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Abstract 

When adults estimate meaningful numbers their distribution of 
first-digits is strongly biased towards Benford’s Law. Insight 
into why this bias emerges could be gained by examining when 
it emerges in children. Three hypotheses were formulated: the 
Representation Hypothesis predicted this distribution can be 
found in all grades; the Integration Hypothesis predicted a leap 
in Benford bias from Grade 3 to 4 due to increased 
mathematical knowledge; and the Distribution Hypothesis 
proposed a gradual increase across grades due to implicit 
learning. 151 children in Grades 2 to 4 were asked to estimate 
numbers based on images and questions. Results showed a 
strong Benford bias in all three grades but a significant leap 
from Grade 2 to 3. This was evidence for both the 
Representation and Integration Hypotheses. Therefore, 
Benford bias may develop in children due to how they 
represent numbers, or develop complex mathematical 
processes, or perhaps some combination of these.  

Keywords: Benford’s law; estimation; mathematical 
development; first-digits.  

Introduction 
People’s behavior can follow laws without them even being 
aware of their existence. Benford's law regarding the 
distribution of first-digits in data is an example of this 
because it has been found to fit to adults’ estimation of 
numbers (Burns, 2020; Burns & Krygier, 2015; Chi & Burns, 
2022). How and when this develops in children, however, has 
not been investigated. Thus, the aim of this paper is to make 
a first step towards understanding Benford’s law from a 
developmental perspective.  

Benford’s Law 
Benford (1938) found that the first-digits of many naturally 
occurring data approximate a logarithmic distribution. 
According to this phenomenon, now known as Benford’s 
law, the probability that 1 is the first-digit is 30.1%, that 2 is 
the first-digit is 17.6%, that 3 is the first-digit is 12.5%, 
decreasing in probability until 9 is 4.6%. Expressed in a 
formula, the first-digit d from 1 to 9 occurs with the 
probability P as follows: 
𝑃(𝑑) = 𝑙𝑜𝑔10(𝑑 + 1) − 𝑙𝑜𝑔10(𝑑) 
 
A broad variety of data are a good fit to Benford’s law; for 
example, masses of extrasolar planets and greenhouse gases 
emissions per country (Joannes-Boyau et al., 2015), taxes 

(Nigrini, 2012), human electroencephalographic data 
(Kreuzer et al., 2014) and bots (Mocnik, 2021). It is important 
to note that in real-life examples the distributions will never 
exactly fit Benford’s law but can only approach them (Smith, 
1999). 

The question of how Benford’s law can be explained seems 
to have no complete explanation (Berger & Hill, 2011). Hill 
(1995) offered an approach based on a statistical derivation. 
He stated: “If distributions are selected at random (in any 
‘unbiased’ way) and random samples are then taken from 
each of these distributions, the significant [first] digits of the 
combined sample will converge to the logarithmic (Benford) 
distribution” (Hill, p. 354). This has similarities to the Central 
Limit Theorem (CLT), Hill therefore called it the Log-Limit 
Law for Significant Digits (i.e., first-digits). Smith (1999, p. 
721) summarized that the Central Limit Theorem describes 
how adding many random numbers produces a normal 
distribution whereas multiplying such numbers produces a 
log-normal distribution. 

Not all data will converge to Benford’s law, a number of 
authors (e.g., Fewster, 2009) argue that data should be 
unbounded, or at least span several orders of magnitude. For 
example, adults’ heights have a narrow range so would not 
be expected to fit to Benford’s law. One implication of this is 
that data sets consisting of only one or two digit numbers may 
not be good fits to Benford’s law. 

Benford’s Law as a Behavioral Phenomenon. The 
ubiquity of Benford’s law naturally gives rise to the question: 
Do humans generate numbers that follow Benford’s law? 
Burns and Krygier (2015) summarized the early attempts to 
test this question which seemed to yield a negative answer. 

