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Abstract of the Dissertation

Methods for Estimation and Control

of Linear Systems Driven by Cauchy Noises

by

Javier Huerta Fernández

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2013

Professor Jason L. Speyer, Chair

An efficient recursive state estimator and an optimal model predictive controller are devel-

oped for two-state linear systems driven by Cauchy distributed process and measurement

noises. For a general vector-state system, the estimator is based on recursively propagat-

ing the characteristic function (CF) of the conditional probability density function (cpdf),

where the number of terms in the sum that expresses this CF grows with each measure-

ment update. The proposed two-state estimator reduces substantially the number of terms

needed to express the CF of the cpdf by taking advantage of relationships not yet devel-

oped in the general vector-state case. Further, by using a fixed sliding window of the most

recent measurements, the improved efficiency of the proposed two state estimator allows an

accurate approximation for real-time computation. For control of the general vector-state

system, the conditional performance index is evaluated in the spectral domain using this

CF. The expectation is of an objective function that is a product of functions resembling

Cauchy pdfs. Using this method, the conditional performance index for a two-state system

is obtained analytically in closed form by using Parseval’s identity and integrating over the

spectral variables. This forms a deterministic, non-convex function of the control signal and

the measurement history that must be optimized numerically at each time step. Examples

are given of both the estimator and the controller, to demonstrate their performance and

expose their interesting robustness characteristics.
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CHAPTER 1

Introduction

Gradually a hideous uncertainty came over me and I scrambled from the hole. One look at the

newly made headpiece was enough. This was indeed my own grave ... but what fool had buried

within it another corpse?

H.P. Lovecraft, “The Disinterment”

Dynamic processes involving uncertainty are frequently encountered in fields ranging from

engineering and science to economics and finance. It is often assumed that the uncertainties

are described by Gaussian probability distributions, mainly because modern methods and

algorithms are able to handle such systems very efficiently [1]. However, in many applications

the underlying random processes have an impulsive character producing deviations of high

amplitude and small duration much more often than the Gaussian assumption permits [2].

Examples of such processes include radar and sonar noise [3] and disturbances due to air

turbulence [4]. These uncertainties affect both the actual state of the system as well as

the measurements that the controller depends on. For linear systems in modern stochastic

optimal control, algorithms like the linear quadratic Gaussian (LQG) and the linear ex-

ponential Gaussian (LEG) assume linear dynamics and additive process and measurement

noises described by the Gaussian pdf [1].

Impulsive uncertainties were shown to be better described by heavy-tailed distributions,

such as the symmetric alpha-stable (SαS) distributions [5]. These distributions are described

not by their probability density functions (pdfs), but by their characteristic functions (CFs).

They are of the form φ(ν) = e−σ
α|ν|α+jµν , where σ is the scaling parameter, µ is the median, ν

is the spectral variable, and the characteristic exponent α determines the type of distribution:

α = 2 implies a Gaussian distribution, and α = 1 implies a Cauchy distribution.
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Estimation assuming Cauchy distributed noises has shown improved performance over

Gaussian estimators when faced with impulsive noises. For estimating the direction of arrival

of a signal to a sensor array in [6], maximum likelihood estimators designed assuming Cauchy

distributed noises were shown to exhibit performance very close to the Cramèr-Rao Bound

against SαS noises with characteristic exponents 1 ≤ α ≤ 2. Similar performance was

observed in various applications, including processing data in a multi-user communication

network [7] and radar glint [8]; in particular, the α parameter for the in-phase component

of a time series of sea clutter in radar in [6] was calculated to be α ≈ 1.7. A framework

based on these stable distribution models was developed in [9] and shown to have significant

improvements in performance against heavy tailed noises.

The apparent robustness and adaptability of the Cauchy probability model motivated the

development of a sequential estimator for linear scalar systems driven by Cauchy distributed

process and measurement noises [10, 11], as well as algorithms for optimal control of such

systems in [12,13]. There, the conditional performance index for model predictive control is

determined by taking the conditional expectation of the objective function using the prob-

ability density given the measurement history. A dynamic programming algorithm is also

developed in [13], where it is shown that the solution to the dynamic programming recursion

is intractable because of the need to average over future measurements in determining the

optimal return function. This cannot be done in closed form due to the complex dependency

of the optimal return function on the measurement history, and hence we approximate the

dynamic programming solution with model predictive control.

Subsequent work aimed to develop an estimator for general vector-state systems driven

by Cauchy noise [14, 15]. For the vector state systems, the conditional pdf (cpdf) given

the measurement history is not available. However, for these systems the CF of the cpdf

can be recursively propagated [11, 14–17]. The estimator for general vector-state systems

suffers from severe growth in numerical complexity, limiting its use to a small number of

measurement updates and states. In Chapter 2 we present the derivation of the general

measurement update and state propagation formulas using the CF approach of [14,15], and

we present the first measurement update for the general vector-state case. We also present
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theorems on the existence of moments of the conditional pdf for this general case.

The methodology in [14, 15] is based on finding the characteristic function of the condi-

tional pdf of the state given the measurement history. The estimation algorithm presented in

Chapter 3 follows that same procedure, and by exploiting certain relationships for the two-

state structure, we can greatly reduce the complexity of the algorithm. That algorithm was

derived inductively by working out the first three measurement updates, and then deducing

the general update process [16,17]. In Chapter 3, we present the first two measurement up-

dates, followed by the general recursion, and then the third update is given as an example.

The CF is expressed as a sum of terms, each of which has two components: a coefficient

function denoted by G and an exponential function with argument E . These functions are

shown to have known structures that persist across measurement updates, and parameters

that are contained in a set of fundamental arrays. The essence lies in deriving this structure

and populating the arrays, which allows for a drastic reduction in the complexity of the

algorithm. This result has been checked against the results in [14,15].

In Chapter 4, the Cauchy optimal control algorithm for scalar systems [13] is extended to

systems with a vector state [18, 19]. The significant contribution of that work is evaluating

in closed form the conditional performance index using the cpdf’s characteristic function

instead of the cpdf itself, and thereby integrating over the spectral variables instead of the

state variables [13]. The objective function is cast as a product of functions resembling

Cauchy pdfs, which are easily transformed into functions of the spectral variables. The

conditional performance index, found in a closed form, is a deterministic function of the

control and measurement histories. Due to its complexity, the optimal control signal is

determined by numerically optimizing this non-convex conditional performance index in a

model predictive control setting. Finally, Chapter 5 presents concluding remarks as well as

some thoughts on the future direction of this work.
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1.1 Properties of SαS Distributions

The Gaussian distribution has many strong properties that have made it an extremely use-

ful analytical tool for modeling uncertainty. How these properties change in the Cauchy

distribution is the source of both the analytical power of the Cauchy model as well as the

complexity it induces. Both the Gaussian and the Cauchy distributions belong to the class of

probability distribution functions called the symmetric alpha-stable (SαS) distributions [5].

As the name suggests, these distributions are symmetric, and also unimodal, and are stable

in the sense that sums of random variables of a given SαS will be a random variable of the

same type.

Distributions in the SαS class are described by their characteristic functions. In gen-

eral the distribution functions for SαS distributions are unknown, making the Cauchy and

Gaussian distributions exceptions. In this work we only refer to the subset of the SαS where

1 ≤ α ≤ 2, which contains both the Cauchy and the Gaussian distributions; in fact, the

Cauchy and Gaussian distributions are the only members of this set that have known pdfs.

The characteristic function of a SαS distribution is given by

φ(ν) = e−δ
α|ν|α + jmν (1.1)

These distributions are parameterized by a positive real number α; Cauchy distributions are

those with α = 1, and Gaussian distributions have α = 2. The other two parameters, δ and

m, refer to the scaling of the curvature and the median of the distribution, respectively. For

the Gaussian distribution, then, the standard deviation is proportional to the parameter δ,

and the mean is equal to m. The Cauchy pdf and its CF are given by

fC(x) =
δ/π

(x−m)2 + δ2
, φC(ν) = exp (−δ |ν|+ jmν) , (1.2)

and the Gaussian pdf and its CF are given by

fG(x) =
1√
2πσ

exp

(
−(x−m)2

2σ2

)
, φG(ν) = exp

(
−1

2
σ2ν2 + jmν

)
, (1.3)

All members of this class of distributions are stable, meaning that linear combinations of

random variables of a given α are also random variables of that type. The most important
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difference between the Cauchy and the Gaussian distributions is that the Cauchy has an

infinite variance and an undefined mean, i.e., its first moment is undefined and its second

moment is infinite; all the other distributions with 1 < α < 2 have an infinite variance and

a finite mean. This lack of a finite second moment is what gives these distributions their

impulsive character and differentiates them from the Gaussian distribution.

Another key difference is the lack of a unique general multivariate Cauchy pdf, as opposed

to the Gaussian. The pdf of any n-dimensional Gaussian distributed random vector with

variance Ξ ∈ Rn×n and mean m ∈ Rn can be expressed as

fG(x1, . . . , xn) =
1√

(2π)n|Ξ|
exp

(
1

2
(x−m)TΞ−1(x−m)

)
, (1.4)

where |Ξ| is the determinant of the variance Ξ. As in the scalar case, the distribution is

determined by the variance and the mean, and retains its exponential structure. However,

for the Cauchy case, there is no single, general multivariate structure [20]. That paper defines

multivariate stable distributions as those where every one-dimensional marginal distribution.

One such multivariate Cauchy distribution can be constructed as a product of scalar Cauchy

distributions, where clearly every scalar marginal distribution is Cauchy. An advantage of

using a multivariate Cauchy distribution of this form is that its CF can also be readily found.

fC(x1, . . . , xn) =
n∏
i=1

δi/π

(xi −mi)2 + δ2
i

⇒ φC(ν) =
n∏
i=1

e−δi |νi|+ jmiνi (1.5)

This assumption is fundamental to our approach, as the measurement update formula de-

pends on this structure. Another structure for a multivariate Cauchy distribution is as an

elliptical distribution, where the probability density is a function of a quadratic form [21].

Examples and properties of bivariate Cauchy distributions can be found in [20].

1.1.1 Generating Cauchy random variables

For simulation, it is necessary to generate Cauchy noise sequences. However, computer pro-

grams like MatLAB typically only generate Gaussian random variables. A Cauchy random

variable can be generated from the quotient of two Gaussian random variables. This section

will derive that relationship.
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Denote two Gaussian random variables x1 and x2 with zero medians and standard devi-

ations of σ and 1. Denoting x =

x1

x2

, the joint distribution is given by

fX(x1, x2) =
1

2π |P |
exp

(
−1

2
xTP−1x

)
(1.6)

where P =

σ2 0

0 1

 and |P | is the determinant of P . Denote the function g(·) as

y1

y2

 , y = g(x) =

x1

x2

x2

 (1.7)

Then, use [1, Prop 2.17] to express the joint distribution of y1 and y2 as

fY (y1, y2) =
1

2πσ
exp

(
−1

2

(y1y2)

σ2
+ y2

2

)
|y2| (1.8)

Finally, the marginal distribution of y1, the Cauchy random variable, is given by

fY1(y1) =

∞∫
−∞

1

2πσ
exp

(
−1

2
y2

2

(
y2

1

σ2
+ 1

))
|y2| dy2

=
σ/π

y2
1 + σ2

(1.9)

Using (1.9), a Cauchy random variable with scaling paramter σ can be generated from a

Gaussian random variable with standard deviation σ divided by another Gaussian random

variable with a standard deviation of 1.

1.2 Comparing Cauchy and Gaussian distributions

In the development and analysis of our estimators and controllers, we have tried to find ways

of comparing our performance with that of established Gaussian estimators and controllers.

This has involved finding Gaussian and Cauchy distributions that are “closest” to each other

in some meaningful sense. We present two results, (1.17) and (1.19), which are very similar

despite their different approaches. When comparing pdfs, it is not clear what “closest” means

6



in a stochastic sense. In our results, we have taken the view that when, under Gaussian noises,

a Cauchy estimator matches closely the mean and error variance of its closest Kalman filter

(that is, a Kalman filter whose design parameters are closest to the Cauchy parameters).

Both of these methods attempt to define closeness within that framework.

1.2.1 Closest in the Least Squared Sense

−5 0 5
0

0.1

0.2

0.3

 

 
L2 min
SαS min
Cauchy

Figure 1.1: Comparison of a Cauchy pdf with δ = 1

and its closest Gaussian pdfs, using both measures.

This view considers the pdfs as being in the

space of square integrable functions. Mini-

mizing the distance in L2 should make the

energies, so to speak, of the pdfs as close

as possible. This was the comparison found

first and thus is used in many of the pa-

pers. It produces an optimal ratio between

the standard deviation σ of the Gaussian pdf

and the scaling parameter δ of the Cauchy

pdf. Denote the Gaussian and Cauchy pdfs

as fG and fC , respectively,

fG(x) =
1√
2πσ

e
− x2

2σ2 fC(x) =
δ/π

x2 + δ2
(1.10)

Begin by evaluating the norm of the difference,

||fG − fC ||2 = ||fG − fC ||22 =

∞∫
−∞

(fG − fC)2

=

∞∫
−∞

f 2
G +

∞∫
−∞

f 2
C − 2

∞∫
−∞

fGfC = ||fG||22 + ||fC ||22 − 2

∞∫
−∞

fGfC (1.11)

where the L2 norms of the Gaussian and Cauchy pdfs are given by

||fG||22 =
1

2
√
πσ

||fC ||22 =
1

2πδ
(1.12)
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In order to evaluate the last integral in (1.11), use Parseval’s Identity and the CFs of the

two pdfs as

∞∫
−∞

fGfCdx =
1

2π

∞∫
−∞

φ∗GφCdν =
1

2π

∞∫
−∞

e−
1
2
σ2ν2 · e−δ|ν|dν (1.13a)

=
1

2π

0∫
−∞

e−
1
2
σ2ν2+δνdν +

1

2π

∞∫
0

e−
1
2
σ2ν2−δνdν (1.13b)

=
1

π

0∫
−∞

e−
1
2
σ2ν2+δνdν =

e
δ2

2σ2

π

0∫
−∞

e
− 1

2

(ν− δ
σ2

)2

1
σ2 dν (1.13c)

where the last equality above comes from completing the square. This is as far as this can

be taken analytically, since the Gaussian integral cannot be solved analytically for arbitrary

bounds by using the error function erf (z) = 2√
π

∫ z
0
e−t

2
dt, which is what the computer

provides. To do this, apply a change of variables t =
ν− δ

σ2√
2
σ

followed by some simplification,

as

∞∫
−∞

fGfC =
e
δ2

2σ2

π
·
√

2

σ

−δ√
2σ∫

−∞

e−t
2

dt =
e
δ2

2σ2

π
·
√

2

σ

√
π

2

1− 2√
π

δ√
2σ∫

0

e−t
2

dt

 (1.14)

=
e
δ2

2σ2

√
2πσ

1− 2√
π

δ√
2σ∫

0

e−t
2

dt

 =
e
δ2

2σ2

√
2πσ

(
1− erf

(
δ√
2σ

))
(1.15)

Using (1.15) along with (1.12), take the partial derivative of (1.11) with respect to the

Gaussian standard deviation σ,

∂

∂σ
||fG − fC ||22 =

∂

∂σ

 1

2
√
πσ

+
1

2πδ
− 2

e
δ2

2σ2

√
2πσ

(
1− erf

(
δ√
2σ

))
=
−1√
2πσ2

{
1√
2
− 2e

δ2

2σ2

(
1− erf

(
δ√
2σ

))
+

4δ√
2πσ
− 2δ2

σ2
e
δ2

2σ2

(
1− erf

(
δ√
2σ

))}
(1.16)

Then, (1.16) equals zero when the term in the brackets equals zero. Inside the brackets, the

δ and σ parameters always appear in a ratio. Evaluating this numerically, the minimizing
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ratio is denoted κ and given by

κ := min
σ/δ

||fG − fC ||2 ≈ 1.389801054561982 (1.17)

1.2.2 Closest in the SαS Sense

This view considers the two pdfs as members of the space of SαS functions, which are

parameterized by their medians m, scaling parameters δ, and alpha parameters α. Hence, in

this view, the Gaussian pdf closes to a given Cauchy pdf is one with the same median and

scaling parameter. We can find a constant that maps the Gaussian standard deviation to its

SαS scaling parameter that can be equated to that of a Cauchy distribution. This constant

is found by simply rewriting the Gaussian CF as

φG(ν) = exp

(
−1

2
σ2ν2

)
= exp

(
−
(
σ√
2

)2

ν2

)
(1.18)

Then, the ratio between a Cauchy distribution’s scaling parameter δ and its closest Gaussian

standard deviation σ is denoted κ and given by

κ :=
σ

δ
=
√

2 (1.19)

1.3 Problem Formulation

This work considers the discrete-time linear dynamic system with scalar measurement z(k)

and scalar inputs u(k) and w(k),

x(k + 1) = Φx(k) + Γw(k) + Λu(k) (1.20a)

z(k) = Hx(k) + v(k) (1.20b)

with the state vector x ∈ Rn for a finite integer n, Φ ∈ Rn×n, Γ ∈ Rn×1, Λ ∈ Rn×1,

and H ∈ R1×n. The inputs w(k) and v(k) are random variables described by Cauchy pdfs

with zero median and scaling parameters β > 0 and γ > 0, respectively. Their probability

distribution functions (pdfs) and their characteristic fucntions (CFs) are denoted f and φ,

9



respectively, and are given by

fW (w(k)) =
β/π

w(k)2 + β2
⇒ φW (σ) = e−β |σ|, (1.21a)

fV (v(k)) =
γ/π

v(k)2 + γ2
⇒ φV (σ) = e−γ |σ|, (1.21b)

where σ is a scalar spectral variable. The initial condition is also assumed to be Cauchy

distributed by a multivariate Cauchy pdf that is constructed as a product of scalar Cauchy

pdfs with medians x̄i and scaling parameters αi > 0 as

fX1(x(1)) =
n∏
i=1

αi/π

(xi(1)− x̄i(1))2 + α2
i

⇒ φX1(ν) =
n∏
i=1

e−αi |νi|+ x̄i(1)νi (1.21c)

where ν ∈ Rn. For a multivariate pdf to be a Cauchy pdf, all of its scalar marginal distribu-

tions must themselves be Cauchy [20], as in (1.5). Clearly, every scalar marginal distribution

of (1.21c) is a Cauchy pdf. Moreover, the independence of the scalar pdfs implies that the

CF of the multivariate Cauchy pdf is simply the product of the CFs of the scalar Cauchy

pdfs.

1.3.1 The Conditional Performance Index

In posing an optimal control problem for the model in (1.20), commonly used objective

functions like the quadratic or the exponential of a quadratic cannot be used because the

expectations required to evaluate those objective functions are infinite when the system

noise inputs have heavy-tailed Cauchy pdfs. Therefore, one has to introduce a new, com-

putable objective function. In our work in [12, 13, 18, 19] we suggest an objective function

that resembles in its form the Cauchy pdf, and which also allows an analytical derivation of

the controller. This general objective function is reminiscent to the choice of the objective

function for the LEG [1, Chp. 10], which was constructed as a product of functions resem-

bling the Gaussian pdf. The original motivation for the LEG objective function [22] was

to consider these exponential functions as membership functions in fuzzy set theory, where

the objective function was constructed as a product of these Gaussian-shaped membership

functions. Similarly, a objective function constructed from products of Cauchy-shaped mem-

bership functions is proposed here for systems with Cauchy noises. This similarity allows us

10



to compare the optimal controllers for linear systems with analogous performance index and

different types of noise.

Consequently, the membership functions that penalize the state and control are chosen

as rational functions resembling Cauchy pdfs and are expressed as

Mx(x(k)) =
n∏
r=1

ηk,r/π

x2
r(k) + η2

k,r

, Mu(u(k)) =
ζk/π

u2(k) + ζ2
k

, (1.22)

where the membership functions are all centered at the origin, and each is a function of a

single, scalar variable. Smaller values of η and ζ induce heavier weighings on the respective

variables. These particular functions are chosen because they make the expectation with

respect to the conditional pdf generated by Cauchy noise of the resulting performance index

analytic in the control and measurement history.

1.3.2 State Decomposition

In our derivation of the estimator, we assume that the initial condition is centered at the ori-

gin, and the computational efficiency of the estimator will depend in part on this assumption.

However, the theory is more general than this because there always exists a transformation

of the pdf’s variables that centers it on the origin. The stochastic system (1.20) can be

decomposed into two systems, one driven by the known input u(k) and one by the unknown

input w(k), by exploiting the linearity of the system. Let x̄(k) and z̄(k) be the part of the

system driven by the control u(k) only, and x̃(k) and z̃(k) be the part of the system driven

by the process noise w(k) only and contains all the underlying random variables. Then,

x(k) = x̄(k) + x̃(k) (1.23a)

z(k) = z̄(k) + z̃(k). (1.23b)

The controlled part of the system is described by

x̄(k + 1) = Φx̄(k) + Λu(k) (1.24a)

z̄(k) = Hx̄(k) (1.24b)
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with initial condition x̄(0). The process noise driven part is given by

x̃(k + 1) = Φx̃(k) + Γw(k) (1.25a)

z̃(k) = Hx̃(k) + v(k). (1.25b)

The process and measurements noise pdfs were defined in (1.21a) and (1.21b), and the initial

condition is given by (1.21c).
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CHAPTER 2

Theory and the First Measurement Update

Yet now the sway of reason seemed irrefutably shaken, for this Cyclopean maze of squared, curved,

and angled blocks had features which cut off all comfortable refuge. It was, very clearly, the

blasphemous city of the mirage in stark, objective, and ineluctable reality.

H.P. Lovecraft, “In the Mountains of Madness”

This chapter derives the measurement update formula and the state propagation formula

for the Cauchy estimator. In addition, we present the solution to the measurement update

formula and the state propagation formula using CFs, and provide proofs of the existence of

the first two conditional moments for the Cauchy estimator. In the process, we will derive

the first measurement update for a general vector-state system, which is how we begin.

