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Abstract

The buckling and post-buckling behavior
of reinforcing bars in spirally reinforced
columns is studied using finite deforma-
tion kinematics and a linear elastic con-
stitutive law. Analytical results show the
tnitially straight elastic system to buckle
first in a single spacing mode and then
make a “snap” transition to a multiple
spacing mode similar to that observed in
the actual system. The results are ver-
ified using a more general elastic finite
element solution.

Introduction

The plastic hinge region at the base of con-
crete columns is arguably the most vital de-
tail in the vocabulary of structural engineer-
ing. The buckling of reinforcing bars within
this region has been observed in earthquake
damaged buildings and in the laboratory, how-
ever, the mechanisms that govern this behavior
are poorly understood.

The study of reinforcement buckling holds
technical challenges because it combines the
nonlinearities of material, geometry and con-
tact. Bresler and Gilbert [1] initiated the study
of the phenomenon in 1961. The model they
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proposed has served as the benchmark for all
of the models that have followed. This model
is composed of an initially straight bar which
is allowed to deflect in one direction in an as-
sumed sinusoidal shape. The deflecting bar
must overcome equally spaced springs which
represent the restraining action of the trans-
verse reinforcement. The kinematic assump-
tion of small deformation is made which is con-
sistent only when considering deformed config-
urations arbitrarily close to the straight config-
uration. The tangent stiffness method is used
to determine the spacing of transverse rein-
forcement that is needed to keep the bar from
buckling before it yields.

Subsequently, many other writers have pro-
posed models with improved constitutive laws
(4], [9] and more general solutions using finite
elements [4] and eigensolutions [6]. Some of
the models show agreement with experiments
on a single bar [4] and other models have been
calibrated using experimental results for use
in design [5]. None of the models have been
able to adequately explain the observed buck-
ling mode.

In this paper we seek to explain the observed
buckling mode and demonstrate its evolution
analytically. Since observation of the buckled
bar can be made only after the bar protrudes
from the concrete, the formulation must be ac-
curate for finite deformations. The considera-
tion of finite deformations makes solution of
equilibrium equations more difficult. To keep
the problem relatively simple, only elastic con-
stitutive laws have been used for the longi-
tudinal bars. Admittedly, this is not repre-
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Figure 1: Observed phenomenon

sentative of actual reinforcing bars, however,
the results are of value nonetheless. The fo-
cus here is strictly qualitative—in studying the
elastic system in finite deformation, much can
be learned about the actual one.

A second novel aspect of this research is the
treatment of the spiral reinforcement. Before
the buckling of longitudinal bars, spiral rein-
forcement is often strained beyond its yield
point. In order to properly model this a rigid—
plastic model is adopted for the spiral material.
In addition, the kinematics of the spiral as it
is pushed away from the core are modeled in
a more representative manner than has been
attempted before.

Observed Phenomenon

In the most common laboratory test for earth-
quake resisting columns the following loadings
are applied: (1) The column is loaded with a
constant axial load to represent gravity. (2)
In order to simulate the action of an earth-
quake, the column is deformed side-to-side by
the action of lateral forces. The hinge zone ex-
periences the following sequence of observable
events:

1. The cover spalls to a height of 2-3 col-
umn diameters before the longitudinal bar
buckling is observed. (Figure 1a)

2. The buckled bar emerges from the con-
crete, the buckle is observed to have a
length from 3-6 spiral spacings. The
buckled bar exerts great force on the spi-
ral, often causing a loss of confinement
(Figure 1b).

The nature of the phenomenon is that two
states of deformation are known: the initial
state and a finitely deformed state. The ini-
tial state is observed when the column is con-
structed. It is seen that a straight bar is in-
stalled. Next, the bar is observed in a buck-
led configuration as it emerges from the con-
crete cover. The buckling is seen to occur over
multiple spiral spacings but not over the entire
spalling length.