The first positive behavioral evidence for Benford’s law 
was Diekmann (2007). He first found that unstandardized 
regression coefficients reported in journals converged to 
Benford’s law, then asked students to estimate regression 
coefficients for presented hypotheses. The resulting data 
approximated Benford’s law. However, the sample sizes for 
Diekmann’s two studies were small (n = 10, n = 13). 

 Burns and Krygier (2015; see also Burns, 2009) asked 
participants in two studies to answer nine general knowledge 
questions. The correct numerical answers had been chosen 
such that each first-digit 1-9 appeared once for correct 
answers. In both studies the first-digits of participants’ 
answers approximated Benford’s law, except that the 
frequency of first-digit 9 was higher than expected. The 
authors emphasized that the data did not perfectly fit to 
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Benford’s law, not surprisingly there was evidence of 
influences of other heuristics. For example, the elevated 
digit-5 frequency could be evidence of a bias towards 
choosing numbers that are halfway between magnitudes. 
Therefore, Burns (2020) suggested people have a “Benford 
bias” that distorts estimated numbers towards Benford’s law 
rather than producing perfect fits.  

To explain the failure of earlier behavioral studies to find 
evidence of a Benford bias, Burns and Krygier (2015) pointed 
out that the earlier studies had asked participants to generate 
random numbers. Both their questions and Diekmann’s 
(2007) had been meaningful and potentially calculable even 
if participants had no idea of the correct answers.  

Possible Explanations for Benford Bias. Burns and 
Krygier (2015) proposed that people’s approximate fit to 
Benford’s law could be due to them being exposed to such a 
statistical relationship throughout their lives and thus 
implicitly learning the pattern from the environment. The 
large amount of evidence that people can implicitly learn 
relationships they repeatedly encounter in their environment 
(e.g., Bargh & Ferguson, 2000) makes this seem a very 
plausible explanation. So, their second study included a 
selection task in which nine possible answers to choose from 
were presented and participants chose one. They 
hypothesized that if participants had learnt that some first-
digits were more common than others then they should favor 
answers with lower first-digits. The resulting first-digit 
distribution was essentially flat in contrast to the data from 
the generation task. Chi and Burns (2022) reinvestigated the 
comparison between generation and selection task. They 
tested what they referred to as the Recognition Hypothesis by 
giving participants a choice between two answers to the 
general knowledge questions which had difference first-
digits. Participants were asked to choose which answer they 
thought was more likely to be the correct, but the first-digit 
again had no effect on their responses.   

An alternative explanation was that fit to Benford’s law is 
a consequence of the process by which people estimate 
unknown numbers (Burns & Krygier, 2015; Chi & Burns, 
2022). When participants generate a numerical answer to a 
question they don’t know the answer to then it is plausible 
that they draw upon different pieces of their own knowledge 
that they think may be relevant, and then combine that 
information is some way. Such a process may be combining 
effectively random numbers from different distributions, and 
if this was the case then it would parallel Hill’s (1995) 
proposal for why for many data sets first-digit distributions 
approximate Benford’s law. As already outlined, Hill 
suggested that Benford’s law may emerge in data that results 
from combining random selections from a mixture of 
distributions.  

Burns and Krygier’s (2015) proposal explained why the 
generated numbers had to be meaningful, because they imply 
that in some sense participants were generating Benford bias 
as a consequence of an attempt at calculation. If this is the 
case, then mathematical knowledge may play a part in the 
strength of this bias. Therefore, evidence regarding at what 

age Benford bias emerges could be important for illuminating 
why this phenomenon exists. However, first we will review 
what is known about children’s development of estimation of 
numbers. 

Development of Numerosity and Estimating 
Some concept of number is present very early in our lives. 

Already six-month-old infants can discriminate numerosities 
of 16 versus 8 dots (Xu & Arriaga, 2007). This is an example 
of what Dehaene (2001) called number sense which he 
considered to be intuitions or basic abilities to "quickly 
understand, approximate, and manipulate numerical 
quantities" (p. 16) which resonated as a widely spread 
concept. Dehaene (1997, 2001) took a biologically 
determined perspective, referring to evidence like cerebral 
substrates or basic numerical abilities in animals. The base of 
his view is that quantities, like in the example of 16 dots, are 
analogically represented on a mental number line.  

