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Aim: The microbiome has been shown to be pivotal in the development of metabolic associated 

fatty liver disease (MAFLD). Few have examined the relationship of the microbiome specifically 

with steatosis grade. Therefore, our aim was to characterize the association of the microbiome 

with MAFLD steatosis severity while adjusting for metabolic comorbidities including diabetes.

Methods: We enrolled patients with MAFLD at the West Los Angeles Veterans Affair Hospital. 

All patients underwent ultrasound elastography, fasting serum collection, and fecal sampling 

for 16S sequencing. We examined the associations of microbial diversity and composition with 

advanced steatosis, defined as a CAP score of ≥ 300 dB/m, with or without the presence of 

metabolic comorbidities.

Results: Seventy-five patients were enrolled. African American were less likely to have 

advanced steatosis than either Hispanics or Whites (P = 0.001). Patients with more advanced 

steatosis had higher fasting serum triglyceride (192.6 ± 157.1 mg/dL vs. 122.5 ± 57.4 mg/dL), 

HbA1c (6.7% ± 1.4% vs. 6.1% ± 0.8%), transaminases, and were more likely to have metabolic 

syndrome (52.4% vs. 24.2%, P = 0.02). Advanced steatosis and diabetes were associated with 

altered microbial composition. Bacteroides was negatively associated with advanced steatosis 

while Megasphaera was positively associated with steatosis. Akkermansia was negatively 

associated with diabetes, while Anaerostipes and Parabacteroides were positively associated with 

diabetes.

Conclusion: Diabetes and metabolic syndrome are associated with hepatic steatosis severity in 

MAFLD patients and both advanced steatosis and comorbid diabetes are independently associated 

with microbiome changes. These results provide insight into the role of the gut microbiome in 

MAFLD associated with metabolic syndrome.

Keywords

Metabolic syndrome; nonalcoholic fatty liver disease; microbiome; obesity; ultrasound 
elastography; advanced steatosis; diabetes

INTRODUCTION

Obesity is a rapidly growing epidemic in the United States. It is now estimated that 1 

out of every 4 Americans is obese[1]. With the rise of obesity, there has also been a rise 

in obesity-related diseases such as cardiovascular disease, hyperlipidemia, diabetes, and 

metabolic associated fatty liver disease (MAFLD)[2,3]. MAFLD is estimated to affect up to 

30%−50% of all obese patients[4]. It is projected to be the leading cause of cirrhosis and 

liver transplant in the next 10 years[4]. Despite the rising tide of MAFLD incidence, there 

are currently no approved medications for the treatment or prevention of MAFLD. While 

diet and exercise remain pivotal to the treatment of MAFLD, only 10%−15% of patients are 

able to reach and sustain significant weight loss to affect MAFLD progression[5]. Therefore, 

continued research in this field is paramount to the development of novel therapeutics.

One area that has shown promise in the field of MAFLD and obesity is the gut microbiome. 

The intestinal microbiome is a complex community of trillions of bacteria with over 2 

million genes that acts as a bridge between the environment and the host[6]. Over the last 

decade, the gut microbiome has been shown to play a pivotal role in the development of 
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obesity, insulin resistance, MAFLD, and liver fibrosis[7–11]. Germ-free mice have lower 

body fat and are more resistant to obesity than conventionally housed mice[12]. By using 

fecal microbial transplant, the obesity phenotype has been shown to be transferrable via 

the gut microbiome[13]. Yet, the exact mechanism by which the gut microbiome modulates 

obesity and MAFLD is still unclear. Several studies have shown associations of bacterial 

taxa with MAFLD development and progression to fibrosis as compared to healthy 

controls[14]. However, MAFLD is not a singular disease. Instead, it is a disease that is 

often associated with several other metabolic related diseases such as hypertension, diabetes, 

high cholesterol, and metabolic syndrome. Very few studies have examined the association 

of the gut microbiome in patients with MAFLD while accounting for other metabolic 

co-morbidities. Therefore, the aim of our study was to examine the relationship of the gut 

microbiome to MAFLD severity while adjusting for other metabolic-related comorbidities.

METHODS

Patient recruitment

Patients were recruited at the West Los Angeles Veterans Affair Medical Center. Inclusion 

criteria included patients between 20–75 years of age and a diagnosis of MAFLD either 

by imaging or physician notes. Exclusion criteria included having active viral hepatitis, 

autoimmune hepatitis, or other forms of chronic liver disease, recent weight loss of > 10 

kg or were on a calorie-restricted diet 6 months prior to enrollment, abnormal baseline 

labs (serum creatinine > 1.6 mg/dL; triglycerides > 500; thyroid stimulating hormone 

outside of normal range), consumption of more than 1 alcoholic beverage per day, or 

pregnant. Patients were also excluded if they were on antibiotics or probiotics within 1 

month of enrollment. At the time of recruitment, clinical data, demographic data, current 

medications, fecal sampling, fasting serum, and ultrasound elastography were obtained. 

