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ABSTRACT OF THE DISSERTATION

Penalized Bayesian Model Selection and Prediction for
Gene Regulation in Higher Organisms

by

Matthew David Levinson

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2013

Professor Qing Zhou, Chair

Penalization and sparse model selection have become topics of intense research in-

terest in the era of big data, newly available through ubiquitous computing power,

advancing data collection technologies, and internet connectivity. In genomics, chro-

matin immunoprecipitation, microarrays, and next generation sequencing have made

available a wealth of information which continues to accumulate and which we have

only begun to understand and fully utilize. We propose two penalized Bayesian tech-

niques, one to select a sparse set of DNA binding factors (DBFs) from a large library

with enriched binding to the genome in a set of regions of interest and to predict

joint binding landscapes for the selected DBFs, and another to predict gene expres-

sion from joint binding landscapes.

Cellular processes are controlled, directly or indirectly, by the binding of hun-

dreds of different DBFs to the genome. One key to deeper understanding of the cell

is discovering where, when, and how strongly these DBFs bind to the DNA sequence.

Direct measurement of DBF binding sites (e.g. through ChIP-Chip or ChIP-Seq ex-

periments) is expensive, noisy, and not available for every DBF in every cell type.

Naive and most existing computational approaches to detecting which DBFs bind

in a set of genomic regions of interest often perform poorly, due to the high false

discovery rates and restrictive requirements for prior knowledge.
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We develop a penalized iterative sampling Bayesian method for identifying DBFs

active in the considered regions and predicting a joint probabilistic binding land-

scape. Utilizing a sparsity penalization, SparScape is able to select a small subset

of DBFs with enriched binding sites in a set of DNA sequences from a much larger

candidate set. This substantially reduces the false positives in prediction of binding

sites. Analysis of ChIP-Seq data in mouse embryonic stem cells (ESCs) and simu-

lated data show that SparScape dramatically outperforms the naive motif scanning

method and the comparable computational approaches in terms of DBF identifica-

tion and binding site prediction.

We also propose an extension of Bayesian treed regression to predict gene expres-

sion from joint binding landscapes. Rather than sampling from the space of possi-

ble partitioning trees, we follow a broad optimization approach, forking the growing

partitioning tree at each possible split if multiple possible splits yield similar results

in the given objective function. After growing the tree, we select variables at each leaf

node of each forked partitioning tree, then take the union of these selected variables

and the splitting variables at each internal node and re-grow the partitioning tree

considering only the selected variables.
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CHAPTER 1

Introduction

1.1 Motivation and Gene Regulation

A key to the control of many complex processes in the cell is the binding of vari-

ous factors to the DNA sequence. In particular we are interested here gene regula-

tion. Genes are regulated at various points along the line from transcription to final

degradation of a protein or RNA. In all cases, the regulation of a gene begins with

the promotion or inhibition of transcription. While other factors, such as environ-

mental conditions and biochemical modifications of the DNA or of histones, also

contribute directly to transcriptional regulation, a key factor in this process is the set

of DNA binding factors (DBFs). These DBFs are proteins or RNAs such as transcrip-

tion factors (TFs), nucleosomes (complexes formed by histones), or microRNAs that

bind directly to the genome, most with some level of sequence specificity or prefer-

ence. A key to understanding gene regulation is determining where these DBFs bind

in the genome in a given cell type and set of conditions.

Depending on the combinatorial logic of binding and regulation, the same DBF

can have an inhibitory impact in some cases and a promotional impact in others

[OZW09]. A full understanding of the regulatory effects of DBF binding requires an

inclusive understanding of the joint binding of all DBFs with non-negligible levels of

binding in the genomic regions of interest. It is also well known that some DBFs are

more sequence specific than others and bind more strongly to preferred sequences,

while others are less sequence specific and bind less strongly to a larger collection
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of possible binding sequences. We are thus motivated to develop a new method to

achieve better prediction of this joint binding. A joint estimation or prediction of

binding sites and binding strengths for all DBFs over genomic regions of interest is

called a binding landscape. More formally, we define a binding landscape as the

base pair (bp) specific probability of binding for each of a library of DBFs over a set

of genomic regions.

Once we have a prediction or estimate of the binding landscape we are further in-

terested in utilizing this information to predict mRNA expression. Because the same

DBF can have different effects in different joint binding configurations, simple meth-

ods that estimate a single, universal effect of binding by some DBF are inadequate.

So we further develop a method for partitioning genes into sets where the binding

for each DBF has a similar regulatory impact over all genes in the set. This algorithm

can be used with binding landscapes predicted by a landscape prediction algorithm

such as ours. It can also be used with a landscape estimated experimentally through

chromatin immunoprecipitation followed by use of microarray or sequencing tech-

nologies (ChIP-Chip and ChIP-Seq, respectively).

1.2 Existing Methods

1.2.1 Binding Landscape Prediction

The first requirement for statistically predicting DBF binding is some model of DNA

sequences preferred by that DBF, known as a binding motif. The ubiquitous model

for these motifs that we also employ is the position-specific weight matrix (PWM). A

PWM describes a product-multinomial model for a motif w base pairs long, where

the probability of DBF binding for a sequence is the product of independent 4-state

multinomial models that give the probability for each of the four nucleic acids at

each of the w positions in the motif. Much research has been done in recent decades

to find the binding motifs for many DBFs, most especially TFs [HS99, HKB02, GL03].
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In this work we draw motif models from TRANSFAC [MFG03], one of the primary

databases that aggregates these PWM estimates from the literature.

Armed with a library of estimated PWMs, and given that a satisfactory view of

transcriptional regulation requires a joint binding landscape, it is tempting to em-

ploy the simplest approach of building a joint binding landscape by scanning the

genome or genomic regions of interest with each PWM separately and aggregating

these scans. Unfortunately, considering DBFs one at a time leads to many false posi-

tives, both in determining which DBFs have significantly enriched binding sites in a

set of genomic regions and in predicting the exact locations of binding sites. This re-

sults in a limited and misleading view of the processes controlled by these DBFs. This

has motivated recent work on developing more sophisticated methods for jointly

predicting binding landscapes for a set of DBFs.

Currently, only a few algorithms have been developed to predict joint binding

landscapes at single base pair (bp) resolution for all DBFs. [WH09] develop the soft-

ware COMPETE for use genome wide in yeast. They formulate the problem as a

Boltzmann chain, a generalization of a hidden Markov model (HMM) that allows

transition and emission weights to be an non-negative number. This requires a silent

central state and results in a model quite similar to the portion of our model that

deals with the sequence likelihood (see Chapter ??). In principle this formulation

would allow for estimation of DBF concentrations. They found, like we also found in

our formulation, that this learning can result in over-fitting and poor results. Instead

of counteracting this by employing penalization as we do, they simply set each con-

centration to the Kd of that DBF’s PWM (see [GN05]) multiplied by a global scalar.

They choose this scalar over a small set of values by choosing the value that maxi-

mizes the correlation between the nucleosome occupancy in the predicted binding

landscape and the experimental occupancy from [KMF09]. We find quite poor re-

sults in applying COMPETE to data relevant to the questions we investigate.

[HCH09] developed STAP, designed primarily to interrogate ChIP-Seq or ChIP-
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Chip data for one TF and to choose co-factors one at a time by choosing co-factors

that increase the correlation between the predicted two factor landscape and the

ChIP-Seq counts for the primary TF. This is the only other method that jointly esti-

mates factor concentrations, something made possible by the consideration of only

a single pair of TFs at a time. They investigated the same ChIP-Seq data we explore,

and achieved promising results, including and some agreement with our own. But

like with single DBF raw score scanning, we have found with our algorithm that false

positives in co-factor prediction are significantly increased when considering only

one DBF at a time.

A number of other groups have developed binding landscape prediction algo-

rithms for use in higher eukaryotes, but they have all required a small, pre-selected

set of DBFs and either forgo a concentration parameter or require one to be given as

input [HSB10, KLS11, LYL09, RLS09]. [HCH09] optimizes the model parameters by

maximizing correlation between predictions and ChIP data. [RLS09] mostly explore

the theoretical implications of binding on gene expression through examination of

stylized, artificial data. Only [KLS11] also utilized ChIP-Seq data as a source of direct

information aside from their implicit use in DBF motif discovery, and then only for

the nucleosome.

There has also been a fair amount of work developing approachs that employ

different types of data or quite different methodological formulations. [AEP11] in-

corporates multiple sequences and phylogenetic information while still basing the

bp-by-bp score on a PWM ratio as we do. The model is quite sophisticated with a

number of modeling elements and many free parameters introduced to incorporate

the multiple aligned sequences. Including multiple species can add valuable infor-

mation, but the results they report are mostly from running their algorithm a single

DBF at a time only on a set of the 900 regions most highly enriched for that DBF in

ChIP-Seq experiments. They report a single result predicting a binding landscape

with multiple DBFs simultaneously, and then only on 76 carefully chosen regions
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with 5 DBFs in the fly.

A very different approach is taken by [MRA12], who integrate four types of input

data. They predicted regulatory network edges using two methods. First they used a

sum rule across six data type specific networks they built, pruning predicted edges to

include only the top-scoring 2%. Second they used a logistic regression with the edge

score from each of their six networks as the predictors and the existence or absence

of an edge in a small validated network as the dependent variable. Comparison of

the regulatory edges implied by our results with the networks predicted by their and

other similar work is promising future work.

Similarly, [EPS10] predict general binding likelihood for a DBF in a set of regions

of interest with logistic regression. They first estimate the general likelihood of bind-

ing in a region using similar non-sequence specific information to [MRA12], such

as conservation, distance to a transcription start site (TSS), and sequence conser-

vation. Then they assess the overall strength binding motif scores across the region

and combine these two steps to make a general prediction of the likelihood of bind-

ing by a given DBF in a particular region of interest. They do not provide bp specific

binding predictions.

Other groups have also worked on combining different sources of information

to predict DBF binding. [RKK10] concentrated on the effects of histone acetylation

(HAc), combining HAc information with sequence specific motif scores. [WRW10]

also developed a method to combine histone modification data with motif scores.

While these methods utilize information we do not, they do not directly utilize

the most direct information available on DNA binding, ChIP-Seq and ChIP-chip ex-

periment results. Most use it only as a source of information for validation. They are

also not designed for our motivating problem, which is to accurately select a small

set of DBFs bound to a set of genomic regions of interest from a complete candidate

library. In the next chapter we develop a method that performs quite well investigat-

ing this question.

5



1.2.2 Regression Trees

Most famously explored early on by [BFS84], there has been extensive study of classi-

fication and regression trees. The original, stilly widely used algorithm, named CART,

was a non-parametric model to partition the space of a set of predictor variables

into regions with relatively homongeneous responses through recursive partition-

ing. The idea was to forgo parameter estimation by simply predicing the response at

each leaf node as the mean response of the observations in the partition of the pre-

dictor variables assigned to that leaf. This is accomplished by building a partitioning

tree where at each internal node one has a splitting rule where the observations re-

maining at that node are split into two or more subsets. This continues until some

stopping rule is reached. This is either considered the final partition or the tree is

then pruned back to reduce the risk of over-fitting, shrink the tree, and increase in-

terpretability. Many developments have been made since this first basic method was

proposed, including using some form of regression both to predict the response at

each leaf node and to split the observations at internal nodes. In our work we pro-

pose some extensions and alternate optimizations of the regression tree approach

as applied to the prediction of gene expression from the expression of DBFs and

from DBF binding data. In the following sub-sections we discuss other attempts to

accomplish this prediction and general methodological developments pertinent to

our work.

1.2.3 Regression Trees and Partitioning

A number of groups have developed sophisticated methodologies for building re-

gression trees with parametric prediction of the response at each leaf, some with

extensive theoretical frameworks. Most pertinent to our work are the methods devel-

oped by Loh and Hornik, Hothorn, and Zeileis [KL01, Loh02, HHZ12, ZH07, ZHH08].

Hornik, Hothorn, and Zeileis derive that the distribution of the decorrelated score
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function for some process over an ordered variable converges to standard Brownian

motion under the functional central limit theorem.

In a regression tree framework where we wish to assess possible splits in the data

at an internal node, the score function is the least squares error between the pre-

dicted value and the response. Intuitively, if the parameter is stable across the or-

dering of some predictor variable, then we expect this error (residual) to fluctuate

around its expected value of zero. If the parameters are stable across the range of

the ordered variable, these residuals follow standard Brownian motion across that

range, and they derive tests for parameter stability across the range of the ordered

variable based on this fact. In their framework, applied to our problem of interest, at

each internal node one uses their test for parameter stability across each predictor

variable and chooses to split the observations at that internal node at the variable

and cut point that gives the lowest p-value in their test. If no p-value is below some

pre-determined threshold (α− level), no further splits are made.

When considering numerical variables that we are interested in, Loh [KL01, Loh02]

instead uses various Ξ− squared tests on the counts of signs of the residuals at each

internal node grouped by quartiles of some ordered numerical variable to determine

parameter instability. A significant portion of their motivation is that in the case

where categorical and numeric variables are considered, in the independent case,

the numerical variables are much more likely to falsely split simply because of the

much larger number of possible splits. This approach also has the advantage that

they develop a number of explicit tests for parameter instability over the joint space

of two variables.

We seek to develop beyond these approaches for a number of reasons. First, we

prefer a Bayesian approach which allows exploration of the parameter space be-

yond a greedy approach. The aforementioned approaches expend significant en-

ergy showing the unbiasedness (or near unbiasedness) of their approaches. This is

a classic element of the debate between Bayesian and classical approaches, and we
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come down on the Bayesian side in this debate, believing that unbiasedness is not

itself an end goald and should not be pursued over predictive accuracy. Second,

while these tests are attractive because of their theoretical properties, we prefer to

spit nodes based on predictive accuracy, not theoretical properties or goodness-of-

fit with asymptotic distributions. Third, in a genomics environment with a very large

number of predictor variables, it is desireable to include some measure of variable

selection in the methodology, as including extraneous variables with no influence

on the outcome which we want to predict can only degrade our predictions and the

selection of variables itself can yield interesting insights.

Our work is most directly a development of the work on Bayesian treed models

proposed in [CGM00, CGM01]. In that work, Chipman et al. propose a Bayesian for-

mulation of the regression tree model where partitions at the internal regression tree

nodes and prediction of response(s) at the leaf nodes are based on a Bayesian formu-

lation of ordinary least squares (OLS) regression. They devise an MCMC algorithm

for sampling from the space of possible trees based on a set of options for proposing

an alteration to the current tree, adding leaf nodes, deleting any node, or swapping

splitting rules between nodes. The demonstration of their methods are on data sets

with a small number of variables and observations, and they are not interested in

variable selection. Even with such smaller data sets, their sampling method tends to

get trapped in possible local modes. Their solution is running a number of restarts

of their MCMC algorithm. This is an unsatisfying solution with much larger data sets

where the number of local modes is likely to be very large and all of these modes are

unlikely to be explored through a computationally feasible number of restarts.

