the portfolio weights

=107,
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s . )
where y* = arg(rr)axE A u(f(»)z9) and z? i=1,..., s are independent observations of the vector of
yl BS i=1

the gross returns.

We draw our conclusion on the three- fund separation model, underlining that in the three-moment
model, the solution of the allocation problem (4.9) depends on the choice of the non-symmetric random
variable Y. Clearly, one should expect that the optimal allocation will be different assuming that asset

returns are in the domain of attraction of an (a,,a , )-stable law, or depending on the three moments.

As empirical studies show, one of the most severe restrictions in performance measurement and
asset pricing in the stable case is the assumption of a common index of stability for all assets —
individual securities and portfolio alike. It is well recognized that asset returns are not normally
distributed. We aso know the return distributions do not have the same index of stability. Recent
studies have shown how to define the efficient frontier for risk averse investors who wish to allocate
their initial wealth between » investments whose returns are in the domain of attraction of (a,,...,.a,)-
stable law, see Ortobelli and Rachev (1999). In these cases, it is not generally possible to find a closed
form to the efficient frontier. Instead, generaizing the above model, we get the following 4+1 fund
separation model, (for details on & fund separation models see Ross (1978)):

(4.15) z, =m+b Y, +..+b, Y, +e, i=1..,n.
Here n3 k2 2, the vector e =(e,,e,,....,e,)’ isindependent from Y,,....Y, and follows a joint sub-
Gaussian a,-stable distribution with 1<a, <2, zero mean, and characteristic function

a,/2 o)

d
Fe(t)=exp"§ |t’Qt o and the random variables Y, :Sa,(s Y,,bY, 0), j=2,..., k are a ,-dtable

distributed with 1<a , <2 and zero mean. If we want to insure the separation obtains in situations

where the above model degenerates into a p-fund separation model with p<t+1, then we need the rank

condition (see Ross (1978)).

Using similar arguments of (4.3) and (4.13), we can prove that y’z dominates x’z in the sense of
R-S for every couple of portfolios x’z and y’z with the same mean x'm=y’m, and the same
parameters y'b. ; =x'b ;=c; , j=2...k,where b_, =[b,,..,b, ]", and such that x'Qx>y'Qy.

Hence, when unlimited short selling is allowed, the efficient frontier of non dominated portfolios is

given by the solution of the following quadratic programming problem:
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: m@n%lex

(4.16) .|l.x[m+ A- x'e)zy =m,,
.'1. xlb,’j =c, j= 2, k.
|

By solving the optimization problem (4.16), we obtain that the riskless portfolio and other & risky
portfolios span the efficient frontier for the risk averse investors. It follows that portfolio efficient

frontier is given by

Z[Q-l(m' Zoe) +(]§ | ZIQ-lb-,i

k+1
4.1 1- 41 ,)z, +I — .
(417 ( i=2 2o 2eIQ'l(m- Zg€) =2 ' elQ'lb,‘i

In order to estimate the parameters, we can still use the above maximum likelihood method, but we

need to know the joint distribution of the vector (7,,...,Y,). For example, we can simply assume

independent random variables Y, j=2,..., k, then the characteristic function of the vector of returns
k )

z=[z,..,2,]" isgivenby F_(1)=F ()OF, (¢'b. et
=2

Given thata :=a, =a, =..=a, and the random variables Y, j=2,..., k, are independent, the
following k-parameter optimal allocation problem correspondent to (4.9) has to be solved:

- C(H(a* bx’(l sl g M)z,r))rs v

Rl (I [N I 34 '

max (1-1,-15-..-1,,1)z Mg

ol z
([P k1)

where,

Q-l(m' Zy€) +<]§ | Q-lb-,i

x( 5y pig) =1 =
2 t 2e’Q'l(m- zg€) =2 e elQ'lb,’,

isthe optimal risky portfolio weight; and

k a
alx'(,,0 5.1 ps1)b. ;S v, | sign (N (NP kﬂ)b,yj)byl
_ Jj=2
bx’(|2,|3,...,|m)z - s@ !
f"’('z:'a ----- I kv1)z
k ('jl/a
— 2 S
X (1 gl gl 4a1)z _gxl (P o k+1)Qx1(| YL k+1))a/ +é.2 (|x1 (5,1 5.1 k+1)b.,j|3 Y, )ag )
j=

and

i
Mootz =X (5,0 55001 )M

are respectively the skewness parameter, the scale parameter, and the mean of the optimal risky

portfolio x” (I 5,1 5yees] 14y)Z -
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More generaly, when the stability indexes a,,a,, a, are not necessarily equal, and the random
variables Y, j=2,..., k, are not necessarily independent, we can approximate the optimal allocation of

the problem (4.9) solving the following optimization problem:

max (-1 ,-15,..1 1)zgtm,

ol 3od g X (1ol gl ga1)2

- g- |‘x1 (I 2 I 3 I k 1) @
4 l 1erny +1)2
N k=21

where z© for i=1,...,N are centralized observations of the vector z.