Ultrasound elastography was done using the FibroScan platform (Echosens, Waltham, MA, 

USA) with the XL probe by trained technicians with at least 100 prior procedures. Advanced 

fibrosis was defined as having at least F3 fibrosis on ultrasound elastography and advanced 

steatosis was defined as having a CAP score of at least 300 dB/m[15]. Metabolic syndrome 

was defined using the National Cholesterol Education Program (NCEP) Adult Treatment 

Panel III (ATP III) definition[16]. Metabolic syndrome was defined as having any three of 

the following five criteria: waist circumference > 40 inches in males or 35 inches in females, 

fasting glucose ≥ 100 mg/dL or history of diabetes mellitus on therapy, triglycerides ≥ 150 

mg/dL or on therapy for hypertriglyceridemia, high density lipoprotein (HDL) < 40 mg/mL 

in males or < 50 mg/dL in females or was on therapy to raise their HDL, or blood pressure 

> 130 mmHg systolic or > 85 mmHg diastolic or was on therapy for hypertension[16]. All 

research was performed in accordance with the Declaration of Helsinki and approved VA 

IRB. Project identification code: 2017–121121. Written and verbal informed consent was 

obtained from each participant.

Fecal sampling and processing

Participants were given a home stool kit and were asked to return the stool sample within 

1 week of the patient recruitment. Stool samples were collected in Para-Pak collection vials 

prefilled with 95% ethanol. Samples were then stored at −80 °C until they were all processed 
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together as a single batch. DNA was extracted using the ZymoBIOMICS DNA Microprep 

Kit (Zymo Research, Irvine, CA, USA) per the manufacturer’s protocol. Sequencing of the 

253 base pair V4 region of 16S ribosomal DNA was performed as previously described 

using the Illumina NovaSeq 6000 to a depth of 250,000 reads per sample (primer set: 

515f/806r)[17]. The sequences were processed with the DADA2 pipeline in R which assigns 

taxonomy using the SILVA 132 database. After pre-processing in R, the data were imported 

into QIIME 2 version 2019.10 for further analysis. Amplicon sequence variants were filtered 

in not present in at least 25% of all samples. Sequence depth ranged from 106,156–511,477 

with a median value of 224,733.

Statistical analysis

Baseline clinical and demographic characteristics were compared between patients with 

severe steatosis (CAP score ≥ 300 dB/m) vs. those with lower level of steatosis using 

analysis of variance for continuous variables and Fisher exact test for categorical variables. 

For microbiome analysis, continuous laboratory values were dichotomized into categories. 

The following standard clinical cutoffs were used: total cholesterol: 200 mg/dL, triglyceride: 

150 mg/dL, HDL: 40 mg/mL in males or 50 mg/dL in females, LDL: 130 mg/dL, 

HbA1c: 6.5%, aspartate aminotransferase: 35 IU/L, and alanine aminotransferase: 40 IU/L. 

Similarly, age and BMI were dichotomized into a binary categorical variable based on the 

median value of the cohort, 58 for age and 34.1 for BMI. All means were presented with 

their standard deviations. A composite category of race and ethnicity was used where we 

identified Hispanics as a separate category (i.e., White, Asian, African American, Hispanic, 

and others).

Microbiome data were analyzed similar to our previous published works[11,17]. Alpha 

diversity was calculated using the Shannon index, which measures species richness and 

evenness, with data rarefied to 106,155 sequences. The difference in alpha diversity was 

calculated using analysis of variance. Beta diversity was determined by using the DEICODE 

plugin in QIIME2 which uses a robust Aitchison distance metric. This newer form of 

distance metric has been shown to yield higher discrimination for human studies when 

compared to UniFrac or Bray-Curtis[18]. Statistical significance of beta diversity was 

determined using the “adonis” package in R (version 4.0.3, Vienna, Austria) which employs 

a permutational multivariate analysis of variance. Differential abundance testing between 

groups was assessed using DESeq2 in R which utilizes empirical Bayesian approach to 

shrink dispersion and fit non-rarified count data to a negative binomial model[19]. P-values 

were converted to Q-values to correct for multiple hypothesis testing using a threshold of Q 

< 0.05 for significance.