2.1 First Measurement Update

Begin with the first measurement update at k = 1 by taking a noisy measurement of the

Cauchy distributed initial state as

z(1) = Hx(1) + v(1). (2.1)

Here, x(1) and v(1) are the Cauchy random variables. For a scalar system, i.e. x(1) ∈

R1, the conditional mean estimator has been derived and is presented in [10]. For vector-

state systems, an approach based on determining the characteristic function (CF) of the

conditional pdf (cpdf) is used. Initial results for estimation of scalar systems using the

characteristic function of the conditional pdf were developed and presented in [11, 23]. An

algorithm for a multivariate Cauchy estimator is presented in [14,15] and summarized here.
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For x(1) ∈ Rn, the CF of the initial state conditioned on the first measurement is given

by the vector integral

φ1|1(ν) =

∞∫
−∞

fX1|Z1(x(1)|z(1))ejν
Tx(1)dx(1). (2.2)

The conditional pdf is computed from the joint distribution of x(1) and z(1) using Baye’s

Theorem [1] as

fX1|Z1(x(1)|z(1)) =
fX1,Z1(x(1), z(1))

fZ1(z(1))

=
fZ1|X1(z(1)|x(1))fX1(x(1))

fZ1(z(1))
=
fV (z(1)− Hx(1))fX1(x(1))

fZ1(z(1))
. (2.3)

Then, (2.2) can be expressed as

φ1|1(ν) =
1

fZ1(z(1))

∞∫
−∞

fV (z(1)− Hx(1))fX1(x(1)) ejν
Tx(1)dx(1) =

φ̄1|1(ν)

fZ1(z(1))
, (2.4)

where φ̄1|1(ν) is the characteristic function of the unnormalized cpdf (ucpdf). Note that,

since z(1) is known, fZ1(z(1)) is a constant; since φ1|1|ν=0 = 1, then φ̄1|1|ν=0 = fZ1(z(1)).

Using the dual convolution property [24], φ̄1|1(ν) in (2.4) can be expressed as n convolu-

tion integrals in the ν domain between the characteristic functions of fV (z(1)−Hx(1)) and

fX1(x(1)).

The CF of fX1(x(1)) is given in (1.21c). The CF of fV (z(1) − Hx(1)) is denoted φ̂V (ν)

and is given by

φ̂V (ν) =

∞∫
−∞

· · ·
∞∫

−∞

fV (z(1)−
n∑
i=1

hixi(1)) ej
∑n
i=1 νixi(1)dx1(1) . . . dxn(1). (2.5)

In order to proceed, we need some assumptions about the measurement vector H , [h1 . . . hn].

The first is that at least one element of H is nonzero, i.e. there exists an i such that hi 6= 0.

This assumption is a prerequisite for observability of the state. The second assumption is

that this nonzero element is hn, which has no effect on generality [25].

However, note that if hi = 0, then fV loses dependence on the integration variable xi(1),

and hence that part of fX1 comes out of the integral. Then, the first two moments for that
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element of the state will not exist. This is an interesting effect of estimation where the

unconditional distributions have undefined first and second moments. However, as long as

the system is observable, then every element of the state will have a defined first and second

moment in no more than n steps. For simplicity of the presentation of this algorithm, we

will assume that every element of H is nonzero, i.e., hi 6= 0 for all i.

To carry out the integration in (2.5), perform the change of variables

ξ = z(1)−
n∑
i=1

hixi (2.6)

in order to write

xn(1) =
1

hn

(
z(1)− ξ −

n−1∑
i=1

hixi(1)

)
and dxn(1) =

dξ

|hn|
. (2.7)

This allows us to manipulate (2.5) as

φ̂V (ν) =

∞∫
−∞

· · ·
∞∫

−∞

fV (ξ) e
j

(∑n−1
i=1 νixi(1)+νn

z(1)−ξ−
∑n−1
i=1

hixi(1)

hn

)
dξ

|hn|
dx1(1) . . . dxn−1(1)

=
ej

νn
hn
z(1)

|hn|

 ∞∫
−∞

fV (ξ) e−j
νn
hn
ξdξ


×

 ∞∫
−∞

· · ·
∞∫

−∞

ej
∑n−1
i=1 (νi− h1

hn
νn)xi(1)dx1(1) . . . dxn−1(1)

 . (2.8)

Here, the left parenthesis equals the CF of fV if the spectral variable is − νn
hn

. The right

parenthesis is a product of Dirac delta functions, δ(·), giving

φ̂V (ν) =
ej

νn
hn
z(1)

|hn|
φV

(
−νn
hn

) n−1∏
i=1

[
(2π)δ

(
νi −

hi
hn
νn

)]
. (2.9)

Using φX1 of (1.21c) and φ̂V of (2.9), we can express the first measurement update ucpdf’s
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CF using the dual convolution property [24] as

φ̄1|1(ν) =

∞∫
−∞

· · ·
∞∫

−∞

fX1(x(1))fV (z(1)− Hx(1))ejν
Tx(1)dx

=
1

(2π)n

∞∫
−∞

· · ·
∞∫

−∞

φX1(ν − σ) φ̂V (σ)dσ

=
(2π)n−1

(2π)n |hn|

∞∫
−∞

· · ·
∞∫

−∞

φX1(ν − σ) ej
σn
hn
z(1) φV

(
−σn
hn

)
(2.10)

×
n−1∏
i=1

δ

(
σi −

hi
hn
σn

)
dσ1 . . . dσn−1 dσn. (2.11)

Integrating over σ1 . . . σn−1 is simple due to the delta functions in (2.11), and results in a

single integral over the scalar σn:

φ̄1|1(ν) =
1

2π |hn|

∞∫
−∞

φX1

(
ν1 − h1

σn
hn
, . . . , νn−1 − hn−1

σn
hn
, νn − σn

)
ej

σn
hn
z(1)φV

(
−σn
hn

)
dσn

=
1

2π |hn|

∞∫
−∞

φX1

(
ν − HTσn

hn

)
ej

σn
hn
z(1)φV

(
−σn
hn

)
dσn. (2.12)

Finally, we have a convolution integral involving the CF of the pdf of the state, and the

CF of the measurement. This result indicates that the ucpdf’s CF for a system of arbitrary

(finite) order conditioned on a scalar measurement can be determined from this single, scalar

convolution integral. A simple change of scalar variables σ = σn/hn and dσn = dσ |hn| gives

the final form

φ̄1|1(ν) =
1

2π

∞∫
−∞

φX1(ν − HTσ)φV (−σ) ejz(1)σdσ. (2.13)

Note that in the derivation of this results we did not use the fact that fX1 and fV were

Cauchy, only that the element hn 6= 0. This means that the update formula in (2.13) applies

to any two SαS distributions, even different types of distribution (such as different α),

using only their CFs. In subsequent updates, this formula is used by substituting the initial

condition φX1 with the CF of the state propagated cpdf.

Applying (2.13) to our Cauchy estimator first update problem, we rewrite (2.13) using
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(1.21b) and (1.21c) as

φ̄1|1(ν) =
1

2π

∞∫
−∞

exp

[
−

(
n+1∑
i=1

ρ` |µ` − σ|

)
+ jz(1)σ

]
dσ, (2.14a)

where

ρ` = α`
∣∣ε`HT

∣∣ for ` ∈ {1, . . . , n} ρn+1 = γ, (2.14b)

µ` =
ε`ν

ε`HT
for ` ∈ {1, . . . , n} µn+1 = 0, (2.14c)

and ε` is the `th row of the n-dimensional identity matrix. Note that the µ` are scalars linear

in ν, i.e. inner products of ν with given vectors. The next section will derive the solution to

an integral of absolute values of the form in (2.14), which is also presented in [14,15].

2.1.1 Solution to the First Measurement Update Convolution

This section will derive the solution to an integral of an exponential of absolute value terms,

such as (2.14). The difficultly lies in that the absolute value function is not continuous at

zero, e.g. whenever ν` = h`σ in (2.14). Since we can only use the fundamental theorem of

calculus over domains where the function being integrated is continuous [26, Thm 6.21], we

need to be able to divide the domain of integration into regions in which we can apply the

theorem in order to evaluate the integral.

To do this, rewrite (2.14) as

φ̄1|1(ν) =
1

2π

∞∫
−∞

exp

[
−

(
n+1∑
i=1

ρ` |µ` − σ|

)
+ jzσ

]
dσ

=
1

2π

∞∫
−∞

exp

[
−

(
n+1∑
i=1

ρ` (µ` − σ) sgn (µ` − σ)

)
+ jzσ

]
dσ (2.15)

In order to apply the fundamental theorem of calculus, we need to divide the domain up

into sections in which the integrand is continuous [26]. This can be done by considering a

fixed ν, and hence fixed µi, and defining constants s`i as

sgn (µ` − σ) , s`i =

 sgn (µ` − µi) if i 6= `

−1 if i = `
(2.16)
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From (2.16), for a given i, the discrete, two-index function s`i is constant for all ` except

for one switch at ` = i, i.e. s`i = −1∀ ` ≤ i and s`i = +1∀ ` > i; this implies that

s`i = s`i−1 ∀ i 6= `.

Substituting s`i into (2.15) allows us to divide the integral into a sum of n + 1 solvable

integrals,

φ̄1|1(ν) =
1

2π

n+1∑
i=0


µi+1∫
µi

exp

[
−

n+1∑
`=1

ρ` (µ` − σ) s`i + jzσ

]
dσ


=

1

2π

n∑
i=0


exp

[
−

n+1∑̀
=1

ρ` (µ` − µi+1) s`i + jzµi+1

]
jz +

n+1∑̀
=1

ρ`s`i


− 1

2π

n∑
i=0


exp

[
−

n+1∑̀
=1

ρ` (µ` − µi) s`i + jzµi

]
jz +

n+1∑̀
=1

ρ`s`i

 (2.17)
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where µ0 = −∞ and µn+2 =∞. The first sum in (2.17) can be manipualted as follows

n+1∑
i=0


exp

[
−

n+1∑̀
=1

ρ` (µ` − µi+1) s`i + jzµi+1

]
jz +

n+1∑̀
=1

ρ`s`i


=

n∑
i=0


exp

[
−

n+1∑̀
=1

ρ` (µ` − µi+1) s`i + jzµi+1

]
jz +

n+1∑̀
=1

ρ`s`i


+

exp

[
−

n+1∑̀
=1

ρ`(µ` − µn+2)s`n+1 + jzµn+2

]
jz +

n+1∑̀
=1

ρ`s`n+1︸ ︷︷ ︸
=0 because s`n=−1∀ `≤n+1 and µn+2=∞

=
n+1∑
i=1


exp

[
−

n+1∑̀
=1

ρ` (µ` − µi) s`i−1 + jzµi

]
jz +

n+1∑̀
=1

ρ`s`i−1



=
n+1∑
i=1



exp

− n+1∑̀
=1
` 6=i

ρ` (µ` − µi) s`i + jzµi


jz + ρi +

n+1∑̀
=1
`6=i

ρ`s`i


, (2.18)

where the last equality is because sii−1 = 1 and s`i−1 = s`i ∀ i 6= `, and the zero term

ρi(µi − µi)sii−1 = 0 was dropped from the exponent.
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The second sum in (2.17) can be manipualted in a similar fashion, as

n+1∑
i=0


exp

[
−

n+1∑̀
=1

ρ` (µ` − µi) s`i + jzµi

]
jz +

n+1∑̀
=1

ρ`s`i


=

n+1∑
i=1


exp

[
−

n+1∑̀
=1

ρ` (µ` − µi) s`i + jzµi

]
jz +

n+1∑̀
=1

ρ`s`i


+

exp

[
−

n+1∑̀
=1

ρ`(µ` − µ0)s`0 + jzµ0

]
jz +

n+1∑̀
=1

ρ`s`0︸ ︷︷ ︸
=0 because s`0=−1 ∀ `≥1 and µ0=−∞

=
n+1∑
i=1



exp

− n+1∑̀
=1
` 6=i

ρ` (µ` − µi) s`i + jzµi


jz − ρi +

n+1∑̀
=1
`6=i

ρ`s`i


. (2.19)

where the last equality is true because sii = −1 and the zero term ρi(µi − µi)sii−1 = 0 was

dropped from the exponent. Now, combine (2.18) and (2.19), as well as (2.16), to restate

the solution to (2.14a) as

φ̄1|1(ν) =
1

2π

n+1∑
i=1

Gi1|1(ν) · eE
i
1|1(ν)

=
1

2π

n+1∑
i=1

exp

− n+1∑
`=1
`6=i

ρ` |µ` − µi|+ jz(1)µi



×


jz(1) + ρi +

n+1∑
`=1
6̀=i

ρ` sgn (µ` − µi)


−1

−

jz(1)− ρi +
n+1∑
`=1
` 6=i

ρ` sgn (µ` − µi)


−1
 .

(2.20)

The beauty of this result is that, although we fixed ν in this integration, this procedure

works for any ν ∈ Rn such that µ` − µm 6= 0 (so that the sign functions are well defined),

meaning that the solution is valid for any valid ν. More precisely, no matter what mapping

is used between the sets {µi}n+1
i=1 and {νi}n+1

i=1 , there exists a ν such that the desired ordering
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is valid, and upon finishing and substituting the sign functions back in for s`i , the solution

becomes valid for any valid ν.

The mean and variance for the first measurement were derived in closed form directly

from (2.20) after much algebraic manipulation. It involves finding the normalizing constant

fZ1(z(1)) and the first two partial derivatives of φ̄1|1(ν). The normalizing constant is given

by

fZ1(z(1)) =
1

π
·

n∑̀
=1

α` |h`|+ γ

z(1)2 +

(
n∑̀
=1

α` |h`|+ γ

)2 . (2.21a)

Then, the minimum conditional-variance estimate is given by

x̂(1) = z(1) ·

[
α1 sgn (h1) · · · αn sgn (hn)

]T

n∑̀
=1

α` |h`|+ γ
(2.21b)

and its conditional error variance is given by

Ξ(1) =

(
1 +

z(1)2

(
∑n

`=1 α` |h`|+ γ)
2

)

×



α1

|h1|

 n∑̀
=1
6̀=1

α` |h`|+ γ

 · · · −α1αn sgn (h1) sgn (hn)

...
...

−α1αn sgn (h1) sgn (hn) · · · αn
|hn|

 n∑̀
=1
`6=n

α` |h`|+ γ




(2.21c)

2.2 State Propagation with Process Noise

This section will derive the characteristic function of the cpdf propagated by process noise

w(k) as x(k + 1) = Φx(k) + Γw(k), following a method that uses Proposition 2.17 in [1].

Assume that at an arbitrary time step k the state’s pdf is given by fXk(x(k)), its CF is given

by φXk(ν), and that the process noise CF is given as in (1.21a). Note that we are not assuming

anything about fXk except that it has a well defined CF. The pdf of x(k + 1) is determined
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using the linear transformation of the joint distribution fXk,W (xk, wk) = fXk(xk)fW (wk)x(k + 1)

w(k)

 =

Φ Γ

0 I

x(k)

w(k)

⇔
x(k)

w(k)

 =

Φ−1 −Φ−1Γ

0 I


︸ ︷︷ ︸

,J

x(k + 1)

w(k)

 (2.22)

Using Proposition 2.17 in [1], the joint distribution fXk+1
(x(k + 1)) is given by

fXk+1
(x(k + 1)) = |J | fXk

(
Φ−1x(k + 1)− Φ−1Γw(k)

)
fW (w(k)) (2.23)

where |J | = |Φ−1| is the determinant of J from (2.22). Since fXk+1 is the marginal distribu-

tion of fXk+1
(x(k + 1)), integrate over w(k) as

fXk+1
(x(k + 1)) =

∣∣Φ−1
∣∣ ∞∫
−∞

fXk
(
Φ−1x(k + 1)− Φ−1Γw(k)

)
fW (w(k))dw(k). (2.24)

Since what we seek is the CF of fXk+1
(x(k + 1)), what we actually want to evaluate is

φXk+1
(ν) =

∣∣Φ−1
∣∣ ∞∫
−∞

 ∞∫
−∞

fXk
(
Φ−1x(k + 1)− Φ−1Γw(k)

)
fW (w(k))dw(k)

 ejνTx(k+1)dx(k + 1) (2.25)

Interchange the order of integration and use the change of variables x(k + 1) = Φx(k) +

Γw(k)⇒ dx(k + 1) = |Φ| dx(k) to write

φXk+1
(ν) =

∞∫
−∞

 ∞∫
−∞

fXk(x(k))ejν
T(Φx(k)+Γw(k))dx(k)

 fW (w(k))dw(k) (2.26)

=

 ∞∫
−∞

fXk(x(k))ejν
TΦx(k)dx(k)

 ·
 ∞∫
−∞

fW (w(k))ejν
TΓw(k)dw(k)

 (2.27)

The contents of each of the terms in square brackets above are the known characteristic

functions of the state, propagated by the dynamics, and the process noise so that the char-

acteristic function of the propagated cpdf is given by

φXk+1
(ν) = φXk(Φ

Tν)φW (ΓTν) (2.28)

Therefore, a time propagation with process noise is simply the product of the process noise

CF, with scalar parameter Γν, and the state pdf’s CF, with the spectral variable transformed

linearly by Φ. Note that we assumed that Φ is invertible, which is a safe assumption for state

transition matrices obtained from discretizing continuous time linear system dynamics [25].
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2.3 Existence of the Moments of the cpdf

This section will prove the existence of the first and second moments of a multivariate α-

stable random vector (such that 1 ≤ α ≤ 2), conditioned on a scalar α-stable random

variable. This means establishing the continuity of the cpdf’s CF and its first two derivatives.

Then we can take limits as ν goes to zero, thereby obtaining the desired moments [1].

First, we present conditions for the continuity of the cpdf’s CF in Theorem 1, and then

appy it to our Cauchy estimation problem in Corollary 1.

Theorem 1. Let x ∈ Rn, z ∈ R1 is a known constant, H ∈ R1×n is a given row vector with

nonzero elements, fX(x) : Rn → R1 and fV (z − Hx) : Rn → R1. Moreover, fX(x) ∈ L1(Rn)

and fV ∈ L1(Rn), and both are continuous and bounded. Assume also that for all i xifX(xi)

and x2
i fX(xi) are bounded in xi by M1 and M2, respectively. Define the Fourier transform

of the product of these functions as

φ̄(ν) =

∞∫
−∞

fX(x) fV (z − Hx) ejx
Tνdx (2.29)

Then, φ̄(ν) and its first two derivatives with respect to ν are all continuous and bounded,

and all three are L1(Rn).

Proof. Since a product of two continuous L1 functions is a continuous L1 function [27,

Thm 5.15a], and the Fourier transform of an L1 function is uniformly continuous and bounded

[24, Thm 8.1] [27, Thm 5.1], then φ̄(ν) is continuous and bounded. Also, since fX and fV

are bounded, their product is bounded and thus their Fourier transform φ̄(ν) is in L1 [24,

Thm 8.10].

These theorems cited above are for one-dimensional Fourier transforms; however, since

a multivariate Fourier transform is simply n scalar integrals over each variable, the conti-

nuity exists in all directions, and hence the whole multivariate transform is continuous [26,

Thm 6.20]. This requires that both fX and fV depend on all the elements of x, which is why

the elements of H must all be nonzero. This is the approach taken throughout the rest of

the proof.
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Consider the derivative of φ̄(ν) in (2.29). The derivative and integration operators can

be interchanged by [26, Thm 9.42], so that we get

∂

∂ν
φ̄(ν) =

∞∫
−∞

∂

∂ν
fX(x) fV (z − Hx) ejx

Tνdx

=

∞∫
−∞

jxT fX(x) fV (z − Hx) ejx
Tνdx (2.30)

An integral of a vector is a vector of integrals [26, Def 6.23], so consider the ith element’s

integrals:

∂

∂νi
φ̄(ν) = j

∞∫
−∞

· · ·
∞∫

−∞

xi fX(x) fV (z − Hx) ejx
Tνdx1 . . . dxn (2.31)

Clearly, for transformations over xj, j 6= i, the function ∂
∂νi
φ̄(ν) is continuous because xi

comes out of the integral and what is left is the same as (2.29). For transformations over xi,

∂
∂νi
φ̄(ν) is continuous because xi fX(x) fV (z−Hx) ∈ L1. To see this, compute the L1 norm,

using the boundedness of xifX , to get

∞∫
−∞

|xi fX(x) fV (z − Hx)| dx ≤M1

∞∫
−∞

fV (z − Hx)dx <∞ (2.32)

Since i was arbitrary, this is true for all i and so ∂
∂ν
φ̄(ν) ∈ L1 is continuous and bounded.

Now, consider the second derivative and look at the element ∂2

∂νiνj
φ̄(ν) for i 6= j,

∂2

∂νiνj
φ̄(ν) = −

∞∫
−∞

· · ·
∞∫

−∞

xixj fX(x) fV (z − Hx) ejx
Tνdx (2.33)

As before, since i 6= j, the function ∂2

∂νiνj
φ̄(ν) is continuous because xi comes out of the

integrals and what is left is the same as (2.31). For transformations over xi (i.e. i = j), the

function ∂2

∂ν2i
φ̄(ν) is continuous and bounded because x2

i fX(x)fV (z−Hx) ∈ L1, by the same

argument as before using the boundedness of x2
i fX(x). Moreover, since fV is also bounded,

∂
∂ν
φ̄(ν) is in L1.

Since i was arbitrary, this is true for all i and so ∂
∂ν

(
∂
∂ν
φ̄(ν)

)
∈ L1 is continuous and

bounded.
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Corollary 1. For the n-state initial condition fX1 defined in (1.21c), and the scalar mea-

surement noise measurement noise fV defined in (1.21b), the characteristic function of fX0

conditioned on the measurement, denoted by φ1|1(ν) and defined as (2.13) divided by the

constant fZ0(z0), is twice continuously differentiable. Moreover, the characteristic function

and its first two derivatives are all L1(Rn) and bounded.

Proof. Since fX1 and fV are pdfs, they are both in L1 with norm equal to 1. Since fX1

is constructed as a product of independent, scalar Cauchy random variables as fX1(x) =∏n
i=1 fX1,i(xi), we can check boundedness for any of these terms and it will be true for all of

them. The boundedness of xifX1,i(xi) is due to the fact that it is continuous and vanishes

at the origin and at ±∞; similarly, boundedness of x2
i fX1,i(xi) is due to the fact that it is

continuous and vanishes at the origin and goes to one at ±∞ [26, Thms 2.41,4.15]. Hence,

fX1 and fV satisfy the conditions of Theorem 1. Since the unnormalized cpdf’s CF φ̄1|1 is

proportional to φ1|1 by a constant, the twice continuous differentiability of φ̄1|1 implies the

same for φ1|1.

