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RESEARCH ARTICLE
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Abstract

Background

There is an increasing awareness that sleep disturbances are a risk factor for dementia.

Prior case-control studies suggested that brain grey matter (GM) changes involving cortical

(i.e, prefrontal areas) and subcortical structures (i.e, putamen, thalamus) could be associ-

ated with insomnia status. However, it remains unclear whether there is a gradient associa-

tion between these regions and the severity of insomnia in older adults who could be at risk

for dementia. Since depressive symptoms and sleep apnea can both feature insomnia-

related factors, can impact brain health and are frequently present in older populations, it is

important to include them when studying insomnia. Therefore, our goal was to investigate

GM changes associated with insomnia severity in a cohort of healthy older adults, taking

into account the potential effect of depression and sleep apnea as well. We hypothesized

that insomnia severity is correlated with 1) cortical regions responsible for regulation of

sleep and emotion, such as the orbitofrontal cortex and, 2) subcortical regions, such as the

putamen.

Methods

120 healthy subjects (age 74.8±5.7 years old, 55.7% female) were recruited from the Hill-

blom Healthy Aging Network at the Memory and Aging Center, UCSF. All participants were

determined to be cognitively healthy following a neurological evaluation, neuropsychological

assessment and informant interview. Participants had a 3T brain MRI and completed the
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Insomnia Severity Index (ISI), Geriatric Depression Scale (GDS) and Berlin Sleep Question-

naire (BA) to assess sleep apnea. Cortical thickness (CTh) and subcortical volumes were

obtained by the CAT12 toolbox within SPM12. We studied the correlation of CTh and sub-

cortical volumes with ISI using multiple regressions adjusted by age, sex, handedness and

MRI scan type. Additional models adjusting by GDS and BA were also performed.

Results

ISI and GDS were predominantly mild (4.9±4.2 and 2.5±2.9, respectively) and BA was

mostly low risk (80%). Higher ISI correlated with lower CTh of the right orbitofrontal, right

superior and caudal middle frontal areas, right temporo-parietal junction and left anterior cin-

gulate cortex (p<0.001, uncorrected FWE). When adjusting by GDS, right ventral orbitofron-

tal and temporo-parietal junction remained significant, and left insula became significant

(p<0.001, uncorrected FWE). Conversely, BA showed no effect. The results were no longer

significant following FWE multiple comparisons. Regarding subcortical areas, higher puta-

men volumes were associated with higher ISI (p<0.01).

Conclusions

Our findings highlight a relationship between insomnia severity and brain health, even with

relatively mild insomnia, and independent of depression and likelihood of sleep apnea. The

results extend the previous literature showing the association of specific GM areas (i.e, orbi-

tofrontal, insular and temporo-parietal junction) not just with the presence of insomnia, but

across the spectrum of severity itself. Moreover, our results suggest subcortical structures

(i.e., putamen) are involved as well. Longitudinal studies are needed to clarify how these

insomnia-related brain changes in healthy subjects align with an increased risk of dementia.

Introduction

Insomnia is a frequent sleep disorder defined as recurrent poor sleep quality or quantity due to

difficulties in initiating or maintaining sleep (DSM-5). The prevalence of insomnia in older

adults varies through epidemiological studies, but it has been estimated to affect up to 20% of

the healthy older adult population [1]. In recent years, growing evidence has suggested that

poor sleep quality may provide an increased risk for dementia [2,3]. Along this line, insomnia

has been associated with the impairment of declarative memory in older adults, also affecting

their general functioning [4–6]. Sleep appears to be intertwined with proteinopathies, where

poor sleep quality is associated with β-amyloid dysregulation and sleep regulating regions are

affected by abnormal protein deposition (i.e, tau, synuclein) early in many neurodegenerative

disorders [7–11]. Taken together, this suggests that sleep disorders such as insomnia may be

detrimental to brain health, possibly contributing to the development of neurodegenerative

diseases [12,13].

Defining structural brain changes associated with insomnia could be helpful to understand

the underlying changes conferring a risk for dementia in healthy individuals. This has become

a topic of interest in recent years, where studies have investigated differences in grey matter

(GM) and subcortical regions between insomniacs and non-insomniac older adults [14–16].

Although there is certain variability on the areas related to the report of insomnia across
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studies, findings in prefrontal areas, putamen or thalamus are more consistent, suggesting that

they might participate in insomnia status [14,15,17,18]. Despite the participation of prefrontal

or subcortical regions in insomnia, it remains unclear how these structural brain changes may

align with measures of the actual severity of the reported insomnia. For instance, although

insomnia is a well-defined sleeping disorder, insomnia symptoms can still happen in non-

insomniac individuals. Questionnaires evaluating insomnia severity such as the Insomnia

Severity Inventory (ISI) are sensitive to the full range of insomnia symptoms, even if they are

below the threshold of insomnia diagnosis [19]. This tool provides the opportunity to correlate

the whole severity spectrum of insomnia complaints with their potential underlying brain

changes.