Since the intermediate levels of deformation
are hidden, the objective is to explain how the
deformed state is reached from the initial state.
To make matters interesting, the deformation
observed cannot be “scaled-up” from a small
deformation theory. It will be shown analyt-
ically that the buckling must initiate over a
single spacing. However, when finite levels of
deformation are taken into account, the buck-
ling mode can make a transition from the sin-
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Figure 2: States of deformation

gle spacing mode to a multiple spacing mode
similar to that observed in the laboratory.

Model Description

Consider a simplified model of one longitudinal
bar. The bar contacts the core over a continu-
ous interval on one side and contacts the spiral
at discrete points on the other side. The spi-
ral spacing is A\. The contact surfaces convey
only normal tractions to the bar. When the
bar is straight, its axis is aligned with the z-
axis. When the bar is deformed, it is assumed
to deform only in the z, z plane.

Three equilibrium states are shown in Fig-
ure 2. In the remainder of this work they will
be referred to as defined below.

Reference State — This is the unstressed
configuration. The bar is straight with
length, H.

Compressed State — The straight bar com-
pressed uniformly with infinitesimal axial
strain, €,. There is no transverse displace-
ment.

Buckled State — The bar with a buckle of
arbitrary shape.

Material and Spatial Coordi-
nates

Consider again Figure 2. Let S be the set
of material points lying on the centerline of
the bar. The points are identified by their z-
coordinate in the reference state so that S =
[0, H].

Consider a point s € S as the bar deforms.
In the compressed state, the bar is uniformly
compressed with infinitesimal axial strain e,,
so s lies on the z-axis with spatial coordinates
{z(s),2(s)} = {s(1 +¢,),0}.

In the buckled state, the point will be moved
an amount u(s) in the z-direction and an
amount w(s) in the z-direction. So that the
spatial coordinates will be {z(s),z(s)} = {s+

u(s), w(s)}-

Potential Energy

There are three separate force systems acting
on the bar. Each is derived from its own po-
tential energy function. The three potential
energy functions are: (1) the potential of the
axial load, Ujyeq; (2) the potential of the strain
energy, Usirqin; and (3) the potential of the spi-
ral, Uspirqi- The potential energy of the system
can be written as the sum of these terms,

U = Uipga + Ustrain + Uspira,l- (1)



Figure 3: Potential energy of axial load

In the following sections, the terms of the po-
tential energy equation are shown to be func-
tionals of the centerline deformations, u(s) and
w(s). Therefore, each term of the potential en-
ergy equation will be quantifiable for any de-
formation u(s) and w(s). The three potential
functionals will be denoted with a superscript

~

carrot, (*).

Axial Load Potential, Ujgaq

By assumption the axial load, P, does not de-
pend on the deformation — it is an externally
applied force of constant magnitude. There-
fore, if P moves downward through a dis-
tance AH (Figure 3) the change of potential is
—P AH. Where both P and AH are positive
quantities. Identifying the reference state with
Uioad = 0, write

Uioaa = —PAH. (2)

The quantity AH is the amount by which
the two ends of the bar approach each other,

H A~
AH:—A d(s)ds = AH [W'(s)] . (3)

Combining this with (2), we can write the axial
load, Ujpad, as a functional of the displacement:

Utoad = —P AH [u/(s)]. (4)

Strain Energy of the Bar, Ugiain

Reinforcing bars of typical dimensions buckle
in the plastic range of material response. In
order to analytically proceed we set aside this
material non-linearity, and consider only the
kinematic non-linearity of large deformation.
In order to do this, a reinforcing bar of typi-
cal dimensions cannot be considered. Instead,
consider a more slender bar made of a very
high strength steel. As a result the new bar
buckles elastically.

The assumption is made that the state of
stress in the bar is a linear function of only
the state of strain. Working with the Green—
St.Venant strain tensor denoted, E, and the
Second Piola—Kirchhoff stress tensor denoted,
S. The relation between them is written using
the fourth rank tensor, C.