Theorem 2. Let φ̄k|k−1(ν) ∈ L1(Rn) be twice continuously differentiable and bounded. Also,

let the functions φW (ΓTν) ∈ L1(Rn), and φV (σ) ∈ L1(R) be bounded and continuous. More-

over, ∂
∂ν
φW (ΓTν) ∈ L1(Rn) and ∂

∂σ
φV (σ) ∈ L1(R) are both bounded. Define φ̄Xk|Zk as

φ̄k|k(ν) =
1

2π

∞∫
−∞

φ̄k|k−1(ΦTν − ΦTHTσ)φW (ΓTν)φV (−σ)ejz(k)σdσ (2.34)

where Φ ∈ Rn×n is an invertible matrix, zk ∈ R is a known scalar constant, and H ∈ R1×n

and Γ ∈ Rn are vectors such that HΓ 6= 0. Then, φ̄k|k(ν) and its first two derivatives with

respect to ν are all continuous and bounded, and all three are L1.

Proof. Continuity of φ̄k|k−1(ΦTν − ΦTHTσ) with respect to ν is due to Φ being full rank.
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Therefore, we can take the derivative with respect to the vector ν to get

∂

∂ν
φ̄k|k−1(ν) =

1

2π

∞∫
−∞

[
∂

∂ν
φ̄k|k−1(ΦTν − ΦTHTσ)

]
φW (ΓTν − HΓσ)φV (−σ) ejzkσdσ

+
1

2π

∞∫
−∞

φ̄k|k−1(ΦTν − ΦTHTσ)

[
∂

∂ν
φW (ΓTν − HΓσ)

]
φV (−σ) ejzkσdσ (2.35)

If HΓ = 0 then the term in square brackets in the second line, ∂
∂ν
φW (ΓTν − HΓσ), would

lose dependence on σ and come out of the convolution integral. This would be problematic,

because it is the very term that contains the discontinuities that need to be smoothed out

in the convolution.

However, we have assumed that HΓ 6= 0. There are two facts that will be used in this

proof: the convolution of an L1 function with an L∞ function is continuous and bounded [27,

Thm 5.13c] [28, Prp 8.8]; and the convolution of an L1 function with another L1 function

is also L1 [27, Thm 5.13a] [28, Prp 8.7]. Since φW and ∂
∂ν
φ̄k|k−1 are bounded, and φV is L1,

then the first line in (2.35) is continuous. Moreover, since φW and ∂
∂ν
φ̄Xk|Zk−1

are also L1,

then the first line is L1.

Then, since ∂
∂ν
φW and φ̄k|k−1 are L1 and φV is bounded, the second line in (2.35) is also

continuous. Moreover, since φV is L1, then the second line is L1. Since sums of continuous

functions are continuous and sums of L1 functions are L1, then ∂
∂ν
φ̄k|k(ν) ∈ L1 is continuous

and bounded.

Substitute into (2.35) the following change of variables

ΓTν

HΓ
− σ = η ⇒ σ =

ΓTν

HΓ
− η , dσ = −dη (2.36)
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to get

∂

∂ν
φ̄k|k(ν) =

1

2π

∞∫
−∞

[
∂

∂ν
φ̄k|k−1(ΦTHTη)

]
φW (HΓη)φV

(
−ΓTν

HΓ
+ η

)
e
jzk

(
ΓTν

HΓ
− η
)
dη

+
1

2π

∞∫
−∞

φ̄k|k−1(ΦTHTη)

[
∂

∂ν
φW (HΓη)

]
φV

(
−ΓTν

HΓ
+ η

)
e
jzk

(
ΓTν

HΓ
− η
)
dη (2.37)

Take the second derivative, and interchange it with the integration operator to get

∂

∂ν

(
∂

∂ν
φ̄k|k(ν)

)
=

1

2π

∞∫
−∞

[
∂

∂ν
φ̄k|k−1(ΦTHTη)

]
φW (HΓη)

∂

∂ν

φV
(
−ΓTν

HΓ
+ η

)
e
jzk

(
ΓTν

HΓ
− η
) dη

+
1

2π

∞∫
−∞

φ̄k|k−1(ΦTHTη)

[
∂

∂ν
φW (HΓη)

]

∂

∂ν

φV
(
−ΓTν

HΓ
+ η

)
e
jzk

(
ΓTν

HΓ
− η
) dη (2.38)

Here, the terms in brackets are bounded and the terms not in brackets are L1,

so ∂
∂ν

(
∂
∂ν
φ̄k|k(ν)

)
is continuous and bounded. Moreover, since the terms in brackets are also

L1, then ∂
∂ν

(
∂
∂ν
φ̄k|k(ν)

)
∈ L1 is continuous and bounded.

Corollary 2. Let φ̄k|k−1(ν) ∈ L1 be twice continuously differentiable and bounded, and let fW

and fV be defined as in (1.21a) and (1.21b), respectively. Then, φ̄k|k(ν) defined as in (2.34)

is twice continuously differentiable. Moreover, φ̄k|k(ν) and its first two partial derivatives are

L1 and bounded.

Proof. As before, φW and φV , and their first derivatives, are all bounded and in L1. Moreover,

φW and φV are themselves continuous. Since φ̄k|k−1(ν) is assumed from Theorem 1 to have

the properties required in the statement of Theorem 2, then φ̄k|k(ν) defined as in (2.34) has

the stated properties.
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In summary, the measurement update formula for the first update requires that at least

one element of H be nonzero. This is a minimal requirement for observability in general.

However, it is possible that only one state variable will have a defined mean and finite error

variance. If the system is observable, then the entire state will acquire a defined mean and

finite error variance in no more than n updates. For subsequent updates that occur after a

state propagation step to have a defined mean and finite error variance, it is necessary that

HΓ 6= 0. Moreover, the state propagation step itself requires that Φ be invertible, which is

a natural assumption if this discrete time transition matrix came from a continuous time

dynamical system. The rest of this work will assume that all elements of H are nonzero, that

HΓ 6= 0, and that Φ is invertible.
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CHAPTER 3

Two State Estimator

As I had expected, the canvas was warped, mouldy, and scabrous from dampness and neglect; but

for all that I could trace the monstrous hints of evil cosmic outsideness that lurked all through the

nameless scene’s morbid content and perverted geometry.

H.P. Lovecraft, “Medusa’s Coil”

In the previous section we considered a system with a state vector of general order n,

and an algorithm for the general vector-state system is presented in [14, 15]. However, that

algorithm suffers from a very aggressive growth in computational complexity with each new

measurement update. For a second order system there are certain patterns and algebraic

relationships that allow for significant reductions in numerical complexity and allow the

estimator to run effectively over a large number of measurement updates [17]. There are two

main aspects to this simplification: a way of expressing and indexing vectors that multiply

(as inner products) the spectral vector ν in the exponential argument in (2.20); and a set of

algebraic relations that can be used to simplify the coefficients of the exponential functions.

Both of these aspects are addressed here for the first measurement update in (2.20) presented

above. In Section 3.3 the second update is presented, indicating by induction the general

measurement update and time propagation recursions given in Section 3.4. Sections 3.5 and

3.6 presents the second state propagation and the third measurement update, respectively,

that were found in order to determine the general recursion.
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3.1 First Update

Consider the arguments of the absolute value terms in (2.20). The µ` scalars are defined in

(2.14c) as scaled inner products of ν with vectors we call fundamental directions. For the

first measurement update, these fundamental directions are the rows of the n × n identity

matrix. For the two-state system, the set of fundamental directions from the initial condition

is B1|0 =

[
ε1
ε2

]
=

[
1 0

0 1

]
. In the subscript of B1|0, the first element denotes the time step,

and the second element denotes the number of measurements that have been processed.

Inner products are linear operations, and hence a difference of inner products with a

given vector is also an inner product. This new inner product introduces a new fundamental

direction. This new direction is the same for any real, 2×2 B1|0. Using a superscript on B`1|0
to denote its `th row, apply this notation to the definitions in (2.14c) to get

µ` − µm =
B`1|0ν
B`1|0HT

−
Bm1|0ν
Bm1|0HT

=
HBmT

1|0 B`1|0ν − HB`T1|0Bm1|0ν
HBmT

1|0 B`1|0HT

=
H
(
BmT

1|0 B`1|0 − B`T1|0Bm1|0
)
ν

(Bm1|0HT)(B`1|0HT)
. (3.1)

The key here is to recognize that the term in parenthesis in the numerator of (3.1) is a

matrix minus its own transpose, which implies that it is antisymmetric, i.e., that BmT
1|0 B`0 −

B`T1|0Bm1|0 =

 0 c

−c 0

 for some c ∈ R. This constant c can be computed and pulled out of the

matrix, which allows us to express any two-dimensional antisymmetric matrix as cA where

A =

 0 1

−1 0

 and c can be verified to be

c = −B`1|0ABmT
1|0 . (3.2)

Hence, we can write (3.1) as

µ` − µm =

(
−B`1|0ABmT

1|0

(Bm1|0HT)(B`1|0HT)

)
· HAν. (3.3)

This produces the new fundamental direction is HA, scaled by the term in parenthesis. For

the relationship in (3.3) to hold, µ` 6= µm and neither µ` nor µm can equal zero. In (2.14c)
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we also defined an extra constant µ3 = 0. This implies that the old fundamental directions

are retained in the measurement updated cpdf’s CF for terms in the exponent of (2.20) that

involve µ3. Therefore, the set of fundamental directions for the first measurement update,

denoted by B1|1, is given by

B1|1 =

 ε1
ε2

HA

 . (3.4)

In (2.20), we use (3.3) to express µ2 − µ1 as

µ2 − µ1 =
ε2ν

ε2HT
− ε1ν

ε1HT
=
−(ε2AεT1 )HAν

(ε1HT)(ε2HT)
=

HAν

(ε1HT)(ε2HT)
. (3.5)

Using (3.5) and the definitions for ρ` from (2.14b) in (2.20) yields

φ̄1|1(ν) = G1
1|1(ν) exp

(
−α2

∣∣ε2HT
∣∣ ∣∣∣∣ HAν

(ε1HT)(ε2HT)

∣∣∣∣− γ ∣∣∣∣ ε1νε1HT

∣∣∣∣+ jz(1)
ε1ν

ε1HT

)
+ G2

1|1(ν) exp

(
−α1

∣∣ε1HT
∣∣ ∣∣∣∣ HAν

(ε1HT)(ε2HT)

∣∣∣∣− γ ∣∣∣∣ ε2νε2HT

∣∣∣∣+ jz(1)
ε2ν

ε2HT

)
+ G3

1|1(ν) exp

(
−α1

∣∣ε1HT
∣∣ ∣∣∣∣ ε1νε1HT

∣∣∣∣− α2

∣∣ε2HT
∣∣ ∣∣∣∣ ε2νε2HT

∣∣∣∣)
= G1

1|1(ν) exp

(
− γ

|ε1HT|
|ε1ν| −

α2

|ε1HT|
|HAν|+ j

z(1)

ε1HT
ε1ν

)
+ G2

1|1(ν) exp

(
− γ

|ε2HT|
|ε2ν| −

α1

|ε2HT|
|HAν|+ j

z(1)

ε2HT
ε2ν

)
+ G3

1|1(ν) exp (−α1 |ε1ν| − α2 |ε2ν|) . (3.6)

Notice that each of the three terms involves only two of the three fundamental directions.

The efficiency of the proposed two-state estimator is achieved by both keeping track of

which directions are used in each term, as well as the scalar coefficients that multiply the

absolute value functions and the scalar coefficients in the imaginary part of the argument

of the exponential. The most important of these is an array of integers where the elements

of each row correspond to the rows of B1|1 that appear in the exponential argument. This

array is denoted by M(1|1).

The exponential argument of the term corresponding to i = 3 in (3.6) is exactly the

same as the initial condition. In fact, the only difference between the initial condition and
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this term is the coefficient G3
1|1. This is due to the cancellations that occur in general in

(3.6), so that one term produced from the convolution will always have the same exponential

argument with a different coefficient function. This term is referred to as the old term. It

will be shown later that the old exponential arguments persist across measurement updates,

and therefore it is useful to order the terms with the old fundamental directions first, so that

the last term in (3.6) moves to the top. Consequently, M(1|1) is constructed as

M(1|1) =

1 2

1 3

2 3

 . (3.7)

The other two terms, corresponding to i = 1 and i = 2 in (3.6), are called the intermediate

new terms ; we say intermediate because in all subsequent measurement updates, as will be

shown, they will combine with other terms with the same exponential argument, and new

because they involve the new fundamental directions just generated during the measurement

update.

Following this new ordering, we define two additional arrays P (1|1) and Z(1|1) whose

elements correspond to the coefficients of the absolute value functions in the exponents and

the coefficients in the imaginary part, respectively; hence, the ith rows of P (1|1) and Z(1|1)

are related to the ith term in φ̄1|1. For the measurement updated ordering of terms used to

define M(1|1) in (3.7), these arrays are given by

P (1|1) =


α1 α2

γ

|ε1HT|
α2

|ε1HT|
γ

|ε2HT|
α1

|ε2HT|

 , Z(1|1) =


0 0

z(1)

ε1HT
0

z(1)

ε2HT
0

 . (3.8)

They have the same dimension as M(1|1), so that an element of P (1|1) or Z(1|1) goes with

the fundamental direction indexed by the corresponding element of M(1|1).

Finally, define a vector array of integers L1|1 with as many elements as rows of M(1|1).

Each element of L1|1 indicates the number of fundamental directions in that term, i.e., the

width of the corresponding row of M(1|1). For the first measurement update, L1|1 is given

by

L1|1 =
[
2 2 2

]T

. (3.9)
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This final array is unnecessary in the first measurement update, but will become essential

later when different terms involve different numbers of fundamental directions. Finally,

define the number of terms as N1|1. Clearly, N1|1 = 3, the same as the number of rows of

M(1|1), P (1|1), Z(1|1), and L1|1.

Using (3.4) (3.7) (3.8) (3.9) and the definition for N1|1 = 3, the exponential argument for

the first measurement update ucpdf’s CF given in (2.20) can be expressed as

E i1|1(ν) = −
Li
1|1∑
`=1

P `
i

∣∣∣BM`
i

1|1 ν
∣∣∣+ j

(
2∑
`=1

Z`
iB

M`
i

1|1

)
ν , i ∈ {1, . . . , N1|1}. (3.10)

3.1.1 Polynomial Coefficient

Using (3.5), (2.14b), and (2.14c), the bracketed terms Gi1|1 in (2.20) are of the same form, and

each involves two sign functions, denoted s1 and s2, with the same arguments as the absolute

values in the corresponding exponential parts. Functions of this form can be reduced to a four

parameter polynomial of these sign functions as ai+bis1s2+jcis1+jdis2. These relationships

are given in Appendix A; for k = 1 in particular, Result 3 in Appendix A can be used to

obtain the four parameter polynomial by assuming that ami = 1 and bmi = cmi = dmi = 0.

The sign functions involve the same fundamental directions as the exponential argument, so

denote a final array G(1|1) with the same number of rows as M(1|1) and width four, and let

each row contain the parameters for the polynomial, as

G(1|1) =


a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

 . (3.11)

Note that the same reordering used to form M(1|1) must be used here, so that the top row

contains the parameters for the old term’s coefficient.

Using the parameters in (3.11), along with (3.4) and (3.7), the coefficient function Gi1|1
for the first update ucpdf’s CF given in (2.20) can be expressed as a polynomial

Gi1|1(ν) = ai + bi sgn
(
BM

1
i

1|1 ν
)

sgn
(
BM

2
i

1|1 ν
)

+ jci sgn
(
BM

1
i

1|1 ν
)

+ jdi sgn
(
BM

2
i

1|1 ν
)
. (3.12)
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Remark 1. In the notation, for P , Z, and M the subscripts denote the row (i.e. which

term in the sum) and the superscripts denote the column (i.e., where in the exponential

argument it appears). Only B, L, and N retain the time dependence in their subscripts.

The superscript for B denotes the row, i.e., the fundamental direction, that is indexed by the

integer M `
i . It is assumed that P , Z, and M inherit their time index from the associated

fundamental directions from B.

3.2 First Time Propagation

In this section the CF of the cpdf is propagated using the dynamics given in (1.20a). Applying

the time propagation equation (2.28) to the characteristic function of the first measurement

update given in (2.20) yields

φ2|1(ν) = φ1|1(ΦTν)φW (ΓTν) =
φ̄1|1(ΦTν)φW (ΓTν)

fZ1(z(1))
=

φ̄2|1(ν)

fZ1(z(1))
. (3.13)

Then, the ucpdf’s characteristic function for the propagated state is given by

φ̄2|1(ν) = φ̄1|1(ΦTν)φW (ΓTν) = φ̄1|1(ΦTν) · e−β|ΓTν|

=

N1|1∑
i=1

Gi1|1(ΦTν)e
E i1|1(ΦTν)− β

∣∣ΓTν
∣∣

=

N1|1∑
i=1

Gi1|1(ΦTν) · exp

− Li
1|1∑
`=1

P `
i

∣∣∣BM`
i

1|1 ΦTν
∣∣∣− β ∣∣ΓTν

∣∣+ j

(
2∑
`=1

Z`
iB

M`
i

1|1

)
ΦTν

 . (3.14)

The changes in φ̄2|1(ν) from φ̄1|1(ν) are a new element in the sum of the absolute value

terms, and a linear transformation on ν. The time propagation step adds no new terms

to the sum, hence N2|1 = N1|1. Moreover, since the process noise has a zero median, the

time propagation has no effect on the complex part of the exponential argument, so that

Z(2|1) = Z(1|1). Finally, there is no effect on the parameters of the coefficient functions

G, so that G(2|1) = G(1|1). The time propagated ucpdf’s characteristic function can be

restated in the same form as φ̄1|1, i.e.,

φ̄2|1(ν) =

N2|1∑
i=1

Gi2|1(ν) · eE
i
2|1(ν)

, (3.15a)
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where

Gi2|1(ν) = ai + bi sgn
(
BM

1
i

2|1 ν
)

sgn
(
BM

2
i

2|1 ν
)

+ jci sgn
(
BM

1
i

2|1 ν
)

+ jdi sgn
(
BM

2
i

2|1 ν
)
, (3.15b)

E i2|1(ν) = −
Li
2|1∑
`=1

P `
i

∣∣∣BM`
i

2|1 ν
∣∣∣+ j

(
2∑
`=1

Z`
iB

M`
i

2|1

)
ν, (3.15c)

Z(2|1) = Z(1|1),

P (2|1) =

P (1|1)

β

β

β

 =


α1 α2 β
γ

|ε1HT|
α2

|ε1HT|
β

γ

|ε2HT|
α1

|ε2HT|
β

 , B2|1 =

B1|1ΦT

ΓT

 =


ε1ΦT

ε2ΦT

HAΦT

ΓT

 ,

M(2|1) =

M(1|1)

4

4

4

 =


1 2 4

1 3 4

2 3 4

 , L2|1 = L1|1 +


1

1

1

 =


3

3

3

 .
(3.15d)

The process noise introduces a third absolute value term, with a new fundamental direction,

into all of the CF’s exponential arguments. The next section deals with performing the next

measurement update to this propagated structure.

3.3 Second Measurement Update

The second measurement update process involves finding the characteristic function of the

unnormalized conditional pdf, i.e., φ̄2|2. The formula used for this second measurement

update is the same as the first update, given in (2.13), and is applied to (3.15):

φ̄2|2(ν) =
1

2π

∞∫
−∞

φ̄2|1(ν − HTσ)φV (−σ)ejσz(2)dσ

=
1

2π

∞∫
−∞

φ̄2|1(ν − HTσ)e−γ|σ|ejσz(2)dσ. (3.16)
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Since φ̄2|1 is a sum of N2|1 = 3 terms, the measurement update process is to solve the

convolution integral N2|1 times, once for each term. Substituting (3.15a) into (3.16), we get

φ̄2|2(ν) =
1

2π

∞∫
−∞

N2|1∑
i=1

Gi2|1(ν − HTσ) · exp
[
E i2|1(ν − HTσ)− γ |−σ|+ jσz(2)

]
dσ. (3.17)

Interchanging the integration and summation operations produces N2|1 convolution integrals.

As with the first measurement update, each convolution will produce an old term as well as

new terms, called intermediate terms. Since many of these terms have the same exponential

arguments, they can be combined to reduce the total number of terms in the CF’s sum.

Therefore, we begin with an arbitrary ith convolution in (3.17). Using (3.15c) we define

Ii =

∞∫
−∞

Gi2|1(ν − HTσ) · exp
[
E i2|1(ν − HTσ)− γ |σ|+ jσz(2)

]

=

∞∫
−∞

Gi2|1(ν − HTσ) · exp

− Li
2|1∑
`=1

P `
i

∣∣∣BM`
i

2|1 (ν − HTσ)
∣∣∣− γ |σ|

+j

(
2∑
`=1

Z`
iB

M`
i

2|1

)
(ν − HTσ) + jσz(2)

]
dσ. (3.18)

In order to solve (3.18), we need to rewrite it in a manner similar to (2.15) using ρ` and µ`

substitutions. Begin as in the first measurement update by defining constants µ` obtained

by expressing

BM
`
i

2|1 (ν − HTσ) = BM
`
i

2|1 HT(µ` − σ), (3.19a)

and thus

µ` =
BM

`
i

2|1 ν

BM
`
i

2|1 HT
. (3.19b)

Next, we rewrite the argument of the exponential of (3.18) in terms of these µ`s and σ as

−
Li
2|1∑
`=1

P `
i

∣∣∣BM`
i

2|1 HT
∣∣∣ · |µ` − σ| − γ |−σ|

+ j
(
Z1
i B

M1
i

2|1 + Z2
i B

M2
i

2|1

)
ν + j

(
z(2)− Z1

i B
M1
i

2|1 HT − Z2
i B

M2
i

2|1 HT
)
σ

= j
(
Z1
i B

M1
i

2|1 + Z2
i B

M2
i

2|1

)
ν −

Li
2|1+1=4∑
`=1

ρ` |µ` − σ|+ jθi2σ, (3.20a)

36



where the complex part multiplying ν does not depend on σ and comes out of the convolution.