Secondary symptoms of insomnia can be caused by sleep apnea and depression, which are

common in older adults, and could have potential effects on brain health as well. Therefore,

when studying insomnia/brain health correlates in older adults, it is ideal to try to evaluate fac-

tors which could themselves alter brain health. Therefore, in the current study we utilize an

existing dataset to assess the association of both cortical and subcortical GM regions to per-

ceived insomnia severity in a cohort of healthy older adults, taking into account the potential

effect of depression and sleep apnea. We hypothesize that insomnia severity is correlated with

1) cortical regions responsible for regulation of sleep and emotion, such as the orbitofrontal

cortex, and 2) subcortical regions, such as the putamen.

Materials and methods

Participants

One hundred and twenty healthy subjects over 60 years old were selected from the Hillblom

Healthy Aging network at the Memory and Aging Center, UCSF from 2012 to 2020 if they had

completed the insomnia severity index questionnaire and had undergone magnetic resonance

imaging. The study was approved by the UCSF Institutional Review Board, and all participants

gave their written, informed consent. Subjects were determined to be cognitively healthy fol-

lowing a comprehensive neurological evaluation, neuropsychological assessment and infor-

mant interview. All subjects scored 0 for Clinical Dementia Rating (CDR).

Insomnia severity assessment

Subjective insomnia severity was assessed by the Insomnia Severity Inventory (ISI) [19]. The

ISI is a self-reported questionnaire evaluating seven insomnia-related component scores:

severity of difficulties with sleep onset, sleep maintenance, early morning awakening problems,

sleep dissatisfaction, interference of sleep difficulties with daytime functioning, noticeability of

sleep problems by others, and distress caused by the sleep difficulties. Following the instruc-

tions, participants rated each component from 0 to 5, indicating ‘no problem’ to ‘very severe

problem’, respectively. The responses were summed to obtain the total score, which could

range from 0 to 28.

Berlin Sleep Questionnaire for sleep apnea

The presence of obstructive sleep apnea was evaluated by the Berlin Questionnaire for sleep

apnea (BA) [20]. The questionnaire consists of three categories related to the risk of having

sleep apnea, including snoring and breathing, sleepiness, blood pressure and body mass index.

The final score classifies individuals into High Risk or Low Risk for sleep apnea.
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Geriatric Depression Scale

The presence of depressive symptoms was assessed by the Geriatric Depression Scale (GDS)

[21]. The GDS is a 30-item questionnaire where participants respond to yes/no questions how

they felt over the past week. Scores of 0–4 are considered normal, depending on age, educa-

tion, and complaints; 5–8 indicate mild depression; 9–11 indicate moderate depression; and

12–15 indicate severe depression.

Brain MRI imaging

Acquisition. MRI scans were examined at the UCSF Neuroscience Imaging Center on a

Siemens Trio 3.0 T scanner (n = 86) or 3.0 T Prisma scanner (n = 34). T1-weighted magnetiza-

tion-prepared rapid gradient-echo (MP-RAGE) structural scans were acquired with sagittal

orientation, slice thickness = 1.0 mm; slices per slab = 160; plane resolution = 1.0x1.0 mm;

matrix = 240X256, repetition time = 2300 ms, echo time = 2.98 ms, inversion time = 900 ms,

flip angle = 9˚.

Neuroimage processing. MRIs were processed with the CAT12 toolbox (http://www.

neuro.unijena.de/cat/, version 1450) within SPM12 (http://www.fil.ion.ucl.ac.uk/spm/

software/spm12/, version 7487, running in MATLAB r2019b) and we recorded the IQR score

during standard preprocessing as a measure of overall quality of images [22]. CTh estimates

obtained with CAT12 are accurate and robust and can be considered a fast and reliable alterna-

tive to other approaches for the analysis of cortical thickness [23]. The CAT12 toolbox uses tis-

sue segmentation to estimate the white matter distance, and it then projects the local maxima

(which is equal to CTh) to other GM voxels by using a neighbor relationship described by the

white matter distance. Topological correction, spherical mapping, and spherical registration

were performed to obtain vertex wise CTh. We then calculated the mean CTh at each region

in the Desikan atlas and the volumes of subcortical GM structures in the neuromorphometrics

atlas, as implemented in CAT12.

Statistical analyses of clinical outcomes. To analyze the association of insomnia symp-

toms with depressive symptoms and sleep apnea, we performed pairwise correlations on ISI

scores with GDS and BA scores.

Statistical analyses of ISI and cortical thickness. To study the correlations between CTh

and ISI we performed linear modeling of the CTh maps as implemented in CAT12. We

included age, sex, handedness and scan type as covariates. We applied the correction for multi-

ple comparisons using Family-wise error (FWE) with a threshold of p<0.05 for cluster signifi-

cance. This model was repeated to include BA as a covariate, and again to include GDS as a

covariate. Additionally, we further performed CTh t-test sub-analyses to identify CTh differ-

ences between the insomnia (ISI�8) and non-insomnia groups (ISI�7), adjusting by age, sex,

handedness, scan type and GDS.