RESULTS

Seventy-five MAFLD patients were enrolled into the study. The average age was 56.0 ± 

1.2 years old with a majority of the patients being male patients [Table 1]. There was no 

statistical difference by age, BMI, or gender between patients with high level of steatosis 

vs. those with lower level of steatosis. Patients with more advanced steatosis were more 

likely to be White or Hispanic and less likely to be African American (81.0% vs. 16.7%, P 
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= 0.001). Not surprisingly, patients with more advanced steatosis had higher fasting serum 

triglyceride (192.6 ± 157.1 mg/dL vs. 122.5 ± 57.4 mg/dL), HbA1c (6.7% ± 1.4% vs. 6.1% 

± 0.8%), aspartate aminotransferase (28.4 ± 13.2 IU/L vs. 21.1 ± 6.5 IU/L), and alanine 

aminotransferase (43.0 ± 23.1 IU/L vs. 28.0 ± 15.8 IU/L) as compared to those with lower 

levels of steatosis [Table 1]. Consistent with the laboratory data, patients with advanced 

steatosis were more likely to have metabolic syndrome than those without advanced steatosis 

(52.4% vs. 24.2%, P = 0.02). Only 11 patients (14.7%) had advanced fibrosis and there 

was no significant association between the level of steatosis and the presence of advanced 

fibrosis.

When analyzing the fecal microbiome, there were no significant differences in beta diversity 

by any factor except for the level of steatosis (P = 0.01) [Figure 1A] and HbA1c elevation 

(≥ 6.5%) (P = 0.02) [Figure 2A]. A complete list of variables tested by beta diversity and 

their respective P-value is provided in the supplemental tables supplemental tables. There 

was no difference in alpha diversity by steatosis [Figure 1B]. The genus level composition 

of subjects by steatosis severity is summarized in Figure 1C. Differential abundance testing 

showed 11 genera that were different between patients with advanced steatosis and those 

with less advanced steatosis [Figure 1D]. Five genera were underrepresented while 6 genera 

were overrepresented in patients with advanced steatosis. Of the 5 underrepresented genera, 

the genera with the largest relative abundances were Bacteriodes, Ruminoclostridium, and 

Klebsiella. Of the 6 overrepresented genera, the genera with the largest relative abundances 

were Dorea, Megashaera, and Coprococcus.

Similarly, there was no significant difference in alpha diversity by HbA1c [Figure 2B]. 

The taxonomic summary by HbA1c level is shown in Figure 2C. Differential abundance 

testing showed 4 genera that were different between patients with a HbA1c ≥ 6.5% vs. those 

below 6.5% [Figure 2D]. Akkermansia was the only genus that was underrepresented in 

patients with elevated HbA1c, while Anaerostipes, Parabacteroides, and Succinivibrio were 

overrepresented.

These analyses are confounded by the association of diabetes with advanced steatosis. In 

order to characterize the independent associations of steatosis and diabetes with the gut 

microbiome, we stratified patients into four groups based on the presence or absence of 

advanced steatosis and elevated HbA1c. There were 28 patients without advanced steatosis 

and without an elevated HbA1c, 21 patients with advanced steatosis with elevated HbA1c, 

21 patients with advanced steatosis without an elevated HbA1c, and only 5 patients who 

had an elevated HbA1c without evidence of advanced steatosis. The microbiome differed 

significantly among these 4 groups [Figure 3A] with the greatest difference between patients 

with both advanced steatosis and an elevated HbA1c as compared to those with neither. 

There was no difference in alpha diversity across these four groups [Figure 3B] and the 

taxonomic summary of these groups is represented in Figure 3C. Due to the low number of 

patients with an elevated HbA1c without advanced steatosis, we excluded this group from 

differential abundance testing. Comparing patients with advanced steatosis with or without 

an elevated HbA1c, 7 genera were differentially abundant [Figure 4A]. Only Akkermansia 
was underrepresented in patients with advanced steatosis and an elevated HbA1c as 

compared to those with advanced steatosis and normal HbA1c. Of the 6 genera that 
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were overrepresented, Anaerostipes, Parabacterioides, and an unidentified genus belonging 

to the order Clostridiales had the highest relative abundances. Comparing patients with 

normal HbA1c, patients with advanced steatosis had 4 genera that were underrepresented as 

compared to those with less advanced steatosis [Figure 4B]. These 3 most abundant genera 

were Prevotellaceae NK3B31 group, Pasteurellaceae Haemophilus, and a genus belonging 

to the family Erysipelotrichaceae. Comparing patients who had both elevated HbA1c and 

advanced steatosis to those that had neither, there were 5 genera with differential abundance 

[Figure 4C]. The only genus that was underrepresented in patients that had both conditions 

was a genus belonging to the family Erysipelotrichaceae. Of the other 4 genera that were 

overrepresented, the genera with highest relative abundances were Dorea, Anaerostipes, and 

Coprococcus.

