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Abstract

Statistical interpolation of chemical concentrations at new locations is an important step in assess-
ing a worker’s exposure level. When measurements are available from coastlines, as is the case in 
coastal clean-up operations in oil spills, one may need a mechanism to carry out spatial interpolation 
at new locations along the coast. In this article, we present a simple model for analyzing spatial data 
that is observed over a coastline. We demonstrate four different models using two different repre-
sentations of the coast using curves. The four models were demonstrated on simulated data and 
one of them was also demonstrated on a dataset from the GuLF STUDY (Gulf Long-term Follow-up 
Study). Our contribution here is to offer practicing hygienists and exposure assessors with a simple 
and easy method to implement Bayesian hierarchical models for analyzing and interpolating coastal 
chemical concentrations.

Keywords:   coastal kriging; Gaussian process; geostatistics; hierarchical modeling; kriging; Markov chain  
Monte Carlo

Introduction

Data observed over locations with known geographic 
coordinates are often referred to as point-referenced 
data and are commonly seen in environmental health. 
Recent applications consider such data measured along 
coastlines or shores. For example, assessing exposures 
of workers to chemicals along the coastline may require 
statistical interpolation of the chemical concentration at 
unmonitored locations along the coast. Statistical inter-
polation at new locations based upon a set of observed 

measurements at known locations is often referred to as 
‘kriging’ in the geostatistical literature (Cressie, 1993). 
Kriging customarily uses spatial analytic tools such as 
variograms or covariance functions to construct best 
linear unbiased predictors. When chemicals are sampled 
mostly along a coastline, interpolation is sought at new 
locations along the coast. Thus, all measurements are 
collected along a curve (approximating the coastline) 
and prediction is sought at new points on this curve. We 
call this ‘coastal kriging’.
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Models for waterway stream networks using mov-
ing averages have been developed (Hoef and Peterson, 
2010). They use stream distance rather than Euclidean 
distance. These models account for the volume and dir-
ection of flowing water in stream networks. They offer 
richness and flexibility but are complicated and can be 
difficult to compute. Unlike networks, where we have 
complex structure of line segments and joints, in simple 
coastal kriging, we approximate the coastline with a sin-
gle curve or a sequence of line segments. A simple par-
ametrization of the coast will suffice and lead to easily 
implementable statistical models.

We will pursue Bayesian coastal kriging. Bayesian 
models offer easier interpretability for parameter esti-
mates, provide exact estimates of uncertainty without 
requiring assumptions of large sample sizes and inde-
pendence of observations, and can incorporate prior 
information when available. Incorporating prior infor-
mation is not uncommon in exposure assessment and 
can improve decision making (e.g. Ramachandran et al., 
2003; Hewett et al., 2006). Bayesian models can be eas-
ily executed using several software packages within the 
R statistical computing environment (please refer to the 
coding material as seen in the Supplementary Material, 
available at Annals of Occupational Hygiene online).

We will illustrate our models using a specific data-
set extracted from the GuLF STUDY (Gulf Long-term 
Follow-up Study) database. In April 2010, an explosion 
of the Deepwater Horizon oil rig resulted in an oil spill 
in the Gulf of Mexico. It was the largest oil spill in the 
US history. Tens of thousands of workers were involved 
in stopping and in cleaning up the oil release. The 
GuLF STUDY is conducted by the National Institute of 
Environmental Health Sciences (NIEHS) and sponsored 
by the National Institute of Health (NIH) (Kwok et al., 
2018). It is collecting information to study potential 
adverse effects on the health of those workers. Among 
other activities, the workers capped the well, applied 
dispersants to break up the oil, skimmed or burned the 
oil on the Gulf waters, cleaned beaches, marshes and 
structures, decontaminated equipment, and provided 
support for these activities. Personal air measurements 
are available on many of these tasks. The highest portion 
of the STUDY participants were involved in cleaning the 
beaches, marshes, and structures. One specific task in 
assessing exposures of workers cleaning the coastline is 
to statistically interpolate the chemical concentration at 
new locations along the coast.