Statistical analyses of ISI and subcortical volumes. Because subcortical gray matter vol-

umes (but not the CTh) depend on total intracranial volume (TIV), we divided subcortical

gray matter volumes by TIV of each participant to obtain normalized subcortical volumes.

Using Stata 16.1 (College Station, Texas), we performed a multivariable linear regression for

each subcortical volume to identify significant predictors of ISI while adjusting for age, sex,

handedness and scan type. This model was repeated to include BA as a covariate, and again to

include GDS as a covariate. We applied the correction for multiple comparisons using False

Discovery Rate (FDR). In addition, we performed t-test sub-analyses between insomnia

(ISI�8) and non-insomniaa (ISI�7) groups.
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Results

Demographics

Detailed demographics data are shown in Table 1. Participants ranged in age from 62 to 88

years old. 55.7% of the sample were female and all participants had at least 12 years of educa-

tion. The ISI total scores ranged from 0 to 16 corresponding to ‘non-insomnia’, ‘sub-threshold

insomnia’ and ‘moderate insomnia’ categories.

Association between ISI scores and other clinical outcomes

ISI and GDS scores showed a significant positive correlation (r = 0.34, p<0.01) (Fig 1) while

BA did not.

Associations between ISI scores and GM regions

Cortical regions. Multivariate analyses adjusting for age, sex, handedness and scan type

showed that higher ISI scores correlated with lower CTh in right orbitofrontal, right superior

and caudal middle frontal areas, right temporoparietal junction and left anterior cingulate

regions (p<0.001, uncorrected FWE) (Fig 2). Covarying for BA did not alter the findings.

When covarying for GDS, the negative correlations in the right orbitofrontal and temporo-

parietal junction remained unchanged. The correlations in the right superior and caudal mid-

dle frontal and left anterior cingulate regions, however, were lost. Further, we found that,

when covarying for GDS, ISI was negatively correlated with CTh in the left insula (p<0.001,

uncorrected FWE) (Fig 3). None of these clusters remained significant after the FWE multiple

comparison correction. The CTh t-test comparisons between insomnia and non-insomnia

groups showed lower CTh in certain orbitofrontal, prefrontal and temporo-parietal regions

(p<0.001, uncorrected). However, differences in the insula were not replicated. Detailed

results of the t-test sub-analyses are shown on S1 Fig.

Subcortical regions. The detailed results from the linear regressions assessing subcortical

volumes and ISI scores adjusted by age, sex, handedness and scan type are shown in Table 2.

Right and left putamen showed a significant correlation with ISI, where greater putamen vol-

umes were associated with higher ISI scores (p<0.01 uncorrected, Fig 4). Only the correlation

Table 1. Cohort descriptors.

Healthy subjects (n = 120)

Age 74.8±5.7 (62–88)

Gender (% women) 55.7%

Years of education 17.4±2.1 (12–20)

MMSE 29±1.1 (26–30)

ISI total score 4.9±4.2 (0–16)

ISI score categories (%)

No clinically significant insomnia (0–7) 71

Subthreshold insomnia (8–14) 26

Clinical insomnia (moderate severity) (15–21) 3

Clinical insomnia (severe) (22–28) 0

GDS score 2.5±2.9 (0–15)

BA score (% low risk) 80.2

Data are presented as means ± standard deviation (range). MMSE, Mini Mental State Examination; ISI, Insomnia

Severity Index; GDS, Geriatric Depression Scale; BA, Berlin Apnea index.

https://doi.org/10.1371/journal.pone.0252076.t001
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Fig 1. Correlation between Insomnia Severity Index and Geriatric Depression Scale. The figure shows a moderate

positive correlation between ISI scores and Geriatric Depression Scale (r = 0.34, P-value< .001) in all participants

(n = 119).

https://doi.org/10.1371/journal.pone.0252076.g001

Fig 2. Correlation between Insomnia Severity Index scores and cortical thickness. Correlation between ISI scores

and cortical thickness in all participants (n = 120). Only regions with P-value< .001 (uncorrected FWE) are shown.

All multivariate linear regression models were adjusted for age, sex, handiness and scan type. Correlation coefficients

are expressed as a color scale, indicating an increasing strength of the correlation from red to yellow.

https://doi.org/10.1371/journal.pone.0252076.g002
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Fig 3. Correlation between Insomnia Severity Index scores and cortical thickness adjusting by Geriatric

Depression Scale. Correlation between ISI scores and cortical thickness in all participants (n = 119). Only regions with

P-value< .001 (uncorrected FWE) are shown. All multivariate linear regression models were adjusted for age, sex,

handiness and scan type and Geriatric Depression Scale. Correlation coefficients are expressed as a color scale,

indicating an increasing strength of the correlation from red to yellow.

https://doi.org/10.1371/journal.pone.0252076.g003

Table 2. Effect of subcortical regional volumes to ISI scores.