We recall that al the above multivariate models are motivated by arbitrage considerations as in the
Arbitrage Pricing Theory (APT) (see Ross (1976)). In this context we do not intend to go into details,
however, it should be noted that there are two versions of the APT for a -stable distributed returns,
namely a so-called equilibrium (see Chen and Ingersoll (1983), Dybvig (1983), Grinblatt and Titman
(1983)) and an asymptotic version (see Huberman (1982)). Besides, Connor (1984) and Milne (1988)
introduced a genera theory which encompassed the equilibrium APT as well as the mutual fund
separation theory for returns belonging to any normed vector space (hence also a -stable distributed
returns). Whereas Gamrowski and Rachev (1999) provide the proof for the asymptotic version of a -
stable distributed returns. Thus, it follows from Connor and Milne's theory that the above random law
of the returnsis coherent with classic arbitrage pricing theory and the mean returns can be approximated
by the linear pricing relation

m »z,+b,,d,+..+b,d,, i=12..,

whered ,, for p=1...,k, aretherisk premiums relative to the different factors.

As it follows from the above discussion, all the multivariate models introduced here can be
empirically tested and will be summarized in Appendix A. It must be pointed out that in this section,
we proposed a maximum likelihood method to estimate the parameters of the stable models, see also
Rachev and Mittnik (2000) for some alternative methods. A more general empirical analysis with
further discussions, studies and comparisons of the above multivariate cases does not enter in the

objective of this paper and it will be the subject of future research.
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5. A SAFETY FIRST OPTIMAL ALLOCATION PROBLEM

WITH STABLE DISTRIBUTED RETURNS

In this section we analyze the optimal allocation problem of a non-satiable investor who wishes to
maximize the utility functional
(5.1) V(W)=EW)- cP(W £ -VaR) ,
where ¢ is apositive real number and VaR is area number. Many are the reasons why we propose to
study the above allocation problem. However, in our opinion the most important reasons are:
a) In accordance with the above allocation problem, we are able to propose an alternative mean-risk
analysis of portfolio selection. In fact, the optimal allocation that we get solving the following problem

(5.2) max E(V) - cP(W £ - VaR) ,

where 4 is the set of al the admissible returns, is equal to one in which we maximize the utility
functional

aE(W) - bP(W £ -VaR),
for every a,b>0, assuming in (5.2) czé. If we assume P(W £-VaR) as the particular risk
a

measure of portfolio loss then using the optimal allocation problem (5.2), we can find the optimal

portfolios that maximize the expected mean of the increment wealth a7 as well as minimizing the
individual risk of loss bP(W £ - VaR) .

b) The alocation problem (5.2) can be considered a safety first optimal alocation problem. In fact,
every non-satiable investor with increasing utility function
(5.3 u(x) =x - clp g yapy (%)
tends to choose portfolios that maximize the utility functional (5.1). At the same time the investor, who
uses the increasing utility function (5.3), maximizes the expected value as well as the probability of
survival of his portfolio, as postulated in the safety first principles (for references on the safety first
principles see Roy (1952), Tesler (1955/6), Bawa (1978)).

Some recent studies proved that there are many reasons why the safety first approach should be
considered as an alternative to the classic mean-volatility one in portfolio selection theory. Principaly,

the main motivations leading to safety first portfolio choice are the following:
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1) we can consider a portfolio selection for returns with unknown distributions;

2) itispossible to develop a multi-parameter safety first analysis of optimal choicesin the market;

3) safety first analysis provides a representation of the efficient frontier in function of the threshold
VaR,

4) some efficient programming methods approximate optimal safety first portfolios;

5) the market trend can be studied and analyzed,

(see Ortobdlli (1999a-b-c), Ortobelli and Rachev (1999-2000)). In appendix B, we include a brief

summary of the basic results on safety first portfolio selection.

Wefirst assume W =1 z, + (1- | )z, where z, istherisk-free asset return and z isthe risky asset

return, that is, a -stable distributed, with a >1, that is: z= S (s,,b,,m,).
To solve the allocation problem (5.2) we first note that,
VW)=EW)- cP(W £-VaR) =1 zy+@1- | Ym, - cFy(-VaR),
where Fj, is the cumulative distribution function of W. Clearly, we are interested in the non-trivial

solution of the problem | T (0,)) given by the solution of the first order condition with risk aversion

parameter c. When | 1 [0)), we S, (@-1).,b.,1zg+(1- 1)m,), then V(W) isgiven by:

zI z?

a) inthe stable non-Gaussian case, for 2>a >1,

@ VaR- | z,- (1- 1 )m.- (1- 1 )bs tan(pa/2) 0
@-1)s. 5

(5.4) V) =1 z,+(1- | )m, - cFabg

Here, F,, is the cumulative distribution function of the stable random variable

S, (,b_,- b tan(pa /2)), (see Nolan (1998) and Zolatorev (1986)) defined by:

i p/2
i 1-p1 ol (v-2)Ye VK@ .a,b)liqg  for x>z
|' o
|
_i )
F =
2 (%) -:-lg’i-qog for x=z
iPe [
'r
-7, () for  x<z
where
arctang% tang—og
z=z(a,b)=-btan8*ﬁ9 4, =0, (@, b) = 2o
a
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@  cosq Qa/(a_l) coslaq, +(@ - 1q) .

and K(q,a,b) :cOS(aqO)J/(a_l)gsm(a(q +( ))E cosq ’
0

b) inthenormal casefor a =2

-VaR-1 zy- (-1 )m.