Our contribution in this article expands upon 
existing geostatistical models to allow for better 
prediction of quantities of interest at new locations 
over coastlines. The article is organized as follows. 

The next section (“Model-based kriging”) provides 
a brief review of Bayesian methods for kriging. Next 
we discuss “Spatial processes for coastline measure-
ments”. The section titled “Coastal Kriging” discusses 
our geostatistical models for interpolating point-
referenced coastline data and simple algorithms for 
implementing Bayesian kriging. This is followed by 
a section on simulation experiments that help valid-
ate our method. “Data Analysis” illustrates our model 
through applying it to the GuLF STUDY data. Finally, 
we conclude the article suggesting some future work.

Model-based Kriging

Spatial process models with Euclidean 
coordinates
Point-referenced spatial modeling seeks to capture asso-
ciations between observations geographically closer to 
each other and to predict the value of the response or 
outcome variable at arbitrary locations. This is achieved 
using a spatial regression model:

	 Z s x s s s s N
iid

( ) = ( ) ( ) ( ), ( ) 0, ,2Τ + + ( )β ω ε ε τ

�
(1)

where x(s)T is a 1 × p vector of covariates (predictors) 
observed at location s, ω(s) is a latent (unobserved) spa-
tial random effect at location s, and ε(s) accounts for 
measurement error. For any collections of locations, the 
measurement errors in equation (1) are normally dis-
tributed independently and identically, each with a zero 
mean and variance τ2.

If ω(s) = 0 for all locations, then equation (1) reduces 
to an ordinary linear model with independent outcomes. 
If the outcomes are spatially correlated, then ω(s) intro-
duces dependence. There are several different mecha-
nisms for specifying ω(s) (Cressie, 1993; Banerjee et al., 
2014), but we choose a fairly straightforward and inter-
pretable model here. We assume that each ω(s) has mean 
0 and the dependence at two points s and s′ is modeled 
as follows:

	 Cov ω ω σ φθ( ), ( ) = , = ,2s s K s s s s′{ } ′( ) − − ′( )exp  

�
(2)

where s s− ′  is the distance between two locations 
s and s′, σ2 captures the variation attributed to spatial 
effects (referred to as partial sill) and ϕ controls the rate 
at which the spatial correlation drops to zero. The pro-
cess parameters θ = {σ2, ϕ} together with the distance 
between any two points completely specify the spatial 
covariance function Kθ(s, s′) The spatial range is defined 
as the distance beyond which the spatial correlation 
becomes negligible. For the exponential covariance 
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function in equation (2), the spatial range is given by 
approximately 3/ϕ which is the distance where the cor-
relation drops <0.05.

We incorporate the covariance function (equation 
2) into a probability model. Let S = {s1, s2, …, sn} be the 
set of spatial locations. The n × 1 vector ω, whose ith 
entry is ω(si), follows a multivariate normal distribu-
tion N(0, Kθ), where Kθ is the n × n spatial covariance 
matrix with (i, j)th entry Kθ(si, sj) in equation (2). The 
measurement errors are independent across locations, 

hence ε τs Ni

iid

( ) ( ) 0, 2 . This implies that the data vec-
tor Z, whose ith element is Z(si), is multivariate normal 
with mean vector Xβ, where x(si)

T are the rows of X, and 
variance–covariance matrix Kθ + τ2 In, where In denotes 
the n × n identity matrix.

Spatial regression models, such as equation (1), are 
fitted by estimating geostatistical parameters σ2, ϕ, and 
τ2 in addition to the regression coefficients β. We use 
equation (1) to predict the outcome at a new location 
after accounting for the uncertainty in parameter esti-
mates. When all points lie on a region represented as a 
2-D plane, the distance between s and s′ in equation (2) is 
given by the standard Euclidean distance formula. Here, 
the correlation drops at the same rate for every direction, 
so the spatial range is a function of distance only. Also, 
the covariance function in equation (2) ensures that Kθ is 
always positive definite (e.g. Banerjee et al., 2014).