Region of interest β p
Right Caudate 0.08 .405

Right Putamen 0.22 .016a

Right Thalamus 0.07 .525

Right Pallidum 0.48 .608

Left Caudate 0.10 .303

Left Putamen 0.26 .005a

Left Thalamus 0.07 .531

Left Pallidum 0.09 .328

Data are presented standardized beta (β). This table shows the effect of subcortical gray matter brain regions to ISI

scores using linear model effects adjusting by age, sex, handiness, MRI scanner and total intracranial volume (FDR

uncorrected).
ap significant values (p<0.05).

https://doi.org/10.1371/journal.pone.0252076.t002

Fig 4. Correlation between Putamen volumes and Insomnia Severity Index. Scatter plot showing the correlation of

the normalized volumes of right and left putamen with ISI scores (n = 120).

https://doi.org/10.1371/journal.pone.0252076.g004
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with left putamen volumes survived FDR multiple comparisons (p<0.05). Covarying for GDS

and BA did not alter the findings. Additionally, box plot graphs showing the mean normalized

volumes of the right and left putamen in insomnia (ISI�8) and non-insomnia (ISI�7) sub-

jects are shown in S2 Fig.

Discussion

We performed a cross-sectional study analyzing the relationship between cortical and subcor-

tical grey matter regions and the degree of perceived insomnia severity in a cohort of healthy

older adults. We found that lower volumes in certain cortical areas (i.e., right ventral orbito-

frontal, right temporo-parietal junction and left insula) and greater volumes in subcortical

structures (i.e., putamen) were related to higher perceived insomnia severity independent of

the presence of depression or likelihood of sleep apnea. Hence, identifying a detrimental rela-

tionship between a insomnia symptoms and CTh in otherwise healthy aging populations.

Compared to prior studies reporting insomnia prevalence around 30–35% in healthy aging

populations, our cohort presents relatively low ISI scores that fall into the “no clinically signifi-

cant insomnia” to “subthreshold insomnia” categories [1,14]. These differences might be

related to methodological approaches and sample characteristics. Methodological differences

involving tools or diagnostic criteria used to identify insomniacs can modify prevalence esti-

mates, through differences in sensitivity and specificity [14,19]. Most of the studies assessing

sleep quality in healthy aging cohorts are focused on younger populations over 50 years old,

while our cohort is over 62 years old and could account for some of the difference. It is also

possible that socio-economic statuses or prior education could influence the incidence of

reporting insomnia, e.g. our cohort has a relatively high mean education of 17.4 years, with

many participants having masters or doctorate degrees. Education, a proxy for cognitive

reserve, might potentially shape the odds for insomnia development later in life as well.

Nevertheless, despite the low insomnia severity found in our cohort, we still found an asso-

ciation between ISI and cortical thickness. This fact is particularly remarkable because it rein-

forces the observation that mild-moderate insomnia symptoms could have effects on brain

structure in healthy aging populations, even with individuals below the threshold of insomnia

diagnosis. Overall, this emphasizes the importance of the whole spectrum of insomnia severity

with brain health in aging. Our findings highlighted the orbitofrontal cortex as a main cortical

region associated with the severity of insomnia even when adjusting by depressive symptoms

and sleep apnea. Specifically, we found smaller cortical volumes in the ventral orbitofrontal

were associated with worse levels of insomnia. This is congruent with prior publications that

have detected lower volumes of orbitofrontal cortex in insomnia subjects, as well as in healthy

individuals with sleep fragmentation and early-morning awakenings [14,24–27]. Similarly, a

report on a small sample of older adults (mean age 60 ± 6, age range 52–74) found that smaller

orbitofrontal volumes were associated with higher scores in the insomnia subscale of the Sleep

Disorders Questionnaire [15]. Our findings support the role of orbitofrontal regions in insom-

nia but furthermore, extend this, confirming that the gradient of insomnia severity is associ-

ated with volumetric values in these areas. As part of the highly interconnected limbic system,

the orbitofrontal cortex participates in decision-making processes and emotion signaling, sug-

gesting its dysfunction could lead to increased insomnia mediated by mood alterations. How-

ever, the orbitofrontal cortex also has a role in evaluating thermal comfort [26]. Insomnia

patients have difficulties judging thermal comfort, and interestingly, small changes from com-

fortable temperatures have a detrimental effect on sleep quality [28]. Therefore, insomnia

could also result from orbitofrontal dysfunction leading to the inability to recognize the opti-

mal temperature for sleep [26,28].