S=C-E C, a matrix of constants

The strain energy stored in deforming a
body, B, can be written

1
Ustrain = 5//BS-EdV

_ %///B(C-E)-EdV. (5)

The bar is assumed to be an Euler-Bernoulli
beam. Based on the kinematic assumptions of
the theory, the only non-vanishing strain com-
ponent is E;;, see [3] or [10]. Thus equation
(5) reduces to

1
Ustmin = 5 ///B me ng av. (6)

Cyz is the constant relating E;, and its work
conjugate S;;. Imposing the usual assumption
that allows an Euler-Bernoulli beam to sat-
isfy zero-traction boundary conditions along
its length, Sy, = S,, = 0. The resulting state
of plane stress identifies C,, with the uniaxial
elastic modulus, E.

1
Ustrain = 5 E ///B ng av (7)



E,, is expressed as a function of the displace-
ments u'(s), u”(s), w'(s) and w"(s). See [3] or
[10] for the derivation.
1
E,z = 5 [(1 +u/(s))? + w?(s) — 1]
w”(s)[1 4 w'(s)] — w'(s) u"(s)

VL +(s)? + w(s)
1 o [w'(s)[1 4+ u/(s)] — w'(s) u"(s)]?
+§""2l [+ (s)2 + w?(s) ] »(8)

where z is the material coordinate of the bar
through its thickness. This dependency in-
tegrates into the section properties, and does
not appear when Usgrgin 1S evaluated in equa-
tion (7). Therefore, we can write Usirain as a
functional of the functions u'(s) and w'(s) and
their derivatives,

Ustrain = f]strain [ul(s), u"(s), w/(s)> ’LU”(S)] . (9)

Spiral Energy, Ugpiral

REFERENCE éTATE BUCKLED STATE

Figure 4: Configuration of spiral

Say we have m spirals turns over the length
of our bar. Let s; be the coordinate of the
ith spiral turn in the reference state. As
the bar deforms with transverse displacement
w(s), each spiral turn displaces an amount w;
(Figure 4), where:

w; = w(s;)

i={1,2,...,m}  (10)

Let the amount of potential energy stored in

deforming one spiral turn be Uppe spiras (wi)-
Then the potential energy stored in deforming
the entire spiral:

m
= Z Uone spiral (wi) . (11)

i=1

Uspi'ral

In order to determine Uype spirqr as a func-
tion of the displacement w;, the kinematics
and equilibrium of the system are investigated.
Consider the concrete column under load. As
a concrete column compresses, its cross-section
dilates; i.e. Poisson Effect. For a spirally re-
inforced column, the dilation has the effect of
tensioning the spiral. This tension can be suf-
ficiently high to yield the spiral. The Defor-
mation Theory of Plasticity will be employed
to consider this behavior [10]. For monotonic
deformations we can “replace” the mechanical
work done in deforming a plastic material by
a strain energy. Thereby, a plastic material is
treated as a non—linear elastic material.

Assume that immediately before the onset
of buckling, the column has dilated from its
original radius, R,, an amount AR to have a
radius R. As a result, the spiral goes from its
unstressed state to having a uniform tension,
T. (Figure 5) We will consider the spiral to
be rigid-perfectly-plastic so that T will be the
yield force for the spiral, T' = Apirqi Fy, and
will not be a function of the displacement. !

Consider what happens at the onset of buck-
ling (Figure 6). When the bar moves away
from the core a distance, w;, it exerts a force
on the spiral. We make the assumption that as
the bar buckles, it moves monotonically away
from the core at all points along its length.
Based on this assumption we can identify the
work done by the bar on the spiral, W, with
a gain of potential of the spiral.

Uone spiral(wi) = Wr(w;) (12)

The displacement w;, increases the circumfer-
ence of the spiral an amount AC(w;) through

!This assumption is not required. The spiral could
be modeled as elasto-plastic without affecting the na-
ture of the final result. However, in the interest of
simplicity, this model is used.
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Figure 6: Cross section after buckling

the constant force, T'. Therefore the work done
by the bar on the spiral is

Wr(w;) = T AC(w;) .
Combining this with (12) yields
Uone spiral(wi) = T AC(w;) .
Putting this together with equation (11) gives
m
Uspiral = T ;Ao(wi)~ (13)

Now the function AC(w;) will be approxi-
mated by assuming the deformed shape of the
spiral, r4(w;) (Figure 6b):

2¢

re(w;) = R+ w; (7)2 ¢ € |0, %]

The change in circumference as a function of
w; becomes

AC(wy) =2 fo%\/ri(wi) + [é%rqﬁ(wi)] *do
— TR

s 212 2
= 2f02\/[R+w,~ (2) ] + 2 gy
— mR.
(14)
Taken together, equations (10), (13) and
(14) give us the ability to write the energy em-

ployed in deforming the spiral as a functional
of the transverse displacement.