(1-1)s. 1 ® 20
(5.5) VW)=l z,+(@1- 1 )m. - ¢ O ——exph- —dt.
0 o T2

Thus, we can find a numerical solution of the maximization problem, see (5.4) and (5.5), as well asthe

stable non-Gaussian and the normal optimal allocation | T (0,1).

6. COMPARISON BETWEEN STABLE NON-GAUSSIAN AND

NORMAL OPTIMAL ALLOCATIONS

In this section, we analyze the difference that occurs when the investor fits normal and stable (non-
Gaussian) distributions in the above safety first optimal allocation. In Table 1, we have chosen the
same empirical VaR for the risky indexes S& P 500, DAX30, CAC40 provided by Khindanova, Rachev
and Schwartz (1999) for the various index-daily returns (see Table 1V). This permits us not only to
compare the different alocation in the stable and Gaussian case for different values of VaR, but asoto
see how important it is in relation to the choice of the risk aversion coefficient ¢ in the optimal

allocation max EW)- cP(W £ -VaR) . Moreover, we choose the empirical VaR (95% and 99%) for

the different indexes because they are the most used in VaR analysis. In some sense, our alocation
problem (5.2) can be considered the inverse problem of VaR anaysis. Since in VaR analysis, we
analyze the VaR of a given portfolio for a fixed probability of loss. Here we choose a portfolio that

minimizes the (non-fixed) probability of loss.

In table V we have listed the optimal proportion of funds invested in the bond, | for the normal
and the stable fit when we use the above empirical VaR. The riskless return is given by the current
value of three months LIBOR, 6% p.a. We use Mathematica (S. Wolfram) to evaluate the optimal
allocation in the normal case, and we use Stable (Nolan's (1998) program) to find a numerical solution
of the stable optimal alocation.

The analysis of table V shows that the differences between optimal allocation in the normal case

and in the stable one can be up to 60%. In fact, we observe two significant differences.
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1)

2)

In the case of lower risk aversion coefficient ¢, the “normal investor” (i.e. an investor who fits data
with normal distributions) invests more in the riskless return, (this difference can be up to the
30%). This diversity is due to the “kurtosis effect”. In fact, the stable distributions are more peaked
around the mean than the normal one. Consequently the investor, who fits the data using the stable
distribution and who is not too much averse to the risk of loss, gives more importance to the mean
than the “normal investor” with the same coefficient of aversion to the risk of loss. The latter
prefers a lower mean for a lower risk of loss instead. Hence, the “normal investor” loses some
opportunities of earning because of the kurtosis effect.

In the case of greater risk aversion coefficient ¢, it is the “stable non-Gaussian investor” who
invests more in the riskless asset. This second difference (about the 60% in the allocation on the
riskless asset) is due to the “tail effect”. In this context, the normal tail, the probability

P(W £-VaR) tends to zero exponentially and for higher riskless component the probability
P(W £ -VaR) is dmost null. Therefore, the “normal investor's allocation” in the riskless asset

improves only using a very high coefficient ¢. This does not happen to the “stable non Gaussian
investor”. As a result, the behavior of the “normal investor” can be very dangerous. The fact of
maximizing the utility functional (5.1) is equivalent to choose the return, that maximizes its
expected value plus the expected value of a gamble in which the investor has to pay c if his return
will be lower than a prefixed threshold —VVaR. Now, the normal investor is not too much interested
in improving the value ¢ because he prefers the higher mean, being the probability

P(W £ -VaR) amost null. Hence, because of the tail effect the “normal investor” does not

consider that returns have heavy tail and so he risks more than the “ stable non Gaussian investor” .

In some sense, we must expect very different optimal allocation in this problem. As a matter of fact,

here we have a direct presence of the tail risk measure given by the P(W £ - VaR) . Since the above

safety first utility functional suits the non-satiable, investors not necessarily risk averse, it underlines

and exalts the differences, beyond the greater adherence to the data of stable non Gaussian

distributional approach. This comparison highlights that the choice of stable distributions for asset

returns is more recommendable in the above safety first optimization problem. As a matter of fact, the

safety first utility functional, considered in the comparison, suits the non-satiable not necessarily risk

averse investors. Whereas stable distributional assumption presents a more protective behavior,
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especialy considering the component of risk due to heavy tails. Hence, the differences among the
stable distributions having different stability indexes explain the big diversities in the alocation

problem, and we see the crucia effect of the stable non-Gaussian distribution having heavy tails.