While there was no difference is alpha diversity by either HbA1c or steatosis, we did find 

alpha diversity difference by age and race. Patients who were older had higher diversity than 

those who were younger, and Hispanics had the highest diversity. This data are represented 

in Supplementary Figure 1.

DISCUSSION

This is one of the few studies to examine the relationship of the gut microbiome with 

steatosis severity while accounting for other factors associated with metabolic syndrome. 

Our data suggest that the gut microbiome is altered by both the presence of diabetes and 

advanced steatosis, and that bacterial shifts are most significant for those that have both as 

compared to those that have neither.

It is not surprising to see advanced steatosis by ultrasound elastography associated with 

worsening metabolic syndrome and transaminase elevation. Insulin resistance is often a 

major driver of MAFLD, and MAFLD is a major driver of insulin resistance[20]. The 

pathophysiology of these two conditions is intertwined and can be difficult to separate. 

Studies have shown that the presence of metabolic syndrome in patients with MAFLD 

places them at an increased risk of developing liver fibrosis, cirrhosis, and hepatocellular 

carcinoma[21]. In addition to metabolic syndrome, we also found associations of race and 

ethnicity with advanced steatosis. In particular, African Americans had a lower risk of 

having advanced steatosis than Hispanic or non-Hispanic Whites. This is consistent with 

other studies that have shown a lower risk for MAFLD in African American patients[22]. 

Population-based studies suggest that the prevalence of MAFLD in Hispanics is as high as 

1 in 4 while in African Americans it is 1 in 10[22]. The reason for this disparity is still 

unclear, which has been attributed to such factors as genetics, cultural differences, and eating 

behaviors.

From a microbiome standpoint, we identified several bacterial taxa that were associated 

with advanced steatosis and diabetes in MAFLD patients. In our study, Bacteroides was 

negatively associated with advanced steatosis and Megasphaera was positively associated 

with advanced steatosis. Dorea and Succinivibrio were positively associated with both 

advanced steatosis and diabetes. The role of Bacteroides in MAFLD is complex. Some 

species of Bacteroides have been associated with progression to advanced liver fibrosis[23] 
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while other Bacteroides species have been reported to be protective against MAFLD[24]. 

Megasphaera and Dorea, on the other hand, have been consistently associated with advanced 

MAFLD and steatohepatitis[25,26]. Potential mechanisms by which changes in the gut 

microbiome may affect steatosis include alterations in bile acid signaling, short chain fatty 

acid signaling, and endotoxemia[25,27–30].

Of the genera that were associated with elevated HbA1c, Akkermansia, Anaerostipes, 

and Parabacteroides were associated with elevated HbA1c independent of MAFLD. 

Akkermansia is one of the most well-studied bacterial genera in relation to obesity. It 

is a mucin-degrading bacteria that has been inversely associated with diabetes, obesity, 

and MAFLD[31–33]. In a mouse model, oral administration of Akkermansia activated 

toll-like receptor 2, increased the expression of epithelial tight-junction proteins, and 

reversed high-fat diet-induced insulin resistance[34]. The beneficial role of Akkermansia 
has led several researchers to investigate Akkermansia supplementation as a means to treat 

obesity[32]. Similarly, we show that Akkermansia was negatively associated with elevated 

HbA1c. Unlike Akkermansia, less is known about the relationship of Anaerostipes and 

Parabacteroides with diabetes. In a genome wide association study of human stool sample, 

researchers found Anaerostipes to be positively associated with type 2 diabetes. Similarly, in 

studies of type 1 diabetes and gestational diabetes, Parabacteroides was elevated compared 

to healthy controls[35,36]. Whether these associations are causal is still an area of active 

research.

Despite the nuance of evaluating the association between the gut microbiome and steatosis 

while accounting for other metabolic diseases, this study has several limitations. The first is 

that the study was performed at a Veterans Affair (VA) hospital. While the VA population 

has a higher prevalence of metabolic diseases and obesity than the general population[37], it 

is predominantly male. Therefore, the results may be difficult to generalize to MAFLD in 

other populations. Secondly, while we did see differences in the gut microbiome in patients 

with diabetes as compared to those without diabetes, we could not account for the effect 

of metformin use on the microbiome. Metformin has been shown to affect the microbiome 

independent of diabetes[38,39]. However, because nearly all of our patients who had diabetes 

were on metformin, we were unable to parse out the effect of metformin use from diabetes 

in our analysis. Lastly, while this study offers new insight into the role of the microbiome in 

hepatic steatosis and diabetes, due to its cross-sectional design it can only show association 

rather than causation. Further longitudinal human studies and animal model experiments 

will be required to further validate these findings and determine potential mechanisms.