1.2.3.1 Predicting Gene Expression

Our problem of interest, predicting gene expression from the wealth of modernly

available genomic information, has also attracted a wide array of interest. These

include methods predicting gene expression only from other gene expression and
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from a combination of gene expression and DBF binding data. A number of groups

have used some score to combine both the DBF binding strength, usually measured

through direct ChIP experiments, and DBF expression [TLV11, CXR08], or just DBF

expression [GFB04] to predict the overall regulatory effect of DBFs through a regres-

sion framework. Others have used a regression tree framework to allow for different

combinatorial effects of regulators but have only used a classic CART framework try-

ing to build homogeneous responses at leaf nodes using either DBF expression and

binding [RZ06] or just DBF binding [PLL04]. Ruan et al. extended their algorithm to

do prediction using ensemble decision trees, but limited themselves to using DBF

binding as predictors [RDP09]. A partial step towards incorporating the fact that

DBFs may activate or repress in different settings was taken by [XV05] who used DBF

scores in gene promoters in a regression setting to predict the absolute value of gene

expression relative to baseline over a vector of responses in various conditions.

Another popular approach has been to use some sort of clustering to group genes

into regulatory modules. [SYK03] clustered gene expression values to create initial

modules, then refined these modules by incorporating promoter DBF motif scores

and predicting gene expression from motif and cluster information interatively. [BGL03]

also developed an iterative clustering algorithm using ChIP data and DBF expression

as predictors of target gene expression.

Other groups have takEn alternate methodological approaches such as SVD [YTC02],

Bayesian factor analysis [SJ06], and discretizing regulatory effect into up-regulated

and not-up-regulated and predicting up or down regulation using boosting [MKW04].

Perhaps most similar to our approach is that of [xWD04], who combine gene expres-

sion and ChIP data through a partitioning EM algorithm to partition genes into reg-

ulatory modules via a Bayesian network.

While many of these methods attain adequate prediction and have allowed bi-

ological insights, we believe that a few modeling decisions can be made to better

capture biological phenomena of interest. It is known that some DBFs have a negli-
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gible measurable regulatory impact. This suggests that selecting out DBFs that have

no direct or indirect (through shift in the combinatorial regulatory code and the reg-

ulatory impact of other DBFs) impact is a worthy goal. Directly modeling the effects

of DBF binding and expression in the leaf nodes independently can also yield in-

sights into which modules experience differing effects of the same DBF, and which

do not. Doing this through a regression tree framework instead of a clustering frame-

work allows for the same DBF to have different regulatory effects on different target

genes even if those genes tend to cluster together in overall expression level. We also

believe that a Bayesian treed regression framework with an optimization approach

compromising between a fully greedy approach and a sampling approach is the best

fit for the large data genomics problems we are interested in.
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CHAPTER 2

SparScape: A Penalized Bayesian Approach to Predicting

Sparse Protein-DNA Binding Landscapes

2.1 Goals and Data

Due to computational limits, it is impossible to predict a joint, bp specific bind-

ing landscape for all DBFs with unknown concentrations over the entire genome in

higher eukaryotes with large genomes and many DBFs. We are interested in relax-

ing at least one of these constraints. We chose to allow relaxation of the cap on the

number of DBFs. We are thus limited to exploring a subset of the genome. One mo-

tivating type of genomic subset is a set of regions known to be co-bound by a small

group of DBFs based on ChIP-Seq data. In such a genomic subset, we do not expect

most DBFs to have a significant number of binding sites. Most DBF binding sites are

relatively short (6–15 bps), and non-functional but fairly strong potential sites (false

positives) appear throughout the genome. Thus, the false positive binding sites in

a predicted binding landscape can be substantially reduced if only the DBFs with

significantly enriched binding in the regions of interest are considered. However, it

is limiting to require the complete set of DBFs enriched in the considered regions

to be known a priori as is done in the existing work on similar questions in higher

eukaryotes.

We were also interested in utilizing more information than is used both directly

and flexibly in existing single base pair binding landscape prediction algorithms. In

existing work, ChIP-Seq is used only implicitly in that ChIP experiments were used to
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gather the date with which PWMs were estimated, used as gold standard information

with which correlation should be maximized in optimizing the model parameters, or

used only for nucleosome binding and then only to construct binding priors for the

TFs considered. We believed that ChIP data should be utilized directly and flexibly

for any DBFs for which it is available and formulated our model to allow for this.

With these goals in mind we developed a method that offers a principled way to

select an (often small) subset of DBFs active in the regions of interest and to reduce

the false positive signal in the predicted probabilistic binding landscape, eliminat-

ing the need for prior knowledge of the set of enriched DBFs or DBF concentrations.

In the motivating genomic subset, our method allows for the discovery of unknown

co-factors that commonly bind near the DBFs with ChIP data (ChIP DBFs). The pre-

dicted joint binding landscape provides a global and quantitive view of the binding

pattern among the DBFs. This is an initial step to the study of combinatorial regula-

tory logic among multiple DBFs.

The input data for this method are therefore quite flexible. We require the se-

quence of the genomic regions of interest. This sequence could be the whole genome

in organisms with smaller genomes, though our selection of DBFs from an input li-

brary is not designed for this sort of data, so should perhaps be skipped when exam-

ining entire genomes. The second requirement is the library of candidate DBFs. A

number of databases that contain collections of PWMs estimated from published re-

search are available, such as JASPAR and TRANSFAC, the database we employ [SAE04,

MFG03].

A third optional data input is a set of binding windows deemed significant from a

ChIP-Seq or ChIP-Chip experiment. These may be included for any of the candidate

DBFs or the nucleosome, but are not required. The final input data is not utilized in

the model itself, but we have found it useful in a preparatory step. Our motivating

problem is the discovery of co-factors for a set of DBFs of interest with ChIP data. To

be of interest these ChIP data must be from the same cell type in the same environ-
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mental conditions. If gene expression data is available from the same cell type and

environment, we have found it useful to prune the candidate library to contain only

those DBFs with non-negligible expression in this cell type and envrionment.

2.2 Methods

2.2.1 Overview of SparScape

Our method, SparScape, proceeds in two stages. First, from a candidate set of ar-

bitrary size we select the DBFs with significant binding in the considered regions.

Second, we do a refined prediction of the binding landscape considering only the

selected DBFs. Figure 2.1 gives a schematic illustration of the method.

Genomic Regions

Candidate Motifs

ChIP Peaks

SparScape Select
DBFsInput

Data

Output
  Binding
    Landscape

Figure 2.1: SparScape schematic. SparScape takes as input a set of genomic regions, a candidate li-

brary of DBFs with previously estimated binding motifs, and ChIP-Seq peak information where avail-

able. Using a penalized iterative sampling procedure, SparScape selects a subset of DBFs from the

candidate library by estimating some of the local concentrations as exactly zero, such as τ50 above.

SparScape then predicts a probabilistic binding landscape for the selected DBFs.

SparScape takes as input the previously estimated binding motifs for a set of can-
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didate DBFs, the sequence of a set of genomic regions of interest, and genome-wide

binding data (e.g. ChIP-Seq) for any of the candidate DBFs if available. The set of

regions could be the whole genome when examining small genomes. We consider

nucleosome binding because nucleosome occupancy blocks the binding of many

other DBFs, and recent studies have demonstrated the utility of nucleosome models

in protein binding landscapes [KMF09, RLS09, WH09]. We model nucleosome bind-

ing preferences by a position-specific Markov model proposed by [KMF09]. The 10

base pairs at the left and right ends of the 147 base pair long putative binding site are

modeled as uniform in order not to capture any biasing effects of the procedure used

to cleave the DNA bound by a nucleosome. The middle 127 base pairs are modeled

with a position specific Markov model, where a separate 1st order Markov probabil-

ity (the probability of a base appearing at that position in the putative binding site

given the base in the previous position) is estimated for each of sites 11 through 137

in the bound sequence from the set of nucleosome bound sites detected in that pa-

per. The binding of non-nucleosome DBFs is modeled by position-specific weight

matrices (PWMs). A PWM describes a product-multinomial model, where each po-

sition in the motif is modeled with an independent multinomial model over the four

nucleic acids that could appear at that position. The probability of a sequence rep-

resenting a binding site is the product of the multinomail probabilities at each posi-

tion. The background is modeled by a 5th-order Markov chain estimated from a large

set of sampled or simulated regions similar to the regions of interest.

We model ChIP data as a set of binary windows, where a window of bps around

the center of a ChIP peak is called a ChIP window for that DBF. In this work, we use

ChIP windows of 50 bps on either side of a ChIP-Seq peak. Our method estimates

the probability that a binding site for a DBF with ChIP data is within one of its own

ChIP windows. This is in the same spirit as the use of DNase I sensitivity measures

to create an informative prior distribution for TF binding [KLS11, NGH07], though

SparScape can exploit binding data for any of the candidate DBFs or the nucleo-
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some. Moreover, ChIP windows are included as part of a generative probabilistic

model with parameters related to the accuracy and sensitivity of ChIP peaks, result-

ing in a more principled and flexible utilization of ChIP data.

Estimating concentrations is a unique feature of SparScape. This makes it im-

possible to exactly calculate the binding landscape through forward-backward sum-

mation. Instead we explore the posterior distribution through a penalized iterative

sampling approach, simultaneously selecting DBFs, estimating model parameters,

and predicting the binding landscape. Jointly estimating the concentrations intro-

duces a risk of excessive false positives, especially for DBFs with less informative

motifs where we expect non-functional matches to occur frequently in the genome.

To avoid this we employ a penalty on the predicted site counts in each iteration,

penalizing in proportion to the expected number of false positive sites estimated

with control regions given the current parameter values. Intuitively, this removes

the expected false positive sites from the sampled sites. The level of penalization is

controlled by a tuning parameter, chosen in the first stage through ten-fold cross-

validation. With a proper level of penalization, concentrations of many DBFs will

be estimated as exactly zero, achieving the goal of DBF selection. The final binding

landscape, considering only the selected DBFs, is predicted in the second stage.

When selection and prediction are completed, SparScape reports a binding land-

scape, which gives the probability of binding at each bp by each selected DBF, and

the estimated parameter values, including the local concentrations for the DBFs

(local to the regions considered). It also reports the binding configuration and the

parameter values sampled at each iteration, allowing, for example, construction of

credible intervals for the parameters and examination of high-order interactions be-

tween binding at different sites.
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2.2.2 The SparScape Model

Consider the sequence S of a set of genomic regions with total length |S|, and the

set of ChIP windows D in these regions for all ChIP DBFs. Let K be the number of

candidate DBFs, and Θ denote the set of binding model parameters for all K DBFs,

including the nucleosome, and the background model. Under the standard steric

hindrance contraint, we define a binding configuration as a partition of the sequence

S into unbound background sites and binding sites for the K DBFs. Denote a con-

figuration by A = (a1, a2, . . . , a|A|), where ai is the index of one of the K +1 models;

it represents a single unbound site covering L0 = 1 bp when ai = 0, a nucleosome

covering L1 = 147 bps when ai = 1, and a non-nucleosome DBF from the candidate

library covering Lk bps when ai = k ∈ {2, . . . ,K }, where Lk is the length of the motif

for the kth DBF. Figure 2.2(a) illustrates an example configuration.

Letφ be the probability that a binding site for a ChIP DBF is within one of its ChIP

windows and γ be the probability that an unbound bp is not covered by any of the

ChIP windows. Write Φ= (φ,γ). Denote by T = (τ0, . . . ,τK ) the probabilities of initi-

ating a background site (k = 0) and other DBF sites (k = 1, . . . ,K ) at a given location(∑
k τk = 1,τk ≥ 0

)
. This can be thought of as a vector of local concentrations.

We wish to jointly estimate the binding configuration A, the concentrations T ,

and the ChIP parameters Φ. Given binding configuration A, we consider the se-

quence S and the ChIP windows D as independent sources of information. We fur-

ther assume independent priors on T and Φ. Under these model assumptions, the

joint posterior distribution is

P (Φ,T, A|S,D,Θ) ∝ P (S,D, A|Θ,Φ,T )π(Φ,T )

=P (S|A,Θ)P (D|A,Φ)P (A|T )π(Φ)π(T ), (2.1)

where P (S,D, A |Θ,Φ,T ) is the complete-data likelihood, regarding A as missing data.

The posterior distribution of A gives the predicted binding landscape. Our primary

goal is to select the DBFs with motif models in Θ that have a significant number
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Figure 2.2: Elements of the SparScape model. (a) Vector A for a particular binding configuration. (b)

Procedure for calculating the net site counts and penalties. (c) Terms contributed to the likelihood

by unbound bps and binding of DBFs in different types of windows. The triangle and circle represent

binding sites for two ChIP DBFs. The vertical bar represents an unbound site or a binding site for a

DBF with no ChIP data.

of binding sites in S and predict the likely binding configurations. We achieve this

by assigning a statistical weight based on Eq. (2.1) to every binding configuration

and searching the space of possible configurations through Monte Carlo sampling.

Note that different DBFs can bind to the same bps in different configurations, and

thus, our sampling approach allows relatively large posterior binding probabilities

for multiple DBFs for the same bp if BSs do overlap.

The first part of the statistical weight is the ratio between the likelihood of the

sequence given a configuration A and the likelihood given the null configuration A0

where no DBFs are bound. Let S j be the base at position j and SStart(i ):End(i ) be the

subsequence in S from the first to last bps covered by element ai in the A. Define the
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single-element sequence likelihood ratio as

Hk (SStart(i ):End(i )) =
P

(
SStart(i ):End(i )|θk

)
P

(
SStart(i ):End(i )|θ0

) , (2.2)

for ai = k ∈ {1, . . . ,K }, where θk is the parameter (e.g., PWM) for the kth binding

model. For ai = k = 1 we are considering the nucleosome. The numerator of Eq.

(2.3) is then the model from [KMF09] described above. For ai = k ∈ {2, . . . ,K } we are

considering non-nucleosome DBFs modeled by PWMs and we have

Hk
(
SStart(i ):End(i )

)=
End(i )∏

j=Start(i )
θk ( j −Start(i )+1,S j )

End(i )∏
j=Start(i )

θ0(S j |S j−1, . . . ,S j−5)

, (2.3)

where θk (i , j ) is the probability of nucleotide j at position i in a sequence bound by

DBF k, and θ0(S j
∣∣S j−1, . . . ,S j−5 ) is the probability of nucleotide S j in the background

given the previous five nucleotides. By definition H0 ≡ 1.