To stick with the numerosity example of dots, when 
estimating these the denominated Approximate Number 
System (ANS) would be active. The ANS helps to represent 
approximate quantities, numerosities or magnitudes of sets of 
objects (Mazzocco, et al., 2011). It is one of the two core 
systems of numerical representations that are both active 
from early in infancy onward and observed to be existent in 
animals as well. In contrast, the second system, the parallel 
individuation system, serves to represent individual objects 
in a precise manner (Hyde, 2011; Le Corre & Carey, 2007). 
The ANS supports the intuitive number sense and improves 
with age (Mazzocco, et al.). Differentiating between 
quantities is increasingly difficult when the ratio between the 
quantities is smaller. This ratio follows the Weber-Fechner 
Law which is a logarithmic function. 

More sophisticated models of the ANS have been 
developed to explain adult estimation of the number of 
objects in a visual display (see Brockbank et al., 2022; 
Cheyette & Piantadosi, 2019). However, these models 
address estimations of less than 100 visual objects, so how 
well they can apply to estimations beyond 100 is unclear.   

Number Line Estimation Task. When symbolic numbers 
(e.g., the Arabic digit 9) are learnt, they can be translated into 
the internal mental representation of their magnitude (Siegler 
et al., 2009). Once again, rich empirical results found that 
children at first represent the corresponding magnitude on a 
logarithmic scale. In the course of development, the mental 
representation depends on age and numerical range (Siegler 
& Braithwaite, 2017). In fact, a variety of studies with 
children and adults (e.g., Berteletti et al., 2010; Siegler et al.) 
have described a shift from a logarithmic towards a linear 
representation with age. 

The development of the logarithmic-to-linear shift has 
often been studied with the help of the number-line 
estimation (NLE) task in which the participants are asked to 
estimate the location of a presented Arabic numeral on a 
number line and vice versa (Siegler & Opfer, 2003; Siegler et 
al., 2009). Relying on a logarithmic representation would 
mean that small numbers take more space on the number line 
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than large numbers and are thus marked too far on the right 
(Berteletti et al., 2010). The logarithmic-to-linear shift is 
dependent on the number range as well. On a range from 0 to 
100, children in kindergarten showed the best fit to a 
logarithmic representation whereas second graders displayed 
a linear one. The same development happened on a 0 to 1,000 
range from second to fourth grade (Siegler et al., 2009). 
Finally, on a 0 to 100,000 range the logarithmic-to-linear shift 
became visible between third graders and adults (Thompson 
& Opfer, 2008). Siegler and Opfer (2003) concluded the 
existence of multiple representations instead of only one 
model. 

Another notable finding concerning the NLE task is the left 
digit effect. In the study of Lai et al. (2018), the hundreds 
digits, like in the case of 398 versus 401, had a strong 
influence on where to place the number on the line. 
Consequently, not only the magnitude representation but also 
the left digit had an impact. It seems to emerge at the age of 
about 7 and remains in adulthood but with an even stronger 
effect in children (Lai et al.; Williams et al, 2021). An 
everyday example of the left digit effect is the different 
perception of prices like 4.99€ versus 5€ (Lai et al.). 

Therefore, we can see that both first-digits and logarithmic 
relationships may be important developmentally. However, 
these studies have all examined the representation of numbers 
rather than their generation. Whether they provide insight 
into the first-digit logarithmic relationship described by 
Benford’s law for generated numbers remains to be seen. 

Formal Mathematics Learning in Elementary School. 
The number sense is seen as the basis for later formal 
mathematic knowledge (Dehaene, 2001). This link raises the 
question of what exactly is taught in formal math education. 
Examination of the curricula of elementary schools can 
provide information about the content. Special attention here 
is put upon the curricula in the Germany federal states of 
Hesse (Hessisches Kultusministerium [HKM], 2011) and 
Rhineland-Palatinate (Ministerium für Bildung, 
Wissenschaft, Weiterbildung und Kultur [MBWWK], 2014), 
where the study in this paper took place.  