Uspiral = Uspiral [w(s)] (15)



Equilibrium Based on Variation
of One Parameter

The Principal of Minimum Potential Energy is
used to consider the equilibrium of the buck-
led configuration characterized by the defor-
mation functions u(s) and w(s). The Princi-
ple of Minimum Potential Energy states that
among all the configurations satisfying the pre-
scribed geometric constraints, the state of equi-
librium causes the potential energy to be sta-
tionary [10]. This is written

§U=0. (16)

The variation of the potential energy, 60U, is
the change in the potential energy, U, when
an infinitesimal displacement is imposed that
satisfies the prescribed geometric constraints.
This infinitesimal displacement is known as an
admissible variation, denoted

[u(s),w(s)] = [u(s) + du(s),w(s) + dw(s)] .

Equation (16) describes an exact statement
of equilibrium. However, in order to solve for
the exact solution we must consider all the
possible admissible deformations. For compli-
cated systems this is generally not practicable.
The best that can be done is an approximation
of the deformation.

We proceed by guessing a form of the dis-
placement that can be characterized by finitely
many parameters. Then we vary the param-
eters infinitesimally in the potential energy
functional. In this approximate form, The
Principle of Stationary Potential Energy de-
fines equilibrium states as a set of parame-
ters for which infinitesimal variations cause no
change in the potential energy.

Taking the simplest case, we consider vari-
ations in one deformation parameter, the am-
plitude, a. We define an equilibrium state as a
state for which the potential energy, U, is sta-
tionary for infinitesimal changes, @ = a + da.
For this, the variation of the potential energy

S

" D D -

kﬁ

=

O T3>

iz

Figure 7: Assumed deformation

becomes the differential, 2

0
oU =da —U =0.
Oa
Since da # 0 we get a 1-dimensional equilib-
rium equation which is simply a partial deriva-
tive of the potential energy with respect to a,
0
—U =0. 17
%0 (17)
In the rest of this section, this equilibrium
equation will allow us to determine the axial
load, P, that when applied to the system equi-
librates a buckle of amplitude, a.

Assumed Deformation

We assume that for any buckling length, n, the
deformation of the bar can be parameterized
by the amplitude of the buckle, a. (Figure 7)
In order to do this, the lateral displacement
is assumed sinusoidal over the buckled length
and zero everywhere else.

L Lleog2ms) if
w(a,n, s) = a(2 3 COS /\n) i s<)?n
0 otherwise

(18)

This is the linear part, terms of higher order in da
are neglected since do is infinitesimal regardless of the
size of a.



Taking the derivative with respect to s, we
get w'(s) and w”(s).

T i 278 2
' _ ) axpsin5Z if s < An
w(a,n, 5) { 0 otherwise (19)

. (20)
0 otherwise

2 .
w'(a,m, s) = {%%;cos%\irf if s < An
In order to make the potential energy a func-
tion of & and n, we will need to make «’ and "
functions of a and n. To do this, we assume
that the arc length does not change between
the compressed state and the buckled state 3

146 = /[L+ /() +w(a,n,s).  (21)

Recall that ¢, is the infinitesimal axial strain
in the straight compressed bar,

_ P
EAbar.

€ =

Where A, is the cross-sectional area of bar.
Solving (21) for u’ as a function of €,, @, n and
S’

v (€0, @, M, 8) = \/(1 + €)% — w?(a,n,s) — 1.
(22)
Taking the derivative with respect to s gives

w'(a,n,s) v (a,n,s)
VI +€e)?2 —w?(a,n,s)
(23)
The deformations (18), (19), (20), (22) and
(23) are used to evaluate the functionals (4),
(9) and (15). In this way, the functionals be-
come functions of €,, o, n and s. These func-
tions will be denoted with a superscript tilde,

'U'”(EO) a,n, S) = -

3Since we will consider finite deformation from
the compressed state, the assumption that arc length
doesn’t change between these two states may seem im-
plausible. However, a finite element analysis based on
more general kinematics [3] verifies the validity of the
assumption.