7. CONSIDERATIONS ON THE SAFETY FIRST OPTIMIZATION PROBLEM

FOR THE MULTIVARIATE MODELS

In this section, we consider the problem of optimal alocation among n+1 assets: n of those assets
are stable distributed risky assets with returns z =[z,,...,z,]" and the (n+1)th asset is risk-free.
Suppose the investor wishes to maximize the utility functional V(W) =EW)- cP(W £ -VaR) , where
c isapositive real number, W = (1- x'e)z, +x'z, z, istherisk-free asset return, and x'z istherisky
portfolio asset return.

In the case the vector of risky returns z = [zl,...,zn]l is sub-Gaussian a -stable distributed with

1<a <2, then the portfolio weight efficient frontier is given by (4.6) and the optimal portfolios are a

: — - m- zge) 07 :
linear combination between the market portfolio X'z =% and the riskless asset return
- Cz,

zy . Hence, we can find the optimal allocation ( I, x) solving

(7.1) max E() - cP(W £ - VaR),

where W =1 z,+(1- | )x'z. Thus, under the “no short sale’ assumption (I ,x, 3 0), the optimal

allocation will begivenby I 1 (0,2),and x =(1- | )x that maximize

_ _ 2 VaR - |_z0 -@-1)m.,
EW)- cPW £-VaR) =1 zy+(@- 1 )m_,_- cFa’og T Az
- S <,

SEA)

Here F,, is the above defined cumulative distribution function of the stable random variable

A- B A- 2Bz, +CzE)"? .
S, (1L,0,0); m, = “o s, =xlox = ( 20 ) are respectively the mean and the
Y2 B-Czy ¢ B- Cz,

scale parameter of the optimal risky portfolio X'z, and A=m'Q'm; B=¢'Q'm; C=e'Qle.
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According to safety first portfolio selection theory (see Ortobelli and Rachev (1999)), we know that
all the portfolio weights of the risk averse efficient frontier (4.6) are static points of the optimization

problem

7.2 min PW £6) =min P((1- x"e)z, +x'z £t
I 0

for some real ¢. In particular, the solutions of (7.2) for ¢3 z, are dl the portfolio weights belonging to

the portfolio weight non-satiable risk-averse efficient frontier. Thus, for every optimal alocation

(I, x), solving (7.1), there existsavalue 7 =- VaR 3 z, suchthat

x = (1- [)x = argemin P((1- x'e) zo +x'z £ - VaR)%,
e - 2
and the portfolio weight efficient frontier for non satiable risk averse investors can be expressed as a

function of 7 (the safety first representation of the efficient frontier). Moreover, when we consider

short sale restrictions (I 1 (0,1) ,x; 3 0), the set of optima portfolios for non-satiable investors
contains only the efficient frontier for non-satiable risk averse investors, (see Bawa (1978) and
Ortobelli and Rachev (1999)).

Analogously to section 4, we can assume the three-fund separation stable model (4.10) for the risk
returns. We obtain the optimal allocation solving

max E(W) - cP(V £-VaR),

where W =(1- 1 ,- | ,)zo +x' (I ,,1 5)z , and

Q-l(m' Zoe) £ QElb

= im0

Assuming that no short sale is allowed (i.e (1-1,-1,)30, x,(1,,15)20), then the optimal

alocationisgivenby I T (0,1), and x(l 5,1 3) that maximize V(W) =EW) - cP(W £ - VaR) . Hence,
we can approximate the optimal allocation on the efficient frontier solving the following optimization
problem

Ima|XE(W) - CP(WE-VCIR) =:'T]a|X(1- | 2" |3)ZO +mx/(|2’|3)z +

17 I i
R A 1o 1920+ 5 0o DV e et 1 e
N iz

where z® for i=1,...,N are observations of the vector z. In particular, when a :=a, =a,, we can
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solve numerically the following two-parameter optimal allocation problem

& VaR- A-1,-1)zy- m, -b, S, tanpa/2) 0
max(L- | ,- | )z +m, - CE, C 27 73/20 7 TN, 0z a1, )22 X (1, )z =
Il s X (15)03)z a, r/(,2‘,3):8 s =
X’('z:l 3)z %)

where F, is the above definite cumulative distribution function of the stable random variable

Lag):

¥ (15,1 3)bs | san(x (1 5,1 5)b)b,
Sa b" bx’(lz,lg)zz’- bx’(lz,la)z tan(pa/z))’ and bx’(lz,la)z = s a !

x'(I,03)z

S iy T ((x’ (15,1 3)0x" (15,1 4)*? +(|x’ (1,1 3)b|s )’ )” coomug =X (1 )m o are
respectively, the skewness parameter, the scale parameter, and the mean of the optimal risky portfolio
x'(,,15)z.