PLOS ONE Specific grey matter regions are associated with insomnia severity

PLOS ONE | https://doi.org/10.1371/journal.pone.0252076 May 26, 2021 8 / 15

https://doi.org/10.1371/journal.pone.0252076


In addition, we also found that smaller areas of the dorsolateral prefrontal cortex were asso-

ciated with worse levels of insomnia. The dorsolateral prefrontal cortex has long been impli-

cated in high level cognitive functions such as attention, working memory, decision-making

and reasoning. Impaired prefrontal functioning such as problem-solving abilities and emo-

tional processing are associated with mood disorders (e.g. depression) that frequently are

related or can lead to insufficient sleep [29]. Our findings support the role of the dorsolateral

prefrontal cortex on insomnia symptoms especially when depressive symptoms may be con-

tributing. In alignment with the hypothesis of emotional processing as a key character for

insomnia development, a recent report highlighted right prefrontal areas (i.e, orbitofrontal) as

a neuropathological core mechanism for the intersection of insomnia with mood symptoms (i.

e, depression) [30]. Interestingly, our findings show this right-lateralized association between

perception of insomnia severity not only in orbitofrontal but also in dorsolateral areas, rein-

forcing the influence of emotional processing and mood to the perception of mild insomnia

symptoms.

However, the relationship between insomnia and brain atrophy might work in the opposite

direction, meaning not only that grey matter volume may contribute to insomnia, but also

insomnia could have an effect on grey matter structure. In this line, prior studies have reported

morphological brain changes after sleep deprivation [31,32]. This suggests that insufficient

sleep could modulate certain neurobiological processes that could potentially affect cortical

gray matter structure (e.g. metabolite clearance, synaptic homeostasis, gene expression, macro-

molecule biosynthesis, neuroinflammation, oxidative stress) [33–35]. Interestingly, the pre-

frontal cortex is especially susceptible to oxidative stress and furthermore, sleep deprivation

especially affects neuropsychological performance on tasks related to the prefrontal cortex

(executive domains) [36]. Thus, it is possible that grey matter health in dorsal-orbitofrontal

areas is vulnerable to insufficient sleep [37,38].

In addition, other cortical areas such as anterior cingulate have been associated with insom-

nia severity in the present study although its effect disappeared when controlling for depres-

sion. The cingulate cortex is considered part of the limbic system and participates in many

high functions such as learning, memory processing, and emotion. It is plausible that the cin-

gulate cortex/insomnia relationship is driven by the effect of mood disorders (i.e; depression).

Although its role in sleep regulation is still poorly defined, it has been suggested to also partici-

pate in specific processes such as the mediation of slow-waves during slow-wave sleep [39].

Most of the prior studies described lower volumes of the anterior or posterior cingulate in

insomniacs [14,40,41]. Our findings are congruent with these prior reports, extending the lit-

erature to show that these cingulate areas could be associated with insomnia severity. However,

one previous study did report that larger rostral anterior cingulate volumes were associated

with worse sleep in chronic insomnia patients [42]. Since chronic insomnia increases the risk

for depression, these findings were interpreted as a compensatory response to repetitive sleep

disturbance and a possible marker of resilience to developing mood disorders. The Winkel-

mann study did not study older adults, but was restricted to young-middle-aged patients

(mean age 39.3 ±8.7), which accounts for the conflicting results, and could suggest that there is

an effect of aging on diminished resilience. Alternatively, the Winkelmann compensatory find-

ing could be restricted to those with chronic insomnia, as the insomnia severity in our popula-

tion was mild-moderate.

On the other hand, the inferior parietal lobe together with the overlapping temporoparietal

junction participate in a broad range of behaviors and functions such as attention, language

processing, social cognition and self-awareness. As these are areas highly connected to diverse

functional networks, they are thought to act more as a hub for multimodal integration, with

probable participation in many cognitive processes [43]. Although the direct participation of
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this area in sleep might be controversial, we believe that its involvement in insomnia is con-

ceivable, specifically in the context of self-perception of sleep disturbance. In line with this

hypothesis, a longitudinal study demonstrated that older adults with poor sleep quality devel-

oped a widespread pattern of atrophy including these temporal-parietal areas as well [44].

Lastly, our cortical findings showing lower insular volumes are associated with insomnia

severity, but only when withdrawing the effect of the depressive symptoms, is surprising. The

insula is highly related to emotional processing and mood disorders, so we would expect it to

be more related to the depressive symptoms than directly to insomnia. Indeed, the supplemen-

tary analyses comparing insomnia vs non-insomnia groups within our cohort did not replicate

this difference in the insula, supporting this hypothesis. However, prior literature has demon-

strated changes in functional connectivity in the anterior insula after sleep deprivation [45,46].

Moreover, lesions on the anterior insula in rats elicits decreased wakefulness and increased

rapid eye movement (REM) sleep and non-REM (NREM) sleep, suggesting that the insula

could participate more than we thought in sleep-wake regulation processes [47].