The likelihood ratio of a single element ai , given only the concentrations, is sim-

ply the ratio of the concentrations τai /τ0. This suggest the joint likelihood of the

sequence S and the binding configuration A given the binding models Θ and con-

centrations T is

P (S|A,Θ)P (A|T )

P (S|A0,Θ)P (A0|T )
∝

|A|∏
i=1

τai

τ0
Hai (SStart(i ):End(i )). (2.4)

The second part of the statistical weight is the ratio between the likelihood of the

ChIP windows given a configuration A and the likelihood given the null configura-

tion A0. The background window is defined as the set of bps not covered by any of

these windows. Thus if we have M ChIP DBFs, we will have M + 1 sets or types of

windows, where windows of type 0 are the background windows. Let dStart(i ):End(i ) be

the type of the window covering the element ai . When ai indicates a ChIP DBF, we

define

P (dStart(i ):End(i ) = k|ai = k,φ) =φ, (2.5)

P (dStart(i ):End(i ) = j |ai = k,φ) =ωk, j (1−φ), (2.6)
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where ωk, j ( j 6= k) is proportional to the total length of all windows of type j and∑
j 6=k ωk, j = 1. For background sites (ai = k = 0), φ is replaced by γ in (2.5) and (2.6).

The model for a DBF without ChIP-Seq data is identical to that for background sites.

See Figure 2.2(c) for an illustration. If most of the ChIP DBF binding sites are cov-

ered by a corresponding ChIP window, the parameter φ will be close to one. The

value of γ is determined mostly by the percentage of the bps not covered by any ChIP

windows. We have found that when running SparScape ignoring the ChIP data, the

percentage of predicted binding sites within what would have been ChIP windows

had they been considered tends to be quite similar across DBFs. Thus, we assume a

single parameter ÏĘ shared among all ChIP DBFs in the current work.

SparScape ignores ChIP peak strength as we have found no correlation between

ChIP peak strength and the strength of predicted binding near that peak. See [KLS11]

and [KTP08] for other models of ChIP data in motif finding.

With all the terms in Eq. (2.1) defined we can compute the full likelihood ratio.

Define B(k,`) = P (d`:`′ |ai = k,Φ) with `′ = `+Lk −1. Then the full likelihood ratio

for element ai = k in configuration A, starting at sequence position ` and covered

by a window of type d`:`′ , is

L (k,`) = (τk /τ0) Hk (S`:(`+Lk−1)) B(k,`)/B(0,`). (2.7)

Note that when ai = k = 0, i.e., the i th element is an unbound bp, by definition we

have L (0,`) = 1 for all `. The product of L over ai defines the complete-date likeli-

hood ratio,

P (S,D, A|Θ,Φ,T )

P (S,D, A0|Θ,Φ,T )
=

|A|∏
i=1

L (ai ,Start(i )). (2.8)

2.2.3 Sparsity Through Penalization

The total number of candidate DBFs K is often large. We seek DBF selection because

we expect that binding sites for a large majority of candidate DBFs are not enriched

in the considered genomic regions. Considering DBFs that are not truly enriched
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when predicting the final landscape increases false positive predictions, sometimes

dramatically.

One way to achieve DBF selection is to estimate many concentrations τk as ex-

actly zero, as τk is the probability of initiating a binding site for DBF k. It can be

seen from (2.8) that the log-likelihood for T given A is
∑K

k=0 Ck logτk , where Ck is the

number of binding sites of DBF k in A. If we take the conjugate Dirichlet prior on T

with prior counts αk > 0, for k = 0, . . . ,K , the conditional posterior distribution for T

is a Dirichlet distribution Di r (C0 +α0, . . . ,CK +αK ). A sample from this distribution

always has positive components, based on which we cannot construct a sparse esti-

mation of T . Thus we run our algorithm in the selection stage for a burn-in period

with αk = 1, and then set αk = 0. If Ck = αk = 0 at some iteration, then the con-

ditional posterior distribution has a point mass at τk = 0. This allows us to achieve

sparsity in the sense that some τk = 0 with a positive probability. DBFs that hit τk = 0

at any sampling iteration are selected out.

Unfortunately, for most DBFs we expect relatively strong non-functional motif

matches to occur randomly, leading to a non-negligible number of false positive pre-

dicted sites such that τk almost never hits zero for any DBF. We counteract this false

positive signal with penalty terms on the parameters T andΦ, leading to a penalized

complete-data log-likelihood of the form

logP (S,D, A|Θ,Φ,T )−λ
K∑

k=2
Fk logτk −ρ(Φ), (2.9)

where Fk ≥ 0 is the expected count of false positive binding sites for DBF k, λ ≥ 0 is

a tuning parameter, and ρ(Φ) denotes the penalty for Φ. Given the current concen-

trations, Fk is estimated empirically from a set of control sequences, possibly simu-

lated, with no (known) true sites. We did not penalize the nucleosome concentration

(τ1) in the results presented here, but SparScape supports such penalization.

To estimate the expected false positive count for DBF k, Fk , we calculate the

probability that each DBF is bound via a standard forwards-backwards summation
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on a set of control sequences with no (known) binding sites given the current param-

eters. These control sequences may either be simulated from the background model

used in SparScape or sampled from the genome of interest from regions with similar

characteristics to the regions of interest but with no known binding sites.

Calculating Fk for k = 1, · · · ,K during every sampling iteration is computationally

expensive, and is generally unnecessary, as the vector of concentrations tends not

to shift dramatically over a small number of iterations, and the estimated values for

each Fk do not change dramatically if the concentrations in T have not. Thus we only

recalculate Fk every ten iterations. In the other iterations, Fk is estimated by a simple

linear regression of the previous four estimates on the corresponding concentration

values τk . We found this to be accurate and not to affect the posterior estimates.

Together with the prior distribution π(Φ,T ), we obtain a penalized posterior dis-

tribution. To understand this penalized posterior, consider sampling from the con-

ditional distributions taking the penalties into account. The conditional sampling

from [A|Φ,T,S,D,Θ] is not affected by the penalization and can be implemented by

forward summation and backward sampling [GL03, ZW04]. Define the forward sum-

mation function

f` = P (S1:`,D1:`|Θ,Φ,T )

= ∑
A1:`

P (S1:`,D1:`, A1:`|Θ,Φ,T ). (2.10)

Then, with f0 = 1,

f` =
K∑

k=0
f`−Lk L (k,`′), (2.11)

where `′ = `−Lk +1 and f` = 0 if ` < 0 since we do not allow partial binding at the

edge of regions. With f|S|, we can backwards sample from the conditional posterior

distribution of the DBF binding configuration [A|Θ,Φ,T,S,D].

Consider penalized sampling from [Φ,T |A,S,D,Θ]. Let nk = Ck for k = 0,1 and

nk = (Ck −λFk )+ for k ≥ 2, where x+ = max(0, x). We think of nk as the net site
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count after discounting for false positives λFk . Then the penalized complete-data

log-likelihood for the concentrations T is
∑K

k=0 nk logτk . If the penalty λFk ≥Ck for

some iteration, then the net site count nk = 0 and the conditional posterior distribu-

tion of T (withαk = 0) has a point mass at τk = 0. Thereafter, we drop DBF k from fur-

ther consideration. Figure ?? shows penalized and unpenalized sample paths for the

concentrations of a true and a false DBF in a simulated data set. Figure ??(a) demon-

strates that moderate penalization can eliminate a false positive DBF even when its

concentration would otherwise stabilize around a highly inflated value. While τk

may hit zero exactly for many false positive DBFs even with Îż = Îśk = 0, as shown

in these figures there are many DBFs that are not truly enriched where selection is

achieved by using a nonzero penalty λ> 0. Setting the prior counts αk = 0 is mainly

for mathematical rigor so that τk may hit zero exactly, as any positive value of Îśk

will never give τk = 0 in any sampling iteration. In addition, our choice also avoids

the use of a threshold value on the estimated ÏĎk for DBF selection, which would be

necessary if αk were positive.

Penalization on the parameters in Φ is similar. The conditional posterior distri-

butions for φ and γ given A are beta distributions. The counts in both are related

to the site counts inside and outside the relevant set of ChIP windows. We penalize

the counts for these beta distributions in the same manner as described above. Sup-

pose we have sampled Ck sites for DBF k in the current iteration t , with C (in)
k sites

within a ChIP window for DBF k and C (out)
k outside a ChIP window for DBF k. With

no penalty (λ= 0), the conditional distribution ofφ, the probability of a site for ChIP

DBF j falling within a ChIP window of type j , is

Beta

(
α(in) +

K∑
k=1

C (in)
k , α(out) +

K∑
k=1

C (out)
k

)
, (2.12)

where α(in) > 0 and α(out) > 0 are prior counts and C (in)
k = C (out)

k = 0 if DBF k has no

ChIP-Seq data. Withλ> 0, our total penalty on the count Ck isλFk (T (t )). We penalize

C (in)
k and C (out)

k proportionally with total penaltyλFk (T (t )). Let n(in)
k and n(out)

k denote

the net counts for DBF k within and without ChIP windows, respectively. Then we
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have

n(in)
k = [

Ck −λFk (T (t ))
]
+

C (in)
k

Ck
,

n(out)
k = [

Ck −λFk (T (t ))
]
+

C (out)
k

Ck
, (2.13)

which are used in place of C (in)
k and C (out)

k in the distribution (2.12).

Note that when nk +αk = 0, the improper conditional distribution for T violates

the reversibility assumption in Markov chain Monte Carlo. Preliminary theoretical

exploration suggests that as |S| increases, with mild conditions the probability of

selecting out a DBF with no true sites goes to one while DBFs with true sites will still

be selected. This confirms what we have found in practice, which is that selection of

true DBFs via the sampling scheme outlined above is fairly robust. See Section 2.5

for a fuller exploration.

2.2.4 The Tuning Parameter

The tuning parameter λ is a scalar that controls the level of penalization on sampled

site counts in each iteration of our algorithm. We developed a method for choosing

λ similar to the work by [FZ13]. We run ten-fold cross-validation on a set of de-

creasing values of λ, say λ1 > ·· · > λi > ·· · > λM , and record for each λi the DBFs

selected in at least five of the ten training sets and the mean log-likelihood across

the ten test sets. In general, a lower value of λ leads to a larger number of selected

DBFs, a more complex model with a higher log-likelihood. Our goal is to choose the

simplest model (highest value of λ) such that choosing a lower λ and selecting more

DBFs do not improve the mean likelihood of the test sets sufficiently to justify the

extra complexity. Let µi be the mean log-likelihood over the test sets and Ni be the

number of DBFs selected for λi . Then we define the model selection rate for λi as

mi = (µi −µi−1)/(Ni −Ni−1). We have observed good selection results if we choose

the λi before the first decrease in mi . A typical plot is provided in Figure 2.4.
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2.2.5 Landscape Prediction

After enriched DBFs are selected, the binding landscape is predicted considering

only the selected DBFs with prior countsαk = 1. Recall that a final run of our iterative

sampling algorithm is necessary because with unknown concentrations calculating

binding probabilities exactly through forward-backward summation is impossible.

In the DBF selection stage we penalize the binding site counts to encourage spar-

sity in concentration estimation. Overall, the penalty biases DBF concentration esti-

mates downward and biases the predicted binding landscape towards higher speci-

ficity and lower sensitivity. One can increase the sensitivity of binding site prediction

in the final stage by not penalizing. One may also consider re-estimating PWMs, us-

ing previously published PWMs as prior information. This can increase sensitivity

but may result in capture in minor modes with some concentrations highly inflated.

In such cases the landscape prediction with penalized site counts and fixed PWMs

must be used despite the downward bias.

2.3 Results

2.3.1 Applications to Mouse ESC and Simulated Data

We investigate two mouse data sets derived from multiple TF loci (MTL) regions de-

fined in [CXY08]. In that paper, 12 TFs known to play a key role in maintenance of

ESCs were studied with ChIP-Seq experiments. These 12 TFs are Stat3, Nanog, Klf4,

Pou5f1/Oct4, Esrrb, Sox2, cMyc, Smad1, nMyc, E2f1, Tcfcp2l1, and Zfx. Two main

clusters of binding sites were found, one centered around Oct4 (Nanog, Sox2, Oct4,

Smad1, Stat3) and the other around cMyc (cMyc, nMyc, E2f1, Zfx). We interrogate

1,553 MTL regions built around the Oct4 group and 1,178 regions built around the

cMyc group. ChIP windows were built around ChIP peaks in these regions. Mouse

ESC gene expression data from [ZCM07] were used to cull the considered DBFs to
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170 with non-negligible expression. The PWMs of the 170 DBFs were extracted from

the TRANSFAC database [MFG03]. We utilize SparScape to nominate novel possible

co-factors that act in concert with these known core TFs in mouse ESCs.

Two simulated data sets, each composed of 1,000 simulated regions, were de-

signed to mimic, respectively, the two mouse data sets. One thousand regions of 450

base pairs were simulated in each case. The background (unbound) base pairs were

simulated from a 5th-order Markov chain. The Markov chain parameters were esti-

mated from a set of regions sampled to resemble the mouse data being mimicked.

The set of distances to the nearest transciption start site (TSS) for the regions in the

mouse data set were sampled by chromosome with replacement. For each distance

to TSS sampled, a gene was chosen randomly from the same chromosome, and the

region the sampled distance from that gene was added to the set of regions used to

estimate the Markov chain parameters. This is also how the control regions used to

estimate the expected number of false positive sites in each iteration were sampled

in the mouse data analysis.

The number of nucleosome sites was chosen randomly between zero, one, and

two. The sequence inserted at each nucleosome site was sampled from those re-

ported in Kaplan et al., 2009. The total number of DBF binding sites was chosen

randomly with a minimum of two and a maximum of 10. That number of DBFs was

then sampled randomly with replacement from the group of DBFs chosen for this

simulation (10 in the cMyc group simulation, 11 in the Oct4 group simulation). The

binding site sequences were simulated from the given PWM.

To evaluate performance across a range of sample sizes, for both the mouse and

simulated data, the entire Oct4 group was analyzed together, but the cMyc group

was randomly divided into subsets of 100 regions. DBFs were selected using only

the first random subset and binding landscapes were predicted over all subsets with

the selected tuning parameters and DBFs.

The most comparable method with available software is COMPETE [WH09]. COM-
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PETE requires a fixed concentration vector and a pre-selected set of DBFs as input.

We chose the concentration vector following the tuning procedure outlined in their

paper. Since the primary source of information for both SparScape and COMPETE

is the sequence, we also compared against a naive approach considering the raw

binding score at each locus. This raw score is the ratio of the PWM score over the

background model score for a given w-mer (2.3).

2.3.2 Comparing DBF Selection

Both COMPETE and the raw score method use only sequence information and do

not use ChIP data like SparScape. To make a fair comparison, we first show that

SparScape outperforms COMPETE and the raw score method when we ignore the

available ChIP data and only utilize the sequence data. This illustrates the value of

penalization and joint concentration estimation in SparScape. When the ChIP data

are used, SparScape outperforms the competitors more dramatically.