As stated in the curriculum (MBWWK, 2014), in Grade 1 
and 2 different units of measurement are learnt, such as length 
(e.g., cm), time (e.g., minutes) or money (e.g., €) which is 
completed in Grades 3 and 4 with area (e.g., cm2), volume 
(e.g., l or m3) and mass (e.g., kg). Moreover, after the second 
grade the number range goes up to either 100 or 1,000 
depending on the federal state and is expanded up to 
1,000,000 when finishing fourth grade (HKM, 2011; 
MBWWK, 2014). Further, arithmetic operations include 
addition, subtraction, multiplication and division in the first 
two grades; and is deepened afterwards (HKM, 2011). 
Importantly, quantity comparisons and estimation are topics 
in all grades and even the youngest pupils learn to mentally 
cluster objects in order to facilitate estimation.  

In conclusion, the first two grades provide basic knowledge 
of understanding of numbers, quantities, patterns, data and 
space on the one hand and process-related competencies like 
communicating or problem-solving on the other hand 

(MBWWK, 2014). This is considerably deepened in Grades 
3 and 4 into more complex and solid developing 
competencies. Important for later considerations is that the 
number range in second grade is 0-100 or 0-1,000 and in third 
and fourth grade 0-1,000,000. 

Research Gap and Hypotheses 
We know that by the time children become adults their 

number estimates show a Benford bias, but it is an open 
question when this bias emerges in children. To determine 
how fundamental Benford bias is, the younger the children 
we could study the better. However, they have to have a good 
enough understanding of number to answer multi-digit 
numerical questions. Therefore, it seems to be most 
meaningful to investigate elementary school children since 
their basic numerical understanding as well as formal 
mathematical knowledge is growing fast, which allows them 
to give solid answers to advanced estimation questions. 
Therefore, the research question was whether second, third 
and fourth graders show evidence of a Benford bias, and if 
so, is there a difference between grades? We tested three 
possible hypotheses informed by what we have outlined 
regarding children’s development of an understanding of 
numbers, formal mathematics, statistical patterns and the 
process of estimation.  

Representation Hypothesis. The first hypothesis is that 
Benford bias is present as soon as children can use numbers. 
This could be due to the logarithmic representations of 
numbers that children appear to have, such as those suggested 
by NLE tasks. This predicts that children in second, third and 
fourth grade will be able to generate meaningful data in 
estimation tasks which shows a Benford bias. Therefore, the 
Representation Hypothesis states that Benford bias will be 
present in all three grades, and to an equal degree. 

Integration Hypothesis. The second hypothesis is linked 
to acquiring mathematical skills at school which are 
incorporated into the estimation process. Competencies such 
as those described above in the curricula are deepened 
considerably in third and fourth grade when children learn to 
solve more complex mathematics problems. These include 
broadening their number range, arithmetic, and integrating 
multiple sources of information. This allows the children to 
generate numbers of a quality apt for Benford’s law. The 
mixture of distributions theorem described in the previous 
chapter might apply here. Given that the study took place at 
the beginning of the school year, only fourth graders have 
undergone this process. Therefore, the Integration 
Hypothesis predicts Benford bias will only be found in fourth 
grade. 

Distribution Hypothesis. The third hypothesis takes 
another perspective derived from implicit learning. This 
suggests that patterns in the environment can be learnt 
unconsciously and automatically. Since the distribution of 
Benford’s law is all around us, it is gradually absorbed. The 
older the children the more often they are exposed to the 
distribution of Benford’s law in the environment. 
Consequently, the Distribution Hypothesis foresees that 
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Benford bias emerges gradually over the grades. Although 
Burns and Krygier’s (2015) and Chi and Burns’s (2022) 
attempts to test what they referred to as the Recognition 
Hypothesis did not find support, implicit learning is a 
plausible enough explanation for Benford bias to justify 
further examination. 