The cortico-striato-thalamo-cortical loop has multiple neurocognitive functions including

regulating arousals along with cognitive and affective functions. The striatum, formed by puta-

men and caudate, is specially involved in sleep regulation [17]. In physiological terms, puta-

men regulates arousal by inhibitory GABAergic projections to pallidum and thalamus,

promoting cortical activity and wakefulness [48]. In the same line, bilateral lesions of the puta-

men have demonstrated to reduce the time spent in wakefulness [49]. Furthermore, putamen

is involved in motor regulation via connections with the primary motor cortex and premotor

areas regulating restlessness, a manifestation of physiological arousal [50]. Morphometric

studies that evaluated subcortical structures in insomnia patients, suggested altered volumes of

putamen or thalamus in this population [14,18,51]. However, results are not consistent

between studies showing either positive or negative correlations with sleep parameters. Our

results support the effect of greater putamen volumes on insomnia severity, in line with its sug-

gested wake-promoting role. The putamen, as a main component of the striatum, is highly

interconnected with frontal cortical areas such as the orbitofrontal and prefrontal regions. The

connectivity between these cortico-subcortical regions shapes the frontostriatal circuit, which

has been related to sleep-wake regulation. Although the mechanism by which subcortical

areas, such as the putamen, regulate arousal is still poorly understood, the dysfunction of the

frontostriatal circuit seems to have a role in insomnia. In this line, prior functional MRI studies

have reported altered patterns of connectivity between subcortical (putamen) and cortical

(frontal) regions in insomnia patients [52–54]. We found no relationship, however, with tha-

lamic volumes. Although it is known that subcortical structures participate in sleep regulation,

further studies specifically evaluating which subcortical changes directly relate to insomnia are

needed [17].

Aging is associated with neuronal dysfunction in terms of metabolic, proteostasis

impairment and oxidative stress that can trigger amyloid-β, tau, and α -synuclein accumula-

tion. The poor sleep quality and sleep deprivation associated with insomnia complaints, could

accelerate these age-related changes potentiating disease-specific neuronal vulnerabilities caus-

ing neurodegenerative disorders [55]. For instance, results from a recent study suggest that

that sleep disturbances could predict accumulation of beta-amyloid across subsequent years

[11]. Furthermore, relevant changes within frontal regions, from cortical atrophy to protein

accumulation, have been identified in many early neurodegenerative disorders [27,56,57].

This evidence aligns with our findings reinforcing the idea of these areas related to insomnia

severity, as especially vulnerable to neurodegenerative disease processes. Other sleep disorders

have also been associated with subsequent onset of cognitive or neurodegenerative disorders.

For example, periodic limb movements (PLMS), which precede dysexecutive impairment and
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REM sleep behavior disorder (RBD), has been shown to predict the development of Parkin-

son’s Disease [58,59]. Further investigations are required to understand the relationship

between neurodegenerative processes and various sleep disorders, including PLMS, RBD, and

now insomnia.

Even though our results show an existing correlation between insomnia severity and certain

gray matter changes, they do not confirm its causality. The relationship observed between

both parameters could indicate that these specific gray matter changes are driving the severity

of insomnia or, that insomnia severity has a detrimental effect on these areas. Ultimately, these

brain changes could be happening in parallel with insomnia severity without being directly

caused by it.

The main strengths of this study are the well-characterized participants as cognitively

healthy, older individuals. It is possible that cognitively healthy older adults with insomnia

could be at greater risk for developing a neurodegenerative disease. However, we did not limit

our cohort to those with high levels of insomnia. Evaluating not only individuals meeting crite-

ria for insomnia disorder but also patients with slight insomnia symptoms, provides awareness

of the effect the entire clinical spectrum of insomnia has on brain health. An important limita-

tion of the present study is that the findings are restricted to subjective measures of insomnia

as opposed to objective measures. Since BA identifies individuals at high risk for sleep apnea

but does not confirm its actual presence, the contribution of sleep apnea to brain changes

might be underestimated. Therefore, further studies assessing the presence of sleep apnea with

objective (at-home or in-lab) diagnostic methods are needed. Additionally, individuals in our

sample are cognitively intact but we do not have measures of neuropathological burden to

detect silent underlying neurodegenerative changes. In this line, age-related changes such as

vascular damage or the dysfunction of other subcortical nuclei within the brainstem, not evalu-

ated in our study, could potentially modulate the observed relationship between cortical thick-

ness and insomnia. A further limitation of the study is that the CTh correlations did not

survive the correction for multiple comparisons. Although that was expected due to the small

effect size of insomnia severity on CTh in an otherwise healthy population it could hamper the

interpretation of the data. Further studies evaluating the relationship between insomnia and

structural brain changes are warranted.

Conclusions

In conclusion, certain cortical areas (e.g, orbitofrontal, insula, temporo-parietal junction) and

subcortical areas (i.e, putamen) are associated to the perception of higher insomnia severity,

even in those individuals with mild insomnia symptoms and considering the added effect of

insomnia-related comorbidities as depressive symptoms and sleep apnea.

Further longitudinal studies are needed to clarify how these insomnia-related brain changes

in healthy subjects align with an increased risk of dementia.

Supporting information

S1 Fig. Cortical thickness differences between insomnia and non-insomnia groups,

adjusted by Geriatric Depression Scale. Cortical thickness t-test comparison between insom-

nia (ISI�8) and non-insomnia (ISI�7) groups (n = 119) adjusting by age, sex, handedness,

scan type and Geriatric Depression Scale. Only regions with P-value < .001 (uncorrected

FWE) are shown. T-values are expressed as a color scale.