The parameter definitions are µLi
2|1+1 = µ4 = 0,

θi2 = z(2)− Z1
i B

M1
i

2|1 HT − Z2
i B

M2
i

2|1 HT, (3.20b)

and the Li2|1 + 1 = 3 + 1 = 4 constants called ρ` are given by

ρ` =

P
`
i

∣∣∣BM`
i

2|1 HT
∣∣∣ ` ∈ {1, . . . , Li2|1 = 3}, i ∈ {1, . . . , N2|1 = 3}

γ ` = Li2|1 + 1 = 4.
(3.20c)

This is the same procedure used in the first measurement update except that, due to the

new absolute value term in the exponential argument introduced in the time propagation

step, there are now four ρ` constants instead of three. Moreover, there are three fundamental

directions in the exponential argument, instead of just two.

Let’s turn our attention to the coefficients of the exponents. The coefficient functions for

the three terms in φ̄2|1 are all of the form

Gi2|1(ν) = ai + bi sgn
(
BM

1
i

2|1 ν
)

sgn
(
BM

2
i

2|1 ν
)

+ jci sgn
(
BM

1
i

2|1 ν
)

+ jdi sgn
(
BM

2
i

2|1 ν
)
. (3.21)

Hence the same manipulation used in (3.19b) to form the µs can be used here to get

Gi2|1(ν − HTσ)

= ai + bi sgn
(
BM

1
i

2|1 HT · BM
2
i

2|1 HT
)(1

2

(
sgn (µ1 − σ) + sgn (µ2 − σ)

)2

− 1

)
+ jci sgn

(
BM

1
i

2|1 HT
)

sgn (µ1 − σ) + jdi sgn
(
BM

2
i

2|1 HT
)

sgn (µ2 − σ) , (3.22)

where in the real part we use the identity

sgn (µ1 − σ) sgn (µ2 − σ) =
1

2
( sgn (µ1 − σ) + sgn (µ2 − σ))2 − 1. (3.23)

In order to use the same integration method as in the first measurement update, it is

necessary for the coefficient of the exponential term to be constant within each subdomain

of integration (µ`, µ`+1). Since these coefficients are polynomials of sums of sign functions,

they are clearly constant in these regions. Now define the following constants,

āi = ai, b̄i = bi sgn
(
BM

1
i

2|1 HT · BM
2
i

2|1 HT
)
,

ρ̄1 = ci sgn
(
BM

1
i

2|1 HT
)
, ρ̄2 = di sgn

(
BM

2
i

2|1 HT
)
,

ρ̃1 = 1, ρ̃2 = 1.

(3.24)
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Our integration method also requires that the coefficient involve sums over the same sign

functions as the exponential argument, which has two more absolute value functions than

the coefficient has sign functions. To do this, introduce two more sign functions into the sum

in (3.22) by multiplying them by constants ρ̃3 = ρ̃4 = 0 and ρ̄3 = ρ̄4 = 0. Using these, the

coefficient in the convolution can be written with sums over the same µ` as in (3.20a):

Gi2|1(ν − HTσ) = āi + b̄i

1

2

(
4∑
`=1

ρ̃` sgn (µ` − σ)

)2

− 1

+ j

(
4∑
`=1

ρ̄` sgn (µ` − σ)

)

= Gi2|1

(
4∑
`=1

ρ̃` sgn (µ` − σ) ,
4∑
`=1

ρ̄` sgn (µ` − σ)

)
:= Gi2|1

(
4∑
`=1

ρ̌` sgn (µ` − σ)

)
. (3.25)

Since the only difference between the summations in (3.25) are the scalar ρ̃` and ρ̄` constants,

we can simplify the notation and use a shorthand ρ̌` in (3.25) to represent all the summations.

This notation will become more useful in subsequent measurement updates as the coefficient

polynomials become more complex.

Using these substitutions, each of the i ∈ {1, . . . , N2|1} convolution integrals in (3.17)

can be written as

Ii =

∞∫
−∞

Gi2|1

(
4∑
`=1

ρ̌` sgn (µ` − σ)

)
· exp

(
−

4∑
`=1

ρ` |µ` − σ|+ jθi2σ

)
dσ. (3.26)

The solution to the ith convolution integral for the second measurement update from [14,15]

is

Ii =

Li
2|1+1∑
m=1

exp

− Li
2|1+1∑
`=1
` 6=m

ρ` |µ` − µm|+ jθi2µm



×



Gi2|1

+ρ̌m +
Li
2|1+1∑̀
=1
` 6=m

ρ̌` sgn (µ` − µm)


jθi2 + ρm +

Li
2|1+1∑̀
=1
6̀=m

ρ` sgn (µ` − µm)

−

Gi2|1

−ρ̌m +
Li
2|1+1∑̀
=1
`6=m

ρ̌` sgn (µ` − µm)


jθi2 − ρm +

Li
2|1+1∑̀
=1
`6=m

ρ` sgn (µ` − µm)


.

(3.27)

The convolution produces Li2|1 + 1 = 4 terms, indexed here by m, for each of the i terms

in the sum in φ̄2|1. The first three terms are called the intermediate new terms because
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some of the terms from different convolutions have the same exponential arguments and can

be combined by summing their coefficient functions together, as will be shown. The last

term produced by the convolution that corresponds to m = 4 is the old term because, since

µ4 = 0, it has the same exponential argument as the ith term in φ̄2|1 that was convolved.

Simplifications of these terms and their coefficient functions are addressed next.

3.3.1 Second Measurement Update - New Intermediate Terms

The terms corresponding to m ∈ {1, 2, 3} are called the intermediate new terms. These

always involve only two fundamental directions: one is from B2|1 and the other is the new

direction HA as in the first measurement update. The formation of the new fundamental

direction is what recovers the structure involving two fundamental directions, as will be

shown here.

Until the intermediate new terms are combined into the final structure for the second

measurement update, it is useful to denote the exponential argument in terms of both indices

i and m. Hence, for the intermediate terms, denote the coefficient and exponential arguments

as Gi,m2|2 and E i,m2|2 , respectively.

For the ith term, use the definitions in (3.19b), (3.20b), and (3.20c) to rewrite the expo-

nential argument of (3.27) as

E i,m2|2 = −γ

∣∣∣∣∣ B
Mm
i

2|1 ν

BM
m
i

2|1 HT

∣∣∣∣∣−
Li

2|1+1∑
`=1
6̀=m

P `
i

∣∣∣BM`
i

2|1 HT
∣∣∣
∣∣∣∣∣∣ −B

M`
i

2|1 ABM
m
i T

2|1

BM
`
i

2|1 HT · BM
m
i

2|1 HT

∣∣∣∣∣∣
 |HAν|

+ j
z(2)

BM
m
i

2|1 HT
BM

m
i

2|1 ν + j

 2∑
`=1

Z`
i

(
BM

`
i

2|1 HT
) −BM

`
i

2|1 ABM
m
i T

2|1

BM
`
i

2|1 HT · BM
m
i

2|1 HT

HAν

=

−γ
∣∣∣BMm

i

2|1 ν
∣∣∣− Li

2|1+1∑̀
=1
`6=m

P `
i

∣∣∣BM`
i

2|1 ABM
m
i T

2|1

∣∣∣ |HAν|

BM
m
i

2|1 HT

+ j

z(2)BM
m
i

2|1 ν −
2∑̀
=1

Z`
i

(
BM

`
i

2|1 ABM
m
i T

2|1

)
HAν

BM
m
i

2|1 HT
. (3.28)

This final form for the new intermediate term’s exponential argument involves only two
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fundamental directions: one that is a row of B2|1 that corresponds to the Mm
i integers

for m ∈ {1, . . . , Li2|1 = 3}, and the new vector HA. Moreover, the denominators of both

terms are equal. Therefore, we define the set of updated fundamental directions as B2|2 and

construct it by appending HA to the bottom of B2|1 as

B2|2 =

B2|1

HA

 =



ε1ΦT

ε2ΦT

HAΦT

ΓT

HA


. (3.29)

3.3.2 Second Measurement Update - Recursive Structure of the Arrays

Denote an array of integers M(2|2) where the elements of a given row index the rows of B2|2

that appear in the corresponding term. The rows of the old terms will be unchanged, and a

set of new rows will be appended to the bottom, each of width two. Since each convolution

produces terms involving one of the old term’s directions, the new rows of M(2|2) will contain

all possible combinations of rows of B2|1 with the new row in B2|2 as

M(2|2) =



M(2|1)

1 5

2 5

3 5

4 5

4 5

4 5


=



1 2 4

1 3 4

2 3 4

1 5

2 5

3 5

4 5

4 5

4 5


. (3.30)

Each of the three convolutions in the second measurement update produced four terms, the

old term and three new intermediate ones, for a total of nine new terms. However, from

(3.30) it is clear that we only have six distinct new terms with different pairs of fundamental

directions. This is because three pairs of terms, from different convolutions, have the same

exponential arguments and can be combined into one term by summing their polynomial

coefficients. These three combined pairs produce the first three new terms, and thus they
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introduce the first three new rows of M(2|2). The last three rows of M(2|2) are due to

the time propagation step and involves the ΓT direction. Although these last three terms

have the same fundamental directions, the coefficients for the absolute value functions are

different, as will be shown next.

Now we construct an array of coefficients for the absolute value functions in the exponents.

From (3.28), a pattern emerges for constructing these coefficients. They are stored in the

array P (2|2) that is given by

P (2|2) =



P (2|1)

γ

|ε1ΦTHT|
α2 |det Φ|+ β

∣∣ε1ΦTAΓ
∣∣

|ε1ΦTHT|

γ

|ε2ΦTHT|
α1 |det Φ|+ β

∣∣ε2ΦTAΓ
∣∣

|ε2ΦTHT|

γ

|HAΦTHT|
γ |det Φ|+ β

∣∣HAΦTAΓ
∣∣

|HAΦTHT|

γ

|HΓ|
α1

∣∣ε1ΦTAΓ
∣∣+ α2

∣∣ε2ΦTAΓ
∣∣

|HΓ|

γ

|HΓ|

γ
|ε1HT|

∣∣ε1ΦTAΓ
∣∣+ α2

|ε1HT|

∣∣HAΦTAΓ
∣∣

|HΓ|

γ

|HΓ|

γ
|ε2HT|

∣∣ε2ΦTAΓ
∣∣+ α1

|ε2HT|

∣∣HAΦTAΓ
∣∣

|HΓ|



. (3.31)

Next, denote the new array of coefficients for the imaginary part of the exponential

argument as Z(2|2). Since the time propagation step has no effect on the imaginary part of

the exponential argument, this array always has width two, involving only the original two

directions, and it has the same number of rows as M(2|2). Based on the same manipulations

41



used to obtain the elements of P (2|2), Z(2|2) is given by

Z(2|2) =



Z(2|1)

z(2)

ε1ΦTHT
0

z(2)

ε2ΦTHT
0

z(2)

HAΦTHT
−z(1) det Φ

HAΦTHT

z(2)

HΓ
0

z(2)

HΓ
−

z(1)

ε1HT
· ε1ΦTAΓ

HΓ

z(2)

HΓ
−

z(1)

ε2HT
· ε2ΦTAΓ

HΓ



. (3.32)

The usefulness of L2|2 is more apparent in this measurement update, since older terms

involve more fundamental directions. It is formed by simply appending an array of 2s of

length six to L2|1 as

L2|2 =
[
LT

2|1 2 2 2 2 2 2
]T

=
[
3 3 3 2 2 2 2 2 2

]T

. (3.33)

3.3.3 Second Measurement Update - New Coefficients G

Consider now the new coefficient functions for the new intermediate terms produced by

the ith term of φ̄2|1. For m = 1 and m = 2, the numerators of (3.27) are not equal and

hence cannot come out of the bracket term. They are of a form compatible with Result

3 in Appendix A. Denote the coefficient of the mth intermediate term as Gi,m2|1 . Then, the
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numerators for m = 1 are given by

Gi,12|1

(
±ρ̌1 +

4∑
`=2

ρ̌` sgn (µ` − µ1)

)

= āi + b̄i

1

2

(
±ρ̃1 +

4∑
`=2

ρ̃` sgn (µ` − µ1)

)2

− 1

+ j

(
±ρ̄1 +

4∑
`=2

ρ̄` sgn (µ` − µ1)

)

= āi + b̄i

(
1

2

(
± ρ̃1 + ρ̃2 sgn (µ2 − µ1)

)2

− 1

)
+ j
(
± ρ̄1 + ρ̄2 sgn (µ2 − µ1)

)
= ai ± bi sgn

(
BM

1
i

2|1 HT · BM
2
i

2|1 HT
)

sgn (µ2 − µ1)

± jci sgn
(
BM

1
i

2|1 HT
)

+ jdi sgn
(
BM

2
i

2|1 HT
)

sgn (µ2 − µ1) ,

= ai ± bi sgn
(
−BM

2
i

2|1 ABM
1
i T

2|1

)
sgn (HAν)

± jci sgn
(
BM

1
i

2|1 HT
)

+ jdi sgn
(
−BM

2
i

2|1 ABM
1
i T

2|1 · BM
1
i

2|1 HT
)

sgn (HAν) . (3.34)

The same manipulations can be done for the numerators for m = 2 by interchanging µ1 and

ci with µ2 and di, respectively. Recalling that ρ̌3 = 0, the new term obtained for m = 3

corresponds to the coefficient

Gi,32|1

0 +
4∑
`=1
6̀=3

ρ̌` sgn (µ` − µ3)


= ai + bi sgn

(
BM

1
i

2|1 HT · BM
2
i

2|1 HT
)

sgn (µ1 − µ3) sgn (µ2 − µ3)

+ jci sgn
(
BM

1
i

2|1 HT
)

sgn (µ1 − µ3) + jdi sgn
(
BM

2
i

2|1 HT
)

sgn (µ2 − µ3)

= ai + bi sgn
(
−BM

1
i

2|1 ABM
3
i T

2|1

)
sgn

(
−BM

1
i

2|1 ABM
3
i T

2|1

)
+ j

(
ci sgn

(
−BM

1
i

2|1 ABM
3
i T

2|1

)
+ di sgn

(
−BM

2
i

2|1 ABM
3
i T

2|1

))
sgn (HAν) . (3.35)

Substituting these into the bracket term in (3.27), and noting that the real parts of the

denominators are similar to the real part of the exponential argument, yields a form that is

compatible with the numerator forms given in Result 3 to produce coefficient functions for

the intermediate terms denoted Gi,m2|2 (ν) and given by

Gi,m2|2 (ν) = ai,m + bi,m sgn
(
BM

1
i,m

2|2 ν
)

sgn
(
BM

2
i,m

2|2 ν
)

+ jci,m sgn
(
BM

1
i,m

2|2 ν
)

+ jdi,m sgn
(
BM

2
i,m

2|2 ν
)
.

(3.36)
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It is necessary to use Result 3 because the denominators in the bracket term in (3.27) form

two sign functions, in the same way that the new exponential arguments (3.28) involve only

two absolute value terms. Therefore, polynomial coefficients for all of the new intermediate

terms can be expressed in the simple four-parameter form of (3.36). Note that the two

fundamental directions involved here are the same as in the argument of the exponential.

Hence, combining two terms with the same exponential arguments involves summing their

polynomial coefficients Gi,m2|2 , which is simply summing the corresponding parameters.

For the second update, three pairs of the nine new intermediate terms can be combined,

leaving a total of six new terms in addition to the three old terms. The set of combined

parameters for the second measurement update are appended to the bottom of G(2|1) =

G(1|1), producing the new array G(2|2), which has four columns and the same number

of rows as M(2|2). Then, the coefficients for the new terms (i.e.,those corresponding to

i ∈ {4, . . . , 9}) are given by

Gi2|2(ν) = ai + bi sgn
(
BM

1
i

2|2 ν
)

sgn
(
BM

2
i

2|2 ν
)

+ jci sgn
(
BM

1
i

2|2 ν
)

+ jdi sgn
(
BM

2
i

2|2 ν
)
, (3.37)

where ai, bi, ci, and di are the elements of the ith row of G(2|2).

3.3.4 Second Measurement Update - Old Terms

For ` = Lik|k−1 + 1 the constants {ρ̃`, ρ̄`} := ρ̌` = 0, which implies that both numerators

in the bracket term in (3.27) are equal and hence can be pulled out of the brackets as a

common factor. Therefore, the measurement updated old term is the same as the previous

old term, except its coefficient is multiplied by the new bracket term,

Gi2|2(ν) =
{
ai + bi sgn

(
BM

1
i

2|2 ν
)

sgn
(
BM

2
i

2|2 ν
)

+ jci sgn
(
BM

1
i

2|2 ν
)

+ jdi sgn
(
BM

2
i

2|2 ν
)}

× 1

2π


jθi2 + γ +

Li
2|2=3∑
`=1

P `
i

(
BM

`
i

2|2 HT
)

sgn
(
BM

`
i

2|2 ν
)−1

−

jθi2 − γ +

Li
2|2=3∑
`=1

P `
i

(
BM

`
i

2|2 HT
)

sgn
(
BM

`
i

2|2 ν
)−1

 . (3.38)
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Since the new bracket term in (3.38) has three sign functions, it cannot be manipulated using

the results in Appendix A.

This implies that terms that have been created in previous measurement updates retain

their exponential arguments during the current measurement update, and their coefficients

are multiplied by new bracket terms as in (3.38), with one additional sign function than the

coefficient had in the previous update. The difference between the current time step and

the time step when the term was originally created is called the age of the term, and is

given by Lk|k − 2. Although this complicated structure grows, acquiring a new bracket term

every measurement update, the structure of each bracket term overlaps significantly with

the others, and thus can be expressed efficiently.

3.3.5 Second Measurement Update - The Characteristic Function

Using (3.29) (3.30) (3.31) (3.32) (3.33), and denoting N2|2 = 9 for the number of terms, the

CF of the ucpdf for the second measurement update is given by

φ̄2|2(ν) =

N2|2∑
i=1

Gi2|2(ν) · exp
(
E i2|2(ν)

)
(3.39a)

where

E i2|2(ν) = −
Li
2|2∑
`=1

P `
i

∣∣∣BM`
i

2|2 ν
∣∣∣+ j

(
2∑
`=1

Z`
iB

M`
i

2|2

)
ν (3.39b)

and the coefficients are given by (3.37) and (3.38) for new and old terms, respectively. Note

that the first three terms in φ̄2|2 correspond to the old terms and have the same exponential

parts as the three terms in φ̄2|1. The subsequent six terms are new and involve only two

fundamental directions. Although not used here, it will be useful to denote the number of

new terms in φ̄2|2 as Nn
2|2 = 6. This structure repeats itself across subsequent measurement

updates, and the next section will present the two-state estimator’s recursion for the general

kth measurement update.
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3.4 Estimator Recursion for the kth Propagation and Update

This section presents the two-state Cauchy estimator algorithm for a state propagation and

then the general measurement update for a general time step k. This algorithm was derived

by induction based on a study of the first three measurement updates. It can be verified to

be a special case of the approach developed in [14,15]. We first address the state propagation

at time step k, and then follow with the measurement update recursion. Finally, we show

how to determine the minimum variance estimate and its error variance.

3.4.1 Time Propagation

The general time propagation uses the same formula as in the first time propagation, given

in (2.28),

φ̄k+1|k(ν) = φ̄k|k(Φ
Tν) · e−β

∣∣ΓTν
∣∣
. (3.40)

The characteristic function of the ucpdf for the once propagated conditional density can be

written as

φ̄k+1|k(ν) =

Nk+1|k∑
i=1

Gik+1|k(ν) · exp

− Li
k+1|k∑
`=1

P `
i

∣∣∣BM`
i

k+1|kν
∣∣∣+ j

(
2∑
`=1

Z`
iB

M`
i

k+1|k

)
ν

 , (3.41a)

where

P (k + 1|k) =

P (k|k)

β

β
...

β

 , Z(k + 1|k) = Z(k|k),

M(k + 1|k) =

M(k|k)

2(k + 1)

2(k + 1)
...

2(k + 1)

 , Lk+1|k = Lk|k +


1

1
...

1

 , Bk+1|k =

Bk|k · ΦT

ΓT

 ,
(3.41b)

and both Nk+1|k = Nk|k and Nn
k+1|k = Nn

k|k because no new terms are created during the

time propagation.
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3.4.2 Measurement Update - The Convolution

We begin this section assuming we have a time propagated ucpdf’s CF φ̄k|k−1 and are given

the kth measurement z(k). Consider the following generalization for the polynomial coeffi-

cients Gik|k−1 produced for the old terms in the second measurement update. The form in

(3.38) suggests that, in general, the time propagated coefficients will have the form

Gik|k−1(ν) =
{
ai + bi sgn

(
BM

1
i

k|k−1ν
)

sgn
(
BM

2
i

k|k−1ν
)

+jci sgn
(
BM

1
i

k|k−1ν
)

+ jdi sgn
(
BM

2
i

k|k−1ν
)}

×
Li
k|k−1

−3∏
r=1

1

2π

{
1

jθik−r + γ + S ik−r(Bk|k−1ν)
− 1

jθik−r − γ + S ik−r(Bk|k−1ν)

}
, (3.42a)

where

S ik−r(Bk|k−1ν) =

Li
k−r|k−r∑
`=1

P `
i

(
BM

`
i

k−r|k−rH
T
)

sgn
(
BM

`
i

k|k−1ν
)
, (3.42b)

θik−r = z(k − r)− Z1
i B

M1
i

k−r|k−rH
T − Z2

i B
M2
i

k−r|k−rH
T, (3.42c)

and k− r is the time-step where the term involving S ik−r was created. The arrays M ,L,P ,B,

and Z for the general update will be constructed later but correspond to those of the first

two updates already shown.

Using the measurement update formula (2.13) with the corresponding change of indices,

φ̄k|k is given by

φ̄k|k(ν) =

Nk|k−1∑
i=1

1

2π

∞∫
−∞

Gik|k−1(ν − HTσ)

× exp

−Lik|k−1∑
`=1

P `
i

∣∣∣BM`
i

k|k−1(ν − HTσ)
∣∣∣− γ |−σ|+ jθikσ

 dσ. (3.43)

It is necessary to divide the domain of integration into regions in which the polynomial co-

efficient is a constant and the exponential argument is continuous. For this, the summations

that appear in (3.42) must involve the same fundamental directions as the exponential argu-

ment. Since the top bracket term in (3.42a) is the four parameter polynomial formed when
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the term was created, we can define ρ̄` and ρ̄m constants as in (3.24), where ρ̄` = ρ̃` = 0 for

` = 3, . . . , Lik|k−1 + 1.