In our current context, the points lie along a curve 
representing the coastline. There are two issues. First, the 
Euclidean distance is inappropriate for modeling spatial 
covariances because the effective spatial range will be the 
distance along the coast at which the correlation becomes 
negligible. Second, covariance functions that ensure posi-
tive definiteness in Euclidean coordinates need not be 
valid for other domains (Banerjee, 2005). This means 
that we will need to construct valid covariance functions 
along the coastline. Subsequently, we describe a simple 
approach to construct models such as equation (1) using 
valid covariance functions for points along curves.

Spatial processes for coastline measurements
We now extend the model discussed in the previous sec-
tion to the case where the data are observed over a coast-
line. Since all observations lie along the coastline, we will 
model spatial dependence along the coastline. The spa-
tial range and variability will need to be interpreted in 
terms of distance along the coastline. Prediction is also 
sought at arbitrary points along the coast. We assume 
that any point s on the coast is given by γ(t) = (γ1(t), 
γ2(t)) for some t T∈ ⊂ ℜ1 , where γ1(t)  =  f(t) and 
γ2(t) = g(t) are parametric equations for the coordinates. 
Therefore, each value of t determines a coordinate on a 

plane and traces out a curve γ(t) as t varies over a range 
T. The coastline is now given by the set of all points on 
it: γ γ( ) = ( ) : 1T t t T∈ ⊂ ℜ{ } . For example, a simple curve 
could be approximated by line segments. For each line 
segment, γ(t) is a straight line, γ i it s tu t( ) = | [0, ]+ ∈ ∞{ },  
originating at si and parallel to the direction vector u. 

Here, si
i

i

= 1

2

γ
γ









 , u

u

u
= 1

2









  and, hence,

	 γ
γ
γi

i

i

t
tu

tu
t( ) = | [0, ] .1 1

2 2

+
+









 ∈ ∞











 �
(3)

A customary choice for the parameter t is the arc-length. 
As another example, consider a circular coast with 
radius r. The curve is defined as

	 γ γ γ π( ) = ( ) = , ( ) = | [0, / 2]1 2t t r t t r t tcos sin .∈{ } � (4)

The point γ(t) = (r cos t, r sin t) moves in a fixed orienta-
tion (e.g. clockwise) as t increases. If t is the length of an 
arc of the circle and λ is the angle in radians which the 
arc subtends at the center of the circle, then t = rλ.

A spatial regression model such as equation (1) can 
be defined over a coast by representing each point on 
the coast by γ(t). Thus, we write Y(t) = Z(γ(t)) for every 
t T∈ .  Therefore,

	 Y t x t t t( ) = ( ) ( ) ( ),Τ + +β ω ε � (5)

where x(t) is the vector of covariates observed at the 
point γ(t), ω(t) is now defined over T with covariance 
function

	 Cov ω ω σ φθ( ), ( ) = , = | | ,2t t K t t t t′( ) ′( ) − − ′( )exp
�

(6)

where | |t t− ′  is the absolute difference between t and t′, 

and ε τ( ) 0, 2t N
iid

 ( ) .
The choice of t depends on the parametric equa-

tion used to approximate the coast. If the coast can 
be well represented in closed form using a parametric 
equation, then t as the arc-length is often a reasonable 
and convenient choice (e.g. Stewart, 2012). The intu-
ition stems from describing a curve by starting at a 
point on the curve and moving along the path traced 
by that curve. The point we arrive at after moving a 
distance of t units on the curve is γ(t). More gener-
ally, an arbitrary coastline can be well approximated 
using a series of small line segments. Each segment is 
then defined according to equation (3). For example, 
in our subsequent simulation experiments, we present 
linear approximations for an elliptical coastline. In 
our real example, we use a series of small linear seg-
ments to model the coast along Waveland Beach in 
Mississippi.
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Coastal kriging
Exposure assessors may be interested in predicting the con-
centration of a toxicant at any arbitrary location on the 
coast. Let Y(t0) be the toxicant concentration measurement 
at the point γ(t0) on the coast. The posterior probability 
distribution of Y(t0), which is also referred to as the poster-
ior predictive distribution, is computed in two steps. First, 
the unknown parameters in equation (5) are estimated by 
using Bayes’ theorem to compute their posterior distribu-
tions. Thus, if p(θ, β, τ2) represents the prior distribution 
for unknown parameters and p y| , , 2θ β τ( )  represents the 
likelihood, then the posterior distribution is given by