(TIF)
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S2 Fig. Putamen volumes between insomnia and non-insomnia groups. Box plot showing

the mean of the normalized volumes of right and left putamen in insomnia (ISI�8) and non-

insomnia (ISI�7) subjects (n = 120). �Significance p<0.05.

(TIF)
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47. Chen MC, Chiang WY, Yugay T, Patxot M, Özçivit İB, Hu K, et al. Anterior Insula Regulates Multiscale

Temporal Organization of Sleep and Wake Activity. J Biol Rhythms. 2016 Apr; 31(2):182–93. https://

doi.org/10.1177/0748730415627035 PMID: 26825619 Epub 2016 Jan 29.

PLOS ONE Specific grey matter regions are associated with insomnia severity

PLOS ONE | https://doi.org/10.1371/journal.pone.0252076 May 26, 2021 14 / 15

http://www.ncbi.nlm.nih.gov/pubmed/18788655
https://doi.org/10.1016/j.neuropsychologia.2017.09.021
http://www.ncbi.nlm.nih.gov/pubmed/28951164
https://doi.org/10.3389/fpsyt.2018.00651
http://www.ncbi.nlm.nih.gov/pubmed/30564152
https://doi.org/10.3389/fpsyt.2018.00266
https://doi.org/10.3389/fpsyt.2018.00266
http://www.ncbi.nlm.nih.gov/pubmed/29997530
https://doi.org/10.1016/j.neuroimage.2017.05.027
http://www.ncbi.nlm.nih.gov/pubmed/28526620
https://doi.org/10.1152/physiolgenomics.00275.2006
https://doi.org/10.1152/physiolgenomics.00275.2006
http://www.ncbi.nlm.nih.gov/pubmed/17698924
https://doi.org/10.1093/sleep/33.9.1147
http://www.ncbi.nlm.nih.gov/pubmed/20857860
https://doi.org/10.1016/s0896-6273%2803%2900814-6
http://www.ncbi.nlm.nih.gov/pubmed/14715133
https://doi.org/10.1016/s1364-6613%2802%2901992-7
http://www.ncbi.nlm.nih.gov/pubmed/12457899
https://doi.org/10.3389/fnagi.2020.00069
http://www.ncbi.nlm.nih.gov/pubmed/32457592
https://doi.org/10.1016/bs.apcsb.2019.03.001
http://www.ncbi.nlm.nih.gov/pubmed/31997771
https://doi.org/10.1073/pnas.0807933106
http://www.ncbi.nlm.nih.gov/pubmed/19164756
https://doi.org/10.1007/s11682-018-9844-x
https://doi.org/10.1007/s11682-018-9844-x
http://www.ncbi.nlm.nih.gov/pubmed/29411240
https://doi.org/10.3389/fnagi.2018.00167
https://doi.org/10.3389/fnagi.2018.00167
http://www.ncbi.nlm.nih.gov/pubmed/29922151
https://doi.org/10.5665/sleep.2794
http://www.ncbi.nlm.nih.gov/pubmed/23814335
https://doi.org/10.1016/j.neuropsychologia.2017.01.001
https://doi.org/10.1016/j.neuropsychologia.2017.01.001
http://www.ncbi.nlm.nih.gov/pubmed/28057458
https://doi.org/10.1002/hbm.23739
http://www.ncbi.nlm.nih.gov/pubmed/28745016
https://doi.org/10.1097/WNR.0000000000001347
https://doi.org/10.1097/WNR.0000000000001347
http://www.ncbi.nlm.nih.gov/pubmed/31609826
https://doi.org/10.3389/fneur.2018.00588
https://doi.org/10.3389/fneur.2018.00588
http://www.ncbi.nlm.nih.gov/pubmed/30116216
https://doi.org/10.1177/0748730415627035
https://doi.org/10.1177/0748730415627035
http://www.ncbi.nlm.nih.gov/pubmed/26825619
https://doi.org/10.1371/journal.pone.0252076


48. Qiu MH, Vetrivelan R, Fuller PM, Lu J. Basal ganglia control of sleep-wake behavior and cortical activa-

tion. Eur J Neurosci. 2010 Feb; 31(3):499–507. https://doi.org/10.1111/j.1460-9568.2009.07062.x

PMID: 20105243 Epub 2010 Jan 25.

49. Lazarus M, Huang ZL, Lu J, Urade Y, Chen JF. How do the basal ganglia regulate sleep-wake behav-

ior?. Trends Neurosci. 2012; 35(12):723–732. https://doi.org/10.1016/j.tins.2012.07.001 PMID:

22858523

50. Arsalidou M, Duerden EG, Taylor MJ. The centre of the brain: topographical model of motor, cognitive,

affective, and somatosensory functions of the basal ganglia. Hum Brain Mapp. 2013 Nov; 34(11):3031–

54. https://doi.org/10.1002/hbm.22124 PMID: 22711692 Epub 2012 Jun 19.