Similarly, the summations (3.42b) in the rest of the bracket terms can be written using

constants (r)ρ̌` defined as

(r)ρ̌` =

P
`
i

(
BM

`
i

k−r|k−rH
T
)

sgn
(
BM

`
i

k|k−1HT
)

` = 1, . . . , Lik|k−1 − r

0 ` = Lik|k−1 − r + 1, . . . , Lik|k−1 + 1.
(3.44)

Using the shorthand ρ̌` as in the second measurement update (3.25), construct µ`, θ
i
k, ρ`, ρ̄`,

and ρ̃` constants as in (3.19b), (3.20b), (3.20c), and (3.24), respectively, in order to write

the coefficients in the ith integral in (3.43) as

Gik|k−1(ν − HTσ) =

Gik|k−1

Li
k|k−1

+1∑
`=1

ρ̃` sgn (µ` − σ) ,

Li
k|k−1

+1∑
`=1

ρ̄` sgn (µ` − σ) ,

Li
k|k−1

+1∑
`=1

(Li
k|k−1

−2)ρ̌` sgn (µ` − σ) , . . . ,

Li
k|k−1

+1∑
`=1

(1)ρ̌` sgn (µ` − σ)


:= Gik|k−1

Li
k|k−1

+1∑
`=1

ρ̌` sgn (µ` − σ)

 . (3.45)

The set of parameters needed in the sums in (3.45) are visualized in the array

↑

r

ρ̃1 ρ̃2 0 0 · · · 0 0

ρ̄1 ρ̄2 0 0 · · · 0 0

(Lik−2)ρ̌1
(Lik−2)ρ̌2

(Lik−2)ρ̌3 0 · · · 0 0

...
...

. . .
...

...
...

...

(2)ρ̌1
(2)ρ̌2 · · · (2)ρ̌Lik−2 0 0 0

(1)ρ̌1
(1)ρ̌2 · · · (1)ρ̌Lik−2

(1)ρ̌Lik−1 0 0

ρ1 ρ2 · · · ρLik−2 ρLik−1 ρLik ρLik+1

` −→

(3.46)
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where the bottom row is the set from the exponential argument, so that ρLik = β and

ρLik+1 = γ. Then, the entire integral can be written compactly as

Ii =

∞∫
−∞

Gik|k−1

Li
k|k−1

+1∑
`=1

ρ̌` sgn (µ` − σ)

 · exp

− Li
k|k−1

+1∑
`=1

ρ` |µ` − σ|+ jθikσ

 dσ. (3.47)

Using the definition of s`i from (2.16), the arguments of the coefficient functions are constant,

and hence Gik|k−1 is a constant in the integral. Therefore, it can be rewritten as a sum of

Lik|k−1 + 1 integrals and evaluated as

Ii =

Li
k|k−1

+1∑
i=0


µi+1∫
µi

Gik|k−1

Li
k|k−1

+1∑
`=1

ρ̌`s
`
i

 exp

−Lik|k−1
+1∑

`=1

ρ` (µ` − σ) s`i + jz(k)σ

 dσ



=
1

2π

n∑
i=0


Gik|k−1

(
Li
k|k−1

+1∑̀
=1

ρ̌`s
`
i

)
exp

(
−
Li
k|k−1

+1∑̀
=1

ρ` (µ` − µi+1) s`i + jz(k)µi+1

)

jz(k) +

Li
k|k−1

+1∑̀
=1

ρ`s`i



− 1

2π

n∑
i=0


Gik|k−1

(
Li
k|k−1

+1∑̀
=1

ρ̌`s
`
i

)
exp

(
−
Li
k|k−1

+1∑̀
=1

ρ` (µ` − µi) s`i + jz(k)µi

)

jz(k) +

Li
k|k−1

+1∑̀
=1

ρ`s`i


(3.48)

Then, by following the same manipulations as in Section 2.1.1, (3.48) can be rewritten as

Ii =

Li
k|k−1

+1∑
m=1

exp

− Li
k|k−1

+1∑
`=1
6̀=m

ρ` |µ` − µm|+ jθikµm



×



Gik|k−1

+ρ̌m +
Li
k|k−1

+1∑̀
=1
6̀=m

ρ̌` sgn (µ` − µm)


jθik + ρm +

Li
k|k−1

+1∑̀
=1
6̀=m

ρ` sgn (µ` − µm)

−

Gik|k−1

−ρ̌m +
Li
k|k−1

+1∑̀
=1
`6=m

ρ̌` sgn (µ` − µm)


jθik − ρm +

Li
k|k−1

+1∑̀
=1
`6=m

ρ` sgn (µ` − µm)


,

(3.49a)
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where

Gik|k−1

±ρ̌m +

Li
k|k−1

+1∑
`=1
6̀=m

ρ̌` sgn (µ` − µm)

 =

ai + bi

(
1

2

(
± ρ̃m +

Li
k|k−1

+1∑
`=1
` 6=m

ρ̃` sgn (µ` − µm)
)2

− 1

)
+ j

±ρ̄m +

Li
k|k−1

+1∑
`=1
`6=m

ρ̄` sgn (µ` − µm)




×
Li
k|k−1

−3∏
p=1

1

2π

{
1

jθik−r + γ + S ik−r(±(r)ρ̌m, µ` − µm)
− 1

jθik−r − γ + S ik−r(±(r)ρ̌m, µ` − µm)

}
,

(3.49b)

and for r ∈ {1, . . . , Lik|k−1 − 3},

S ik−r(±(r)ρ̌m, µ` − µm)

= ±Pm
i

(
BM

m
i

k−r|k−rH
T
)

+

Li
k−r|k−r∑
`=1
` 6=m

P `
i

(
BM

`
i

k−r|k−rH
T
)

sgn
(
BM

`
i

k|k−1HT
)

sgn (µ` − µm)

= ±Pm
i

(
BM

m
i

k−r|k−rH
T
)

+

Li
k−r|k−r∑
`=1
6̀=m

P `
i

(
BM

`
i

k−r|k−rH
T
)

sgn
(
−BM

`
i

k|k−1ABM
m
i T

k|k−1 · B
M`
i

k|k−1HT
)

sgn (HAν) .

(3.49c)

3.4.3 Measurement Update - Recovering the CF Structure

The old terms will be discussed later. For the new terms, i.e., m = 1, . . . , Lik|k−1, the numer-

ators of the measurement updated coefficients (3.49b) can be reduced to a form compatible

with Result 3. The four parameter bracket terms in (3.49b) can be rewritten as (3.36) from

the second measurement update. Manipulate the bracket term outside the product in (3.49b)

in the same manner as (3.34) and (3.35). Since Results 1 and 2 produce outputs that are of

the same form as their respective inputs, they can be applied sequentially across the bracket

terms. Then, the entire numerator form (3.49b) can be collapsed, using these results sequen-

tially, into the form given in (3.36). Finally, the new four-parameter polynomial coefficient

involving two fundamental directions (HA and a row of Bk|k−1) can be computed as in the

second measurement update using Result 3. Those parameters will be combined with other
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terms with the same exponential arguments, the set of new parameters will be appended to

the bottom of G(k|k − 1) to form a new array denoted G(k|k). Denote the number of the

new terms in φ̄k|k as Nn
k|k so that Nk|k = Nk|k−1 +Nn

k|k.

Since one of the two fundamental directions for every new term will be HA, it is appended

to Bk|k−1 to obtain

Bk|k =

Bk|k−1

HA

 . (3.50)

The array M(k|k) is constructed by appending Nn
k|k new rows to M(k|k− 1). The recursion

is given by

M(k|k) =



M(k|k − 1)

M1
(rk+1) 2k + 1

M1
(rk+2) 2k + 1
...

...

M1
Nk|k−1

2k + 1

2k − 1 2k + 1

2k 2k + 1

2k 2k + 1
...

...

2k 2k + 1



, (3.51)

where rk = Nk−1|k−1 − Nn
k−1|k−1, noting that Nk|k−1 = Nk−1|k−1 and Nn

k|k−1 = Nn
k−1|k−1.

The left column of this new block has three parts. The first Nn
k−1|k−1 elements are the left

elements of all the new rows of the previous measurement update, i.e. the new Nn
k−1|k−1 rows

of M(k−1|k−1). The next element corresponds to the new fundamental direction from the

previous measurement update, i.e. the last row of Bk−1|k−1. The remaining Nk−1|k−1 rows

are all the same, and involve the new time propagation direction ΓT.

The growth in the number of terms, which is given as a linear dynamic system of integers,

is based on the pattern for the recursion of M(k|k) given above. The number of terms in

the sum in φ̄k|k, given by Nk|k, is determined from the previous number of terms Nk−1|k−1
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and the previous number of new terms Nn
k−1|k−1 by the following linear relationship:Nk|k

Nn
k|k

 =

2 1

1 1

Nk−1|k−1

Nn
k−1|k−1

+

1

1

 . (3.52)

The recursions for the fundamental arrays P (k|k) and Z(k|k) were derived by induction

from a study of the first three measurement updates. As in the first two measurement

updates, the denominators of the elements of the ith row of Z(k|k) are equal. Therefore, it

is useful to denote the diagonal matrix D(k|k), where

D(k|k) = Diag

 1

B
M1
rk+1

k|k HT

, . . . ,
1

B
M1

(rk+N
n
k|k−1

)

k|k HT

,
1

HAΦTHT
,

1

HΓ
, . . . ,

1

HΓ

 . (3.53)

Similarly, the denominators of the elements of the ith row of P (k|k) are also equal. Denote

the diagonal matrix D̄(k|k), whose elements equal the absolute values of the corresponding

elements in D(k|k).

The new terms in P (k|k) and Z(k|k) are formed in the same manner as in the first

and second measurement update, reducing sums of µ` − µm terms to constants times HA

and reducing the polynomial coefficients to the four parameter structure in (3.3) using the

Results in Appendix A, producing the new rows for G(k|k). The recursion for P (k|k) is

P (k|k) =



P (k|k − 1)

D̄(k|k)×



γ P 2
(rk+1)

∣∣∣∣BM1
(rk+1)

k−1|k−1HT · det Φ

∣∣∣∣+ β

∣∣∣∣BM1
(rk+1)

k|k AΓ

∣∣∣∣
γ P 2

(rk+2)

∣∣∣∣BM1
(rk+2)

k|k−1 HT · det Φ

∣∣∣∣+ β

∣∣∣∣BM1
(rk+2)

k|k AΓ

∣∣∣∣
...

...

γ P 2
rk+Nk|k−1

∣∣∣∣∣BM
1
(rk+N

n
k|k−1

)

k−1|k−1 HT · det Φ

∣∣∣∣∣+ β

∣∣∣∣∣BM
1
(rk+N

n
k|k−1

)

k|k AΓ

∣∣∣∣∣
γ γ |det Φ|+ β

∣∣HAΦTAΓ
∣∣

γ
L1
k|k−1

−1∑̀
=1

P `
1

∣∣∣BM`
1

k AΓ
∣∣∣

...
...

γ

L
(Nk|k−1)

k|k−1
−1∑̀

=1

P `
Nk−1|k−1

∣∣∣∣BM`
(Nk−1|k−1)

k AΓ

∣∣∣∣





.

(3.54)
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Similarly, the recursion for Z(k|k) is

Z(k|k) =



Z(k|k − 1)

D(k|k)×



z(k) 0

z(k) 0

z(k) −Z2
(rk+3)

(
B
M1

(rk+3)

k−1|k−1HT · det Φ

)
...

...

z(k) −Z2
(rk+Nn

k−1)

(
B
M1

(rk+N
n
k−1

)

k−1|k−1 HT · det Φ

)
z(k) −z(k − 1) · det Φ

z(k) −
2∑̀
=1

Z`
(Nk−1|k−1)

(
BM

`
1

k|kAΓ
)

...
...

z(k) −
2∑̀
=1

Z`
(Nk−1|k−1)

(
B
M`

(Nk−1|k−1)

k|k AΓ

)





. (3.55)

Since all the new rows in M(k|k) have width two, Lk|k is measurement updated by appending

Nn
k|k elements of the integer 2 to Lk|k−1 as

LT
k|k =

[
LT
k|k−1 , 2, . . . , 2

]T

. (3.56)

This produces all of the parameters necessary to express the ucpdf’s CF for the kth

measurement update as

φ̄k|k(ν) =

Nk|k∑
i=1

Gik|k(ν) · exp

− Li
k|k∑
`=1

P `
i

∣∣∣BM`
i

k|k ν
∣∣∣+ j

(
2∑
`=1

Z`
iB

M`
i

k|k

)
ν

 , (3.57a)

where coefficients are given by

Gik|k(ν) =
{
ai + bi sgn

(
BM

1
i

k|k ν
)

sgn
(
BM

2
i

k|k ν
)

+ jci sgn
(
BM

1
i

k|k ν
)

+ jdi sgn
(
BM

2
i

k|k ν
)}

×
Li
k|k−2∏
r=1

1

2π

{
1

jθik−r + γ + S ik−r(Bk|kν)
− 1

jθik−r − γ + S ik−r(Bk|kν)

}
, (3.57b)

where

S ik−r(Bk|kν) =

Li
k−r|k−r∑
`=1

P `
i

(
BM

`
i

k−r|k−rH
T
)

sgn
(
BM

`
i

k|k ν
)
, (3.57c)

θik−r = z(k − r)− Z1
i B

M1
i

k−r|k−rH
T − Z2

i B
M2
i

k−r|k−rH
T, (3.57d)
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and k− r is the time-step where the term involving S ik−r was created. Hence, the age of the

ith term after the kth update is Lik|k − 2, and new terms have age zero.

3.4.4 Method for Combining Terms

When searching for terms with the same exponenetial argument, in order to combine their

coefficient functions, we use the indices in the rows of M(k|k). However, certain sets of

rows of M(k|k) are equal but the corresponding rows of P (k|k) and Z(k|k) are not equal.

One way to determine which terms to combine would be to compare rows of M(k|k) and of

P (k|k) and Z(k|k) as well, but the problem is that comparing floating point numbers is less

efficient and less accurate than comparing integers.

There is a pattern in how the terms that have matching rows of M(k|k) combine, and

by using this pattern there is no need to compare floating point numbers at all. By keeping

track of which rows are repeating and which rows are unique, as well as when those repeating

rows were created, then it is possible to determine which intermediate terms to combine to

generate each of the new terms corresponding to repeated rows of M(k|k). This is because

each new process noise term, those that go with
∣∣ΓTν

∣∣ and |HAν|, acts like a new initial

condition, and begins producing new terms of its own with each new update. Then, all terms

that have matching exponential arguments have the same fundamental directions, indexed

in M(k|k), and that were produced by either that original term or any of its offspring

are combined into one term. This term will have a unique expnential argument, distinct

from all other terms that have the same fundamental directions. Therefore, by performing

the convolutions in order of increasing i and then combining their terms with matching

exponential parts, the correct combinations are achieved.

3.5 Second Propagation

Here we present the second propagation, using (2.28) to get

φ3|2(ν) = φ2|2(ΦTν) · e−β
∣∣ΓTν

∣∣
. (3.58)
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The un-normalized characteristic function for the once propagated conditional density can

be written as

φ̄3|2(ν) =

N3|2∑
i=1

Gi3|3(ν) · exp

− Li
3|2∑
`=1

P `
i

∣∣∣BM`
i

3|2 ν
∣∣∣+ j

(
Z1
i B

M1
i

3|2 + Z2
i B

M2
i

3|2

)
ν

 (3.59a)

where Z(3|2) = Z(2|2), G(3|2) = G(2|2),

P (3|2) =

P (2|2)

β

β
...

β

 , B3|2 =

B2|2 · ΦT

ΓT

 ,

M(3|2) =

M(2|2)

6

6
...

6

 , L3|2 = L2|2 +


1

1
...

1

 ,
(3.59b)

and N3|2 = N2|2 = 9.

3.6 Third Measurement Update

This section will present only the exponential argument for the third measurement update,

which was used to obtain the general recursion. The characteristic function for the third

measurement update can be written as

φ̄3|3(ν) =

N3|3∑
i=1

Gi3|3(ν) · exp

− Li
3|3∑
`=1

P `
i

∣∣∣BM`
i

3|3 ν
∣∣∣+ j

(
Z1
i B

M1
i

3|3 + Z2
i B

M2
i

3|3

)
ν

 (3.60)

The new four-parameter coefficient functions can be obtained as described previously. Apply

the general recurision given in Section 3.4 to the state propagated CF given in (3.59). The
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set of fundamental vectors B3|3 is formed by appending HA to the bottom of B3|2, as

B3|3 =

B3|2

HA

 =



ε1ΦT2

ε2ΦT2

HAΦT2

ΓTΦT

HAΦT

ΓT

HA


. (3.61)

These are indexed by integers in the array M(3|3), given by

M(3|3) =



M(3|2)

1 7

2 7

3 7

4 7

4 7

4 7

5 7

6 7

6 7

6 7

6 7

6 7

6 7

6 7

6 7

6 7



. (3.62)
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Then, the array P (3|3) is given by

P (3|3) =



P (3|2)

γ

|ε1ΦT2HT|

(
α2 |det Φ|+ β

∣∣ε1ΦTAΓ
∣∣) |det Φ|+ β

∣∣ε1ΦT2AΓ
∣∣

|ε1ΦT2HT|

γ

|ε2ΦT2HT|

(
α1 |det Φ|+ β

∣∣ε2ΦTAΓ
∣∣) |det Φ|+ β

∣∣ε2ΦT2AΓ
∣∣

|ε2ΦT2HT|

γ

|HAΦT2HT|

(
γ |det Φ|+ β

∣∣HAΦTAΓ
∣∣) |det Φ|+ β

∣∣HAΦT2AΓ
∣∣

|HAΦT2HT|

γ

|ΓTΦTHT|

(
α1

∣∣ε1ΦTAΓ
∣∣+ α2

∣∣ε2ΦTAΓ
∣∣) |det Φ|+ β

∣∣ΓTΦTAΓ
∣∣

|ΓTΦTHT|

γ

|ΓTΦTHT|

(
γ

|ε1HT|
∣∣ε1ΦTAΓ

∣∣+
α2

ε1HT

∣∣HAΦTAΓ
∣∣) |det Φ|+ β

∣∣ΓTΦTAΓ
∣∣

|ΓTΦTHT|

γ

|ΓTΦTHT|

(
γ

|ε2HT|
∣∣ε2ΦTAΓ

∣∣+
α1

ε2HT

∣∣HAΦTAΓ
∣∣) |det Φ|+ β

∣∣ΓTΦTAΓ
∣∣

|ΓTΦTHT|

γ

|HAΦTHT|
γ |det Φ|+ β

∣∣HAΦTAΓ
∣∣

|HAΦTHT|

...
...

(continued on next page)


(3.63a)
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P (3|3) =



(continued from previous page)
...

...

γ

|HΓ|
α1

∣∣ε1ΦT2AΓ
∣∣+ α2

∣∣ε2ΦT2AΓ
∣∣+ β

∣∣ΓTΦTAΓ
∣∣

|HΓ|

γ

|HΓ|

γ

|ε1HT|
∣∣ε1ΦT2AΓ

∣∣+
α2

ε1HT

∣∣HAΦT2AΓ
∣∣+ β

∣∣ΓTΦTAΓ
∣∣

|HΓ|

γ

|HΓ|

γ

|ε2HT|
∣∣ε2ΦT2AΓ

∣∣+
α1

ε2HT

∣∣HAΦT2AΓ
∣∣+ β

∣∣ΓTΦTAΓ
∣∣

|HΓ|

γ

|HΓ|

γ

|ε1ΦTHT|
∣∣ε1ΦT2AΓ

∣∣+

(
α2 |det Φ|+ β

∣∣ε1ΦTAΓ
∣∣

|ε1ΦTHT|

)∣∣HAΦTAΓ
∣∣

|HΓ|

γ

|HΓ|

γ

|ε2ΦTHT|
∣∣ε2ΦT2AΓ

∣∣+

(
α1 |det Φ|+ β

∣∣ε2ΦTAΓ
∣∣

|ε2ΦTHT|

)∣∣HAΦTAΓ
∣∣

|HΓ|

γ

|HΓ|

γ

|HAΦTHT|
∣∣HAΦT2AΓ

∣∣+

(
γ |det Φ|+ β

∣∣HAΦTAΓ
∣∣

|HAΦTHT|

)∣∣HAΦTAΓ
∣∣

|HΓ|

γ

|HΓ|

γ

|HΓ|
∣∣ΓTΦTAΓ

∣∣+

(
α1

∣∣ε1ΦTAΓ
∣∣+ α2

∣∣ε2ΦTAΓ
∣∣

|HΓ|

)∣∣HAΦTAΓ
∣∣

|HΓ|

γ

|HΓ|

γ

|HΓ|
∣∣ΓTΦTAΓ

∣∣+

(
γ

|ε1HT|

∣∣ε1ΦTAΓ
∣∣+ α2

|ε1HT|

∣∣HAΦTAΓ
∣∣

|HΓ|

)∣∣HAΦTAΓ
∣∣

|HΓ|

γ

|HΓ|

γ

|HΓ|
∣∣ΓTΦTAΓ

∣∣+

(
γ

|ε2HT|

∣∣ε2ΦTAΓ
∣∣+ α1

|ε2HT|

∣∣HAΦTAΓ
∣∣

|HΓ|

)∣∣HAΦTAΓ
∣∣

|HΓ|



.

(3.63b)
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The array Z(3|3) is given by

Z(3|3) =



Z(3|2)

z(3)

ε1ΦT2HT
0

z(3)

ε2ΦT2HT
0

z(3)

HAΦT2HT

z(1) · (det Φ)2

HAΦT2HT

z(3)

ΓTΦTHT
0

z(3)

ΓTΦTHT

(
z(1)

ε1HT
· ε1ΦTAΓ

)
det Φ

ΓTΦTHT

z(3)

ΓTΦTHT

(
z(1)

ε2HT
· ε2ΦTAΓ

)
det Φ

ΓTΦTHT

z(3)

HAΦTHT

z(2) · det Φ

HAΦTHT

...
...