Although each of these three hypotheses make distinct 
predictions based on different processes, it is possible that 
more than one of the hypothesized processes influences 
children’s number estimations. If that is the case, then more 
complex patterns of results may be found. 

Method 
Participants. The sample was 151 children in Grades 2, 3 

and 4 (German 2.-4. Klasse, Grundschule) in German public 
elementary schools that the research team had links with. 
Number of participants, age and gender depended on the 
nature of the participating classes and the available of 
children during severe COVID-19 restrictions in the first half 
of the 2021/22 school year. 41 of them were pupils in Grade 
2 (Mage = 7.5, SDage = 0.6; 25 boys and 16 girls), 49 in Grade 
3 (Mage = 8.4, SDage= 0.5; 30 boys and 19 girls) and 61 in 
Grade 4 (Mage = 9.6, SDage = 0.6; 34 boys and 27 girls). The 
study was preregistered.  

Materials. In order to investigate the extent of Benford 
bias in children, image and verbal estimation questions were 
used. The intention was to let the children generate numbers 
over a large range. Easy-to-answer material would not be 
expected to fit to Benford’s law because children would know 
the right answer. The visual material consisted of eight 
identical images given to all grades and eight grade-specific 
images. The images contained a large number of a specified 
type of objects, for example, foods, flowers, animals, people, 
vehicles, and books. Figure 1 shows the image used for the 
question “How birds are in the picture?” The higher the grade 
the higher the number of objects depicted in the grade-
specific images. The aim was to adapt the level of difficulty 
and the known number range for each grade level according 
to the curricula. For each image children were asked how 
many of the relevant object were present in the picture? 

 

 
 
Figure 1: Example of an image given to Grade 2 children. 

They were asked how many birds are in the picture? 

 
In order to include a different type of material which is not 

visual, 10 verbal questions were given to all grades which had 
answers that should be large numbers, for example, “How 
many bristles does a toothbrush have?” Their answers were 
intended to be difficult to estimate. Giving both verbal 
knowledge and visual stimuli based estimation tasks could 
address the question of whether Benford bias arises from 
modality specific processes. 

Procedure. Data collection took place in the children’s 
classrooms. The digital images were shown via a projector or 
a large video screen. We started with a test image to make 
sure the children understood the task, then for 10 seconds 
each the 16 images were presented, first the non-grade-
specific set then the grade-specific set. After each image, a 
white screen was shown for 15 seconds to allow children time 
to write down their estimated number.  

After the visual stimuli were presented, the verbal 
questions were read aloud and the children were asked to 
again write down their estimated answer. The questions were 
based on either numerosity estimation or physical units (e.g., 
kilogram, meter) which were familiar to the children 
according to the curriculum. The total duration of the 
experiment was about 20 minutes per class. 

Results 
How to Measure Benford Bias. The challenging question 

of how to measure fit to Benford’s law has been responded to 
by some authors using z-tests or chi-square-tests (e.g., Rauch 
et al., 2011). However, Burns (2020) takes a critical view of 
these analyses, in particular that fit to Benford’s law is 
assumed when the null hypothesis (no deviation from 
Benford’s law) fails to be rejected. Therefore, whether or not 
there is a fit may simply be a question of statistical power. 

Burns (2020) argues that it should not be expected that any 
data will perfectly fit Benford’s law, thus with enough power 
the null hypothesis should always be rejected. Therefore, the 
aim should be to evaluate the degree to which the data 
approach Benford’s law. Burns (2020) proposes this is best 
done by focusing on the effect size (η2) of the calculated 
linear contrast weighted by the pattern of Benford’s law. This 
effect size can be described as how much variance in the data 
can be explained by the pattern of Benford’s law. Thus, a high 
effect size is interpreted as a strong Benford bias. 