As afurther generalization, we can assume the (k+1) fund separation stable model (4.15) as the risk

returns. Thus, we obtain the optimal allocation solving

(7.3) ‘max E(W)- cP(W £-VaR),

where W =1 zo +x' (1 5,1 5y, ] o)z, With T =1-1,-1,-..-1,,, and

Olm-z0) , §, 07D,
oMM zge) 12 el0

.x(l 2,...,' k+1) :| 2
Assuming that no short sale is allowed (i.e. | v x, (15,1 5,01 ,) 3 0), then the optimal allocation is

givenby 1 1 (0,1), and x(I 2reen | 4ap) s that maximize V(W) = E(W)- cP(W £ - VaR) . Therefore, we

can approximate the optimal allocation on the efficient frontier by solving the following optimization

problem:
| malx E(W)' CP(W£-VCZR):I malx (1' |2' e ™ |k+l)Zo+mxl(| ..... | )Z+
1 (1)\7 i )
-c—a ((1' (IPYIE ) -7 +x (P k+l)Z())[[x’(| greel 1)z E-VaR- (-1 ,- .- | M)zo]
N iz
Similarly to the three fund separation model, when a :=a; =...=a, , we can solve numericaly the

allocation problem using the analytical formulation of the cumulative distribution function.
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Under the assumptions of the model (4.15), given two portfolios x’z and y’z with the same mean

'm=y'mandth vy Xy s =2k, where b =[b, ,...b, ]’
x"m=y"m and the same parameters =c;, j=2..k,where b, =[b;,..b, 1",

x/yIQy i \/lex

and such that x’Qx > y'Qy. Thus, for every red u:

%P()/z £5)- P zE£s))is=
-y

=0 C)P(X£S7- [J/m' - m Gl [B=tp B =),y Odtis+
¥R VO
“ -¥m - -
-0 OHXES -l - n Gl (%=l Y=ty Odtls=
¥R ,/x’Qx
O AL I T
#¥ o oy
s-¥m - ~ _ _ .
- AXE - Gh - Gl [ =l Y =t)MsE, y (VAIED

J¥or

Y

1
4 x'e

A T Pa oY Uy f
\x Ox

can be proved using similar arguments as in (4.3). It follows that y’z dominates x’z in the sense of

R-S. Next, we can obtain the efficient frontier for the risk averse investors when unlimited short

selling is allowed, as the solution of the alternative following the quadratic programming problem:

i
: min%x’Qx
% x'm+(1- x'e)zy, =m,,,
Tx'p
[ ——==c, j=2..k
1 x'Ox

) x'b . _ .

Moreover, for every fixed parameters L =¢, j=2,..k,itasofollows:

1 1
- 1- -
P(xlz+(1- xle)zo £s) = O P(X£M

R*! \/lex
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d 1 d
where X/y2 v = xe :Sal(L0,0), Jy,....v, isthejoint density of (Y5,...,¥,) and gisanincreasing

----- e

function. As a consequence, if the portfolio x’z + (1- x’e)z, maximizes the probability of survival

1

for afixed threshold s and fixed parameters e =¢;, j=2..k,then s£x'm+(1- x'e)z,, and
x'Ox

thereisno portfolio y'z+(1- y’e)z, such that
x'm+(1- x'e)z, =y 'm+(1- y'e)z, and y' Qy <x'QOx.

With similar arguments, we can prove that every portfolio that minimizes the probability of survival for

1
X .
a fixed threshold s and fixed parameters = =Ej j=2,...,k,is aportfolio that minimizes the

Vx'Ox

x'b.
—=c, j=2..k,(i. e itisanon-dominated

Jx'Ox

portfalio in the sense of R-S). However, the opposite is also true, (comparing the solutions of (4.16)

volatility for fixed mean and fixed parameters

with the static points of the following optimization problem (7.4) proves it). As in the sub-Gaussian
stable case, when unlimited short selling is allowed, all the portfolios of the risk averse efficient

frontier (4.17), are static points of the optimization problem

s-x'm- 1- x"e)z,

\x'Ox

i
imnP((1- x'e)zy +x'z£5) =min

(7.4)

s = 5%,
I
x'b.;

x'Ox

=c¢; j=2..,k

—_—— i ———

varying s* and Ej Jj=2,...k . In particular, the solutions of (7.4) for s3 z, are al the portfolio

weights belonging to the portfolio weight efficient frontier for the non-satiable risk-averse investors.

Thus, for every optimal alocation (I ,x(l ,,...,1 ,,,)), solving (7.3), there exist 5 =- VaR 3 z, and

¢.*, j=2,..,k,suchtha

j

® 0
¢ N
3yl 1) = 2000 min P x'e)z, +x'z £ VaR):.
gx’b_,] e _
8\/@_6/ J=2,...k a

Furthermore, the portfolio weight efficient frontier for the non-satiable risk averse investors can be
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expressed as a function of s and c;* j=2,.,k, (the safety first representation of the multi-

parameter efficient frontier). Also in this case, when we consider short sale restrictions, the set of
optimal portfolios for the non-satiable investors generally contains (in the strict sense) the efficient

frontier for the non-satiable risk averse investors.