(continued on next page)



(3.64a)
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Z(3|3) =
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(continued from previous page)
...

...

z(3)

HΓ
0

z(3)

HΓ

−
(
z(1)

ε1HT
· ε1ΦT2AΓ

)
HΓ

z(3)

HΓ

−
(
z(1)

ε2HT
· ε2ΦT2AΓ

)
HΓ

z(3)

HΓ

−
(

z(2)

ε1ΦTHT
· ε1ΦT2AΓ

)
HΓ

z(3)

HΓ

−
(

z(2)

ε2ΦTHT
· ε2ΦT2AΓ

)
HΓ

z(3)

HΓ

−
(

z(2)

HAΦTHT
· HAΦT2AΓ +

z(1) · det Φ

HAΦTHT
· HAΦTAΓ

)
HΓ

z(3)

HΓ

−
(
z(2)

HΓ

)
· ΓTΦTAΓ

HΓ

z(3)

HΓ

−
(
z(2)

HΓ

)
· ΓTΦTAΓ−

(
−z(1)

ε1HT
· ε1ΦTAΓ

)
· HAΦTAΓ

HΓ

z(3)

HΓ

−
(
z(2)

HΓ

)
· ΓTΦTAΓ−

(
−z(1)

ε2HT
· ε2ΦTAΓ

)
· HAΦTAΓ

HΓ



(3.64b)

Finally, the array L3|3 is constructed from L3|2. The ith element in the L3|3 array is an

integer that equals the number of terms in the ith row of P (3|3), so L3|3 is formed by simply

appending an array of 2s of length Nn
3|3 = 16.

L3|3 =
[
LT

3|2 2 2 2 · · · 2 2 2
]T

(3.65)
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3.7 Evaluating the Conditional Mean and Estimation Error

Variance

It is shown in Section 2.3 that φ̄k|k(ν) is twice continuously differentiable. The mean can be

found from the unnormalized characteristic function [1] by taking its partial derivative and

then taking the limit as ν goes to the origin.

x̂(k) = E [x(k)|Zk] =
1

jfZk(Zk)

(
∂φ̄k|k(ν)

∂ν

)T
∣∣∣∣∣
ν→0

, (3.66a)

where
fZk(Zk) = φ̄k|k(ν)

∣∣
ν→0

. (3.66b)

The second moment can be found by taking the same limit of the second partial derivative

of the characteristic function, as

E
[
x(k)x(k)T|Zk

]
=

−1

fZk(Zk)
·
∂2φ̄Xk|Zk(ν)

∂ννT

∣∣∣∣
ν→0

, (3.66c)

and the error variance is given by

Ξ(k) = E
[
x(k)x(k)T|Zk

]
− x̂(k)x̂(k)T. (3.66d)

The limits above must be taken along valid directions, due to the structure of φ̄k|k(ν) in

(3.41a). Since we are taking a limit, we need only consider a small neighborhood around

the origin. Within this neighborhood, ν cannot cross a boundary where µ` − ν = 0 for

all ` because then the sign functions would be undefined. Hence, in order to take this limit

properly, fix ν to a particular value ν0 that is not orthogonal to any row of Bk|k, i.e. B`k|kν0 6= 0

for all `. Doing so makes the sign functions constant, so that the constant fZk is given by

fZk(Zk) =

Nk|k∑
i=1

Gik|k(ν0), (3.67)

the first derivative of φ̄k|k(ν) evaluated at the origin is given by

∂

∂ν
φ̄k|k(ν)

∣∣∣
ν=0

=

Nk|k∑
i=1

Gik|k (ν0) ·

− Li
k|k∑
`=1

P `
i sgn

(
BM

`
i

k|k ν0

)
BM

`
i

k|k + j
2∑
`=1

Z`
iB

M`
i

k|k

T

, (3.68)
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and its second derivative evaluated at the origin is given by

∂

∂ν
φ̄k|k(ν)

∣∣∣
ν=0

=

Nk|k∑
i=1

Gik|k (ν0) ·

− Li
k|k∑
`=1

P `
i sgn

(
BM

`
i

k|k ν0

)
BM

`
i

k|k + j

2∑
`=1

Z`
iB

M`
i

k|k

T

×

− Li
k|k∑
`=1

P `
i sgn

(
BM

`
i

k|k ν0

)
BM

`
i

k|k + j

2∑
`=1

Z`
iB

M`
i

k|k

 . (3.69)

3.8 Finite Horizon Approximation

In order to arrest the growth in computational complexity, we approximate the full infor-

mation CF with one using a fixed sliding window of the most recent measurements, where

number of measurements in this horizon is denoted NZ . Hence, the first NZ measurement

updates in the estimation are performed normally. Then, for every measurement update

k > NZ , we initialize a new finite horizon (FH) estimator and perform NZ measurement

updates over the fixed window {z(k−NZ + 1), . . . , z(k)}. This new initial condition for the

FH estimator is of the form

φkW1|0(ν) = exp
[
−αW1

∣∣B1
W1|0ν

∣∣− αW2 ∣∣B2
W1|0ν

∣∣+ jx̄W1 ν1 + jx̄W2 ν2

]
,

BW1|0 =

 cosϕ sinϕ

− sinϕ cosϕ

 , (3.70)

where BW1|0 is a rotation matrix. Denote the windowed first measurement update mean and

variance by x̂Wk (1) and ΞW
k (1). The exact values of αW1 , αW2 , x̄1, x̄2, and ϕ are determined,

given the measurement z(k−NZ + 1), by equating the first two moments of φ̄k−NZ+1|k−NZ+1

and of the updated FH first update φkW1|1. This process involves solving five nonlinear

equations with the five unknowns stated above, which is carried out using standard numerical

tools. It is useful here to use the closed form expressions for the first measurement update’s

mean and variance given in (2.21). It is also necessary to make use of the decomposition in

(1.23) in order to apply the proposed algorithm to the initial condition in (3.70).

This local first measurement updated CF, then, has the same mean and variance as

the original CF we are approximating. The remaining NZ − 1 measurement updates are
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performed over the measurements in the window, ultimately producing the NZ-measurement

updated CF φ̄kWNZ |NZ . This CF is taken as the approximation of φ̄k|k, i.e., φ̄kWNZ |NZ ≈ φ̄k|k.

Hence, for k − NZ + 1 ≤ NZ the FH initial condition in (3.70) approximates φ̄k|k, which is

conditioned on the entire measurement history. Then, for k −NZ + 1 > NZ , the FH initial

condition approximates the mean and variance of φ̄k−NZ+1
WNZ |NZ , produced by a previous iteration

of this process.

Numerical comparisons have shown that the local initial condition found in this way

performs well in reproducing the full information mean and variance. Moreover, simulations

have shown that the finite horizon mean and variances agree very closely with the full

information case even with horizon lengths as small as 8, as shown in the next section.

3.9 Numerical Examples

We present a set of four examples demonstrating the performance of our proposed two-

state estimator. The main challenge in implementing this estimator is the growth, with

each measurement, of the number of terms needed to express the cpdf’s CF. The proposed

two-state estimator is more efficient and produces far fewer terms than the general-state

estimator presented in [14, 15]. The improvement in performance is quantified in the table

below, comparing the number of terms in the sum for a two-state implementation of [14,15]

to the number produced by the proposed algorithm, given by (3.52).

Measurement Update k 1 2 3 5 8 10 12

Nk|k of Previous [15] 3 12 51 942 75036 1389207 25719609

Nk|k of Proposed 3 9 25 177 3193 21891 150049

Percent Retained 100% 75% 49% 19% 4.3% 1.6% 0.58%

However, the proposed estimator algorithm still suffers from the same fundamental issue of

growing complexity. This motivated the use of a fixed window of the most recent measure-

ments discussed in Section 3.8, the performance of which is discussed next.
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3.9.1 Finite Horizon Accuracy

Figure 3.1 shows, on a logarithmic scale, differences between the elements of the estimated

state and error variance between the finite-horizon and full-information estimators, normal-

ized to the full-information values; denote this normalized difference of a given element as

e(·). The system parameters used are β = 0.5 or 0.1, γ = 0.1 or 0.5, α1 = α2 = 0.8,

eig(Φ) = 0.8± 0.55j, H = [1 1], and Γ = [0.5 1]T. We compare the performance of horizon

lengths of NZ = 8 (dashed lines) and NZ = 10 (solid lines). The subscripts indicate which

element of the state estimate vector and error variance matrix are being compared. These re-

sults show that this finite horizon approximation is very accurate, with errors approximately

between 0.01% and 0.0001% for our example and these two horizon lengths.
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Figure 3.1: Comparison of two finite horizon estimators (dashed is 8, solid is 10) to the full

information estimator’s means and error variances.

3.9.2 Simulations

The simulations in Figs 3.2, 3.3, and 3.4 all use the same dynamics, where the eigenvalues

of the transition matrix are eig(Φ) = 0.8 ± 0.55j, H = [1 1], and Γ = [0.5 1]T. The

initial condition has a zero median and α1 = α2 = 0.8. All simulations use a measurement

horizon length of NZ = 10. In Fig. 3.2, γ = 0.5 and β = 0.1 so that the measurement noise
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dominates the process noise; in Fig. 3.3 the parameters are interchanged so that the process

noise dominates the measurement noise. Gaussian parameters used for the LEG and for

Gaussian noises are closest in the SαS sense to their corresponding Cauchy distributions.

For clarity of presentation in the figures, the first update occurs at k = 0 instead of k = 1.

Figures 3.2 and 3.3 compare the Cauchy and Kalman filters’ responses to Cauchy dis-

tributed noises, and Fig. 3.4 compares their response to Gaussian distributed noises. Figures

3.2(b) and 3.3(b) show the same data as Figs. 3.2(a) and 3.3(a) when zoomed in around

zero to demonstrate more clearly how the controllers respond when noise impulses are en-

countered.

When facing Cauchy distributed noises the proposed estimator outperforms the Kalman

filter, especially when the measurement noise dominates the process noise as in Fig. 3.2.

The Kalman filter’s error is sometimes far from that of the conditional mean generated by

the Cauchy estimator, such as when there is an impulsive input. Moreover, these impulsive

inputs can cause the conditional variance computed by the Kalman filter to be orders of

magnitude smaller than the exact conditional variance computed by the Cauchy estimator.

In Fig. 3.3, where the process noise dominates the measurement noise, the Cauchy

and Gaussian filters appear to have similar performance in the state error. However, the

Cauchy estimate of the conditional variance is exact and quite different from that of the

Kalman filter when the noise environment is impulsive. Moreover, despite their similar state

estimate errors, the Cauchy filter much more accurately estimates the conditional variance

under Gaussian noise conditions. For both cases presented here, the Kalman filter’s closed

loop eigenvalues are both complex: for the γ > β case the eigenvalues are 0.66± 0.56j, and

for the β > γ case they are 0.31 ± 0.69j. The magnitudes of the eigenvalues for the β > γ

case in Fig. 3.3(a) are smaller due to the larger Kalman filter gain, and hence the estimator

weighs the measurements more than the state and performs better.

During periods in the simulation without large impulses, the Cauchy and Kalman filters

have similar performance, as shown in Figs. 3.2(b) and 3.3(b). This suggests that in a non-

impulsive noise setting, the two estimators would have similar performance. In a Gaussian
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noise setting, shown in Fig. 3.4, the Cauchy filter performs very well. It approximates the

variance of the optimal Kalman filter and tracks its mean very closely. For the Cauchy

estimator, the optimal conditional variance is shown to be well estimated even in a Gaussian

noise environment. This behavior is possible due to the dependence of the Cauchy estimator’s

error variance on the measurement history.

To better understand the robustness of the Cauchy estimator against non-impulsive,

Gaussian noises we performed Monte Carlo experiments, shown in Fig. 3.5. These simula-

tions average 500 independent runs of 101 measurement updates, and used a horizon length

of NZ = 8. These simulations fix the Gaussian measurement and process noise parameters,

given by V and W , and the Cauchy parameters are closest in the SαS to these Gaussian

parameters. These simulations corroborate Fig. 3.4 by showing that, although the Cauchy

estimator’s estimate error variance is larger than the optimal Kalman filter’s, the estimate

error and the correlation ρ are very similar. It is interesting to note that when the pro-

cess noise dominates the measurement noise, the Cauchy estimator’s average estimate error

variance is larger than when the measurement noise is dominant.
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Figure 3.2: Cauchy and Kalman estimators for γ > β; thick lines are the estimate errors,

and thin lines are the standard deviations.
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Figure 3.3: Cauchy and Kalman estimators for β > γ; thick lines are the estimate errors,

and thin lines are the standard deviations.
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standard deviations.
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CHAPTER 4

Control with Characteristic Functions

Before his eyes a kaleidoscopic range of phantasmal images played, all of them dissolving at

intervals into the picture of a vast, unplumbed abyss of night wherein whirled suns and worlds of

an even profounder blackness. He thought of the ancient legends of Ultimate Chaos, at whose

centre sprawls the blind idiot god Azathoth, Lord of All Things, encircled by his flopping horde of

mindless and amorphous dancers, and lulled by the thin monotonous piping of a demoniac flute

held in nameless paws.

H.P. Lovecraft, “The Haunter of the Dark”

The goal of our model predictive control problem is to maximize the conditional expec-

tation of an objective function. This objective function is cast as a product of functions

resembling Cauchy pdfs, which are easily transformed into a function of the spectral vari-

ables. Consequently, the conditional performance index is found in a closed form. Due to

its complexity, the optimal control signal is determined by numerically optimizing this con-

ditional performance index in a model predictive control setting [19]. The main innovation

here is evaluating this conditional expectation using the CF directly by applying Parseval’s

Identity.

First, the conditional performance index for a general vector state system using the

CF structure in [14, 15] is discussed, demonstrating the generality of the method. Then,

we assume a two-state system and, using the CF structure from Chapter 3, evaluate the

conditional performance index in closed form. It is optimized numerically at each time step,

and examples are given to demonstrate its performance.
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4.1 Derivation of the Cost Using Characteristic Functions

Our proposed controller is an m-step model predictive controller [29] that uses current and

past measurements, and averages over future process noise. At each time step, the conditional

performance index is computed. Since the performance index will be shown to be a nonconvex

function of the control sequence, it is maximized numerically. Once the optimal control

sequence of length m is computed, only the first control in that sequence is applied. At

the next step, a new measurement is taken and the process is repeated, producing a new

optimal control sequence and applying only the first one. In this paper, we study the optimal

stochastic state regulation problem, noting that the tracking problem can be handled in a

similar fashion. Our regulation problem will have a finite horizon of length m such that the

terminal state occurs at time-step p = k +m.

Let the state, measurement, and control histories used in the control problem formulation

be defined as

X p
k+1 := {x(k + 1), . . . , x(p)}, (4.1a)

Zk := {z(1), . . . , z(k)}, (4.1b)

Up−1
k := {u(k), . . . , u(p− 1)}, Up−1

k ∈ F (4.1c)

where F is the class of piecewise continuous functions adapted to the σ-algebra σk generated

by the measurement history, i.e. the control is a random variable that is measurable with

respect to events in σk [30]. The measurement history can be decomposed using (1.23) and

(1.24) as Zk = Z̃k + Z̄k, where

Z̃k = {z̃(1), · · · , z̃(k)}, Z̄k = {z̄(1), · · · , z̄(k)}. (4.2)

In the following, from [13], it is shown that the control is measurable on events generated

by Z̃k only.

Theorem 3. Consider the filtration σ− algebra σ̃k generated by Z̃k, with the decomposition

Zk = Z̃k + Z̄k. For Z̃k ∈ σ̃k and σ̃k−1 ⊂ σ̃k, Z̄k is adapted to σ̃k−1 and u(k) is adapted to σ̃k.
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Proof. Start with k = 0. The initial state is decomposed as x(1) = x̃(1)+ x̄(1), where z̄(1) is

a given non-random parameter. The measurement decomposes as z(1) = z̃(1) + z̄(1), where

z̄(1) = Hx̄(1) is a given non-random parameter and z̃(1) = Z̃1 ∈ σ̃1. Then, u(1), which is

determined by z(1), is adapted to σ̃1. At k = 2, both x̄(2) = Φx̄(1) +u(1) and z̄(2) = Hx̄(2)

are adapted to σ̃1, and thus Z̄2 is adapted to σ̃1. For the measurement at k = 2, z̃(2) ∈ σ̃2,

Z̃2 ∈ σ̃2, and σ̃2 ⊂ σ̃2. Hence, since u(2) is determined by Z2 = Z̃2 + Z̄2, it is adapted to

σ̃2. Recursively to any k, Z̄k is adapted to σ̃k−1. With Z̃k ∈ σ̃k, and σ̃k−1 ⊂ σ̃k, u(k) that is

determined by Zk = Z̃k + Z̄k is adapted to σ̃k.

Due to the result of Theorem 3, i.e., that the control is adapted to σ̃k, the conditioning

on Zk can be replaced by Z̃k. With these substitutions, the optimization or maximization

step of the model predictive control problem is restated as

J∗Zk = max
Up−1
k

E
[
ψ
(
X p
k+1,U

p−1
k

)∣∣∣Zk] = max
Up−1
k

E
[
ψ
(
X p
k+1,U

p−1
k

)∣∣∣ Z̃k]
, max
Up−1
k

JZ̃k , J∗Z̃k . (4.3)

In the model predictive control operation mode, although the optimal control sequence is

determined over the prediction interval from k to p, only the current control input u(k) at

time step k is applied to the system. Then, at subsequent time steps, the performance index

is maximized again to compute a new optimal control sequence, the first element of which

is applied to the system.

Similar to the scalar control problem presented in [12,13], the control objective function

is chosen as a product of functions resembling Cauchy pdfs (1.22), given by

ψ
(
X p
k+1,U

p−1
k

)
=

p−1∏
i=k

(
ζi/π

u2(i) + ζ2
i

·
n∏
r=1

ηi+1,r/π

x2
r(i+ 1) + η2

i+1,r

)
. (4.4)

Then, the the performance index conditioned on the current measurement history and aver-

aged over future process noises is given by

J∗k,p = max
Up−1
k ∈F

E
[
ψ
(
X p
k+1,U

p−1
k

)]
= max
Up−1
k ∈F

E
[
E
[
ψ
(
X p
k+1,U

p−1
k

) ∣∣∣Z̃k]]
= E

[
max
Up−1
k ∈F

E
[
ψ
(
X p
k+1,U

p−1
k

) ∣∣∣Z̃k]] , E
[
J∗Z̃k

]
, (4.5)
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where the interchange of the maximum and expectation operations is due to the fundamental

theorem in [1].

We are now concerned with determining the analytic form for the conditional performance

index JZ̃k , where using (4.4) it becomes

JZ̃k = E
[
ψ
(
X p
k+1,U

p−1
k

) ∣∣∣Z̃k] = E

[
p−1∏
i=k

(
n∏
r=1

ηi+1,r/π

x2
r(i+ 1) + η2

i+1,r

· ζi/π

u2(i) + ζ2
i

)∣∣∣Z̃k]

=

∞∫
−∞

p−1∏
i=k

(
n∏
r=1

ηi+1,r/π

x2
r(i+ 1) + η2

i+1,r

· ζi/π

u2(i) + ζ2
i

)

× fW (x̃(p)|x̃(p− 1)) · · · fW (x̃(k + 2)|x̃(k + 1))

× fX̃k+1|Z̃k(x̃(k + 1)|Z̃k)dx̃1(k + 1) . . . dx̃n(k + 1)

× dx̃1(k + 2) . . . dx̃n(k + 2) . . . dx̃1(p) . . . dx̃n(p) (4.6)

For presentation simplicity, in this derivation we will only consider weighting on the ter-

minal state, x(p), and on the m scalar control inputs. The control weighting functions

MU ,
∏p−1

i=k
ζi/π

u2(i)+ζ2i
can come out of the integral in (4.6). Then, the product over i in-

side the integrand in (4.6) has only the term for i = p − 1, and the integral is only over

{x̃1(p), . . . , x̃n(p)}. Thus, for notational convenience we can drop the time-step index in this

integral and write it over {x̃1, . . . , x̃n} as

JZ̃k =MU

∞∫
−∞

(
n∏
r=1

ηp,r/π(
x̃r + x̄r

)2
+ η2

p,r

)
· fX̃p|Z̃k(x̃|Z̃k)dx̃1 . . . dx̃n. (4.7)

The cpdf fX̃p|Z̃k(x̃|Z̃k) can be evaluated in closed form for scalar systems [10]. However, for

vector state systems only the characteristic function of the cpdf, φp|k(ν), can be evaluated

in closed form. Therefore, when computing the conditional performance index, we need to

be able to integrate over the spectral variable ν instead of the pdf variable x̃.

Define the product over r in the integral in (4.7) as `x and its Fourier transform as Lx:

`x(x̃+ x̄) =
n∏
r=1

ηi+1,r/π(
x̃r + x̄r

)2
+ η2

i+1,r

, (4.8a)

Lx(ν) =
n∏
r=1

e−ηp,r |νr| − jx̄r . (4.8b)
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Using these definitions, we can apply Parseval’s equation over each variable in (4.7) to express

the conditional performance index as an integral over the spectral variable ν,

JZ̃k =
MU

(2π)n

∞∫
−∞

L∗x (ν) · φp|k(ν) dν1 . . . dνn

=
MU

(2π)n

∞∫
−∞

(
n∏
r=1

e−ηp,r |νr|+ jx̄r(p)νr

)
φp|k(ν) dν1 . . . dνn, (4.9)

where L∗x is the complex conjugate of Lx. The next section shows how to evaluate these n

nested integrals sequentially in closed form.