To select DBFs using COMPETE, we ranked the DBFs by the total predicted bind-

ing probabilities over all bps and chose rank cutoffs for comparison with other meth-

ods. For the raw score method, when considered separately by locus, the number of

scores for a DBF that exceed a chosen threshold (we used 1,000 and 2,000) approxi-

mately follows a Poisson distribution when there are no true sites. An expected false

positive count of scores over this threshold was estimated from control regions and

used as the rate parameter of the Poisson distribution to find a p-value for the hy-

pothesis that the DBF had no true sites in the examined regions. We considered three

approaches to controlling for multiple comparisons. Our most conservative method

was the ranking method where we ranked all the DBFs by their p-values and con-

sidered only the top N , where N is the number of DBFs selected by SparScape. The

next most conservative approach was the use of the standard Bonferroni multiple

testing adjustment to control the family-wise error rate at 5%. The least conservative

approach was controlling the false discovery rate (FDR) at 5%.
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RS RS CO SS-NC SS

Cutoff 1000 2000 - CV CV

(A) Oct4 Rank 2/11 4/11 0/11 10/11 11/13

Group Bonf. 10/140 10/127 11/127 - -

FDR 10/148 10/134 11/134 - -

cMyc Rank 6/12 7/12 1/12 9/12 9/13

Group Bonf. 7/19 8/14 2/14 - -

FDR 8/26 9/22 4/22 - -

(B) Oct4 Rank 2/9 3/9 1/9 4/9 8/12

Group Bonf. 6/32 4/21 3/21 - -

FDR 7/48 6/32 3/32 - -

cMyc Rank 0/5 0/5 0/5 2/5 5/11

Group Bonf. 7/78 7/54 2/54 - -

FDR 9/100 8/84 6/84 - -

Table 2.1: DBF selection results for the raw score (RS) method, COMPETE (CO),

SparScape with no ChIP data (SS-NC), and SparScape (SS). (A) simulated data and

control. (B) mouse data and sampled control. In (A), T /N represents T true DBFs

out of N DBFs selected. In (B), T /N represents T ChIP DBFs selected out of N DBFs

selected. For COMPETE, the number of DBFs to select from the ranked list was cho-

sen to match that of SparScape (the Rank row) or the raw score method (the Bonf

and FDR rows). The Rank row gives ranked results for the raw score method and

COMPETE that match the number selected by SS-NC. The Bonf row gives selection

results using a Bonferroni corrected p-value threshold of 0.05. The FDR row gives

selection results using an FDR of 5%. CV indicates that the DBFs were selected via

cross-validation by SparScape.

Table 2.1 summarizes DBF selection results for SparScape, COMPETE, and the

raw score method. Even in the best case for the alternate methods, SparScape pro-
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vides more powerful and more accurate DBF selection, in the large (Oct4 group) and

small (cMyc group) data sets and in the real and simulated data, using ChIP data or

not. To achieve similar sensitivity for the factors we know are enriched, the other

methods nominate between 4 and 10 times as many possible co-factors, fewer of

which are plausible compared to those nominated by SparScape. SparScape also did

a better job selecting the DBFs around which the examined regions were built, se-

lecting 3 of the 5 members of the Oct4 group and all 4 members of the cMyc group.

When choosing the same number of DBFs selected by SparScape, COMPETE or the

raw score method selected at best one member of the Oct4 or cMyc groups in the

respective sets of MTL regions.

When regions are analyzed to select target DBFs for lab-based follow-up experi-

ments, it is of critical importance to reduce the number of false leads suggested by

computational analysis. A major reduction in false positives in selecting DBFs is a

key advantage of our new method. The substantial improvement over COMPETE

highlights the critical roles of penalizing false positive counts and estimating con-

centrations in SparScape.

The joint DBF selection is a key factor in the improved performance achieved by

SparScape. To demonstrate this point, we compared against an individual selection

approach under the same framework of SparSpace but considering one candidate

DBF at a time with the nucleosome. We applied this individual approach to the cMyc

group mouse data and ran SparScape 10 times for each DBF with the same λ as cho-

sen in our joint runs on that data set. ChIP windows were considered for the ChIP

DBFs. This individual approach selected a total of 112 DBFs, 97 of them in all 10

runs, including 9 of the 12 ChIP DBFs. As expected, this result is close to that of the

raw score method (with FDR control). As shown in Table 1, joint runs selected only

11 total DBFs including 5 ChIP DBFs. This highlights the huge reduction in the false

positives for DBF selection that results from considering all the DBFs together.

Now we consider the possible co-factors without ChIP data selected by SparScape

28



in the Oct4 and cMyc MTL regions.

In the Oct4 regions, SparScape selected Zfp219, Egr1/Krox24, Sp1, and Nr6a1/GCNF.

All four have been identified in the literature as having some association with differ-

entiation, ESCs, or being key regulators in maintenance of pluripotency. Zfp219 and

Sp1 have been identified as members of protein interaction networks for pluripo-

tency with Oct4 and Nanog in mouse ESCs [WRC06, KCS08]. Zfp281 has also been

identified as a Nanog interacting protein required for proper cell differentiation [FSA11].

The binding motifs for Zfp219 and Zfp281 are very similar, so it is possible we are

picking up sites for both TFs. Sp1 was also found to be a significant co-factor in this

same data set by [HCH09]. The Egr and Sox families have been shown to interact

in Schwann cells [JM08]. Nr6a1 is required to suppress Oct4 and recruit co-factors

to affect DNA methylation and histone modifications in the Oct4 promoter during

differentiation [GXL11].

In the cMyc group, we proposed Atf5, Erf, Rfxap, Nrf1, Sp1, and Zbtb7b/cKrox/ThPok.

Atf4 (with a nearly identical motif as Atf5) has been identified in a co-expression and

regulation network centered around cMyc [FYK08]. Erf is key in cell differentiation

mediated by cMyc repression [VPV07]. Nrf1 has been shown to interact with cMyc

in regulating apoptosis and implicated as a key actor in pluripotency maintenance

[MFP09, MGH02]. Sp1 interacts with cMyc [HE10]. Zbtb7b directs the CD4 and CD8

T cell differentiation, while related TFs such as Miz-1 are known to cooperate with

cMyc [KPF08].

Taken together, we see that SparScape was able to select DBFs known to bind

in the regions of interest and nominate a small group of likely co-factors for both

the Oct4 and cMyc groups. This can provide investigators with a higher return on

experimental validation and follow-up studies.
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2.3.3 The Binding Landscape and Concentration

In the second stage we predict the binding landscape and estimate concentrations

for the DBFs selected in the first stage. The concentration estimates for the selected

DBFs (SS in Table 2.1) in the mouse and simulated Oct4 group regions are shown

in Figure 2.6. It is seen that without penalization (λ = 0), the concentrations were

generally overestimated for the simulated dataset (Figure 2.6a). Particularly, the un-

penalized estimate for Nanog does not appear in the figure, as it was massively over-

estimated, indicating an enormous number of false positive predicted binding sites.

This is a general danger of jointly estimating the concentrations that can be avoided

with proper penalization. This also explains, at least partially, why the estimated nu-

cleosome concentration was lower in the unpenalized run than in the penalized run.

With λ = 0, many nucleosome binding sites were crowded out by the false positive

sites for Nanog and other DBFs due to the competing nature between DBF binding in

our model. Furthermore, nucleosome concentration τ1 is not penalized even when

λ> 0. One sees that the ratio between an estimated concentration and the true value

ranged from 0.71 to 1.46 for the non-nucleosome DBFs in the penalized run (λ= 0.2).

Figure 2.6(b) shows the concentration estimates in the mouse Oct4 group data from

a penalized run with fixed PWMs and an unpenalized run with re-estimated PWMs.

Similar patterns are observed as those in the simulated data.

Concentration estimates are very stable over different runs of SparScape. Fig-

ure ?? shows a box plot of the coefficient of variation (standard deviation divided by

the mean) for the posterior mean estimates of concentration over ten independent

runs of SparScape predicting the final binding landscape for the cMyc group data.

These ranged from near zero to just over 0.02 for the 11 non-nucleosome DBFs se-

lected by our two-stage run of SparScape and was less than 0.05 for the nucleosome.

Examples of predicted binding landscapes are shown in Figure ??. The posterior

binding probabilities summarized there can be used directly in further analyses, but
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SparScape Raw Score

DBF subset PP Sens. FDR Cutoff Sens. FDR

Oct4 All 0.5 0.74 0.23 900 0.74 0.42

Group Non-Nuc 0.5 0.71 0.16 1,250 0.71 0.35

ChIP 0.5 0.62 0.20 700 0.63 0.54

No ChIP 0.5 0.82 0.11 5,000 0.82 0.14

cMyc All 0.6 0.70 0.30 4,000 0.70 0.40

Group Non-Nuc 0.6 0.67 0.26 5,000 0.68 0.33

ChIP 0.6 0.72 0.21 5,000 0.76 0.33

No ChIP 0.6 0.60 0.32 4,000 0.60 0.37

Table 2.2: Sensitivity and FDR in binding site prediction in the simulated data Non-

Nuc is all considered DBFs except for the nucleosome. ChIP is the set of DBFs for

which ChIP data were available. No ChIP is the set of DBFs for which ChIP data were

not available. In the cMyc group simulation there were 10 small data sets. Combined

results are reported here but the predictions were made separately in each set. PP

stands for posterior probability cutoff.

we demonstrate the effectiveness of our method by choosing a posterior probability

cutoff for predicting sites. A summary of results for SparScape and raw score pre-

dictions in the simulated data sets is given in Table 2.2. COMPETE results are not

included in the table because the highest sensitivity achieved (< 0.1) was so low that

the results are not comparable in this format. We only present results for the DBFs

with true sites, ignoring in the FDR calculations the large number of false positive

DBFs selected by the raw score method and those selected by SparScape.

For each category of DBFs, we chose the raw score cutoff that gave a similar sen-

sitivity to that achieved by our method at the given posterior probability cutoff and

compared the FDRs. SparScape reduces the FDR compared to the raw score method
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for every category of DBFs across both data sets, achieving a reduction of 21% to 63%

in the Oct4 group data and 13% to 33% in the cMyc group. In the Oct4 simulation,

we achieved an overall sensitivity of 0.74 with an FDR of 0.23 as compared to an FDR

of 0.42 for the raw score method with similar sensitivity. In the cMyc simulation, we

achieved a sensitivity of 0.7 and an FDR of 0.3, compared to an FDR of 0.4 for the raw

score method. The raw score method performed relatively better on the DBFs with

no ChIP data because those DBFs have, on average, stronger and more informativ

motifs. In addition, SparScape utilizes ChIP data in a principled way, which led to

more substantial improvement over the raw score method on the ChIP DBFs. Both

methods predicted nucleosome sites with an FDR slightly below and above 50%, re-

spectively, across a range of sensitivities. See Figure 2.8 for further details on perfor-

mance of site prediction with a wide range of posterior probability cutoffs.

For the mouse datasets, true binding sites are not annotated, and therefore, we

compared different methods based on the numbers of predicted binding sites for a

ChIP DBF inside and outside its ChIP windows. The MTL regions were chosen by

requiring multiple ChIP peaks from a small set of TFs to occur very close to each

other, making it much less likely that peaks in these regions are false positives. Like-

wise, we expect few true binding sites further than 50 bps from a ChIP-Seq peak (the

coverage of our ChIP windows) but within a few hundred bps. So we expect that the

ChIP windows capture a very high percentage of true binding sites in these regions.

As reported in Table 2.3, for the selected ChIP DBFs, SparScape predicted a very

high percentage of binding sites in a corresponding ChIP window for different cut-

offs on the posterior binding probabilities. For example, in the Oct4 group data we

predicted 317 to 3,103 binding sites in a matching ChIP window for the eight selected

ChIP DBFs, with only 9 to 56 sites outside. Since the performance of the raw score

method and COMPETE in DBF selection was unsatisfactory, we report their results

on the sites predicted for all 12 ChIP DBFs (Table 2.3). One clearly sees a much higher

percentage of binding sites predicted outside ChIP windows. In the most sensitive
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cases, SparScape predicted 77−97% of sites for ChIP DBFs within a corresponding

ChIP window despite not restricting site prediction to within ChIP windows, while

only 25−30% of sites predicted by the raw score method and 20% of sites predicted

by COMPETE fell within a corresponding ChIP window. This suggests that a very

high percentage (> 70%) of the binding sites predicted by COMPETE and the raw

score method are false positives, demonstrating that for the questions we consider,

our method is more sensitive and vastly more specific than the alternatives.

Although the joint estimation of DBF concentrations and binding landscape re-

quires computationally expensive iterative sampling, SparScape is reasonably fast.

SparScape is implemented in C++ with OpenMP, so runs most quickly on boards

with more CPUs. We tested computation time with 10 independent runs on a dataset

consisted of just over 52,000 bps in 100 regions and 11 DBFs, including the nucleo-

some. A total of 1250 iterations took on average 2,220 seconds (37 minutes, with

minimal variation) on a MacBook Pro running OS X 10.6.8 with 2.53 GHz Intel core 2

duo processors and 4 GB of RAM.

2.4 Application to Gene Promoters

SparScape is not designed to carry out DBF selection on entire chromosomes or the

whole genome. The enrichment of BSs for any DBF other than the nucleosome is

too thin and selection results may be too sparse or inconsistent. For prediction of a

binding landscape over an entire chromosome or genome we recommend running

SparScape on the entire DBF library without selection and with a non-zero but small

value of λ to prevent concentration inflation of DBFs with low-information or GC-

rich motifs. SparScape can, however, select DBFs effectively on data less specialized

than co-bound regions such as the Oct4 and cMyc groups explored above.

We demonstrate this by randomly sampling 2,000 mouse genes and running SparScape

on the upstream 1,000 bps of these genes, using upstream 4,001âĹŠ5,000 bps as the
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SparScape COMPETE Raw Score

PP In Out In Out Cutoff In Out

Oct4 0.25 3,103 56 148 584 500 1,168 3,485

Group 0.4 2,150 39 3 7 1,000 662 1,789

0.6 1,074 25 0 0 2,000 438 1,110

0.8 317 9 0 0 4,000 254 583

cMyc 0.25 1,328 387 12 540 500 1,311 2,930

Group 0.4 861 181 0 49 1,000 979 2,136

0.6 497 61 0 0 2,000 707 1,500

0.8 256 13 0 0 4,000 442 951

Table 2.3: binding site prediction inside and outside matching ChIP windows PP

stands for posterior probability cutoff. Number of sites predicted by SparScape,

COMPETE, and the raw score method for the ChIP DBFs inside and outside the cor-

responding ChIP windows. For SparScape only the ChIP DBFs selected by SparScape

are considered. All 12 ChIP DBFs are considered for the raw score method and COM-

PETE. PP stands for posterior probability cutoff.

control regions. The candidate library consisted of all 203 DBFs in our library with

unique PWMs. We ran 10-fold cross validation to select λ = 0 and the DBFs that

survived selection in at least five folds. We selected 45 DBFs with λ = 0 and 41 with

λ = 0.05 (the value used in the Oct4 group data). This represents 22% of the DBFs

considered, a very reasonable number to be enriched in a random sample of 9%

of gene promoters from the mouse genome. Table ?? shows the DBFs chosen with

these two values of λ ranked by posterior mean concentration. One indication that

SparScape selected truly enriched proteins is the presence of TATA box binding pro-

tein (TBP) in both lists (ranked ninth with the selected λ= 0), since the TATA box is

known to be close to the transcription start site.
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Table 2.4: Selected DBFs ranked by posterior mean concentration for the 2,000 up-

stream gene promoters sample from the mouse genome for the chosen λ= 0 and for

λ= 0.05, the value chosen in our other large data sets, the Oct4 and cMyc group MTL

regions.