():

Upad = —P AIEI [W'(s)] o v (€, @, 1,y 8) )
= —P AH(ep, a,n)

Ustrain = Ustrain[ul(s)7 u"(s), wl(s)a w”(s)]
o {ul(eo’ a’ n7 s), ul,(eo, a’ n, s)’
o w,(a7 n’ s)’wll(a’ n7 s)}
= Ustrain(eo, a, ’I’L)

Uspi'ral = Uspiral [w(s)] ° w(a,n, 3)

= Uspiral (a7 n) )

Initial Buckling

In this section it will be shown that the buckle
will always begin over one spacing. In order
to do this all of the terms of the equilibrium
are evaluated for a deformation where €, and
a are assumed small.

ol <1 a?x1

Equations (24) are first expanded in powers
of €, and . Terms up to linear in €, and up
to o? are retained in the expansion. See [3] for
details:

~ 2 2 3\
Uad ~ PHe, — Po? 7

~ ~2TiET
Ustrain = « Zr)\_n)g

PR i o ot W S 2mi
Uspzral ~ &g =1 (1 Cos = )

-\ 2
2 2T n—1 _ 2w
+ a3 5 Do (1 cos n) )

Where I = [[ 22 dA is the second moment of
the area.

The growth properties of Ustrein and Uspira
will be of central importance in considering
equilibrium for the small deformation case.
Notice in (25) the lowest order term in Ugrgin
is a square term in «, whereas, Usp;,q; contains
a linear term. Therefore, when « is small, the
energy employed in deforming the spiral will
dominate the energy employed in deforming
the bar.

For the special case when n = 1 the domi-
nance of Ugprqr no longer holds. Notice that



when n = 1 the summations appearing in the
expression for Ugpirq vanish. This case corre-
sponds to buckling over a single spiral spacing,
which leaves the spiral undeformed.

With these points in mind let us precede
with determining the load, P, which will hold
the infinitesimally deformed bar in equilib-
rium. Substituting equations (25) into the po-
tential energy equation (1) yields,

2 4
U ~ PHe, — PP + 55
e Sy (1_c05% (26)

N 2
2 2T n—1 27
+ a2 15! (1 - cos )

Making use of the one-parameter equilib-
rium equation (17),
) ~ 2 2n4ET
%U ~ —Pa{&—n + a'(l;\'n—)g-
+ Iz vyt (1 — cos %)

-\ 2
4T n—1 2 —
+agty T (1-cos )" = 0

and solving for P gives:

_ 4n%FEI 1 Thn —n-1 2mi
P =707 + a5 2io (1 — cos T~

\2 ) (27)
+ 422 5 (1 - cos 1)
The critical load, P, is the minimum value
of P in the limit as @« — 0 for all possible
choices of n,

P =iy (Jim 7).

Considering equation (27), notice that it is a
sum of positive terms. The first term is the
resistance to the axial force due to the strain
energy. The second and third terms are the re-
sistance to the axial force generated by the spi-
ral. The second term becomes large for small
values of . So for small values of the buckling
amplitude, the force generated by the spiral
will be large. However, in the case that the
buckling mode is over a single spacing, n =1,
the summations vanish— the spiral is undis-
placed by the buckle.

As a result the single spacing buckling mode
will always furnish the critical load.

2
Py = il‘W)\TEI (28)
This is the Euler buckling load for fixed—fixed
end conditions with a length of one spiral spac-
ing.

In addition, equation (27) suggests that for
larger values of «, this may not be the case.
As «a becomes finite, the second term may
no longer dominate and other buckling modes
may be possible. However, to consider this
we can no longer make assumptions about the
magnitude of a. This will motivate us to con-
sider equilibrium in finite deformation.