8. CONCLUSIONS

In first analysis, the comparison made between the stable non-Gaussian and the normal approach to
the allocation problems has indicated that the stable non-Gaussian allocation is more risk preserving
than the normal one. Precisely the stable approach, differently from the normal one, considers the
component of risk due to the fat tails. Other differences can be seen in the alocation as due to the
different kurtosisin the stable and normal distributions. In this case a “stable investor”, not too averse
to the risk of loss, invests more in the risky assets than a “normal investor”. Therefore, we found that
the two main differences (tails and kurtosis) between Gaussian and stable non Gaussian approaches
imply important differences in the allocation problems. Taken into account that the stable approach is
more adherent to the reality of the market, then, as argued by Gotezenberger, Rachev and Schwartz
(1999), we can obtain models that improve the performance measurements with the stable
distributional assumption.

In second analysis, we study, analyze and discuss portfolio choice models considering returns with
heavy tailed distributions. The first distributional model considered: the case of sub Gaussian a stable
distributed returns permits a mean risk analysis pretty similar to the Markowitz-Tobin mean variance
one. As a matter of fact, this model admits the same analytical form for the efficient frontier, but the
parameters in the two models have a different meaning . Therefore, the most important difference is
given by the way of estimating the parameters. In order to present heavy tailed models that consider the
asymmetry of the returns, we study a three fund separation model where the portfolios are in the

domain of attraction of an (a;,a,) stable law. Finally, we analyze the case of k+1 fund separation
model with portfolios in the domain of éttraction of an (a;,a,,....a;) stable law. For al models we

explicate the efficient frontier for the risk averse investors. Then, we show how to estimate al

parameters and to determine the safety first representation of the multi-parameter efficient frontier. In
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this context, we have shown that if the stable optimal portfolio analysis is stable, our approach is
theoretically and empirically possible. Indeed, this work should be viewed only as a starting point for
new empirical and theoretical studies on the topic of optimal allocation. In order to know which stable
model is preferable, the market conditions in which the investors operate must be analyzed .
Furthermore, the numbers of parameters can be increased in the model so to achieve a better
approximation, although it can be far more “expensive’ in the calculation time. Finaly, as far as the
choice of the best indexes to choose in the k+1 fund separation model, we can refer to Ross' analysis

on thisissue.

APPENDIX A

In table VI we summarize the different models used in this paper.

APPENDIX B: ON SAFETY FIRST PORTFOLIO CHOICE

Roy [1952], Bawa [1976, 1978], Pyle and Turnowsky [1970, 1971] suggest the safety first rules as
a criterion for decision making under uncertainty. The practical appeal of the generalized safety first
rules is demonstrated by Bawa [1979]. In the context of realistic portfolio selection problems where
the distributions of portfolio returns are unknown, safety first rules can be used by applying them to the
empirical distribution of portfolio returns used in lieu of the true, but unknown, distributions. More
recently, Ortobelli and Rachev (2000) also showed that the Young (1998) minimax principle is a
particular case of the more general safety first principle. Moreover, the safety first portfolio selection
rules suggest consistent statistics to approximate optimal portfolios for the non-satiable investors and
the non-satiable risk averse investors. These criteria maintain aimost the same advantages of the
minimax method. Hence, the developed programming methods to determine safety first portfolio
selection have the potential to make portfolio optimization a tool very accessible to any financial
manager.

Pyle and Turnovsky [1970, 1971], Bawa [1976, 1978] and more recently Ortobelli [1999b-c],
Ortobelli and Rachev (1999-2000) showed that when the returns belong to an elliptical family of
distributions, then safety first analysis provides a representation of the mean dispersion efficient

frontier in function of the threshold VaR. In this case it appears more realistic to assume sub-Gaussian
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stable distributions of the returns in safety first analysis. Moreover, the equivalence of the efficient
frontiersis not only a consequence of the elliptical distributional approach, in fact, Ortobelli (1999b-c),
Ortobelli and Rachev (1999-2000) realize the Pyle and Turnowsky’s conjecture and generalize safety
first analysis to a multi-parameter portfolio selection. Hence, under some regularity conditions on the
distributions of returns, we have equivalence rules between the non stochastically dominated sets, the
sets of safety first portfolios and the moments efficient frontiers. These correspondences also imply
that safety first analysis is an aternative and can be more general than moments analysis because it
does not necessarily require distributional restrictions. In Ortobelli and Rachev (2000), the concept of
stochastic bounds of the market is introduced, where cumulative distributions can be obtained as
envelope of optimal portfolio cumulative distributions. The studies on the stochastic bounds permit to
give a modern interpretation of equilibrium and to analyze the trend of a complete market with short

sale restrictions.
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FOOTNOTES

1) We recall that Chamberlein (1983) shows that the families of elliptical distributions with finite
variance are necessary and sufficient for the expected utility of final wealth to be a function only of the

mean and the variance.

2) = (sgn x)|x|[ .
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TABLES

Table 1. Estimated daily index parameters
The following table was obtained by Khindanova, Rachev and Schwartz (1999). It summarizes the
estimated parameters of the normal and the stable fit the sample distribution of z when z is either the

index S&P 500 or DAX30 or CAC40.