Rank DBF (λ= 0) τ (λ= 0) DBF (λ= 0.05) τ (λ= 0.05)

1 sox10 1.494597e-03 sox10 9.642179e-04

2 pgr 1.023095e-03 pgr 9.023347e-04

3 dbp 8.192535e-04 foxa1 5.684778e-04

4 ar 7.627285e-04 dbp 4.543683e-04

5 foxm1 6.888999e-04 pitx2 4.386284e-04

6 tead1 5.896015e-04 tef 4.370527e-04

7 pou5f1 5.825057e-04 pax6 3.964371e-04

8 foxa1 5.740178e-04 ar 3.898316e-04

9 tbp 5.339879e-04 ikzf2 3.706031e-04

10 pitx2 4.755155e-04 foxm1 3.705634e-04

11 tef 4.601244e-04 pou1f1 3.669208e-04

12 ikzf2 4.426942e-04 irf9 3.338152e-04

13 pax6 4.115000e-04 tcfe3 2.978508e-04

14 irf9 3.922964e-04 cdx1 2.922822e-04

15 pou1f1 3.738187e-04 tbp 2.464555e-04

16 tcfe3 3.459292e-04 foxo3a 1.992414e-04

17 gata1 3.349708e-04 foxh1 1.886101e-04

18 en1 3.072128e-04 gata1 1.619605e-04

19 cdx1 2.956426e-04 nkx3-1 1.496764e-04

20 foxo3a 2.260526e-04 pax1 1.350059e-04

21 foxh1 2.163760e-04 tead1 1.323815e-04

22 nkx3-1 1.654200e-04 ppara 1.134400e-04

35



23 pax1 1.531719e-04 dmrta2 9.747900e-05

24 yy1 1.405842e-04 rreb1 9.583115e-05

25 smad5 1.350452e-04 smad5 8.601014e-05

26 ppara 1.285215e-04 yy1 8.259094e-05

27 ascl1 1.128295e-04 nr5a2 8.178382e-05

28 hmga1 1.104286e-04 foxj2 7.822326e-05

29 rreb1 1.080496e-04 onecut1 6.802819e-05

30 bptf 1.051290e-04 ascl1 6.362322e-05

31 nr5a2 1.041484e-04 zeb1 5.301816e-05

32 dmrta2 1.010508e-04 zfp219 5.078735e-05

33 onecut1 8.316074e-05 lef1 5.019112e-05

34 zfp219 6.810904e-05 dmrta1 3.553469e-05

35 lef1 6.703571e-05 foxl1 3.241955e-05

36 foxj2 6.337091e-05 prdm1 2.591156e-05

37 fosb 5.938101e-05 lhx3 2.348764e-05

38 zeb1 5.775988e-05 ctcf 2.325049e-05

39 esrrb 5.249724e-05 nkx6-1 1.780572e-05

40 dmrta1 4.089696e-05 esrrb 1.771331e-05

41 lhx3 2.798376e-05 evi1 1.155078e-05

42 nfe2l2 2.334501e-05 · ·
43 prdm1 2.165738e-05 · ·
44 ctcf 2.145135e-05 · ·
45 evi1 1.234990e-05 · ·
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2.5 Theoretical Exploration: Convergence, Stationary Points, and

Component Selection

In our preliminary theoretical analysis we explore the simplified case where we con-

sider a mixture model with a K +1 components with known densities where we are

interested in probabilistically classifying observations through an iterative sampler

as coming from a component of interest, k = 1, · · · ,K , or from a (presumed domi-

nant) background distribution (k = 0). Let τ? be the vector of true mixing propor-

tions and τ̂be the stationary point of the expected value recursion for τ given starting

values τ(0). We are interested in the properties of convergence of the expected value

recursion to the stationary point τ̂ and in whether there exists non-trivial (τ̂ 6= (1,0K ))

stationary points when τ? 6= (1,0K ). Let

L (t )(x) =
K∑

k=0
τ(t )

k fk (x)

L ?(x) =
K∑

k=0
τ?k fk (x)

L̂ (x) =
K∑

k=0
τ̂k fk (x).

be the standard mixture density over K +1 dictionary components with mixture pro-

portions equal τ(t ), the values from the t th iteration, τ?, and τ̂, respectively. Then for

k 6= 0 we have

E(τ(t+1)
k ) =

∫
X

τ(t )
k fk (x)

L (t )(x)
L ?(x)dx − λn

∫
X

τ(t )
k fk (x)

L (t )(x)
f0(x)dx

= τ(t )
k E fk


K∑

j=0
τ?j f j (x)−λn f0(x)

L (t )(x)

 (2.14)

= τ(t )
k E fk

(
L ?(x)−λn f0(x)

L (t )(x)

)
. (2.15)
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2.5.1 Convergence

For notational convenience let Ei (x) = E fi (x), fi = fi (x), L ? = L ?(x), and so on.

Then in vector form we have

M(τ(t )) = E(τ(t+1)|τ(t ))

=



τ(t )
0 E0(L ?/L (t ))+λn

K∑
k=1

τ(t )
k Ek ( f0/L (t ))

τ(t )
1 E1

[
(L ?−λn f0)/L (t )

]
...

τ(t )
K EK

[
(L ?−λn f0)/L (t )

]


. (2.16)

With M(τ̂) = τ̂ and M ′(τ) denoting the Jacobian matrix of M(τ), a first order Taylor

expansion around τ̂ gives us

M(τ(t )) = M(τ̂)+M ′(τ̂)(τ(t ) − τ̂)

τ(t+1) − τ̂= M ′(τ̂)(τ(t ) − τ̂)

ε(t+1) = M ′(τ̂)ε(t ),

and like the EM algorithm we have a linear convergence rate dominated by the largest

eigenvalues of M ′(τ̂).

2.5.2 Stationary Points

Given linear convergence to τ̂, we are interested whether we can achieve a non-

trivial τ̂. For this we must have some components k where k 6= 0 and E(τ̂k ) = τ̂k 6= 0.

This leads to

τ̂k = τ̂k Ek

(
L ?−λn f0

L̂

)
.
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Given τ̂k 6= 0, we need

1 = Ek

(
L ?−λn f0

L̂

)
(2.17)

=α(t )
k

for E(τ(t+1)
k ) = τ(t )

k = τ̂k .

Note that (2.15) gives us the condition for whether we expect τ(t+1)
k to increase or

decrease relative to τ(t )
k . If α(t )

k > 1, then E(τ(t+1)
k ) > τ(t )

k . If α(t )
k < 1, then E(τ(t+1)

k ) <
τ(t )

k . Thus, if ∃k 6= 0 where α(0)
k > 1, we expect τk to increase from an initial value τ(0)

k

that was too low.

From (2.17) we can find an estimate of our non-trivial stationary point. In vector

form our condition for stationarity around τ̂ is

1K+1 =



E0(L ?/L̂ )+λn

K∑
k=1

Ek ( f0/L̂ )

E1(L ?/L̂ )−λnE1( f0/L̂ )
...

EK (L ?/L̂ )−λnEK ( f0/L̂ )


=G(τ̂)

=



G0(τ̂)

G1(τ̂)
...

GK (τ̂)


=G (1)(τ̂)−λnG (2)(τ̂).

Let τ̂= τ?−∆. We expect ∆ to be small as n →∞ and λn → 0. Then we can approx-

imate τ̂ with a Taylor expansion around τ?. Let G (1)′(τ?) be the Jacobian matrix for
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G (1)(τ?), with typical element

G (1)′(τ?)i j =
∂G (1)

i (τ)

∂τ j

∣∣∣∣∣
τ=τ?

= ∂

∂τ j
Ei

(
L ?

L

)∣∣∣∣
τ=τ?

= −Ei

(
f j

L ?

L 2

)∣∣∣∣
τ=τ?

=−Ei

(
f j

L ?

)
=−E j

(
fi

L ?

)
, (2.18)

implying that G (1)′(τ?) is symmetric, with all negative elements, and should only be

singular if there are pathological relationships between the elements of the dictio-

nary. Then

1K+1 =



E0(L ?/L ?)

E1(L ?/L ?)
...

EK (L ?/L ?)

−λn



−
K∑

k=1
Ek ( f0/L ?)

E1( f0/L ?)
...

EK ( f0/L ?)


−G (1)′(τ?)∆+λnG (2)′(τ?)∆+O(‖−∆‖2)

= 1K+1 −λn



−
K∑

k=1
Ek ( f0/L ?)

E1( f0/L ?)
...

EK ( f0/L ?)


−G (1)′(τ?)∆+O(‖−∆‖2)

⇒∆≈−λn(G (1)′(τ?))−1



−
K∑

k=1
Ek ( f0/L ?)

E1( f0/L ?)
...

EK ( f0/L ?)


. (2.19)

We expect the inversion required for (2.19) to be feasible, as G (1)′(τ?) is symmetric
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with

G (1)′(τ?)i j =G (1)′(τ?) j i =−
∫ fi f j

L ?
dx,

where one would expect this matrix to be singular only with a dictionary with patho-

logical relationships between components.

2.5.3 Component Selection

The parameter space for mixture proportions is Ω = [0,1](K+1), and our goal is effi-

cient selection of components with true signal. Given a large dictionary (K >> 0),

where we expect true signals from a small number of components, our desired es-

timate is on the boundary of Ω in many dimensions, and thus the standard proof

of
p

n consistency for the MLE does not apply. However, in (Self and Liang, 1987) it

was shown that under mild conditions, with sample size n, the MLE is
p

n consis-

tent even in cases where the MLE is on the boundary of the parameter space. Thus

even in the case of interest where for many k 6= 0 the true parameter value τ?k = 0, we

expect the unpenalized MLE τ̂k ∈ O(1/
p

n). Also, in any interesting case, with finite

n, in the unpenalized case P (τ̂k = 0) = 0, and if we expect the background compo-

nent to dominate we could easily have true components with τ?k ∈O(1/
p

n) for some

given finite sample size n.

In our penalized case, define M(τ(t )
k ) = M(τ(t )

k )+ = max(M(τ(t )
k ),0) for k 6= 0 with a

suitable adjustment for M(τ(t )
0 ). If

(i) λn → 0

(ii)
p

nλn → ∞,

then for k such that τ?k = 0, P (τ̂k = 0) → 1 at a rate O(
p

n/λn). Thus our penalized

method not only allows P (τ̂k = 0) > 0, we can achieve a sparse selection of com-

ponents at a faster rate than with widely used ad hoc approaches such as selecting

41



out components with τ̂k < C for some cutoff value C . Note only can our method

converge faster and select out false components, there are also cases where we can

select out false components (τ?k = 0) with relatively low information densities with

relatively high KL distance to the background distribution where the cutoff approach

will always fail to find τ̂k <C with any reasonable, finite n.

2.6 Discussion

Generating a bp specific binding landscape for all known DBFs over the entire genome

of higher organisms with large genomes, without prior knowledge of DBF concen-

trations, is currently prohibitively computationally expensive. When one then con-

siders only certain genomic regions, it is expected that a large proportion of DBFs

will not have true binding sites, and performance suffers if all DBFs are considered.

Requiring prior knowledge of the set of DBFs active in the regions of interest and

their concentrations introduces the need for (often ad hoc) user-dependent prior or

iterative analysis or a need for additional experimental data. We contribute a new

method, SparScape, that eliminates the need for this prior information and takes

advantage of binding data where available while outperforming alternate methods.

One of the key features of our method is the inclusion of penalization in Bayesian

inference based on the expected false positive site counts. This significantly reduces

false positive results both in DBF selection and in binding site prediction. It also

introduces a level of robustness for model extensions. If an extension introduces

more false positives, that will be counteracted by penalization. A similar idea has

been used in the contrast motif finder [MPZ10]. The unsatisfactory performance of

COMPETE for the problems we investigate suggests that tuning prior DBF concen-

trations when they are not given is difficult in practice and using an improper vector

of concentrations can be very risky for joint prediction of landscapes. Moreover, both

SparScape and the raw score method select DBFs by comparing against some con-
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trol regions, but COMPETE does not have this critical component. We want to stress

that our comparison against COMPETE is mostly for demonstration purpose as the

method is not targeted at DBF selection or predicting sparse binding landscapes.

As demonstrated by the results in this paper, with the default method for choos-

ing the level of penalization, a standard usage of SparScape usually works well. But

in fact, SparScape is highly flexible. A user could independently choose less strin-

gent DBF selection by setting a smaller penalty value and perform a single selection

run, instead of ten-fold cross validation. This option is particularly useful when the

goal is to predict sites for all DBFs that could at all plausibly have binding sites in the

considered regions. The default choice in the final post-selection landscape predic-

tion is to predict with the same penalty chosen in the selection stage and with fixed

PWMs. A user may choose to make the predicted landscape less sparse by running

the final prediction with no penalty, re-estimated PWMs, or both.

Our modeling framework can easily be extended to include other types of infor-

mation. Some measure of absolute binding affinity, as opposed to the relative bind-

ing affinity information in a normalized PWM, is available from protein binding mi-

croarrays [BPQ06] and could be included as energy models [DSS03, FMB06, Zho10].

Further work integrating ChIP peak strength in the scoring of binding in ChIP win-

dows could be fruitful, especially for nucleosomes. Other location-specific informa-

tion on DBF binding to the sequence could also be utilized. We plan further work

employing SparScape’s joint binding landscape to predict gene expression and offer

insights into the underlying regulatory network.
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Figure 2.3: Sample paths for the concentration of a DBF in the selection stage in a simulated data

set for a penalized run (λ = 0.2) and an unpenalized run (λ = 0). The dotted vertical line indicates

the iteration at which the prior counts (αk ) were reduced from one to zero. (a), (b), and (c) are for

DBFs with no true sites. With no penalty (λ= 0), concentration estimates can be massively inflated,

as in (a), stable at a reasonable value, as in (b), or relatively stable at a very low value, as in (c). In

all three of these cases, 20% penalization (λ = 0.2) pushed the concentration estimates to zero and

eliminated these false positive DBFs. (d) shows the sample path for a DBF with true binding sites

and illustrates the fact that concentration estimates for true positive DBFs are generally quite stable

under non-excessive penalization.
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Figure 2.4: Example model selection rate graph. We consider decreasing values of the penalty λ until

the first drop in the rate. In this case, the value of λ chosen was 0.05.
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Figure 2.5: Coefficient of variation (σ/µ) of the posterior mean estimates of DBFs over 10 runs on the

same genomic sequences with the same DBFs. The outlier is he nucleosome.
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Concentrations for Mouse ESCs:
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Figure 2.6: Concentration estimates. (a) Ratios of the posterior mean concentration estimates and

95% credible intervals over the corresponding true concentrations for the correctly selected DBFs in

the Oct4 group simulated data. (b) Posterior means and 95% credible intervals for the selected DBFs

in the Oct4 group mouse data. Penalized estimates (λ = 0.2) are squares. Unpenalized estimates

(λ= 0) are circles.
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(a) Simulated region
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(b) Mouse region
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Figure 2.7: Predicted binding landscapes from a simulated and a mouse region
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Figure 2.8: ROC style curves for binding site prediction in the Oct4 group simulated data, plotting

false predicted site count versus true predicted site count for SparScape, COMPETE, and raw scores.