	

p y
p p y

p y

p p y

θ β τ
θ β τ β θ τ

θ β τ θ β τ

, , | =
, , | , ,

( )

, , | , ,

2
2 2

2 2

( ) ( ) × ( )

∝ ( ) × ( )) . �

(7)

The prior distribution can be informative or nonin-
formative. Noninformative priors typically deliver infer-
ence consistent with classical methods. Even for weakly 
informative priors, the inference is often close to clas-
sical methods because the effect of the data typically 
overwhelms the prior. While often producing inference 
numerically very similar to classical inference, Bayesian 
inference will retain simpler interpretability.

Suppose we have toxin measurements at points γ(t1), 
γ(t2), …, γ(tn) on the coast and have collected the y(ti)’s 
in an n × 1 vector y. Let X be the n × p matrix with ith 
row xT(ti) and ω be the n × 1 vector with elements ωi. 
The posterior distribution of the model parameters is

p y U a b IG a b

IG a b N

β σ τ φ φ τ

σ β

φ φ τ τ

σ σ

, , , | | , | ,

| ,

2 2 2
2 2

2
2 2

( ) ∝ ( ) × ( )
× ( ) × || , | , ,2µ β ω τβ βV N y X I( ) × +( )
�

(8)

where U( , )⋅ ⋅ , IG( , )⋅ ⋅ , and N( , )⋅ ⋅  represent the uniform, 
the inverse-Gamma and the Normal distributions, 
respectively, as expounded in Gelman et al. (2013).

Posterior distributions, in general, are not available 
in simple closed-forms. Instead we sample {β, ω, θ, τ2} 
from their posterior distribution, where θ = {σ2, ϕ}, using 
Markov chain Monte Carlo (MCMC) methods (Gelman 
et al., 2013; Banerjee et al., 2014). Some simplifications 
are often made. One is to use a flat completely nonin-
formative prior on β. Another is to integrate out ω from 
equation (8). The posterior samples for {β, σ2, τ2, ϕ} are 
then obtained by simulating

	

p y U a b IG a b

IG a b N y X

β θ τ φ τ

σ β

φ φ τ τ

σ σ

, , | | , | ,

| , |

2 2
2 2

2
2 2

( ) ∝ ( ) × ( )
× ( ) × ,, .2K Iθ τ+( )

�

(9)

The posterior samples for ω are subsequently obtained 
by sampling one instance of ω from N( , )⋅ ⋅  for each 

sampled value of {β, σ2, τ2, ϕ}. This is called composition 
sampling (Banerjee et al., 2014).

Suppose we have collected M post-convergence 
posterior samples for the model parameters, say 

β θ τ( ) ( ) ( )
2, ,j j j{ },  for j = 1, 2, …, M. The posterior sam-

ples for Y(t0) are obtained by composition sampling, 
i.e. for each j we draw Y(j)(t0) from the conditional nor-
mal distribution, say N m vj j( ) ( )

2,( ),  where the mean and 
variance are

	

m t x t K t t K t t

K t t y

j j j j

j

( ) 0 0 ( ) ( ) 0 ( )

1

( ) 0

= , ( , )

,

( ) ( ) + ( )
( )

Τ −β θ θ

θ

 

 −−( )
( ) ( ) −

( ) −

X

v t K t t K

t t K t

j

j j j

j

β

θ θ

θ

( )