4.2 The Conditional Performance Index

Consider the integral over νn in (4.9),

In =

∞∫
−∞

(
n∏
r=1

e−ηp,r|〈εr,ν〉|

)
ej〈x̄(p),ν〉φp|k(ν)dνn

=

∞∫
−∞

e
−

n∑
r=1

ηp,r|〈εr,ν〉|+j〈x̄(p),ν〉
φp|k(ν)dνn, (4.10)

where εr is the rth column of the n-dimensional identity matrix. The cpdf for the state x̃(k)

is denoted as fX̃k|Z̃k . The unnormalized cpdf (ucpdf) is denoted as f̄X̃k|Z̃k = fX̃k|Z̃k · fZ̃k ,

where fZ̃k is the pdf of the measurement history and has a known value. In [14, 15, 17, 18],

the characteristic function of the ucpdf φ̄p|k(ν) is recursively propagated; the characteristic

function of the normalized cpdf is φk|k(ν) = φ̄k|k(ν)/fZ̃k , where fZ̃k = φ̄X̃k|Z̃k(ν)|ν=0. From

[14,15,17,18] the form of the characteristic function of the ucpdf at time k is shown to be

φ̄k|k =

n
k|k
t∑
i=1

g
k|k
i (ygi(ν))ey

k|k
ei (ν), (4.11a)

where

y
k|k
gi (ν) =

n
k|k
ei∑
`=1

q
k|k
i,` sgn

(〈
a
k|k
i` , ν

〉)
∈ Rk, (4.11b)

y
k|k
ei (ν) = −

n
k|k
ei∑
`=1

p
k|k
i,`

∣∣∣〈ak|ki` , ν〉∣∣∣+ j
〈
b
k|k
i , ν

〉
, (4.11c)
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and the parameters n
k|k
t , n

k|k
e,i , q

k|k
i` , p

k|k
i` , a

k|k
i` , b

k|k
i are generated sequentially from k = 1.

For the MPC algorithm, the characteristic function of the ucpdf is to be propagated

through the stochastic dynamics to time k + m = p using the propagation formula given

in [14,15,17,18]. The characteristic function of the m-step propagated cpdf is denoted φ̄p|k(ν)

and given by

φ̄p|k(ν) = φ̄X̃k|Z̃k(Φ
mTν)φW ((Φm−1Γ)Tν) · · ·φW ((ΦΓ)Tν)φW (Γν)

=

n
k|k
t∑
i=1

g
k|k
i (ygi(Φ

mTν))ey
k|k
ei (ΦmTν) exp

(
− β

∣∣〈Φm−1Γ, ν
〉∣∣− · · · − β |〈ΦΓ, ν〉| − β |〈Γ, ν〉|

)
.

(4.12)

In (4.12) we effectively add m terms to the sum in y
k|k
ei (ν) of (4.11c). By combining the

exponent in (4.10) with that in (4.12), the combined exponent in the integrand of (4.10) has

a total of n
k|k
ei +m+n real terms, where the imaginary part is composed of two components.

Define the following terms

p̄i` = pi`, ā
k|k
i` = Φma

k|k
i` for ` = 1, . . . , n

k|k
ei

p̄i` = β, ā
k|k
i` = ΦtΓ for ` = 1, . . . , n

k|k
ei , t = `− (n

k|k
ei + 1)

p̄i` = ηp`, ā
k|k
i` = εr for ` = 1, . . . , n

k|k
ei , r = `− (n

k|k
ei +m)

(4.13a)

and

b̄
k|k
i = b

k|k
i + x̄p, n̄

k|k
ei = n

k|k
ei +m+ n

q
k|k
t` = 0 for ` = n

k|k
ei + 1, . . . , n̄

k|k
ei

(4.13b)

Using these definitions, the integrand in (4.10) becomes

ψ(ν) =

n
k|k
t∑
i=1

ψi(ν) =

n
k|k
t∑
i=1

g
k|k
i (ȳ

k|k
gi (ν)) · eȳ

k|k
ei (ν), (4.14a)

where

ȳ
k|k
gi (ν) =

n̄
k|k
ei∑
`=1

q
k|k
i` sgn

(〈
ā
k|k
i` , ν

〉)
, (4.14b)

ȳ
k|k
ei (ν) =

n̄
k|k
ei∑
`=1

p̄
k|k
i`

∣∣∣〈āk|ki` , ν〉∣∣∣+ j
〈
b̄
k|k
i` , ν

〉
. (4.14c)
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The integration in (4.10) is performed for each element of ν in turn. Beginning with νn,

decompose ν =
[
ν̂ νn

]T

where ν̂ ∈ Rn−1. Then,

In =

∞∫
−∞

ψ(ν)dν =

∞∫
−∞

· · ·
∞∫

−∞

n
k|k
t∑
i=1

∞∫
−∞

ψi(ν)dν =

∞∫
−∞

· · ·
∞∫

−∞

n
k|k
t∑
i=1

 ∞∫
−∞

ψi(νn, ν̂)dνn

 dν̂. (4.15)

The objective is to reduce the inner integral in (4.15) to a form that is obtained in closed

form using the integral formula developed in [14, 15, 17, 18]. First, since ā
k|k
i` multiplies ν in

the sign function in (4.14b) and the absolute value function in (4.14c), they are decomposed

as ā
k|k
i` =

[
â
k|k
i` ã

k|k
i`

]T

, where ã
k|k
i` is a scalar and â

k|k
i` ∈ Rn−1. Therefore, the inner products

in (4.14b) and (4.14c) become〈
ā
k|k
i` , ν

〉
=
〈
â
k|k
i` , ν̂

〉
−
(
−ãk|ki` νn

)
. (4.16)

In order to rewrite (4.16) in a form consistent with the integral formula in [14,15,17,18],

−ãk|ki` is factored out of the second term. If ã
k|k
i` = 0, then the term e

〈
â
k|k
i` ,ν̂

〉
loses dependence

on νn and it is removed from the inner integral in (4.15). Therefore, only ã
k|k
i` 6= 0 needs to

be considered. Let (4.16) be rewritten as〈
ā
k|k
i` , ν

〉
=
∣∣∣ãk|ki` ∣∣∣ sgn

(
−ãk|ki`

)(
µ
k|k
i` − νn

)
, (4.17a)

where µ
k|k
i` =

〈
â
k|k
i`

−ãk|ki`
, ν̂

〉
. Therefore, the elements in (4.14b) and (4.14c) are

q
k|k
i` sgn

(〈
ā
k|k
i` , ν

〉)
= q̄

k|k
i` sgn

(
µ
k|k
i` − νn

)
, (4.17b)

p̄
k|k
i`

∣∣∣〈āk|ki` , ν̂〉∣∣∣ = ρ
k|k
i`

∣∣∣µk|ki` − νn∣∣∣ , (4.17c)

where q̄
k|k
i` = q

k|k
i` sgn

(
−ãk|ki`

)
and ρ

k|k
i` = p

k|k
i`

∣∣∣ãk|ki` ∣∣∣. Using these definitions, the inner integral

of (4.15) is restated as

∞∫
−∞

ψi(ν)dνn =

e
j
〈
b̂
k|k
i ,ν̂

〉 ∞∫
−∞

g
k|k
i

n
k|k
ei∑
`=1

q̄
k|k
i` sgn

(
µ
k|k
i` − νn

) exp

n̄
k|k
i∑̀
`=1

ρ
k|k
i`

∣∣∣µk|ki` − νn∣∣∣+ jb̃
k|k
i νn

 dνn. (4.18)
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The convolution integral in (4.18) is shown in [14, 15, 17, 18] to have a closed form solution

composed as a sum with n̄
k|k
i` terms, each of which is structurally similar to the terms in

ψi(ν). That is, there will be a new g function which is a function of signs of inner products

of ν̂.

Therefore, this integration process can be repeated until all of the integrals are taken,

and a closed form solution of the conditional performance index is determined. For a vector

state system of general order n, a closed form analytical solution is not attainable due to

the complexity of the coefficient functions g
k|k
i . However, a closed form expression for the

conditional performance index can be obtained for a two-state system, presented next, by

using the structure from [17,18].

4.3 The Conditional Performance Index for a Second Order

System

Now, let us limit our discussion to a second order system in order to use the structure for

the cpdf’s characteristic function presented in [16,19]. This alternate, two state structure for

the characteristic function of the cpdf takes advantage of relationships not yet generalized to

the general vector-state case that drastically reduces the number of terms needed to express

the characteristic function. In particular, there is a simpler structure for the exponential

argument in (4.11c), as well as a simpler, closed form representation for the g
k|k
i coefficient

functions in (4.11a).

The structure for the characteristic function for the ucpdf is givenin (3.57) as

φ̄k|k(ν) =

Nk|k∑
i=1

Gik|k(ν) exp

− Li
k|k∑
`=1

P `
i

∣∣∣BM`
i

k|k ν
∣∣∣+ j

2∑
`=1

(
Z`
iB

M`
i

k|k

)
ν

 , (4.19)

which consists of a sum of Nk|k similar terms. The coefficient functions Gik|k(ν) equal the g
k|k
i
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from (4.11a), and are rational functions of polynomials of sums of sign functions given by

Gik|k(ν) =
1

(2π)n

{
ai + bi sgn

(
BM

1
i

k|k ν
)

sgn
(
BM

2
i

k|k ν
)

+ jci sgn
(
BM

1
i

k|k ν
)

+ jdi sgn
(
BM

2
i

k|k ν
)}

×
Li
k|k−2∏
r=1

{
1

jθik−r + γ + S ik−r(Bk|kν)
− 1

jθik−r − γ + S ik−r(Bk|kν)

}
, (4.20a)

where

S ik−r(Bk|kν) =

Li
k−r|k−r∑
`=1

P `
i

(
BM

`
i

k−r|k−rH
T
)

sgn
(
BM

`
i

k|k ν
)
, (4.20b)

θik−r = z(k − r)− Z1
i B

M1
i

k−r|k−rH
T − Z2

i B
M2
i

k−r|k−rH
T. (4.20c)

The arguments y
k|k
gi (ν) of g

k|k
i , given in (4.11b), correspond to the S ik−r|k−r(Bk|kν) defined

above.

The state propagation uses the same formula as in (4.12) and [14,15,17,18]. This process

affects the exponential argument of φ̄k|k by adding new terms to the real part and a trans-

formation on the fundamental directions BM
`
i

k|k . The coefficient functions remain unchanged

as polynomials of sign functions, but the arguments of the sign functions have the same

transformation as in the exponential argument, so that Gip|k(ν) = Gik|k(ΦmTν). The state

propagation does not add any new terms to the sum, so that Np|k = Nk|k. Hence, the m-step

state propagated cpdf’s characteristic function is given by

φ̄p|k(ν) =

Np|k∑
i=1

Gip|k(ν) exp

− Li
p|k∑
`=1

P `
i

∣∣∣BM`
i

p|k ν
∣∣∣+ j

2∑
`=1

(
Z`
iB

M`
i

p|k

)
ν

 , (4.21)

Using this expression for the unnormalized CF, we can derive an expression for the

performance index in closed form. The transformed objective function in the performance

index (4.8b) is now given by

L∗x(p)(ν) = e−ηp,1 |ν1|+ jx̄1ν1 − ηp2 |ν2|+ jx̄2ν2 (4.22)

where, since k will be a constant through this process, the time subscript of x̄(p) is replaced
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with element subscripts as x̄(p) = [x̄1 x̄2]. The 2-state specific version of (4.9) then becomes

JZ̃k =
MU

(2π)2

∞∫
−∞

L∗x(p)(ν1, ν2) · φp|k(ν1, ν2) dν1ν2

=
MU

(2π)2fZ̃k

∞∫
−∞

exp (−η1 |ν1| − η2 |ν2|+ jx̄1ν1 + jx̄2ν2)

×
Np|k∑
i=1

Gip|k(ν) exp

− Li
p|k∑
`=1

P `
i

∣∣∣BM`
i

p|k ν
∣∣∣+ j

2∑
`=1

(
Z`
iB

M`
i

p|k

)
ν

 dν. (4.23)

The integral with respect to ν2 is now taken. We use a second subscript to denote the indi-

vidual elements of the M `
i row of Bp|k as BM

`
i

p|k =
[
BM

`
i

k,1 BM
`
i

k,2

]
. This allows us to decompose

the complex part of the exponential argument as

j
2∑
`=1

(
Z`
iB

M`
i

p|k

)
ν = j

(
2∑
`=1

Z`
iB

M`
i

k,1

)
ν1 + j

(
2∑
`=1

Z`
iB

M`
i

k,2

)
ν2, (4.24)

and rewrite JZ̃k as

JZ̃k =
1

(2π)2fZ̃k

(
p−1∏
i=k

ζi/π

u2(i) + ζ2
i

)

×
Np|k∑
i=1

∞∫
−∞

exp

(
−η1 |ν1|+ jx̄1ν1 + j

2∑
`=1

(
Z`
iB

M`
i

k,1

)
ν1

)

×
∞∫

−∞

Gip|k(ν) · exp

− Li
p|k∑
`=1

P `
i

∣∣∣BM`
i

p|k ν
∣∣∣− η2 |ν2|+ j

2∑
`=1

(
Z`
iB

M`
i

k,2

)
ν2 + jx̄2ν2

 dν2dν1. (4.25)

Denote the ith inner integral with respect to ν2 in (4.25) as Ii,2:

Ii,2 =

∞∫
−∞

Gip|k(ν1, ν2)

× exp

− Li
p|k∑
`=1

P `
i

∣∣∣BM`
i

k,1 ν1 + BM
`
i

k,2 ν2

∣∣∣− η2 |0 + ν2|+ j

(
2∑
`=1

Z`
iB

M`
i

k,2

)
ν2 + jx̄2ν2

 dν2. (4.26)

The integral Ii,2 is over the ν2 variable, but it also contains ν1 in the absolute value terms

in the argument of the exponential and the coefficient function Gip|k. In order to solve it, we

need to use the integral of absolute values method presented in [16]. This method involves
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defining a set of scalar constants ρ` and ξik, as well as scalar variables µ` that depend on ν1,

and thus are constants in this integration.

If BM
`
i

k,2 = 0, then when this constant multiplies ν2 the variable disappears, and that term

comes out of the integral. This will affect the specific form of second integral over ν1, but

the method presented here can still be used. However, for simplicity of presentation, in

this derivation we assume that all the BM
`
i

k,2 6= 0. Then, we can construct a {µ`}
Lik+1
1 set that

transforms Ii,2 into the integral of absolute values structure. This assumption does not affect

generality, because if one of the BM
`
i

k,2 equals zero for some i, then that absolute value term

would not be a function of ν2 and would come out of Ii,2 and integrated later.

The set of variables, denoted {µ`}, is constructed as

BM
`
i

k,1 ν1 + BM
`
i

k,2 ν2 = −BM
`
i

k,2

−BM`
i

k,1 ν1

BM
`
i

k,2

− ν2


= −BM

`
i

k,2 (µ` − ν2) (4.27a)

where

µ` =


−BM

`
i

k,1 ν1

B
M`
i

k,2

` ∈ {1, . . . , Lip|k}

0 ` = Lip|k + 1.

(4.27b)

Similarly, for the argument of the exponential, we can construct a set of {ρ`}
Li
p|k+1

1 as

ρ` =

P
`
i

∣∣∣−BM`
i

k,2

∣∣∣ ` ∈ {1, . . . , Lip|k}

η2 ` = Lip|k + 1
(4.27c)

and a scalar number ξik as

ξik = x̄2 +
2∑
`=1

Z`
iB

M`
i

k,2 . (4.27d)

The solution to an integral of an exponent of absolute values requires dividing the domain

of integration into regions in which the integrand is continuous. Since Gip|k(ν) is piecewise-

constant, its discontinuities lie on the boundaries of these regions, and hence Gip|k(ν) is treated

as a constant in each integral. In order for the Gip|k(ν) coefficients to be consistent with the

form in (4.31), a procedure mirroring that of the measurement update process from (3.24)
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[16,17] must be used. This involves rewriting the first bracket term in (4.20a) as a sum of sign

functions, using the identity sgn
(
BM

1
i

k|k ν
)

sgn
(
BM

2
i

k|k ν
)

= 1
2

(
sgn

(
BM

1
i

k|k ν
)

+ sgn
(
BM

1
i

k|k ν
))2

−

1 and the substitutions

ρ̄1 = ci sgn
(
−BM

1
i

k,2

)
, ρ̄2 = di sgn

(
BM

2
i

k,2

)
, ρ̄` = 0 for ` > 2,

ρ̃1 = 1, ρ̃2 = 1, ρ̃` = 0 for ` > 2.
(4.28)

Furthermore, for the rest of the bracket terms in (4.20a) we can rewrite the sums given by

Sk−r in (4.20b) by defining constants (r)ρ̌` as

(r)ρ̌` =

P
`
i

(
BM

`
i

k−r|k−rH
T
)

sgn
(
−BM

`
i

k,2

)
` = 1, . . . , Lip|k − r

0 ` = Lip|k − r + 1, . . . , Lip|k + 1.
(4.29)

in order to write Gip|k in (4.26) as

Gip|k(ν − HTσ) = Gip|k

Li
p|k+1∑
`=1

ρ̃` sgn (µ` − σ) ,

Li
p|k+1∑
`=1

ρ̄` sgn (µ` − σ) , . . .

. . . ,

Li
p|k+1∑
`=1

(Li
p|k−2)ρ̌` sgn (µ` − σ) , . . . ,

Li
p|k+1∑
`=1

(1)ρ̌` sgn (µ` − σ)


:= Gip|k

Li
p|k+1∑
`=1

ρ̌` sgn (µ` − σ)

 . (4.30)

Here, the variable ρ̌` is a shorthand variable representing all of the (r)ρ̌`, ρ̃`, and ρ̄` constants

in all of the sums in Gip|k.

Then, let σ := ν2 in order to write the one-dimensional integral as

Ii,2 =

∞∫
−∞

Gip|k

Li
p|k+1∑
`=1

ρ̌` sgn (µ` − σ)

 exp

− Li
p|k+1∑
`=1

ρ` |µ` − σ|+ jξikσ

 dσ. (4.31)
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The solution is given as a sum of Lip|k + 1 terms as

Ii,2(ν1) =

Li
p|k+1∑
m=1

exp

− Li
p|k+1∑
`=1
6̀=m

ρ` |µ` − µm|+ jξikµm



×



Gip|k

+ρ̌m +
Li
p|k+1∑̀
=1
6̀=m

ρ̌` sgn (µ` − µm)


jξik + ρm +

Li
p|k+1∑̀
=1
6̀=m

ρ` sgn (µ` − µm)

−

Gip|k

−ρ̌m +
Li
p|k+1∑̀
=1
` 6=m

ρ̌` sgn (µ` − µm)


jξik − ρm +

Li
p|k+1∑̀
=1
` 6=m

ρ` sgn (µ` − µm)


.

(4.32a)

where

Gip|k

±ρ̌m +

Li
p|k+1∑
`=1
` 6=m

ρ̌` sgn (µ` − µm)

 =

ai + bi

(
1

2

(
± ρ̃m +

Li
p|k+1∑
`=1
6̀=m

ρ̃` sgn (µ` − µm)
)2

− 1

)
+ j

±ρ̄m +

Li
p|k+1∑
`=1
`6=m

ρ̄` sgn (µ` − µm)




×
Li
k|k−2∏
p=1

1

2π

{
1

jθik−r + γ + S ik−r(±(r)ρ̌m, µ` − µm)
− 1

jθik−r − γ + S ik−r(±(r)ρ̌m, µ` − µm)

}
,

(4.32b)

and for r ∈ {1, . . . , Lik|k − 2},

S ik−r(±(r)ρ̌m, µ` − µm)

= ±Pm
i

(
BM

m
i

k−r|k−rH
T
)

+

Li
k−r|k−r∑
`=1
6̀=m

P `
i

(
BM

`
i

k−r|k−rH
T
)

sgn
(
−BM

`
i

k,2

)
sgn (µ` − µm)

= ±Pm
i

(
BM

m
i

k−r|k−rH
T
)

+

Li
k−r|k−r∑
`=1
6̀=m

P `
i

(
BM

`
i

k−r|k−rH
T
)

sgn

−BM`
i

k,2 ·

−BM`
i

k,1

BM
`
i

k,2

+
BM

m
i

k,1

BM
m
i

k,2

 · sgn (ν1) . (4.32c)

In the two-state estimator [17], algebraic relationships are used to reduce complicated

bracket terms produced by the update process into simpler, polynomial forms. Similarly,
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those same algebraic relationships can be used here to simplify (4.32a). Denote the coefficient

of the mth term in the sum as Gi,mp|k , consider the numerators of the coefficient function in

the brackets in (4.32a) given by (4.32b). This complicated term can be reduced to a simple

function of sgn (ν1). This process begins by rewriting the numerator functions (4.32b) in a

four parameter form involving only sgn (ν1) as

ami ± bmi · sgn (ν1)± jcmi + jdmi · sgn (ν1) . (4.33)

Then, the real part of the exponential argument in (4.32a) and the sums in the denominators

of the coefficient function in (4.32b) can be reduced to a single constant times |ν1|, where

that constant is defined as

Di,m |ν1| =
Li
p|k+1∑
`=1
6̀=m

ρ` |µ` − µm| =

Li
p|k+1∑
`=1
` 6=m

ρ`

∣∣∣∣∣∣−B
M`
i

k,1

BM
`
i

k,2

−
−BM

m
i

k,1

BM
m
i

k,2

∣∣∣∣∣∣
 |ν1| (4.34)

Ďi,m sgn (ν1) =

Li
p|k+1∑
`=1
6̀=m

ρ` sgn (µ` − µm) =

Li
p|k+1∑
`=1
` 6=m

ρ` sgn

−BM`
i

k,1

BM
`
i

k,2

−
−BM

m
i

k,1

BM
m
i

k,2


 sgn (ν1)

(4.35)

Expressing the numerators of (4.32b) as (4.33), and using Ďi,m, then Result 4 from Appendix

A can be used to express the coefficient function as a two parameter form, where those

parameters are denoted ai,m and di,m. For the exponential argument, use Di,m and rewrite

the complex part as

ξ̂ikν1 =

ξik · −BM`
i

k,1

BM
`
i

k,2

 · ν1 (4.36)

in order to express (4.32a) in a much simpler form given by

Ii,2(ν1) =

Li
p|k+1∑
m=1

{ai,m + j di,m sgn (ν1)} · e−Di,m |ν1|+ j ξ̂ikν1 . (4.37)

In order to obtain the form in (4.33) for (4.32b), a procedure mirroring that of the

estimator update process is applied, which uses Results 1 and 2 in Appendix A. For m = 1

and m = 2, the numerators of (4.32a) are not equal and hence cannot come out of the

84



bracket term. Then, the numerators for m = 1 are given by

ai + bi

(
1

2

(
± ρ̃m +

Li
p|k+1∑
`=1
` 6=m

ρ̃` sgn (µ2 − µ1)
)2

− 1

)
+ j

±ρ̄1 +

Li
p|k+1∑
`=2

ρ̄` sgn (µ2 − µ1)


= ai ± bi sgn

(
BM

1
i

k,2 · B
M2
i

k,2

)
sgn (µ2 − µ1)

± jci sgn
(
BM

1
i

k,2

)
+ jdi sgn

(
BM

2
i

k,2

)
sgn (µ2 − µ1)

= ai ± bi sgn
(
BM

1
i

k,2 · B
M2
i

k,2

)
sgn

−BM2
i

k,1

BM
2
i

k,2

+
BM

1
i

k,1

BM
1
i

k,2

 sgn (ν1)

± jci sgn
(
BM

1
i

k,2

)
+ jdi sgn

(
BM

2
i

k,2

)
sgn

−BM2
i

k,1

BM
2
i

k,2

+
BM

1
i

k,1

BM
1
i

k,2

 sgn (ν1) . (4.38)

The same manipulations can be done for the numerators for m = 2 by interchanging µ1 and

ci with µ2 and di, respectively. The + and − in (4.38) refer to the left and right numerators,

respectively, in (4.32a) that are given by (4.32b).