In conclusion, in this study, it’s shown that diabetes and metabolic syndrome are associated 

with hepatic steatosis severity in patients with MAFLD and that these differences are 

reflected in alterations of the gut microbiome. These findings support further investigation 

into mechanisms by which the microbiome promotes both hepatitis steatosis and insulin 

resistance, which may elucidate novel therapeutic targets for diabetes, obesity, and MAFLD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Microbial changes by advanced steatosis. Principal coordinate plot of microbiome data 

grouped by the presence of high (CAP ≥ 300 dB/m) steatosis or low steatosis (CAP < 

300 dB/m). Ellipsis represent 95% confidence interval (A). Alpha diversity as measured by 

Shannon index between patients with high or low steatosis (B). Taxonomic plot of genera 

present in patients with high or low steatosis. Only genera with a relative abundance ≥ 

1% are shown (C). Differential abundance testing by DESeq2 showing genera that are 

significantly different between patients with high steatosis as compared to those with low 

steatosis (D).
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Figure 2. 
Microbial changes by elevated HbA1c. Principal coordinate plot of microbiome data 

grouped by the presence of elevated (≥ 6.5%) HbA1c or low HbA1c (< 6.5%). Ellipsis 

represent 95% confidence interval (A). Alpha diversity as measured by Shannon index 

between patients with high or low HbA1c (B). Taxonomic plot of genera present in 

patients with high or low HbA1c. Only genera with a relative abundance ≥ 1% are shown 

(C). Differential abundance testing by DESeq2 showing genera that are different between 

patients with elevated HbA1c as compared to those with low HbA1c (D).
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Figure 3. 
Microbial changes by advanced steatosis and diabetes status. Principal coordinate plot of 

microbiome data grouped by the presence advance steatosis and/or elevated HbA1c. Ellipsis 

represent 95% confidence interval (A). Alpha diversity as measured by Shannon index 

between patients with advance steatosis and/or elevated HbA1c (B). Taxonomic plot of 

genera present in patients with advance steatosis and/or elevated HbA1c. Only genera with a 

relative abundance ≥ 1% are shown (C).
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Figure 4. 
Differential abundance testing by DESeq2 showing genera that are different between (A) 

patients with advanced steatosis with or without elevated HbA1c, (B) patients without 

elevated HbA1c with or without advanced steatosis, and (C) patients with both advanced 

steatosis and elevated HbA1c as compared to those with neither.
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Table 1.

Patient characteristics

Low steatosis (n = 33) High steatosis (n = 42) P-value

Age 55.3 (10.3) 56.6 (11.2) 0.59

BMI 33.7 (3.7) 35.5 (5.0) 0.08

Gender (n, %)

Male (n = 61) 24 (39.3%) 37 (60.7%) 0.14

Female (n = 14) 9 (64.3%) 5 (35.7%)

Race/Ethnicity (n, %)

African American (n = 25) 18 (72.0%) 7 (28.0%) 0.001

Asian (n = 2) 1 (50%) 1 (50%)

Hispanic (n = 16) 6 (37.5%) 10 (62.5%)

Other (n = 1) 1 (100.0%) 0 (0.0%)

White (n = 31) 7 (22.6%) 24 (77.4%)

Laboratory values (mean, standard deviation)

Cholesterol (mg/dL) 162.8 (34.4) 178.4 (49.1) 0.14

Triglyceride (mg/dL) 122.5 (57.4) 192.6 (157.1) 0.02

HDL (mg/dL) 43.1 (9.2) 41.9 (12.7) 0.65

LDL (mg/dL) 95.6 (33.6) 101.0 (37.0) 0.52

HbA1c 6.1 (0.8) 6.7 (1.4) 0.03

AST (IU/L) 21.1 (6.5) 28.4 (13.2) 0.01

ALT (IU/L) 28.0 (15.8) 43.0 (23.1) 0.003

Advanced fibrosis (n, %)

No (n = 64) 31 (48.4%) 33 (51.6%) 0.1

Yes (n = 11) 2 (18.2%) 9 (81.8 %)

Metabolic syndrome (n, %)

No (n = 45) 25 (55.6%) 20 (44.4%) 0.02

Yes (n = 30) 8 (26.7%) 22 (73.3%)
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