( )
2

0 ( ) 0 0 ( )

0 ( )

1

= ,

, (

and  

 ,, ) , ,
( ) 0t K t t
j



θ ( )
�

(10)

where K K I
j jθ θ τ
( ) ( )

2( , ) = ( , )⋅ ⋅ ⋅ ⋅ + .  Note that m(j) (t0) and 

v tj( )
2

0( )  are precisely the classical kriging estimator and 
variance evaluated at β θ τ( ) ( ) ( )

2, ,j j j{ }.  Bayesian kriging, 
therefore, quantifies uncertainty in kriging by averaging 
the classical kriging estimator over the posterior distri-
bution of the parameters. The resulting Y(j)(t0) are sam-
ples from the posterior predictive distribution. The mean 
of these samples yields a point estimate of the predicted 
value at t0, while the variance of the posterior samples 
estimates the predictive variance.

One assumption to simplify matters is that ϕ and 

α τ
σ

=
2

2
 are fixed, say at values resulting from the empir-

ical variogram (Banerjee et al., 2014). Hence, the poster-
ior samples for the model parameters are obtained from 
the conjugate model

	

p y IG a b

N V N y X Vy

β σ σ

β µ σ β σ
σ σ

β β

, | | ,

| , | , ,

2 2
2 2

2 2

( ) ∝ ( )
× ( ) × ( )

�

(11)

where Vy = R(ϕ) +αI and R(ϕ) is the spatial correl-
ation matrix with elements exp − −( )φ | |t ti j . Here one 
can sample exactly from the posterior distribution in 
equation (11). For each j = 1, 2, …, M, we first draw 
σ ( )

2
( )
*

( )
*,j j jIG a b ( )  followed by β σ σ( ) ( )

2
( )
2| , ,j j jy N Bb B ( ) , 

where a a nj( )
*

2= / 2
σ

+  and b b y V y b Bby
*

2= / 2
σ

+ −( )Τ Τ , 

where B X V X Vy= 1 1 1Τ − − −
+( )β  and b X V yy= 1Τ −

.

Simulation

The simulated data consists of n = 100 data points. The 
outcome Y(t) values were generated on an ellipse. We first 
generated li ~ Uni(0, 2π) for i = 1, 2, …, n, where the cor-
responding parametric equations are m = 2cos(l) and 
n = sin(l). We then drew a multivariate normal random 
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variable ω ~ N(0, Kθ) and then y(ti) ~ N(β0 + ω(ti), τ
2), where 

ti is the arc-length between points (mi−1, ni−1) and (mi, ni).
In the data generation step, we fixed τ2 = 0.1, β = 0, 

and θ = {1, 1}. For assessing predictive performance, we 
used 75 observations for training the model and with-
held 25 observations for testing the predictive validation.

We estimated the models in equations (9) and (11). 
To compare the performance of coastal kriging to krig-
ing using Euclidean distance, we estimated the model in 
equation (1) as well using the covariance in equation (2). 
For all models, we assigned a noninformative prior to β0 
(i.e. V Oβ

−1 =  the matrix of zeroes) and an IG(2, 2) prior 
to τ2. In equation (9), σ2 and ϕ were assigned IG(2,2) 
and U(0.8, 30) priors. The IG(2,b) prior provides a prior 
mean of b but has, in theory, an infinite variance yield-
ing a relatively vague prior but with a prior value cen-
tered around b. In equation (11), we fixed ϕ = 1.07 and 
α = 0.25 for the coastal kriging model and ϕ = 22009.68 
and α = 8.13 × 10−5 for kriging with Euclidean distance. 
Starting values for σ2, τ2, and ϕ in equation (8) and the 
fixed values for ϕ and α = τ2/σ2 in equation (11) were 
provided using their estimates from the empirical vari-
ogram for the data (Banerjee et al., 2014).