(a) shows results for all DBFs. (b) shows results for all DBFs except the nucleosome. (c) shows results

for the DBFs with ChIP data. (d) shows results for the DBFs without ChIP data, excluding the nucle-

osome. COMPETE results are invisible in ?? because COMPETE did not predict a single site for those

DBFs with a probability of greater than 0.25.
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CHAPTER 3

A Bayesian Treed Model

3.1 Introduction

The primary motivation for predicting or experimentally measuring the DBF binding

landscape is to leverage this information to increase our understanding of genetic

regulation and the internal processes in the cell. The key question is what effect DBF

binding has on the expression of the nearby gene(s). We are interested in the com-

binatorial regulatory effects of DBF binding across all genes, in different cell types

and conditions. Armed with a DBF binding landscape and gene expression data for

DBFs and their targets, one could naively estimate the effect of DBF binding as a

global effect of some score quantifying DBF binding on a per-gene basis. However, it

is well known that the same DBF can have different effects on different genes in dif-

ferent environments or cell types, perhaps depending on distance of the binding site

to the TSS, the combinatorial pattern of other DBF binding sites nearby, the expres-

sion level of the DBF in question, or other factors. To capture these heterogeneous

effects we partition genes via recursive partitioning in a Bayesian treed regression

framework, estimating a unique regression to estimate the effects of binding of each

DBF in each subset of genes and conditions. In estimating the effects of DBF binding

we create a single gene-DBF score from the set of DBF binding sites relatively near

the gene and the DBF expression based on the generalized logistic function. This

is motivated by the fact that below or above some thresholds, even weaker or even

stronger binding near some gene will not further decrease or increase the regulatory

effect. In partitioning the genes and conditions we consider all the available data as
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splitting variables, partitioning over gene-DBF binding scores and DBF expression.

When Bayesian treed models were developed in [CGM00, CGM01], the param-

eter and tree spaces were explored exclusively through MCMC sampling. The data

sets explored in those papers were relatively small, with hundreds of observations

and less than 20 variables. Even with data sets of such size, the sampling over the tree

space tended to get trapped in a single mode fairly quickly, and multiple sampling

restarts were needed to explore significantly different trees. When exploring much

bigger genomic data sets with many thousands of genes in multiple conditions or

cell types and possibly hundreds of DBFs, a strict sampling approach becomes less

feasible, with an unreasonable number of restarts required to adequately explore the

space of possible high scoring trees.

A fully greedy optimization is also not satisfying. It is possible for there to be

trees that describe optimal partitions where one of the splits would have been non-

optimal during a greedy tree-growth routine. We thus propose a compromise ap-

proach. Given some arbitrary proportion ζd , dependent on the depth d of the node

under consideration, at each possible split we fork off new trees that take alternate

splits at the internal node being considered if those alternate splits result in total

likelihoods a proportion ζd or greater of the highest likelihood split. Depending on

the data, some user-chosen parameters can be set to allow a broader exploration of

the space of possible trees than is possible with a strictly greedy approach without

requiring an unreasonable computational investment.

We also consider the problem of variable selection. At the simplest level, when

genes are partitioned, we expect that some of the DBFs to have no activity related

to a given gene subset. It is also known that some DBFs have no measurable di-

rect regulatory activity. In these cases it is informative to select variables on a by-

partition-subset basis independently at each leaf node. Another case is that where

an investigator is interested in regulatory analyses on a subset of genes or pathways,

in which case we expect that only a subset of DBFs will be responsible for the regula-
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tion. Here we may make better predictions with an iterative process where we build

a tree, select variables at each leaf node, take the union of selected variables over

each leaf node and the variables used for splitting, and then rebuild the tree using

only variables from that union.

3.2 Methods

3.2.1 Overview

We consider the problem of linear regression with partitions on the space of inde-

pendent variables. We assume there is a separate linear regression relationship be-

tween the predictors and response in each part. Our method is designed to allow for

examination of data sets with a large number of observations and a large library of

candidate variables that may be used for partitioning or in the independent linear

regressions in each part of the partition. We also allow for a separate library of can-

didate partioning variables. The partitioning and response prediction is carried out

using a regression tree. In some problems, some of the variables in the candidate

library may not be relevant either to the partitioning or the regressions. To account

for this we propose a tree growth, variable selection cycle. See Section 3.2.3.4.

Our regression tree framework is based on Bayesian regression, similar to the

framework developed in [CGM00, CGM01] but with Zellner’s g -prior [Zel83, GZ86]

(see Section 3.2.3.2) instead of the Normal-Inverse-Gamma prior as used in Chip-

man’s work. We optionally allow the use of separate sets of variables for partitioning

the observations and for predicting the responses in each part or subset. In our prob-

lem of interest, we take a DBF binding landscape, either one predicted by SparScape

or a similar method or one built through collecting ChIP data for a group of DBFs,

and gene expression data for both the DBFs of interest and the target genes of inter-

est. This is usually the set of all genes in the organism under investigation or a group

of pathways of interest.
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With this information we partition the set of genes in the standard way popular-

ized by Breiman et al. with the CART algorithm [BFS84]. At each node we consider

splits at some number of quantiles of each variable, where we rank the observa-

tions, split the observations at that node according to whether the feature value is

above or below the specified quantile, and estimate two separate Bayesian OLS re-

gressions with Zellner’s g -prior, one on each subset of observations. Then the sum

of the marginal log posterior densities for the two split parts is compared the sums

from other possible splits. When the marginal posterior for a potential split, which

includes a prior term that penalizes growth of the tree, no longer increases relative

to the potential parent node for any considered split, growth from that node halts.

If there are splits that increase the posterior, the node is split using the best scoring

feature quantile as the splitting criterion.

We propose two novel developments to this framework. The first is that we ex-

plore the sample space of trees with a forking greedy approach instead of an MCMC

sampling or greedy optimization approach. Even with a relatively small number

of observations and independent variables as investigated in Chipman’s work, the

sampling tends to get stuck quite easily in a single local mode. Chipman advocates

dealing with this by running the sampling numerous times with fresh restarts. This is

unsatisfactory when the number of observations and predictor variables can both be

large as in the problems we explore. One obvious alternative is to take the standard

fully greedy approach, as is done in [BFS84, KL01, Loh02, HHZ12, ZH07, ZHH08].

With the complex combinatorial control in genetic regulation, it is plausible that the

optimal partition of genes may not be achievable if we take the greedy path and fol-

low only the highest scoring splits at the highest levels of the tree. We propose to

find a middle ground between the greedy approach and the sampling approach. We

follow a greedy approach, but when different splits not on the same variable score

within some threshold of each other, we fork off a copy of the current tree with an al-

ternate split at the current node and continue growth independently for the original
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and forked trees. The threshold grows towards one as the tree grows in depth, with

the initial threshold and the growth rate controlled by parameters to allow the user

to control the tradeoff between speed and the breadth of the exploration of the tree

space. The user may further set the maximum number of trees that may be forked

off at a single potential node split.

Our second contribution is to introduce a cycle of tree growth, variable selection

in the leaf nodes of the original and all forked trees, then a fresh restart of tree growth

considering only the variables selected in at least one leaf node in the previous cycle.

If the partitioning variables are the same as the predictor variables in the regressions,

all variables used to split the data in the previous cycle are also considered in the

following cycle. This cycle continues until no new variables are selected out at the

end of a cycle. In the problems we explore, this process is advantageous when one

is examining only a subset of genes. One still wants to consider the entire library

of DBFs with available binding data, but some DBFs may have no regulatory role

in the gene subset under investigation. Which DBFs are not active in regulating the

gene subset of interest is of itself useful information. Also, including them in the

partitioning and leaf node regression estimation introduces an unnecessary source

of noise into the analysis.

3.2.2 Input Data and Variable Transformation

3.2.2.1 Gene-DBF Binding Association

We consider the problem of predicting target gene expression from DBF binding and

DBF gene expression. We consider DBF binding for the 12 TFs with genome-wide

ChIP-Seq binding data from [CXY08]. Our first problem is to define a single associa-

tion score to integrate the ChIP peak intensity (or posterior binding probability were

we considering binding landscape predictions as input) and proximity to genes. For

this we follow [OZW09]. We assume that the association strength of DBF j on gene i
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is a weighted sum of intensities of all of the peaks of TF j :

ai j =
∑
k

ck e−dk /d0 , (3.1)

where ck is the intensity (number of reads aligned to the coordinate) of the kth bind-

ing peak of DBF j , dk is the distance (number of nucleotides) in the reference genome

between the TSS of gene i and the kth binding peak, and d0 is a constant. In theory,

the summation is over all binding peaks of a given DBF. But the effect of a peak de-

cays exponentially when dk increases where the speed depends on d0. When dk /d0

is very large the contribution of the peak will be effectively zero. We set d0 = 500 bps

for E2f1 and 5,000 bps for other DBFs because E2f1 tends to be closer to TSSs. To

save computation time, we only consider peaks within a sufficiently large distance

(say, 1 Mbps) of a gene.

3.2.2.2 Predictor Variable Transformation

In many biological systems there are regions in the domain of an input where change

in the level of the input will produce a change in the response. But there are points

below which and above which further reduction or increase in the input variable

produces no further significant change in the response. We believe this likely to be

the case for the relationship between DBF binding, DBF expression, and target gene

expression. This suggests a sigmoid transformation of the input variables will be

useful. We also believe that target gene expression is a function of the interaction be-

tween gene-DBF association and DBF expression that is unlikely to be well modeled

by a standard interaction term in a linear regression. Considering this, we choose to

transform the gene-DBF association score (3.1) and the DBF expression into a single

gene-by-DBF predictor variable using the generalized logistic function (GLF). This

takes the form

si j k =
[

1+Q
(
eβ1(ai j−m1)+β2(g j k−m2)

)]−1/ν
, (3.2)
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where ai j is the association strength of DBF j with gene i and g j k is the gene expres-

sion measurement for DBF j in condition k. The parameters Q, β1, β2, m1, m2 ∈ R
and ν > 0 are user defined and control the shape of the GLF curve. The βi values

control the growth rate of the logistic curve between the lower asymptote and the

upper asymptote. Q and ν have control over the the range and shape of the curve.

Regardless of these values, the asymptotes are both in the range [0,1]. For Q = ν, the

mi values control the time of maximum growth. For our choice of these parameters

(see below) we have si j k ∈ (0,1).

Because the distribution of ai j is not consistent across DBFs, if we use an un-

transformed value of ai j as input to this GLF transformation, some DBFs will have

si j k ≈ 0 for almost all i , j , and k, while other DBFs will have almost exclusively val-

ues of si j k ≈ 1. This will eliminate our predictive and discriminative power. We thus

choose to standardize the binding association scores for each DBF independently

through quantile normalization to the standard normal distribution. With these

normalized binding scores, we chose GLF parameters values Q = ν = 0.01, β1 = −3,

β2 = −0.85, m1 = 0, and m2 j = ḡ j , where ḡ j is the mean gene expression value for

DBF j over all the conditions and m2 j is the value of m2 for the transformation of

data for DBF j .

For similar reasons, we also standardized the gene expression scores for both the

DBFs and the target genes. We chose a single condition, k?, as our reference con-

dition, and set g ′
j k = log(g j k /g j k?). Figure 3.1 shows histograms of the normalized

binding association scores for each DBF. Figure 3.2 shows plots of the normalized

binding association score versus the GLF transformed value for each DBF and con-

dition. Figure 3.3 shows barplots of the normalized DBF expression values.
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Figure 3.1: Histograms of the quantile normalized binding association scores for the 12 DBFs. Many

DBFs had a point mass at zero which results in a point mass at the minimum of the normalized score

and a skewed distribution despite the normalization to the standard normal distribution.

3.2.2.3 Partitioning Variables

We combine the gene-DBF binding association and DBF gene expression into a sin-

gle gene-DBF score. But the target genes could plausibly be partitioned into parts

with different regulatory relationships with DBFs from the candidate library based

directly on gene-DBF binding associations or DBF gene expression. We thus use
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these directly as partitioning variables, rather than the transformed predictor vari-

ables.

3.2.3 Partitioning, Forking, and Variable Selection

3.2.3.1 Tree Structure Prior

With our inputs normalized and transformed we turn our attention to partitioning,

prediction, and variable selection. Our first task is to define a prior on the structure

of our partitioning tree T . We follow Chipman et al. [CGM01] and build the prior

on the structure of the tree recursively. The prior probability of a split at a node η of

depth δ is

t
(
η
)= P

(
split η|δ)=αt (1+δ)−βt , (3.3)

where the root node has depth 0, t
(
η(root)

)=αt , and αt and βt are fixed parameters.

For details on choosing these parameters, see [CGM01]. One issue not discussed

in that work is the fact that as the number of observations and variables grows, the

relative contribution of this tree prior to the total posterior shrinks. It may be neces-

sary to increase the value of βt in this case to prevent an overly large tree from being

grown. In the work presented here we set αt = 0.25 and βt ∈ (100,150).

We allow an additional fine tuning of the tree structure prior. By default the prior

probability of a split is zero if the split would result in a child node with fewer ob-

servations than predictor variables. Let nt be the number of observations that will

be directed to the smaller of the two potential child nodes after a split and let J be

the number of predictor variables and N ·K be the total number of observations at

the root node (see next section). One may further restrict child node size by setting a

prior probability of zero on potential splits which would result in either nt < γ1 ·N ·K
or nt < γ2 J . This results in setting a minimum number of observations in a leaf node

in proportion to the total number of observations at the root node or the number

of predictor variables under consideration. In this work we choose to restrict using
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the first criterion and do not allow splits with a child node with fewer than 4% of the

total number of observations N ·K .