Statistical Analyses. We first counted how often each 
child used each first-digit in their estimates for their 16 
picture questions and 10 verbal questions then converting 
these frequencies to proportions of all 26 response. Using 
SPSS software and the GLM procedure, a 3 x 9 mixed design 
analysis of variance with a linear contrast weighted by the 
first-digit proportions for Benford’s law was conducted on 
children’s first-digit proportions. The between-subjects 
factor was the grade (second, third, fourth), the within-
subjects factor was the nine first-digit proportions. This 
enabled us to test whether the three grade levels differed in 
terms of degree of Benford bias, and gave a measure of 
degree of fit because the effect size η2 of the weighted linear 
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contrast tells us how much variance in the data was explained 
by the pattern of Benford’s law.  

Evidence of Benford bias. Figure 2 indicates that across 
grades the mean proportions of the first-digits approached 
Benford’s law. Similar to previous studies by Krygier and 
Burns (2015) a digit-5-peak was observed. 

 
Figure 2: Line Chart of All Children’s First-Digit Mean 

Proportions in Comparison to Benford’s Law 
 

Across grades, the linear contrast weighted by Benford’s 
law regarding was statistically significant, F(1, 148) = 
655.20, p < .001, η2 = .816. Therefore, 81.6% of the variance 
in the data were explained by the pattern of Benford’s law. 

Figure 3 differentiates between the three grades and 
suggests that all grades’ first-digit proportions approached 
Benford’s law and had a peak at digit-5. There was a 
significant interaction between the linear contrast and the 
grades, F(2, 148) = 4.21, p = .017, η2 = .054. Bonferroni-
corrected comparisons between the grades identified the only 
significant difference as between the second and third grade, 
F(1, 88) = 6.55, p = .012, η2 = .069. 

 
Figure 3: First-Digit Mean Proportions for each Grade in 

Comparison to Benford’s Law. 
 
To determine if Benford bias increased or decreased by 

grade we estimated the effect size of the weighted linear 
contrast for each grade. These showed increasing effect size 
from Grade 2 to 3 as well as 3 to 4: Grade 2, F(1,40) = 87.53, 
p <.0001, η2 = .686; Grade 3, F(1,48) = 237.88, p <.0001, η2 
= .832;  Grade 4, F(1,60) = 422.06, p <.0001, η2 = .876.  
Evaluating the three grades separately, the linear contrasts 
weighted by Benford’s law were significant in all three 
grades with high effect sizes, but there appears to be a leap 
from Grade 2 to 3. 

Further analyses. Exploratory analyses of the other 
within-subject manipulations found that there were 
differences due to question type (images or verbal questions), 
F(1, 150)= 27.08, p <. 001, η² = .153. However, the difference 
in effect sizes were small, with Bonferroni corrected analyses 
showing a slightly higher effect size for verbal questions (η² 
= .750) than for images (η² = .719).  

We also analyzed the differences between grade-specific or 
non-grade-specific images. However, this found no 
significant difference in Benford bias between image types, 
F(1, 150) = 0.16, p = .689, η2 = .001. That Benford bias was 
found for both visual stimuli and verbal questions suggests 
that Benford bias in children is not due to a modality specific 
process.  

Discussion 
The main research question was whether elementary 

school children estimate numbers that approximate Benford's 
law (as adults do), and, if so, from what grade level? Our 
results showed that for Grades 2-4 the linear contrast 
weighted by Benford’s law was statistically significant and 
accounted for a large amount of the variance (81.6%) in the 
first-digit distribution. The size of this Benford bias was 
similar to those reported for adults by Burns (2020) and Chi 
and Burns (2022). Although the effect size remained large 
across all three grades, there was evidence of an overall 
increase in effect size across grades particularly from second 
to third (68.6% to 83.2% explained variance). We can 
examine how well these results support each of our three 
hypotheses. 