We also compared coastal kriging to universal kriging 
(UK). UK is kriging with a trend, where E(Z(s)) is a lin-
ear combination of the known functions {f0(s), …, fp(s)} 
(Cressie, 1993). We assume that the mean E(Z(s)) is a 
function of the coordinates in a linear form, i.e. Z(s) = β0 
+ β1x1(s) + β2x2(s) + ω(s) + ε(s), where x1(s) is the longitude 
at location s, x2(s) is the latitude at location s. In practice, 
we will not have an exact parametric formula for the coast-
line. This needs to be approximated by simple parametric 
curves. The easiest such option is a sequence of line seg-
ments, as described earlier. We used our simulated dataset 
to evaluate the performance of such linear approximations.

Let Δmi = mi – mi−1 and Δni = ni – ni−1, then the 
length of the straight line segment connecting the two 

points is t m n* 2 2= ( ) ( )∆ ∆+ . For small Δm, the sum of 
the lengths of these line segments provides an approxi-
mation to the length of the curve. We will, therefore, 
consider four models for coastal kriging. The model 
in equation (9) with the exact parametrization for an 
ellipse will be called Model 1a, while that with linear 
approximation will be called Model 1b. Similarly, the 
exact and approximate parameterizations correspond-
ing to the model in equation (11) will be referred to as 
Model 2a and Model 2b, respectively.

Table 1 presents the posterior medians and 95% 
Bayesian credible intervals for the parameters in each 
of the above four models, the simple Euclidean distance 
kriging model and the UK model. The credible intervals 
from all models include the true values of β0. Models Ta
b
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1a and 1b captured the true values of σ2 and ϕ. Model 
2b also captured the true value of σ2 and Models 2a 
and 2b captured the true value of τ2. To assess predict-
ive performance across the six models, we used mean 
square prediction error (MSPE). Coastal kriging and 
UK models produced very similar MSPE values, and the 
highest MSPE was produced by the simple Euclidean 
distance kriging model. For model comparison, we 
also used the Kullback–Leibler (K–L) divergence criter-
ion ( ),D M MKL i( | )0  i = 1,…5, where M0 is the true dis-
tribution and Mi is the distribution under model i. For 
multivariate normal distributions, the K–L divergence 
(Bedrick and Tsai, 1994) takes the form
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0 0
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tr X X X X
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,

where Σ = Kθ + τ2I. Model 1a produced the lowest DKL 
followed by Models 1b, 2b, and 2a, and the highest 
values were produced by the UK model and the simple 
Euclidean distance kriging model. We also used deviance 
information criterion (DIC), which is commonly used in 
Bayesian model selection. Model 2a produced the lowest 
value, followed by Models 2b, 1a, and 1b, and the UK 
model. The highest (worst performing) value was pro-
duced by the simple Euclidean distance kriging model. 
Finally, 10-fold cross-validation [CV(10)] was the lowest 
among coastal kriging models followed by the UK model 
then the simple Euclidean distance kriging model.

Figure 1 presents the ‘coastal correlation’, i.e. the cor-
relation function plotted against the distance along the 
coast. The solid line represents the posterior mean of  

Kθ(s, s′)/σ2, while the shaded region represents the cor-
responding 95% credible band providing uncertainty 
quantification for the spatial covariance using Model 1a. 
We also used Bayesian 95% prediction intervals and the 
predicted mean values of the outcome from the 25 hold-
out locations and plotted them against the true values; the 
results are seen in Fig. 2. For the coastal kriging models, 
the intervals include the true values of the outcome vari-
able in each of the holdout locations except for one loca-
tion. The UK model provided improved prediction over 
simple Euclidean distance kriging model which produced 
the least accurate prediction with wider credible intervals.

These results indicate that Bayesian models using 
piecewise linear approximations to a parametric curve 
do not seem to adversely affect the inferential perform-
ance relative to models using the true form of the para-
metric curve. They also indicate that coastal kriging is 
better than classical kriging methods such as simple 
Euclidean distance kriging and UK when the source of 
variability in the data arises from a curve. Thus, Models 
1b and 2b are good candidate models to be used in the 
data analysis (Fig. 3).