3.2.3.2 Node Splitting and Tree Growth

Let N be the total number of target genes, J be the number of DBFs, and K be the

number of cell conditions under investigation. Let X be the N ·K × J matrix of GLF

transformed gene-DBF scores. Notice that we consider each gene as K separate ob-

servations, one for each observed cell condition or state. Let Y be a vector of length

N ·K containing the gene expression measures of all N target (non-DBF) genes over

K conditions. Finally let X(t ) and Y(t ) be the nt×J sub-matrix of X and the sub-vector

of length nt of Y , respectively, corresponding to the nt observations in the part of the

partition associated with tree node ηt .

In the tree growth (partitioning) phase, we begin with all the observations as-

signed to a single root node η(root) of depth δ(root) = 0. Let Leaves(T ) be the set of leaf

nodes – nodes with no children – of tree T . At the beginning when T consists only

of the root node, Leaves(T ) = {
η(root)

}
. We grow the tree with a depth-first approach,

first considering splitting the root node, the considering splitting the left child node

of the split chosen for the root node (if we split the root node), and so on.

To split the nodes, we employ Bayesian OLS regression between the transformed

gene-DBF score and target gene expression with Zellner’s single parameter g -prior.

This is a particular form of the conjugate Normal-Inverse-Gamma prior family. We

model target gene expression as Y(t ) = X(t )β(t ) +ε, where β(t ) is the set of regression

coefficients at node ηt , ε∼ N (0,σ2
(t )I ), and I is the identity matrix. Zellner’s g -prior

takes the form

π
(
σ2

(t )

)∝ 1

σ2
(t )

π
(
β(t )

∣∣σ2
(t )

)∼ N
(
0, gσ2

(t )

(
X T

(t )X(t )
)−1

)
. (3.4)
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So the prior covariance of our coefficient estimates is simply a scalar multiple g

of the Fisher information matrix, the variance of the estimates β̂, from standard

least squares regression. This form allows for a simple and computationally efficient

marginal posterior in closed form,

P
(

Y(t )
∣∣g

)= ∫
P

(
Y(t )|β(t ),σ

2
(t )

)
π

(
β(t )|σ2

(t )

)
π

(
σ2

(t )

)
dβ(t )dσ

2
(t )

=
Γ

(
nt−1

2

)
π(nt−1)/2

p
n
‖Y(t ) − Ȳ(t )‖−(nt−1) (1+ g )(nt−1−J )/2[

1+ g
(
1−R2

)](nt−1)/2
, (3.5)

where J , the number of DBFs, is the number of independent variables and R2 is the

typical coefficient of determination at the MLE coefficient estimate β̂(t ). There are a

number of theoretical issues in the choice of g and the use of this prior formulation,

but in our use these are not of practical importantance and we choose g = max(N ·
K , J 2).

Now consider testing for splitting the observations at a leaf node ηt . Let O(t ) be

the vector of observation indices of the observations assigned to ηt . We test a set of

possible splits where the observations in O(t ) are split into the observations in the

left leaf, O(L)
(t ) , and the right leaf O(R)

(t ) . We cycle through the J variables represented

in the columns of X(t ), ordering the observations by their value for the variable cur-

rently under consideration. For each variable j we consider a set of quantiles in

(q j 1, q j 2, . . . , q jQ ), where q j u represents a split of the observations at the uth consid-

ered quantile of variable j ∈ {1,2, . . . , J }. When considering splitting at quantile q j u ,

observation o(t ),i is split into the potential left leaf, O(L)
(t ) , if its value of the j th variable

is less than the splitting cutoff, x(t ),i j < q j u , and into the potential right leaf, O(R),

otherwise. Remember that we may have a separate matrix of variables only consid-

ered for splitting, M . In this case, the test is m(t ),i j < q j u .

For each potential split we perform two regressions as described above, one on

the observations in O(L)
(t ) and one on the observations in O(R)

(t ) . For a potential split

on quantile u of variable j we obtain the log marginal posteriors for the left child

node, `(L)
(t ) = log

(
P

(
Y (L)

(t )

∣∣∣g
))

, and the right child node, `(R)
(t ) = log

(
P

(
Y (R)

(t )

∣∣∣g
))

, as
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given in Eq. (3.5). The log marginal posterior for the potential parent node is `(t ) =
log

(
P

(
Y(t )

∣∣g
))

. If `(L)
(t ) +`(R)

(t ) + log
(
t
(
ηt

)) > `(t ), this potential split on q j u is inserted

into the list A. A is ranked by `(L)
(t ) +`(R)

(t ) , as log
(
t
(
ηt

))
, the prior probability of a split of

node ηt of depth δt is identical for all possible splits of node ηt . When we have tested

all potential splits, the node is split according to the top ranked (first) element in A. If

we are allowing forking of multiple splits (see Section 3.2.3.3), we may perform splits

at more than one of the top ranked splits in A. If `(L)
(t ) +`(R)

(t ) + log
(
t
(
ηt

)) < `(t ) for

all possible splits, then further splitting from this node would decrease our marginal

posterior and we halt splitting from this node. Then ηt is a leaf node in the final tree

and the observations in O(t ) form a part of our final partition.

3.2.3.3 Forking Multiple Trees

At each potential split, we find the set of ranked potential splits A as described above.

In a purely greedy approach, we would simply choose to split the tree at the criteria

described by A1, the split that leads to the maximum marginal posterior. It is plau-

sible, especially in the first few levels of the tree, that a slightly lower scoring split

could lead to a better final tree after further tree growth. Due to this fact, we option-

ally allow multiple splits if two or more potential splits on different splitting variables

(i.e. not splits on different quantiles of the same splitting variable) score similarly. In

particular, let `i = `(L)
i +`(R)

i be the total log marginal posterior for the i th potential

split in A. We fork off an additional tree with the current node split by Ai (i 6= 1) if

`i > log
(
1−α(d+1)βs

s

)
+`1. (3.6)

This means that at the root node, we split at more than one splitting variable if the

marginal posteriors of alternate potential splits are at least a proportion (1−αs) of the

marginal posterior of the top scoring split. This proportion grows to one at a speed

depending on αs and βs . In this work we use rather mild values of αs = 0.5 and βs =
0.5. The proportions given by these values for nodes of depth one through ten are
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shown in Figure 3.4. A more stringent set of forking proportions may be necessary

in cases with a low signal to noise ratio, where a very large number of forked trees

may cross a more lenient forking threshold leading to an explosion in computation

time. With βs > 1, alternate potential splits must have a nearly identical marginal

posterior as the top ranking split once we descend more than a few levels into the

tree.

3.2.3.4 Variable Selection Cycle

In many cases, including our genomics application, we have a large collection of

candidate variables but expect some of them to have no relationship with the re-

sponse of interest in any part of the partition. Considering these noise variables

could potentially lower our power to find the optimal tree or trees. We combat this

problem by adopting an iterative approach to tree growth. We begin with all observa-

tions assigned to the root node, considering the entire candidate library of predictor

variables. When the tree growth is complete for the original tree and all forked trees,

we perform an independent lasso regression at each leaf node to select the variables

with a relationship with the response in each part of the partition represented by that

tree [Tib96]. The lasso regression estimates are defined by

β̂lasso = argmin
β

{
1

2
‖Y −Xβ‖2

2 +λ‖β‖1

}
, (3.7)

where ‖·‖2
2 denotes the squared L2 norm and ‖·‖1 denotes the L1 norm. The key to

selecting variables with the lasso is the choice of the tuning parameter λ. We choose

λ by calculating the full λ solution path as described in [EHJ04] and then choosing

λ using 10-fold cross-validation. Let Λ = (
λ1,λ2, . . . ,λ|Λ|

)
, λ1 > λ2 > ·· · > λ|Λ|, be

the vector of λ values in the solution path. At the max value λ1, β̂lasso
j = 0, ∀ j . At

each λi we calculate the mean prediction error over the 10 test sets, µlasso
i and the

standard deviation of the 10 prediction errors, σlasso
i . We choose λi that minimizes

µlasso
i with the restriction µlasso

i ≥ µlasso
1 −σlasso

1 . This method compromises between

62



selecting too many significant variables, as can be the case when choosing the λi

that minimizes the test set prediction errors, and choosing no significant variables

by selecting λ1. We consider the variables with non-zero coefficient estimates at the

selected λi as the selected variables at that leaf node.

We then find the union of the variables selected across all the leaf nodes in the

original and all the forked trees. Let S(t ) =
{

i
∣∣∣βlasso

(t ),i 6= 0
}

be the set of indices of vari-

ables selected in leaf node ηt . Let S(T0) = ∪
t∈Leaves(T0)

S(t ), the union of all the sets S(t ),

be the set of variable indices selected in any leaf node of the tree T0. Now let S(Ti )

be the set from forked tree i = 1, . . . , NT . Let Sstart
(T0) be the set of variable indices con-

sidered in building trees Ti . In other words, what variables were considered at the

root node of the original tree. If ∪NT
i=0S(Ti ) 6= Sstart

(T0) , we built tree T while consider-

ing variables that do not have a significant relationship with the response in any

part of the partition. We seek to grow a tree considering only the significant vari-

ables, so we clear all the trees, reassign all of the observations to a new root node, set

Sstart
(T0) = ∪NT

i=0S(Ti ), and restart the tree growth process considering only this smaller

set of significant variables. Note that if we are not using a separate set of variables

to split the internal nodes, then we are using the same variables for prediction and

splitting, and we add to S(t ) all of the variables used to determine the splitting criteria

on the path from leaf ηt back to the root node.
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Figure 3.2: Plots of the normalized binding association scores versus the GLF-transformed scores

used as the predictors in our method for each of the 12 DBFs. Each plot shows values for that DBF

from all three considered conditions.
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Figure 3.3: Plots of the normalized DBF expression scores over the three cell states considered: un-

differentiated cells at 0 days, undifferentiated cells at 8 days, and differentiated cells at 15 days. Each

DBF’s expression measurements were normalized by dividing by that DBF’s expression level in the

undifferentiated at 0 days state and then taking the log.
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Figure 3.4: The proportion of the marginal posterior of the optimal split that must be cleared by the

marginal posterior of alternate splits to induce a forking off of a new tree with this alternate split at

this node.
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3.3 Results

3.3.1 Simulated Data

We first explore some simulated data. We utilized the GLF transformed scores from

our mouse data set. We considered only the 10,861 genes with at least three non-

marginal GLF transformed DBF scores. We created a simple partitioning tree with

13 total nodes and 7 leaf nodes shown in Figure 3.5. We classify the genes into class

1 through class 7, corresponding to which leaf node they are directed to. In six of

the leaves we simulated a response with a regression including between four and

eight of the DBFs with a signal variance to error variance ratio ranging from 4 to

16. The response for the observations in the seventh leaf were iid normal random

variables with no relationship to the predictors. Two of the twelve DBFs had no true

relationship with the response, either in the regressions or as splitting variables.

When the candidate library consisted only of the 12 DBFs with mouse data, we

predicted a tree shown in Figure 3.6 with 19 total nodes and 10 leaf nodes. The true

partition tree, shown in Figure 3.5, has 12 nodes with 7 leaves. Our predicted tree has

only three extra splits compared to the true tree. If we consider the class label of a leaf

node to be the majority class of the member genes, then only 0.5% of the genes are

mislabeled, meaning we achieve almost perfect separation. We ran two tree growth

cycles and selected out the two DBFs from the twelve total DBFs that did not have

a true effect as splitting or predictor variables. Remember that we select significant

variables through a lasso regression in each leaf node after the tree is grown.

If we take a weighted average of the percentage of variables correctly selected (in

or out) at each leaf node, we correctly select 85% of the variables. The extra nodes

stem from correction for minor inaccuracies in the cut points chosen at the high

level splits. In the higher levels the splits chosen were for the correct variables and

quite close to the true split point, but not exactly. This required a few refining splits

further down in the tree. Table 3.1 gives the breakdown of how many members of
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Figure 3.5: The true partitioning tree from our simulation. The text in the internal nodes corresponds

to the true splitting variable at that node. BS stands for binding score. Expr stand for gene expression

value over the three conditions. The text on the arrows from the internal nodes gives the splitting

condition.

each part of the true partition appear in the predicted leaf nodes.

To test our variable selection we added 68 false variables to this same data set.

These false variables were created by choosing a random one of the 12 DBFs with a

true relationship with the response and then sampling with replacement from that

DBFs’ distribution of GLF transformed scores. Through four tree growth and variable

selection cycles we correctly selected all of the true DBFs and kept only 3 of the 70

false DBFs. All three of these false variables had a non-zero coefficient estimate in

only a single leaf. Overall, we mislabeled only 2.2% of genes and correctly selected

87% of the true variables. Table 3.2 gives the breakdown of how many members of

each part of the true partition appear in the predicted leaf nodes.

68



Oct4 BS

Sox2 Expr Zfx BS

Nanog BS Myc Expr

Esrrb BS

 > 66
th  Pctile  ≤ 66 th

 Pctile

 ≤ 45 th
 PctileNot L

owest
 >

 7
9

th  P
ct

ile

 ≤
 7

9
th

 P
ctile

Lowest
 > 45

th  P
ctile

N
ot

 L
ow

es
t

L
o
w

e
st

 >
 5

2
nd  P

ct
ile

 ≤
 5

2
n
d P

c
tile

Leaf 1

Leaf 9 Leaf 10

Leaf 4

 >
 8

4
th  P

ct
ile

 ≤
 8

4
th P

c
tile

Leaf 3

Nanog BS

 >
 6

3
rd  P

ct
ile

 ≤
 6

3
rd P

c
tile

Leaf 5 Leaf 6

Oct4 BS

Oct4 BS

 > 61
st  Pctile

 ≤
 6

1
st  P

ct
ile

Leaf 8Leaf 7Leaf 2

Figure 3.6: The predicted partitioning tree for the prediction with no extraneous variables. The text in

the internal nodes corresponds to the splitting variable predicted at that node. BS stands for binding

score. Expr stand for gene expression value over the three conditions. The text on the arrows from the

internal nodes gives the splitting condition.

3.3.2 Mouse Data

The mouse data analyzed is the same as in Chapter 1. We calculated gene-DBF bind-

ing association scores for 14,812 mouse genes, then normalized and transformed

them as discussed above. A heat map of the correlation between these 12 GLF trans-

formed scores is shown in Figure 3.9. The correlation structure agrees with the group-

ings observed originally by Chen et al., but is relatively low across the board. We pre-

dicted a tree with 7 leaves with diverse sets of significant DBFs and signs of the co-

efficients for the DBFs significant in that leaf. Remember that the GLF transformed

combination of binding association score and DBF expression rises with more sig-

nificant binding and higher DBF expression, and the log transformation of the gene

expression values is monotonic, so a positive coefficient indicates that DBF is an ac-
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Figure 3.7: The predicted partitioning tree for the prediction with 68 extraneous variables. The text in

the internal nodes corresponds to the splitting variable predicted at that node. BS stands for binding

score. Expr stand for gene expression value over the three conditions. The text on the arrows from the

internal nodes gives the splitting condition.

tivator in the set of genes represented by that leaf node and a negative coefficient in-

dicates that DBF is a repressor in the set of genes in that leaf node. Figure 3.8 shows

the predicted partitioning tree. Table ?? summarizes which DBFs were selected in

each leaf and the sign of the estimated regression coefficient for the selected DBFs

in each leaf node. The leaf names match betwen the figure and table. Table 3.3 gives

the percentage of times a split predicted in the full mouse data, shown in Figure 3.8,

was predicted over 20 random samples of one half of the mouse genes. We see that

some of the top level splits are highly consistent, while the others are less consistent.
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Table 3.1: The number of members of each class or part of the true partition

(C1,C2, . . . ,C7) present in each leaf node in the tree predicted in the simulation con-

sidering only the 12 true DBFs, 10 of which have a true relationship to the response

in at least one part of the partition. Leaf node names correpsond to those shown in

Figure 3.6.