Representation Hypothesis. The observed Benford bias 
in all three grades supports the Representation Hypothesis 
which assumed that Benford bias is present from an early age. 
This could be due to the way children represent numbers as 
having logarithmic relationships, such as between number 
and space in the number-line estimation (NLE) task. Siegler 
and Opfer (2003) also suggest that a logarithmic-to-linear 
shift increases with age. Weakening this explanation is that it 
predicts that a Benford bias should have been present in a 
selection task as well, which was not the case in studies with 
adults (Burns & Krygier, 2015; Chi & Burns, 2022). 
However, in this study we did not give a selection task to 
children, so it is possible that unlike adults, children would 
show a bias towards smaller first-digits in a selection task. 
Therefore, it would be of great interest to investigate if 
children show a Benford bias in selection tasks. 

Integration Hypothesis. A leap in Benford bias was 
predicted by the Integration Hypothesis. This prediction was 
based on children’s ability to handle more complex 
mathematical problems which includes broadening their 
number range, arithmetic and integrating multiple sources of 
information in higher grades. Paralleling the mixture of 
distributions theorem for Benford’s law, that is, combining 
“random samples from random distributions” (Hill, 1995, p. 
358), Burns and Krygier (2015) hypothesized that in an 
estimation process people combine different information and 
knowledge. One could assume that using strategies, 
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mathematical operations and multiple sources of knowledge 
in the estimation process resembles Hill’s theorem. 

The complex process of estimating requires children to 
have abilities that are targeted in the curricula (HKM, 2011; 
MBWWK, 2014) in higher grades, and is most pronounced 
after completing the third grade. However, the leap in the size 
of Benford bias was not found from Grades 3 to 4 as predicted 
but from Grades 2 to 3. This suggests that if the Integration 
Hypothesis explains Benford bias then the type of 
information combination suggested involves less calculation 
than expected. 

For estimation of number of visual stimuli it is less obvious 
what information might be being integrated than it is for the 
verbal knowledge questions. The images used were not 
simply dots, so perhaps knowledge about the objects in the 
image could be integrated. Otherwise perhaps experience or 
some form of sampling might provide information. Finding 
Benford bias for both the verbal and visual stimuli suggests 
that a common process produces the bias.   

Distribution Hypothesis. The Distribution Hypothesis 
predicted a gradual increase in Benford bias across the 
grades. This was explained by implicit learning from patterns 
in the environment (e.g., Bargh & Ferguson, 2000), in which 
Benford’s law is ubiquitous. Although an increase in effect 
size was found, it cannot be described as gradual. In 
particular, the observed single leap represents an irregularity 
that does not fit well with the Distribution Hypothesis. 

Thus, our results found the most support for the Integration 
and Representation Hypotheses. One interpretation of this 
would be that both logarithmic representations and the 
combining of information is contributing to Benford bias in 
children in Grades 2-4. However, more research will be 
needed before we can draw strong conclusion.  

Limitations and Future Directions. Data were collected 
in winter 2021/2022 in the middle of the COVID-19 
pandemic. At this time, Germany had experienced a 
nationwide lock-down since spring accompanied by school 
closures. Therefore, many participants may not have had the 
skills that they should according to their grade. This makes it 
harder to interpret the grade differences, and suggests Grade 
2 children had even poorer mathematical skills than we 
expected.   

When collecting data, both images and verbally asked 
questions were used. The verbal questions produced a slightly 
higher Benford bias, but the span of the data was wider, 
which should augment the bias. To substantiate these results, 
greater attention should be paid to the selection of the 
material such as its difficulty and the range of numbers. We 
observed that although children completed the task, they 
could appear overwhelmed by the difficulty of the questions.  

We did not control the first digits of the true answers to our 
questions. So, to be sure that Benford bias is due to the 
children giving correct answers we should in the future 
systematically control the first digit of correct answers.  

Finally, the age range should be expanded in future 
research to depict more comprehensively the developmental 
pathway of Benford bias.  

Conclusion 
This study is a first step in investigating Benford bias in 

elementary school children. The Representation and 
Integration Hypothesis could partly explain the described 
results, however, neither explain the observed leap from 
Grade 2 to 3. Further developmental research could help us 
better understand why Benford bias exists, and Benford bias 
could be a tool that helps us understand the development of 
number estimation and mathematical knowledge in children. 
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