Single—Spacing Mode for Plastic Case

Before moving onto the finite deformation
case, briefly consider the bar deforming as de-
scribed above but in the plastic range of ma-
terial response. In the famous experimental
observations of F.R. Shanely [7], he observed
that during the initial stages of inelastic buck-
ling, all fibers of the bar load monotonically
in compression (no strain reversal). This al-
lows us to employ the Deformation Theory of
Plasticity.

To allow our previous results (25), (26), (27),
(28) to consider the plastic small deformation
case, we need only replace the elastic strain
energy, Ustrqin With the area under the plastic
stress—strain diagram Wpy,s; Figure 8. Note
that the slope of the plastic stress—strain di-
agram is bounded above by E. Consider our
result in (27). Only the first term is due to
Ustrain- When the plastic response is consid-
ered this term cannot be any greater than the
result from elasticity. The other two terms
are independent of Ugrgin SO they remain the
same.

So, for the plastic case the result remains in-
tact. The spiral terms preclude buckling for all
modes except n = 1. And for the case of n = 1
the summations vanish and we have a critical
load that is bounded above by the elastic case.
Therefore, the conclusion is drawn that even
for the plastic case, the buckling begins over a
single spacing.
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Finite Deformation Buckling

We now return to the linear elastic material
and proceed to consider finite deformation. In
the last section, it was shown that for an ini-
tially straight bar, the buckle will always begin
over one spiral spacing. In this section it will
be shown that as the buckle grows in ampli-
tude, it can jump over more spacings.

Kinematic Assumption — Near Inex-
tensibility

Although no assumption is made about the
size of the amplitude, «, we can still make an
assumption about the size of ¢,. Recall that
€, is the strain in the bar when it is straight
and loaded with axial load P. Since the bar is
slender, ¢, < 1.

Reexamine equations (24) where the terms
in the potential energy equation are functions
of €5, @ and n. Now we expand in ¢,, keeping

only linear terms. Equations (24) become, 4
Uload ~ —-P [Aﬂ(eoa «, n)] =0
5 A
—Pe, [%AH(EO, a, n)]6

Ustrain = [Ustrain (60, «, n)] €. =0
o=

8
+é€ [3_60 Ustrain (€0, n)]

€0=0
Uspiral = Uspiral (O{, ’I’L) .
Substituting €, = — =L
o E Apar’
Uiosd =~ —P [AH(eo, a, n)] o
o=
2 1 o) ]
+ P EAy,, [56—0-AH(60, «, n)] €o=0
Ustrain = [Ustrain(fm «, TL)] €. =0
o=
_p_1_ |97 .
PEAba,r [360 Ustrain (€0, @, n)] €0=0

Uspiral = Uspiml(aa n) .

These energy functions can now be put into
the potential energy equation (1),

+ P2 ﬁbm [aiAI:I(eo, a, n)]

€0=0

+ [[7strain(€o, «a, n)]

€0=0

_p_1

5 7
EApar [3_60 strain(fmaan)]

€o=0

+ Uspiral(ay n) .

Again making use of the one-parameter equi-

4U,pirai(c, n) is unaffected by the expansion since it
is not a function of ¢,

10



librium equation (17),

U~ P FA 6a[ GOAH(eo,a,n)]eozo

—-P % [Aﬁ(eo, a, n)]

€o=0

o)

1 9 717
—P 5i—%a [gg strain(€oaaan)]

€o=0

+ % [Ustrain (€0, @, ’I’L)] =0
+ g%ﬁspiral(aa n) = 0.
(29)
Equation (29) is quadratic in P. In the range
of deformation we are concerned with it has
only one positive root, °

P=—B(a,n) + v/B(a,n)? + 4 A(a,n) C(a, n)

2 A(a,n)
(30)
Where:
1 oo -
A(a,n) = “EA,_ 9a [a—eoAH(eo,a, n)] o
B(a,n) = % [AI:I(GO, a, n)] o
1 90 -
+———EAbar e [a;‘Ustrain (507 «, n)] oo
0 r=~
C(a, n) = a~a [l‘]strain(eoaaan)]€ -0
9 -~
+ a—a'Uspiral(aa n)