Data analysis

Coastal kriging of the concentration of chemicals inhaled 
by the clean-up workers following the oil spill in 2010 
may be useful to assess the potential health effects asso-
ciated with the spill for locations without measurements. 
The data set used here consists of air samples collected 
on clean-up workers on Waveland Beach, Mississippi 
which extends in an S-shape for 7–8 km (Fig. 4). The 
samples were collected for ~10 h per day using passive 

Figure 1.  Coastal kriging estimated correlation (solid line) versus coastal distance applying Model 1a to the simulated data along 
with 95% credible bands (shaded).
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dosimeters clipped to the workers’ collars to measure 
breathing zone concentrations. The chemicals in the air 
diffused on to a charcoal pad inside the sampler. Five 
analytes were analyzed at the laboratory. They include 
total hydrocarbons (THC) which is a composite of the 
volatile chemicals in crude oil and is our main variable 
of interest. There were a total of 60 sample points [THC 
parts per million (ppm)] collected between 19 September 
and 21 December 2010 that were used in the analysis. 
Two exposure groups were considered, workers who 
cleaned jetties and other land-based structures and 
workers who cleaned beaches.

Candidate models include Models 1b and 2b where 
the curve is approximated by line segments and the 
parameterization in equation (3) is used. The fixed val-
ues of ϕ and α in equation (11) could be the estimated 
from the variogram. However, in coastal kriging, the 
variogram may not provide accurate estimates. Hence, 
we will use Model 1b in the data analysis and compare 
the results to simple Euclidean distance kriging results. 
For both models, we assigned a noninformative prior 
to β0 (i.e. V Oβ

−1 =  the matrix of zeroes) and an IG(2,2) 
prior to τ2. In equation (9), σ2 and ϕ were assigned 
IG(2,2) and U(0.8, 30) priors. The prior on ϕ implies 

Figure 2.  Simulated data true versus predicted values with 95% prediction intervals with 45° line of the four coastal kriging and 
simple kriging models.
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that the effective spatial range, i.e. the distance beyond 
which spatial correlation is negligible, is between 0.1 
and 3.8 on a coastline with a distance of 7.6 km. In 
addition, coastal kriging was compared to UK with a 
linear trend.

Twelve observations acted as a holdout testing sam-
ple and the models were assessed based on their pre-
dictive performance at new locations using MSPE in 
addition to CV(10) and on the goodness of fit measure 
DIC. All observations were log transformed to achieve 
normality.

Table 2 shows parameter estimates of the fitted mod-
els. MSPE is almost the same among the three mod-
els, and the highest CV(10) resulted by the UK model. 
Model 1b produced the lowest DIC value. Results show 
that coastal kriging proposed in equation (5) provides 
a better fit for coastal data compared to other classical 
kriging methods. The top panel of 3 again shows the 
observed levels, while the bottom panel in 3 shows inter-
polated total hydrocarbon (ppm) values obtained from 
Model 1b (posterior predictive means) along a string of 
100 coordinates on the coastline. These figures evince the 
effect of coastal kriging: the interpolated values are in 
close agreement with the observations at locations close 
to those with observations, while smoothing the values 
at unobserved points by borrowing from neighboring 
observations. Figure 4 shows a map of the observed and 

interpolated measurements along the coastline overlaid 
on a GoogleMap with a legend indicating the level of the 
observed THC (ppm) over Waveland Beach, Mississippi.

Discussion

We developed a simple and flexible Bayesian frame-
work for spatially oriented data that can be used to 
assess exposures of workers by interpolating levels of 
chemicals along a coastline. The statistical models for 
coastal kriging exploit a simple representation of the 
coast as a parametric function of the coordinates of 
points along the coastline. We presented four models 
using two different parameterizations. We found that 
for a simple curve, ‘kriging’ using line segment approxi-
mation performs better than spatial kriging using 
Euclidean distance. This could be a useful and practical 
approach for kriging over any simple curve. The model 
is relatively easy to fit since the covariance depends on 
parameters in ℜ1.