Series Normal Stable
Mean Standard Method a b m S
Deviation
S& P 500 0.032 0.930 ML 1.708 0.004 0.036 0.512
DAX30 0.026 1.002 ML 1.823 -0.084 0.027 0.592
CAC40 0.028 1.198 ML 1.784 -0.153 0.027  0.698

Table II: Coefficient ¢ for the normal and the stable case in the allocation problem

max E(W) - cE(W - EOV))) .

This table computes the coefficient

m, -z

V@,bDs .

c =

1H@,b))) in the stable case (1<a <2)

} \/pz in the normal case (@ =2)

LIBOR 6% annual rate (daily z, = 0.00016 = %) and z is either theindex S&P 500 or DAX30 or

where V(a,b1) = , z, Is the riskless rate three months

CACA40. In particular, we point out with ¢; and ¢, the coefficient ¢ respectively for the normal and

the stable case.
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Series Normal case Stable case

coefficient c; coefficient c,
S&P 500 0.043 0.051
DAX30 0.032 0.036
CAC40 0.029 0.030

Table III: Optimal allocation for the normal and the stable fit the optimization problem

") when r=1.5 or r=1.35.

max E(W) - cE(W - EOV)
This table computes the optimal allocation | in the riskless return three months LIBOR 6% annual

rate (daily z, = 0.00016 = %) for different risk aversion coefficient ¢ of the optimization problem

max E() - cE(W - EOV)")

where W =1 z,+(1- | )z and z iseither theindex S&P 500 or DAX30 or CAC40. In particular, we

analyse the normal and the stable when »=1.5 or r=1.35.
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SERIES

S&P500

DAX30

CAC40

Coefficient “c”
of the optimization

problem

c=0.0276
¢=0.03
c=0.032
c=0.033
c=0.034
c=0.036
c=0.038
c=0.04
c=0.045
c=0.05
c=0.055
c=0.065
c=0.1

c=0.021
c=0.022
c=0.023
c=0.024
c=0.025
c=0.027
c=0.0285
c=0.03
c=0.033
c=0.035
c=0.04
c=0.05
c=0.1

c=0.017
c=0.018
c=0.019
¢=0.02
¢=0.0205
¢=0.0215
¢=0.023
c=0.024
c=0.025
c=0.028
c=0.033
c=0.04
c=0.1

Normal
Optimal Allocation |
With

r=1.35 r=1.5
0.000 0.006
0.000 0.159
0.069 0.261
0.148 0.305
0.217 0.345
0.335 0.416
0.430 0.476
0.508 0.527
0.649 0.626
0.740 0.697
0.802 0.750
0.877 0.821

0.964 0.924
0.000 0.096
0.000 0.176
0.012 0.247
0.126 0.308
0.222 0.362
0.375 0.453
0.465 0.509
0.538 0.557
0.648 0.634
0.702 0.675
0.797 0.751

0.893 0.841

0.985 0.960
0.000 0.063
0.000 0.164
0.000 0.250
0.085 0.323
0.148 0.356
0.256 0.414
0.387 0.488
0.457 0.530
0517 0.567
0.650 0.655
0.781 0.751
0.874 0.831
0.991 0.973
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Stable
Optimal Allocation |
With
r=1.35 r=1.5
0.000 0.415
0.000 0.505
0.096 0.565
0.172 0.591
0.240 0.615
0.356 0.656
0.447 0.691
0.522 0.721
0.659 0.780
0.748 0.822
0.808 0.853
0.881 0.895
0.965 0.955
0.000 0.193
0.000 0.265
0.000 0.327
0.021 0.382
0.129 0.431
0.301 0.512
0.401 0.562
0.482 0.605
0.606 0.673
0.667 0.709
0.772 0.778
0.880 0.858
0.983 0.964
0.000 0.401
0.029 0.466
0.168 0.520
0.281 0.567
0.330 0.588
0.416 0.625
0.518 0.673
0.573 0.699
0.620 0.723
0.725 0.779
0.828 0.841
0.901 0.892
0.993 0.983



Table IV: Estimated empirical VaR of risky indexes
The following table was obtained by Khindanova, Rachev and Schwartz (1999). It summarizes the

estimated empirical VaR (95% and 99%) for the daily risky indexes S& P 500, DAX30 and CACA40.

Series Empirical VaR 99% Empirical VaR 95%
S&P 500 2.293 1.384
DAX30 2.564 1.508
CAC40 3.068 1.819

Table V: Safety first optimal allocation for the normal and the stable fit using riskless rate three

0.06

months LIBOR 6% annual rate (daily z, = 0.00016 = 360 ).