Force Displacement Curves

For any value of @ and n the terms A(a,n),
B(a,n) and C(a,n) can be computed numer-
ically. Therefore, for any amplitude and buck-
ling length, Equation(30) computes the axial
load, P, that maintains equilibrium for the sys-
tem. Once we have determined P and, thus
€o (recall ¢, = — E—/f;—;), we can evaluate AH

%It is shown in [3] that the functions A(a, 1), B(e, n)
and C(a,n) are strictly positive functions when o <
-3,-)\ n. So we can be sure that there is only one positive
root to the quadratic as long as the buckling amplitude
is less than one-seventh of the buckling length.
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Figure 9: Force-displacement curves

by substituting the assumed deformations (22)
and (19) into (3). This procedure was carried
out for a system with the parameters shown
in Table 1. A plot of P vs. AH is shown in
Figure 9. Each curve represents the locus of
solutions for a buckling length, n. The solid
line through the origin represents the straight,
compressed solution. The axes are normal-
ized with the critical buckling load, P,.;;, given
by (28) and the shortening of the model com-
pressed under critical load, AH.;; = %%5—.
(H is the length of the model.)

The plots reveal a snap buckling behavior
[2]. Notice that as we start to compress the
bar, the solution will move along the straight
solution until it approaches the critical load.



Parameter Value

Bar Height, H 10 inches
Bar Diameter, dpar 0.1 in
Spiral Spacing, A 1.25 in
Spiral Diameter, dspir | 0.025 in
Column Radius, Ry 12 inches
Elastic Modulus, E 2910% psi
Spiral Yield Force, T 150 1lbs

Table 1: Model parameters
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2 STRAIGHTV MULTIPLE SPACING
- y [\SINGLE SPACING
Pcr - .
\ LOCAL MAXIMUM
N

DISPLACEMENT

Figure 10: Snap buckling phenomenon

Then the bar will begin to buckle over one
spacing. Shortly after beginning to buckle,
the solution encounters a local maximum for
displacement, AH; see Figure 10. As AH is
increased further snapping occurs because no
nearby equilibrium state can be found. The
solution snaps to the multiple spacing mode
that has the smallest corresponding value for
the axial load. Figure 9 reveals that buckling
modes n = 4 to n = 6 become favorable. This
transition causes a dramatic decrease in the
axial load in the bar.

Finite Element Analysis

In this section, the deformation is no longer
assumed to be sinusoidal. Instead we allow
the deformation to have a more general form.
Previously the equilibrium was determined by
varying «, now it is determined by finitely
many degrees of freedom. Equilibrium states
are solved using a straight—forward non-linear
finite element procedure. Because of the pres-

12

ence of second order derivatives, Hermitian in-
terpolation was used on both u(s) and w(s).
Contact with the core was treated using a one—
way elastic foundation. As before, the material
of the longitudinal bar is linear elastic. Only
the results of the finite element analysis are
presented here. See [3] for a full account of the
finite element formulation.

Simulated Test Procedure and Re-
sults

A computer simulation of the bar buckling was
performed. In order to force the bar to buckle
the top of the bar was incrementally displaced
downwards. The prescribed axial displacement
will be denoted AH. This is similar to a “dis-
placement controlled” test that would be per-
formed in a laboratory. By prescribing the
displacement, we can be assured that a solu-
tion exists for each step. On the other hand, if
the procedure was to increment the end load,
P, we would be unable to solve for equilib-
rium points on decreasing portions of the force-
displacement curve.

In order to keep the bar from remaining
straight a small perturbation force is applied
transversely at midspan of the bar. The mag-
nitude of the perturbation force was small
~ 1078 P,;;. Using symmetry, only half of the
bar was modeled, this constrained the bar to
buckle over an odd number of spacings. The
model of half of the bar was discretized into 8
elements.

The “test specimen” had the same param-
eters as were used to generate the force-
displacement curve in the previous section.
Figure 11 shows the displaced shape of the
model at several levels of axial displacement.