C1 C2 C3 C4 C5 C6 C7

Leaf 1 1755 0 0 0 0 0 0

Leaf 2 467 29 0 0 0 0 0

Leaf 3 0 5146 0 0 0 0 0

Leaf 4 0 1 3700 0 0 0 0

Leaf 5 6 46 25 406 0 0 0

Leaf 6 0 0 0 10700 3 1 0

Leaf 7 2 15 17 0 529 0 0

Leaf 8 0 0 0 0 6302 0 1

Leaf 9 2 5 0 0 0 1249 0

Leaf 10 0 10 0 0 0 8 2158

The partitioning described in Figure 3.8 makes some sense given what we know

about the grouping of these 12 DBFs, with one group centered around Oct4 (Oct4,

Nanog, Sox2, Stat3, Smad1) and the other around cMyc (cMyc, nMyc, E2f1, Zfx). The

first partition is on the expression level of Oct4, where high expression is a known

indicator of stem cell state. In our three cases, Oct4 had high and similar expression

levels in two of them, and low expression in the other. In the Oct4 high expression

states, the leaves where there were non-zero regression coefficients either had very

low nMyc activity, very high Nanog activity, or high Sox2 activity. The only leaf on

this side of the intial partition with no significant regression coefficients is the set of

genes with extremely low Nanog and Sox2 activity.

In the cell state with low Oct4 expression, only one leaf node had a significant
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Table 3.2: The number of members of each class or part of the true partition

(C1,C2, . . . ,C7) present in each leaf node in the tree predicted in the simulation with

68 false variables in addition to the 12 true DBFs, 10 of which have a true relationship

to the response in at least one part of the partition. Leaf node names correspond to

those shown in Figure 3.7.

C1 C2 C3 C4 C5 C6 C7

Leaf 1 2147 0 0 38 10 4 6

Leaf 2 79 1131 0 0 0 0 0

Leaf 3 0 3061 0 0 0 0 0

Leaf 4 6 1059 0 118 81 35 46

Leaf 5 0 0 1078 79 91 0 0

Leaf 6 0 1 2664 0 0 0 0

Leaf 7 0 0 0 10851 0 0 0

Leaf 8 0 0 0 13 6652 0 1

Leaf 9 0 0 0 2 0 1219 116

Leaf 10 0 0 0 5 0 0 1990

Table 3.3: Consistency of splits predicted in the full set of mouse genes over 20 ran-

dom samples of half the mouse genes.

Split Repeat %

Oct4 Expr 100

nMyc BS 85

cMyc BS 20

Nanog BS 40

Smad1 BS 10

Sox2 BS 20
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Figure 3.8: The predicted partitioning tree for the 12 TFs in mouse ESCs.

number of non-zero coefficients. This node contains genes with at least reasonable

levels of cMyc activity and without very high Smad1 activity. Only cMyc group DBFs

have non-zero coefficients in this group.

These partitions point to the activity of the Oct4 centered group of DBFs being

more important than the cMyc group in determining the changes in strength and

direction of regulatory effect due to combinatorial binding in stem cells. In the low

Oct4 expression branch, where the cells have for the most part begun differentiating,

cMyc and Oct4 group DBF binding both serve as markers of partition category, but

only cMyc group DBFs have non-zero coefficients in these differentiated cells. Note

that it is known that the Oct4 group DBFs still have regulatory activity in differen-

tiated cells. This activity is simply not captured well by our large scale partitioning

scheme.

To further examine the biological meaning of our partition, we performed sim-

ple gene ontology enrichment tests on the lists of genes in each partition using the
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Figure 3.9: A heat map of the correlation between the GLF transformed scores of the 12 examined

mouse TFs.

software described in [BWG04]. We tested for enrichment of gene function annota-

tions, gene process annotations, and gene component annotations at each leaf, and

among the leaves 1, 2, and 4, the group of leaves with non-zero regression coeffi-

cients in the high Oct4 expression branch of the tree. The results are give in Table 3.4,

Table 3.5, and Table 3.6. These tables show the annotations enriched in each leaf (or

group of leaves) but not enriched in any of the other leaves (or group of leaves).

Leaf 4, where Oct4 expression is high and nMyc activity is extremely low, seems to
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be particularly enriched for a variety of functions and processes that are not enriched

in any of the other leaves. Also of note is the fact that relative to the other leaves,

the leaves with non-zero coefficients in the high Oct4 expression branch, leaves 1,2,

and 4, are enriched for sequence-specific DNA binding TF activity and nucleic acid

binding TF activity, an expected enrichment among groups of genes targeted by TFs

key in processes such as gene regulation and differentiation.

Table 3.4: Gene function annotations enriched in the genes at each leaf and not in

the genes at the other leaves. Also listed are the additional annotations enriched only

in the three leaves on the left side of the tree with non-zero regression coefficients.

Leaf 1 Enzyme binding

Zinc ion binding

Transition metal ion binding

Protein domain specific binding

Leaf 2

Leaf 3 Transferase activity

Leaf 4 serine-type endopeptidase inhibitor activity

Gated channel activity

Ion channel activity

Passive transmembrane transporter activity

Ion gated channel activity

Peptidase inhibitor activity

Substrate-specific channel activity

Channel activity

Endopeptidase inhibitor activity

Peptidase regulator activity

Endopeptidase regulator activity

GABA-A receptor activity
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Leaf 5

Leaf 6

Leaf 7 Protein homodimerization activity

Transporter activity

Substrate-specific transporter activity

Leaves 1,2,4 Add’l Transferase activity

Sequence-specific DNA binding TF activity

Nucleic acid binding TF activity
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Table 3.5: Gene process annotations enriched in the genes at each leaf and not in the

genes at the other leaves. Also listed are the additional annotations enriched only in

the three leaves on the left side of the tree with non-zero regression coefficients

Leaf 1

Leaf 2 Regulation of metabolic process

Leaf 3 Establishment of localization

Transport

Cellular component organization

Leaf 4 Biological adhesion

Cell adhesion

Regulation of multicellular organismal process

Locomotion

Regulation of biological process

Leaf 5

Leaf 6 Cellular protein metabolic process

Leaf 7 Positive regulation of cellular process

Leaves 1,2,4 Add’l
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Table 3.6: Gene component annotations enriched in the genes at each leaf and not in

the genes at the other leaves. Also listed are the additional annotations enriched only

in the three leaves on the left side of the tree with non-zero regression coefficients

Leaf 1 Cytosol

Nuclear lumen

Leaf 2

Leaf 3 Mitochondrion

Organelle membrane

Leaf 4 Intrinsic to plasma membrane

Integral to plasma membrane

Cell periphery

Plasma membrane

Neuron part

Ion channel complex

Neuron projection

Leaf 5

Leaf 6

Leaf 7 Extracellular matrix

Leaves 1,2,4 Add’l
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3.4 Discussion

We present an extension of Bayesian treed regression models for applications with

big data sets that are difficult to explore with a sampling approach. We specifically

aim to address the problem of predicting gene expression from DBF binding data

and DBF expression. Because we do not believe a standard linear regression well

captures the relationship between target gene expression and the measures we have

of DBF activity, we transform these DBF measures into a single logistic score, but

then extend the tree splitting procedure to allow for separate matrices of predictor

variables and node splitting variables. This allows us to use the GLF transformed

DBF measures as predictors of target gene expression but to allow node splitting

separately on both DBF binding association scores and DBF gene expression.

We have also seen in past implementations of Bayesian treed regression models

that the sampling is easily trapped in a particular mode, necessitating numerous

fresh restarts of the sampling algorithm to explore multiple modes and increase the

chances of exploring the most promising modes. With large data this is impractical.

The obvious alternative is to take the standard fully greedy approach. With complex

biological systems, it is plausible that complex combinatorial relationships create

situations where node splits high on the tree that are not the optimal scoring split

could lead to trees with more accurate clustering and prediction further down the

tree. To address this issue, we propose a compromise optimization technique. We

proceed building the greedy tree, but fork off copies of the tree with alternate node

splits when multiple splits on different splitting variables seem similarly promising.

We finally propose one additional extension motivated by our examination of

complex problems with large data sets. One may consider a large candidate library

of predictor variables, but not expect all of them to have a significant relationship

with the response in any part of the partition. Or one may be interested simply in

which predictors have a relationship with the response in each part. We propose an
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iterative tree-growth/variable-selection cycle to address this possiblity. We grow our

partitioning tree, then select variables through a simple lasso regression in each leaf

node. We take the union of the variables selected in each leaf, and if this union does

not include all the variables originally considered, we erase the tree and restart the

tree growth process considering only the selected variables. We continue this cycle

until we do not select out any variables that were considered at the beginning of the

current tree growth iteration.

With these extensions, we believe the Bayesian regression tree approach can be

more fruitfully applied to complex problems with large data sets such as prediction

of gene expression.
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CHAPTER 4

Summary and Future Work

We have seen that likelihood-based modeling focused on sparsity and a tradeoff

between broadly exploring the model space and computational efficiency to allow

analysis of large genomic datasets with complex relationships can yield important

insights into the functioning of the genome. We have taken this approach to predict-

ing DBF binding landscapes over sets of genomic regions of interest and to utilizing

these or other estimates of DBF binding to partition the genes in the genome to bet-

ter understand the interplay of combinatorial binding, cell state, and gene regula-

tion.

In predicting binding landscapes, it is prohibitively computationally expensive

to predict binding landscapes considering the complete library of DBFs with known

motifs but unknown concentrations over the entire genome in higher organisms.

Other groups have dealt with this problem by not predicting a bp-specific binding

landscape, considering only lower organisms with smaller genomes and smaller DBF

libraries, predicting landscapes for only one or a few DBFs at a time with unknown

concentrations, fixing concentrations a priori, or considering only a small subset of

the DBF library and a small subset of the genome. We have relaxed all of these re-

strictions except for the need to consider only a subset of the genome. We consider

the entire DBF library without the need for prior knowledge of DBF concentrations

over a subset of regions in the genome. We also add the functionality of consider-

ing experimental binding data, such as ChIP-Seq, directly, allowing consideration of

more information and improved prediction without requiring such information to
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be available for every DBF one is interested in considering.

For our motivating problem, considering a specialized set of genomic regions,

we successfully select a sparse set of DBFs with enriched binding in those regions,

including most of the DBFs expected to bind in such regions given experimental

data, with a much reduced false positive and false negative rate both for DBFs with

experimental binding data and for those without compared to competing methods.

In a less specialized genmoic subset, a random sample of 9% of mouse genes, we

select 22% of DBFs, about the proportion you might expect, including some DBFs

known to bind in gene promoters close to the TSS. Even if considering entire chro-

mosomes or genomes, our method can be used to predict a binding landscape on

the entire genome using a complete library of DBFs with greatly reduced false pos-

itive predicted binding sites if one forgoes selection from the DBF library and uses

our method to predict a binding landscape with a low but non-zero concentration

penalty.

In the future there are a number of extensions and computational advantages

that would be useful and relatively simple. SparScape was coded in C++ in an object

oriented fashion using OpenMP to take advantage of all the CPUs on a single board.

It could reasonable be expanded into an MPI framework to allow for much improved

performance without relying on shell scripting and outside cluster job schedulers.

We may also look into utilizing GPU programming to allow for much improved com-

putational performance on everyday personal computers.

SparScape could also be extended to include further experimental data. We did

not utilize experimental binding data for the nucleosome in the results presented

here. This data can be included in the current implementation of SparScape. As such

data becomes available in more organisms, utilizing this information could lead to

better results, especially when considering regions that are not known a priori to be

nucleosome depleted, such as gene promoters. We have also considered extending

SparScape to include modification data known to influence DBF binding and gene
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regulation. These include histone modifications and DNA methylation. This would

be a more involved extension, but would be quite feasible within the current frame-

work.

In predicting the gene regulation action of DBF binding, we have extended the

Bayesian treed regression model in a number of ways. Current treed regression mod-

els generally use the same set of variables for prediction and to determine partition-

ing criteria. In genomics applications, a regulatory effects, or other biological associ-

ations or effects, are not usually linear In addition, interaction terms can be essential,

but the effects or associative relationship is not linear with a standard multiplicative

interaction term. We extend Bayesian treed regression to allow for creation of cus-

tom scores or variable transformations as predictor variables but to retain the raw,

untransformed inputs to create splitting criteria.

Few existing methods are designed for use with very large data sets as are com-

monly encountered in genomics applications. Because of this, variable selection in

recursive partitioning algorithms has not been a priority. When the set of variables

under consideration come from a large library, as is the case in our simulated appli-

cation, it is feasible that only a small subset will have a true relation with the response

in the problem of interest. We introduce a tree growth and variable selection cycle,

where we grow our tree, then select variables in each leaf node independently using

an L1 penalized lasso regression. Then we collect the variables selected in any leaf

node, including the variables used for splitting criteria at internal nodes if the sepa-

rate splitting variables were not used. If this collection of selected variables does not

include the entire library of variables considered at the start of this growth/selection

iteration, we erase the tree and grow a new tree considering only the set of variables

selected in the last iteration. We have found in simulated applications that this pro-

cess is quite accurate and gives a good prediction of which variables are significant

in any part of the partition and of which variables are significant in any particular

part.
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Finally, previous treed regression problems tend to use a greedy approach to

growing the tree. Previous Bayesian treed regression proposals have relied on MCMC

sampling. Even with small data sets one can easily be trapped in local modes, requir-

ing a large number of fresh restarts to adequately explore the tree space. We propose

a compromise approach to explore more possible trees than with a greedy approach

but to avoid getting stuck in a non-optimal local mode. We follow the greedy path,

but allow forking off copies of the current tree with alternate splits at the leaf cur-

rently under consideration when multiple splits seem promising.

In the future, exploration of the theoretical properties of our optimization and

variable selection strategies could be illuminating. At the least, it would be useful

to carry out a more extensive exploration of the empirical properties of these exten-

sions, including some guidance for when these are most useful and perform best.

Another promising avenue for further study is the examination of the relationship

between the tree structure prior and the size of the data set, both the number of

observations and the number of variables.
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