This table computes the optimal allocation | in the riskless return three months LIBOR 6% annual

rate (daily z, = 0.00016 = %) for different risk aversion coefficient ¢ of the optimization problem

max E(¥) - cP(W £ - VaR)

where W =1 z,+(1- | )z and z iseither theindex S&P 500 or DAX30 or CAC40. In particular, we

distinguish the normal and the stable fit when we have the empirical VaR (95% and 99%) estimated in

table V.
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SERIES

S&P500

DAX30

CAC40

Coefficient “c”

of the optimization
problem

c=0.173

c=0.14
c=0.16
c=0.2
c=0.25
c=0.5
c=1
c=1.5
c=7
c=15
c=1700
c=170000

¢=5%0%

c=0.16
c=0.17
c=0.2
c=0.3
c=0.5
c=1
c=1.5
c=7
c=15
c=150
c=5000
c=5x30"

Normal
Optimal Allocation I
WITH
VaR=1.384 ; VaR=2.293;
0.035 0.000
0.182 0.000
0.277 0.000
0.325 0.000
0.483 0.064
0.530 0.168
0.588 0.284
0.613 0.332
0.667 0.432
0.717 0.521
0.810 0.682
VaR=1.508 ; VaR=2.564;
0.022 0.000
0.167 0.000
0.266 0.000
0.325 0.000
0.432 0.000
0.495 0.064
0.521 0.125
0.591 0.271
0.616 0.319
0.703 0.484
0.748 0.564
0.809 0.672
VaR=1.819 ; VaR=3.068;
0.095 0.000
0.147 0.000
0.231 0.000
0.341 0.000
0.419 0.000
0.484 0.052
0512 0.115
0.585 0.266
0.610 0.314
0.663 0.415
0.713 0.505
0.806 0.671

Stable
Optimal Allocation |
WITH
VaR=1.384; VaR=2.293
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.496 0.000
0.724 0.267
0.946 0.819
0.981 0.937
0.999 0.998
1.000 1.000
1.000 1.000
VaR=1.508 ; VaR=2.564
0.000 0.000
0.000 0.000
0.000 0.000
0.118 0.000
0.355 0.000
0.514 0.000
0.589 0.126
0.917 0.736
0.967 0.894
1.000 1.000
1.000 1.000
1.000 1.000
VaR=1.819; VaR=3.068
0.000 0.000
0.000 0.000
0.000 0.000
0.187 0.000
0.375 0.000
0.562 0.017
0.679 0.205
0.923 0.819
0.978 0.930
0.999 0.996
1.000 1.000
1.000 1.000



Table VI:A summary of the models considered in our discussion.

This table summarizes the different models used in this paper.

On the Estimator
Portfolio Model random Efficient frontier for the
parts of the parameters
model
Classic moment
Mean-variance frontier estimators of
z is aNormal _ m, - zg mean and
Two 2o isthe distributed return | "w =Zo* } Sw variance
riskless return,
Assets Maximum
W =lzog+(1-1 .
2tz isthe Mean-dispersion Likelihood
Approach risky return z isan a stable Frontier Method or
distributed return = Mz 0 Fourier
l<a<2 s T e
Mean-variance frontier
z isthe vector of with optimal portfolio Classic moment
Two fund jointly eliptically weights estimators of
M separation model | distributed returns 1 m-zg mean and
with finite variance | ¥=0 {m zod———— variance
U A-2B7+CE
L A z isthevector | z isthe vector of Mean-dispersion
of jointly jointly Frontier with optimal
ellipticaly sub-Gaussian portfolio weights: Method based on
T P distributed symmetrically o m-zg the moments
returns a stable x=0 Y m Zoe)m
I P distributed returns 0
with 1<a <2
\Y% R e isvector jointly | Mean-variance-skewness
W= xle)zg +x'z Thrgefund elliptically frontier with optimal Us ng moment
. separation model | distributed. Y isa portfolios: estimators of
A (0] Zp isthe non symmetric ol mean, variance
) Symm @-1,-13)z0 + 15 + !
riskless return random variable. 10 1 and skewness
R A bl-Y+el- " [ admit | 210 (m- zge)
= + _—
z; =m+hY+e; finite third moment 2 elo Y m- zg0)
I C
€ isvector jointly Mean-dispersion-
A H & vector sub-Gaussian skewness frontier with
JO(lj_nstt')( be”tgjtlcaldly symmetrically optimal portfolios: Maximum
istributed an o1, Likelihood
. aq stable 107
T independent from 1 ) @-12-13)zg +1 37,91 + | method or OLS
Y distributed. Y is e Qb method
E azstable .l 107 (m- z0€)
distributed. *elo m- z00)
Besides 1<al2 <2
k+1-fund e isvector jointly | Multi-parameter efficient
separation stable sub-Gaussian frontier with optimal
model symmetrically portfolios: N_Iaxi_mum
oMbl ay stable oY, méhﬁﬂ'gf’ OOdLS
wtb Y, +e;, it k1 k .
ik Ve ¥ € distributed. Q- éli)zo+éli+1L+ method
e vector Y, j=2. . kae | T 2T =0,
ind dent from
e;;;en Y, a;-stable “ 20N z0)
distributed with 240 m zp)
1<a ;< 2.

45