Hence, since the first bracket term in (4.32b) can be expressed as (4.38), it can be

combined with a bracket term from the product in (4.32b) by substituting in (4.32c). This

product is given in Result 2 and produces a term of the same form as (4.38). Hence, this

result can be combined with the next bracket term in the product in (4.32c), eventually

expressing both numerators as (4.33).

For m > 2, this first bracket term produces a simpler form due to two sign functions

canceling each other out. Recalling that ρ̄` = ρ̃` = 0 for ` > 2, the new term obtained for
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m = 3 corresponds to the coefficient

ai + bi

(
1

2

(
± ρ̃m +

Li
p|k+1∑
`=1
` 6=m

ρ̃` sgn (µ1 − µ3)
)2

− 1

)
+ j

±ρ̄1 +

Li
p|k+1∑
`=2

ρ̄` sgn (µ2 − µ3)


= ai + bi sgn

(
BM

1
i

k,2 · B
M2
i

k,2

)
sgn (µ1 − µ3) sgn (µ2 − µ3)

+ jci sgn
(
BM

1
i

k,2

)
sgn (µ1 − µ3) + jdi sgn

(
BM

2
i

k,2

)
sgn (µ2 − µ3)

=

ai + bi sgn

−BM1
i

k,1

BM
1
i

k,2

+
BM

3
i

k,1

BM
3
i

k,2

 sgn

−BM2
i

k,1

BM
2
i

k,2

+
BM

3
i

k,1

BM
3
i

k,2


+ j

ci sgn

−BM1
i

k,1

BM
1
i

k,2

+
BM

3
i

k,1

BM
3
i

k,2

+ di sgn

−BM2
i

k,1

BM
2
i

k,2

+
BM

3
i

k,1

BM
3
i

k,2

 sgn (ν1) . (4.39)

Denote the outer integral with respect to ν1 in (4.25) by

Ii,1 =

Li
p|k+1∑
m=1

∞∫
−∞

{ai,m + j di,m sgn (ν1)}

× exp
(
−Di,m |ν1|+ jξ̂ikν1

)
exp (−η1 |ν1|+ jx̄1ν1) exp

(
j

2∑
`=1

Z`
iB

M`
i

k,1

)
dν1

=

Li
p|k+1∑
m=1

∞∫
−∞

{ai,m + j di,m sgn (ν1)}

× exp

(
−
[
Di,m + η1

]
|ν1|+ j

[
ξ̂ik + x̄1 +

2∑
`=1

Z`
iB

M`
i

k,1

]
ν1

)
dν1. (4.40)

This integral has a form identical to the measurement update process for a scalar system [10].

Its solution is given by

Ii,1 =

Li
p|k+1∑
m=1

ai,m − j di,m

j

[
ξ̂ik + x̄1 +

2∑̀
=1

Z`
iB

M`
i

k,1

]
+
[
Di,m + η1

] − ai,m + j di,m

j

[
ξ̂ik + x̄1 +

2∑̀
=1

Z`
iB

M`
i

k,1

]
−
[
D + η1

]

=

Li
p|k+1∑
m=1

2 ·
ai,m

[
Di,m + η1

]
− di,m

[
x̄1 +

2∑̀
=1

Z`
iB

M`
i

k,1

]
[
ξ̂ik + x̄1 +

2∑̀
=1

Z`
iB

M`
i

k,1

]2

+
[
Di,m + η1

]2
. (4.41)
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Finally, using (4.41) in (4.25), the conditional performance index is given by

JZ̃k =
1

2π2fZ̃k

(
p−1∏
i=k

ζi/π

u2(i) + ζ2
i

)Np|k∑
i=1

Li
p|k+1∑
m=1


ai,m

[
Di,m + η1

]
− di,m

[
x̄1 +

2∑̀
=1

Z`
iB

M`
i

k,1

]
[
ξ̂ik + x̄1 +

2∑̀
=1

Z`
iB

M`
i

k,1

]2

+
[
Di,m + η1

]2

 .

(4.42)

This closed form conditional performance index was tested numerically and found to be

non-convex and depends on the control input sequence {u(k), . . . , u(p−1)} in a complex way.

Specifically,
[
x̄1 x̄2

]T

= x̄(p) depends on the control sequence, along with the parameters

ai,m and di,m that also depend on the measurement sequence Z̃k. Therefore, we maximize

(4.42) numerically. The optimization is done in two steps: first, the global optimum of the

conditional performance index, expressed as a double sum in (4.42), is optimized with respect

to the control input with a coarse gradient search in order to find an approximate optimal

control sequence. Then, we use the accelerated gradient search method [31] starting from

that approximate sequence in order to refine the optimal control solution used.

4.4 Linear Exponential Gaussian Model Predictive Control

The numerical examples presented in the next section compare our proposed Cauchy model

predictive controller with an analogous linear exponential Gaussian model predictive con-

troller. Here, we present the derivation and equations for the LEG MPC. Denote the condi-

tional performance index for the LEG MPC as

JGZ̃k = E

[
p−1∏
i=k

(
exp

(
−1

2
ri · u2(i)

)
·
n∏
r=1

exp

(
−1

2
qi+1,r · x2

r(i+ 1)

)) ∣∣∣∣∣Z̃k
]
, (4.43)

where qi+1,r are the weights for the states and ri are the weights for the control inputs. As

in the Cauchy MPC problem, we will only penalize the terminal state x(p). Then, in order

to be consistent with the Cauchy MPC, these weights are constructed as

qp,r =
1

κ2η2
p,r

, (4.44a)

ri =
1

κ2ζ2
i

, i ∈ {k, . . . , p− 1}. (4.44b)
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Note that if there is no weighting on the control inputs, then ri = 0∀ i.

Then, the optimal control sequence u∗G , {u(k), . . . , u(p− 1)} is given by

u∗G = −
[
ST
(
M−1

g −M−1
g

(
Q+M−1

g

)
M−1

g

)
S +R

]−1

× S
(
M−1

g −M−1
g

(
Q+M−1

g

)
M−1

g

)
Φmx̂(k) (4.45)

where x̂(k) is the Kalman filter’s state estimate conditioned on Z̃k, Mg is the m-step prop-

agated error variance of the state estimate x̂(k), S is a matrix given by

S =
[
Φm−1Λ, . . . , ΦΛ, Λ

]
, (4.46)

and Q and R are diagonal matrices constructed as

Q = diag
[
qp,1, . . . , qp,n

]
, (4.47a)

R = diag
[
rk, . . . , rp−1

]
. (4.47b)

4.5 Numerical Examples

Here, we present two sets of examples, the first of which shows the optimal control versus the

measurement for the first time step only, and the second set shows two multi-step examples.

All of these examples use a two-step horizon, i.e. m = 2, so that there exists a control

sequence that can drive our two-state system to the origin over this horizon length. However,

as we are using model predictive control, only the first control input of this sequence is applied

at that time step. Gaussian parameters used for the LEG and for Gaussian noises are closest

in the SαS sense to their corresponding Cauchy distributions. For clarity of presentation

in the figures, the first update occurs at k = 0 instead of k = 1. Furthermore, since the

control weightings remain constant across time steps, we will drop the time notation from

the parameters η and ζ.

All the simulations use the same system dynamics with H = [1 1], ΓT = [0.5 1],

ΛT = [0.5 1], m = 2, and the eigenvalues of Φ are 0.8±0.55j. The terminal state weightings

are η = [1 1], and when control weightings are used they are ζ = [10 10]. The initial
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condition’s scaling parameters are given by α = [0.8 0.8], and the process and measurement

noise parameters β and γ are either 0.5 or 0.1.

All of our examples compare our Cauchy optimal model predictive controller with a

similar LEG model predictive optimal controller [1]. The LEG estimator assumes that the

stochastic inputs are described by the Gaussian pdfs that are closest, in a least squared

sense, to the given Cauchy pdfs. The LEG controller assumes that its objective functions

of the state and control resemble scaled Gaussian pdfs that are closest, in the least-squared

sense, to the scaled Cauchy pdfs in (4.4). The LEG design details can be found in [13,15–18],

where similar comparisons and least square fits were used. The LEG controllers’ responses

are shown in dashed lines in the figures.

4.5.1 One-Step Control Examples

The first set of examples are shown in Fig. 4.1. These figures show the applied optimal control

input at the first time step given the first measurement. In the two cases presented, all the

systems parameters are the same, except in Fig. 4.1(a) γ > β (i.e. more measurement than

state uncertainty), and in Fig. 4.1(b) β > γ (i.e. more state than measurement uncertainty).

The example in Fig. 4.1(a) shows that the Cauchy controller is nearly linear for small

measurements and reduces its control effort to zero as the measurement deviations become

large. This is in contrast to the LEG controller, which is linear and thus responds strongly

to large measurement deviations. This behavior in the Cauchy controller occurs when the

measurement uncertainty is larger than the state uncertainty. In the opposite case shown

in Fig. 4.1(b), the measurement has less uncertainty than the state. Here, the Cauchy

controller’s response closely matches that of the LEG in a neighborhood of the origin, and

in fact responds even more strongly than the LEG for large measurement deviations.

The three different curves in both of these figures depict the control signals for three

different control weights: no control weight, ζ = 10, and ζ = 5. As expected, heavier control

weights (i.e. smaller ζ) reduce the control effort. Even without any control weighting, the

response in Fig. 4.1(a) goes to zero for large measurement deviations. The fact that this
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behavior is seen when there is no control weighting implies that the attenuation of the control

signal for large measurement deviations is due to the cpdf and not the objective function.

Moreover, this behavior is not shared by the LEG controller that uses a similar objective

function but assumes light-tailed, Gaussian distributions.

4.5.2 Multi-Step Control Examples

The complexity of evaluating the conditional performance index grows as the number of

terms increases across time steps, as indicated in (4.42). For implementable control, this

growth needs to be arrested. The full information characteristic function of the ucpdf (4.19)

is approximated by a characteristic function of a ucpdf conditioned on a fixed sliding win-

dow of the most recent measurements, as described in Section 3.8, where the number of

measurements in this horizon is denoted NZ . Hence, the first NZ measurement updates are

performed normally, and the control optimization is performed using this CF. Then, for time

steps k > NZ , we initialize a new finite horizon (FH) estimator and perform NZ measurement

updates over the fixed window {z(k −NZ + 1), . . . , z(k)}. Then, evaluating the conditional

performance index (4.9) uses this FH CF.

The remaining examples in Figs 4.2, 4.3, 4.5, 4.4, and 4.6 are all multistep examples

over 100 measurements, and all use a horizon length of NZ = 8. The variations between the

simulations are in the stochastic parameters, alternating which of process or measurement

noise dominates the other and whether the noises are Gaussian or Cauchy.

In Fig. 4.2, there is more uncertainty in the state process noise than in the measurement

noise. When large measurement deviations occur (such as at k = 52), the Cauchy controller’s

effort is very small. In contrast, the LEG controller responds with a large control effort that

drives the states from their regulated state of zero. However, when large process noise inputs

occur, the state deviates and the Cauchy controller applies a larger control effort than the

LEG, thus regulating the state more effectively. It is interesting to compare Fig. 4.2 with

Fig. 4.3 in light of Fig. 4.1. They suggest that when the measurement noise density parameter

dominates the process noise density parameter in constructing the Cauchy controller, the
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effect of measurement outliers is mitigated, while still responding to state deviations due to

process noise.

On the other hand, in Fig. 4.3 there is more uncertainty in the state than in the measure-

ment, and the Cauchy controller behaves very much like the linear LEG controller. The state

trajectories and control inputs of the Cauchy and LEG controllers appear equal, but actually

their differences are much smaller than the scale of the axis and cannot be seen. Similar

behavior was observed in Fig. 4.1(b), suggesting that when the stochastic parameters allow

it, the Cauchy controller follows the measurement more. It responds in a more linear fashion

to the measurements, similar to the performance of the LEG controller in that setting.

This behavior is seen again when both controllers face Gaussian noises, as in Figure 4.4.

Here, the Cauchy controller closely follows both the control and state trajectories of the

LEG, which is the true optimal solution. This demonstrates that the Cauchy controller is

robust under non-impulsive noise environments, as it closely approximates the true optimal

solution given by the LEG.

Fig. 4.5 shows two examples using control weighting ζ = [10 10], where otherwise

Fig. 4.5(a) has the same parameters as Fig. 4.2, and similarly with Figs. 4.5(b) and 4.3.

Applying control weighting appears to slow down the reaction from the Cauchy controller,

as seen in the response to the initial process noise pulses in Fig. 4.2. In Fig. 4.5(a) with

control weighting, the Cauchy controller seems to wait for a time step, coasting over the

dynamics, before applying the control input. This behavior appears again in Fig. 4.5(b),

where the Cauchy controller is very delayed in applying control, leading to much larger

deviations of the state than the LEG allowed. This suggests that control weighting can

adversely affect the regulation performance of the Cauchy controller in response to process

noise pulses. However, in a situation where the measurement noise dominates, the control

weightings have a much smaller effect, and improve performance in ignoring measurement

outliers.

The final set of results in Fig. 4.6 show situations where either measurement or process

noise is Cauchy and the other is Gaussian. In Fig. 4.6(a) the measurement noise is Cauchy
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and the process noise is Gaussian. Hence, there are no large state deviations, and it is clear

that the LEG controller responds to all of the pulses, inducing errors in the state regulation.

In Fig. 4.6(b), the measurement noise is Gaussian and the process noise is Cauchy. Here,

the large deviations occur in the state, but there are no large measurement deviations. The

LEG controller therefore, as a linear controller, will respond to all the measurements, and

hence will perform well in regulating the state. The Cauchy controller’s performance closely

matches that of the LEG in this case, except for the early time steps.
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(b) αi = 0.5, γ = 0.1.

Figure 4.1: Optimal control vs the measurement for the first time step.
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Figure 4.2: Cauchy and LEG controllers’ performance when the measurement noise domi-

nates the process noise, γ = 0.5 and β = 0.1, and without control weighting.
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Figure 4.3: Cauchy and LEG controllers’ performance when the measurement noise domi-

nates the process noise, γ = 0.1 and β = 0.5, and without control weighting.
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Figure 4.4: Cauchy and LEG controllers’ performance against Gaussian noises closest in the

SαS sense to the given Cauchy parameters.
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Figure 4.5: Cauchy and LEG controllers’ performance with control weighting, ζ = [10 10].
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Figure 4.6: Cauchy and LEG controllers’ performance against mixed Cauchy and Gaussian

noises.
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CHAPTER 5

Conclusions

What was it? What had it ever been? Of what was it made? Why was there no evidence of

separate blocks in the glassy, bafflingly homogenous walls? Why were there no traces of doors,

either interior or exterior? I knew only that I was in a round, roofless, doorless edifice of some

hard, smooth, perfectly transparent, non-refractive and non-reflective material, a hundred yards in

diameter, with many corridors, and with a small circular room at the centre. More than this I

could never learn from a direct investigation.

H.P. Lovecraft, “Within the Walls of Eryx”

The main contribution of this work has been a methodology for performing optimal

control using characteristic functions directly, and an efficient and recursive estimator for

linear systems driven by Cauchy noises. The proposed estimator is based on the general

vector-state estimator, but it takes advantage of all the known relationships and analysis

to make the estimator as efficient as we were able. This limits the efficient estimator to

two-state systems. Finally, by determining the finite horizon approximation, this efficient

estimator can be run over an indefinite number of measurements.

The simplified estimator structure allowed the derivation of a closed form expression of

the conditional performance index for the model predictive control problem, using a new,

computable objective function. This closed-form conditional performance index is optimized

numerically using an accelerated gradient search. This improved estimator performance

allowed us to study the performance of a vector state Cauchy controller over a large number

of measurement updates. Hence, we present here all the methods necessary for efficient

control of two-state state systems driven by Cauchy noises, and thereby provide direction

for the development of an efficient general vector-state controller and estimator.
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Future work should focus on improving the efficiency of the general vector-state Cauchy

estimator. The main lesson form the two-state case is the importance of the fundamental

directions in B and how they proliferate and combine as new terms are created. The pattern

of this proliferation is expressed in the array M , where the ordering of the elements in each

row and the ordering of the rows themselves are important. Whether for systems of order

greater than two these relationships can be expressed in a more complex M array, or if

multiple such arrays are needed, is currently unclear.

The development of the two-state estimator presented in this work was based on the two-

state estimator for a system without process noise, i.e. a system where only the dynamics Φ

affect the state, and the only Cauchy inputs are the initial condition and the measurement

noise. It was by studying this problem that the M array of integers was first conceived and

used, in conjunction with the set of fundamental directions B to construct the full two-state

estimator. I believe that any efficient algorithm for a vector state system should begin with

a study of the three-state case without process noise, in order to understand how the update

structure evolves without the obfuscating complexity of the process noise.
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APPENDIX A

The Algebraic Results

Result 1. The product of two terms given by

{ami + jdmi · sgn (HAν)} ×
{

1

jθ + γ +D · sgn (HAν)
− 1

jθ − γ +D · sgn (HAν)

}
= amo + jdmo · sgn (HAν) (A.1a)

where the i subscript denotes the input term and the o subscript denotes the output term,amo
dmo

 =
1

2π · ē
·

ā −d̄
d̄ ā

 ·
ami
dmi

 , (A.1b)

and

ā = −2γ · (D2 − γ2 − θ2) , d̄ = 4θγD, ē = (D2 − γ2 − θ2)
2

+ 4 (θD)2 (A.1c)

Result 2. The product of two terms given by

{ami + bmi · sgn (HAν) + jcmi + jdmi · sgn (HAν)}

×
{

1

jθ + γ + ρm +D · sgn (HAν)
− 1

jθ − γ + ρm +D · sgn (HAν)

}
= amo + bmo · sgn (HAν) + jcmo + jdmo · sgn (HAν) , (A.2a)

where the i subscript denotes the input term and the o subscript denotes the output term,
amo

bmo

cmo

dmo

 =
1

∆
·


ē −f̄ 0 0

−f̄ ē 0 0

0 0 ē −f̄

0 0 −f̄ ē

 ·

ā b̄ −c̄ −d̄

b̄ ā −d̄ −c̄

c̄ d̄ ā b̄

d̄ c̄ b̄ ā

 ·

ami

bmi

cmi

dmi

 , (A.2b)
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and

ā = −2γ (ρ2
m +D2 − γ2 − θ2) , b̄ = −4γρmD, c̄ = 4θγρm, d̄ = 4θγD,

ē = (ρ2
m +D2 − γ2 − θ2)

2
+ 4 (ρmD)2 + 4 (ρmθ)

2 + 4 (θD)2 ,

f̄ = 4 (ρmD) · (ρ2
m +D2 − γ2) + 8θ2ρmD, ∆ = π ·

(
ē2 − f̄ 2

)
.

(A.2c)

Result 3. The term given byami + bmi · sgn (HAν) + jcmi + jdmi · sgn (HAν)

jθ + ρm − γ · sgn
(
BM

m
i

k|k ν
)

+D · sgn (HAν)

− ami − bmi · sgn (HAν)− jcmi + jdmi · sgn (HAν)

jθ − ρm − γ · sgn
(
BM

m
i

k|k ν
)

+D · sgn (HAν)


= amo + bmo · sgn

(
BM

m
i

k|k ν
)

sgn (HAν) + jcmo · sgn
(
BM

m
i

k|k ν
)

+ jdmo · sgn (HAν) (A.3a)

where the i subscript denotes the input term and the o subscript denotes the output term,
amo

bmo

cmo

dmo

 =
1

∆
·


ē −f̄ 0 0

−f̄ ē 0 0

0 0 ē −f̄

0 0 −f̄ ē

 ·

ā b̄ c̄ d̄

b̄ ā d̄ c̄

−c̄ −d̄ ā b̄

−d̄ −c̄ b̄ ā

 ·

−ρm D −θ 0

0 −γ 0 0

0 0 −γ 0

0 θ D −ρm

 ·

ami

bmi

cmi

dmi

 ,
(A.3b)

and

ā = γ2 +D2 − ρ2
m − θ2, b̄ = −2γD, c̄ = −2θγ, d̄ = 2θD,

ē = ā2 + b̄2 + c̄2 + d̄2, f̄ = 2 ·
(
āb̄+ c̄d̄

)
, ∆ = π ·

(
ē2 − f̄ 2

)
.

(A.3c)

Result 4. The term given by{
ami + bmi · sgn (ν1) + jcmi + jdmi · sgn (ν1)

jθ + ρm + Ď · sgn (ν1)
− ami − bmi · sgn (ν1)− jcmi + jdmi · sgn (ν1)

jθ − ρm + Ď · sgn (ν1)

}

= ai,m + jdi,m · sgn (ν1) (A.4a)

where the parameters ai,m and di,m are generated from the other parameters by the linear
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relationships

ai,m
di,m

 =
1

∆
·

ā b̄ 0 0

0 0 ā −b̄

 ·

ρm −Ď −θ 0

θ 0 ρm −Ď

0 θ −Ď ρm

−Ď ρm 0 −θ

 ·

ami

bmi

cmi

dmi

 , (A.4b)

where

ā = Ď2 − ρ2
m − θ2, b̄ = −2θγ,

∆ = π ·
(
ā2 + b̄2

)
.

(A.4c)
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