We remark that the current article only considers 
worker exposure assessment, not community-based 
exposure assessment. In the GuLF STUDY, >28 000 
samples of THC and several other chemicals were col-
lected across the Gulf, along the coasts, and at ports and 
docks, providing sufficient data for the STUDY expo-
sure estimates (Stewart et al., 2017). These estimates 

Figure 3.  Observed THC (ppm) (top panel) and interpolated values from Model 1b (bottom panel) over Waveland Beach, 
Mississippi.
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were derived from groups of samples based on the tasks 
being performed. The concentrations generated by these 
tasks (i.e. cleaning the beaches of oil and tar) represent 

task-derived exposures and, to a lesser extent, ambient 
air exposures. Using such task-based measurements is 
not appropriate to impute general or community air 

Figure 4.  Map of observed and interpolated THC (ppm) from Model 1b over Waveland Beach, Mississippi.

Table 2.  Medians, 2.5% and 97.5% quantiles of the posterior samples of the coefficient estimate, partial sill σ2, nugget 
effect τ2, decay parameter ϕ, MSPE, DIC, and CV(10) for the fitted models of the log-transformed THC.

Model 1a Simple krigingb UK

β0
−2.29 (−2.71, −1.83) −2.23 (−2.67, −1.73) −71.2 (−8663.9, 7497.1)

σ2 0.59 (0.29, 1.26) 0.59 (0.28, 1.15) 0.52 (0.34, 0.89)

τ2 0.46 (0.25, 0.80) 0.46 (0.27, 0.85) 0.17 (0.12, 0.23)

ϕ 9.08 (1.26, 24.82) 7.43 (1.78, 22.70) 0.29 (0.29, 6.48)

MSPE 0.06 0.06 0.05

DIC 34.4 38.6 65.05

CV(10) 0.06 0.06 0.13

aFull hierarchical model using line segment approximation.
bFull hierarchical model using Euclidean distance.
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concentrations because the task concentrations will be 
higher than ambient concentrations due to the work-
ers being nearer to the source of the chemical emission 
than the community. With the data used here, how-
ever, the imputed concentrations from the methodol-
ogy described above may represent workers’ exposures 
performing those same tasks in unmeasured locations. 
To date, occupational assessment methodologies have 
focused primary on fairly localized exposure situations. 
The method described here may be useful in more geo-
graphically extended situations, such as workers build-
ing a highway or mitigating a chemical release in a 
river or residents living along a fenceline adjacent to a 
manufacturing site.

Our study has some limitations within which our 
findings need to be interpreted carefully. First, the results 
are based on a total of 60 data points from which 48 
were used in training the model and 12 were used in 
testing it. Second, the data points are distributed on a 
coast with little curvature which rendered the coastal 
kriging results slightly better than simple Euclidean dis-
tance kriging results. Last, but not least, the distribution 
of THC in the air is unknown and its source is not aris-
ing from the coast which may add some uncertainty in 
the fitted model, although in our data this uncertainty is 
assumed to be minimal.

Building valid models for coastal kriging presents 
many new research opportunities. For instance, it would 
be of interest to develop a model for more complicated 
coastlines, perhaps along closed curves such as the 
coasts of an island. Future work will also consider the 
modeling and analysis of censored data, as is common-
place in exposure studies, due to measurements below 
the limits of detection. Also, our current computations 
were cheap due to the relatively small number of spatial 
locations. Spatial models become expensive to compute 
for larger datasets, as perhaps would be the case with 
the full GuLF STUDY databases. Here, more specialized 
high-dimensional Bayesian models can be exploited (e.g. 
Banerjee, 2017). Finally, we will also consider extend-
ing this work to exposure assessment for communities 
rather than individuals.

Supplementary Data

Supplementary data are available at Annals of Work 
Exposures and Health online.
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