51. Li M, Wang R, Zhao M, et al. Abnormalities of thalamus volume and resting state functional connectivity

in primary insomnia patients. Brain Imaging Behav. 2019; 13(5):1193-1201. https://doi.org/10.1007/

s11682-018-9932-y PMID: 30091019

52. Lu FM, Liu CH, Lu SL, Tang LR, Tie CL, Zhang J, et al. Disrupted Topology of Frontostriatal Circuits Is

Linked to the Severity of Insomnia. Front Neurosci. 2017 Apr 19; 11:214. https://doi.org/10.3389/fnins.

2017.00214 PMID: 28469552

53. Zhou F, Zhu Y, Zhu Y, Huang M, Jiang J, He L, et al. Altered long- and short-range functional connectiv-

ity density associated with poor sleep quality in patients with chronic insomnia disorder: A resting-state

fMRI study. Brain Behav. 2020 Nov; 10(11):e01844. https://doi.org/10.1002/brb3.1844 PMID:

32935924 Epub 2020 Sep 16.

54. Zou G, Li Y, Liu J, Zhou S, Xu J, Qin L, et al. Altered thalamic connectivity in insomnia disorder during

wakefulness and sleep. Hum Brain Mapp. 2021 Jan; 42(1):259–270. https://doi.org/10.1002/hbm.

25221 PMID: 33048406 Epub 2020 Oct 13.

55. Fu H, Hardy J, Duff KE. Selective vulnerability in neurodegenerative diseases. Nat Neurosci. 2018;

21(10):1350–1358. https://doi.org/10.1038/s41593-018-0221-2 PMID: 30250262

56. Brück A, Kurki T, Kaasinen V, Vahlberg T, Rinne JO. Hippocampal and prefrontal atrophy in patients

with early non-demented Parkinson’s disease is related to cognitive impairment. J Neurol Neurosurg

Psychiatry. 2004; 75(10):1467–1469. https://doi.org/10.1136/jnnp.2003.031237 PMID: 15377698

57. Harrison TM, La Joie R, Maass A, Baker SL, Swinnerton K, Fenton L, et al. Longitudinal tau accumula-

tion and atrophy in aging and alzheimer disease. Ann Neurol. 2019 Feb; 85(2):229–240. https://doi.org/

10.1002/ana.25406 PMID: 30597624 Epub 2019 Jan 17.

58. Iranzo A, Fairfoul G, Ayudhaya ACN, Serradell M, Gelpi E, Vilaseca I, et al. Detection of α-synuclein in

CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: a longitudinal

observational study. Lancet Neurol. 2021 Mar; 20(3):203–212. https://doi.org/10.1016/S1474-4422(20)

30449-X PMID: 33609478.

59. Leng Y, Blackwell T, Stone KL, Hoang TD, Redline S, Yaffe K. Periodic Limb Movements in Sleep are

Associated with Greater Cognitive Decline in Older Men without Dementia. Sleep. 2016 Oct 1; 39

(10):1807–1810. https://doi.org/10.5665/sleep.6158 PMID: 27568800

PLOS ONE Specific grey matter regions are associated with insomnia severity

PLOS ONE | https://doi.org/10.1371/journal.pone.0252076 May 26, 2021 15 / 15

https://doi.org/10.1111/j.1460-9568.2009.07062.x
http://www.ncbi.nlm.nih.gov/pubmed/20105243
https://doi.org/10.1016/j.tins.2012.07.001
http://www.ncbi.nlm.nih.gov/pubmed/22858523
https://doi.org/10.1002/hbm.22124
http://www.ncbi.nlm.nih.gov/pubmed/22711692
https://doi.org/10.1007/s11682-018-9932-y
https://doi.org/10.1007/s11682-018-9932-y
http://www.ncbi.nlm.nih.gov/pubmed/30091019
https://doi.org/10.3389/fnins.2017.00214
https://doi.org/10.3389/fnins.2017.00214
http://www.ncbi.nlm.nih.gov/pubmed/28469552
https://doi.org/10.1002/brb3.1844
http://www.ncbi.nlm.nih.gov/pubmed/32935924
https://doi.org/10.1002/hbm.25221
https://doi.org/10.1002/hbm.25221
http://www.ncbi.nlm.nih.gov/pubmed/33048406
https://doi.org/10.1038/s41593-018-0221-2
http://www.ncbi.nlm.nih.gov/pubmed/30250262
https://doi.org/10.1136/jnnp.2003.031237
http://www.ncbi.nlm.nih.gov/pubmed/15377698
https://doi.org/10.1002/ana.25406
https://doi.org/10.1002/ana.25406
http://www.ncbi.nlm.nih.gov/pubmed/30597624
https://doi.org/10.1016/S1474-4422%2820%2930449-X
https://doi.org/10.1016/S1474-4422%2820%2930449-X
http://www.ncbi.nlm.nih.gov/pubmed/33609478
https://doi.org/10.5665/sleep.6158
http://www.ncbi.nlm.nih.gov/pubmed/27568800
https://doi.org/10.1371/journal.pone.0252076