No Axial Displacement

Figure 11(a) shows the the bar under the ac-
tion of the perturbation force alone. The trans-
verse displacement is negligible with a maxi-
mum of about 1078 inches.
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Figure 11: Displaced shape from finite element analysis

Before The Onset of Buckling

As the top of the bar is moved downward the
transverse displacement increases gradually, at
first. When the axial displacement reaches
0.5 AHgrit, see Figure 11(b), the transverse
displacement has only reached a maximum of
~ 3 -107° inches.

The Onset of Buckling - Single Spacing
Mode

At 0.75 AH_; the bar has buckled over a
single spacing; see Figure 11(c). The trans-
verse displacement has increased 100 times to
~ 3 -107* inches. The bar buckles before
AH_.;; because of differences between the as-
sumed deformed shape and the shape that ex-
hibits itself here and also due to the perturba-
tion force. Observe that the buckling length is
greater than one spiral spacing because of pen-
etration of the bar into the core. Recall, the
assumed deformation of the last section forced
the buckling length to be a whole number of
spacings.
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Transition to 5-Spacing Mode

When the axial displacement is incremented
slightly more to 0.8 AH,,;; the buckling mode
jumps to the 5 spacing mode; see Figure 11(d).
The transverse displacement increases over one
thousand times to =~ 0.5 inches. Meanwhile,
the bar has attained a shape and buckling
length very similar to that considered by the
assumed deformation of the prior sections.

~
~

Bar Remains in 5-Spacing Mode

As the axial displacement is incremented fur-
ther the buckling mode remains at 5 spac-
ings and the transverse displacement increases
gradually; see Figure 11(e). Even though
the axial displacement has increased from 0.8
AHci to 1.3 AH; the lateral displacement
has only increased to =~ 0.65 inches.

Force vs. Displacement

Figure 12 shows a plot of axial reaction, P, ver-
sus prescribed axial displacement for the test
just discussed. The data from the finite ele-
ment analysis is plotted as points over the force
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Figure 12: Axial reaction, P vs. prescribed
axial displacement AH

versus displacement curves generated analyti-
cally. The plot reveals good agreement with
the analytical result, even for displacements
that are quite large.

We see that for small loadings the solu-
tion travels along the solution for the straight
bar. When the bar buckles, the interval of
AH where the bar buckles in the single spac-
ing mode is very short so it does not ap-
pear demonstratively on the plot. Then the
solution makes the transition to a multiple—
spacing mode causing the axial load to drop
sharply. The remainder of the test is spent in
the multiple-spacing mode. Inside of the mul-
tiple spacing regime, the axial load behaves in
a stable manner for a large range of axial dis-
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placements.

Conclusions

Column reinforcement in the laboratory and
field is observed to buckle over multiple spac-
ings. Present models are unable to adequately
explain this behavior analytically. The model
presented in this paper allows consideration
of finite deformation and the prestressing of
the confining spiral. This model has signifi-
cant advantages over other models for explain-
ing observable buckling modes since it allows
the phenomenon to be modeled accurately to
a level of deformation that is visible.

Analytical results of the model reveal that
an initially straight bar must initiate buckling
over a single spacing for both the elastic and
plastic case.

For the finite deformation case, only elastic
models for the buckling bar are considered. We
have demonstrated analytically and computa-
tionally that after the single-spacing buckling
grows, it “snaps” to a multiple-spacing buck-
ling mode similar to that observed in reinforc-
ing bars. After the buckled bar has snapped
into the longer mode its ability to support ax-
ial loads is diminished.

These results throw into question the valid-
ity of models which only consider small defor-
mations from the straight configuration. Mod-
els of that type are only capable of predicting
the onset of buckling. Any transition of buck-
ling modes that may occur subsequent to the
onset of buckling would occur beyond their do-
main of applicability.

Since the work presented considers only the
finite deformation behavior of initially straight
bars which buckle elastically, the explanation
it presents for the real system is promising
but far from complete. In order to truly un-
derstand this phenomenon, a more representa-
tive constitutive law should be used. In addi-
tion, we must begin to investigate the effect of
the initially out—of-straight condition that is
present in real reinforcing bars.
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