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Abstract

Discovering Information Integration Specifications from Data Examples

by

Kun Qian

Two fundamental problems in information integration are data exchange and entity

resolution. Data exchange is the task of translating data structured under a source

schema into data structured under a target schema. Data exchange is captured by

schema mappings that specify the relationship between a source schema and a target

schema at a high level. Entity resolution is the task of identifying and linking different

representations of the same real-world object. The goal of entity resolution is to create

links among existing data. Although schema mapping and entity resolution have been

successfully used in many domains, manually designing schema mappings and entity

resolution algorithms is a labor-intensive and time-consuming process.

In this dissertation, we develop example-driven discovery/learning methods for

high-level declarative schema mapping specifications and high-level declarative entity

resolution algorithms. This dissertation contains two parts. In Part I, we present our

work on extending and refining two major example-driven schema-mapping discovery

frameworks, namely, the repair framework introduced by Gottlob and Senellart and

the learning framework introduced by ten Cate et al. Gottlob and Senellart introduced

a framework for schema-mapping discovery from a single data example, in which the

derivation of a schema mapping is cast as an optimization problem. We refine and

vii



study this framework in more depth. Among other results, we design a polynomial-time

log(n)-approximation algorithm for computing optimal schema mappings from a given set

of data examples for a restricted class of schema mappings; moreover, we show that this

approximation ratio cannot be improved. We implemented the aforementioned log(n)-

approximation algorithm and carried out an experimental evaluation in a real-world

mapping scenario. As opposed to the repair framework, in which the schema-mapping

discovery problem is cast as an optimization problem, the derivation of a schema mapping

is cast as a computational learning problem in the learning framework. We design a

learning algorithm that is an Occam algorithm leading up to a PAC learning algorithm for

an important class of schema mappings. We also implemented the proposed algorithm and

carried out an experimental evaluation using mapping scenarios created by iBench, which

is a state-of-the-art benchmarking tool. In Part II, we introduce a new active learning

system for entity resolution that learns high-quality entity resolution algorithms. Our

focus is on learning entity resolution algorithms in big data scenarios. We implemented

the aforementioned active learning system and carried out an experimental evaluation in

two real-world big data entity resolution scenarios.
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Chapter 1

Introduction

Information integration is the task of merging and combining information from

heterogeneous sources with different representations into a unified view of information

that is meaningful and valuable for the subsequent data analytic applications. Two

fundamental problems in information integration are data exchange and entity resolution

(or, ER in short). Data exchange is the task of translating data structured under a

source schema into data structured under a target schema. Entity resolution, also known

as several other names (record matching, deduplication, entity matching, etc.), is the

task of identifying and linking different representations of the same real-world object.

As opposed to data exchange, the goal of which is to create a target instance from a

source instance, the goal of entity resolution is to find matches among existing data.
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Declarative Approaches to Data Exchange and Entity Resolution

Syntactically, both data exchange and entity resolution can be expressed in a

high-level, declarative fashion. In data exchange, schema mappings are used to specify the

relationships between the schemas involved. Let S be a source schema and T be a target

schema. A schema mapping is a tripleM = (S,T,Σ), where Σ is a collection of high-level

declarative assertions that specify the relationship between S and T. It follows that,

given an instance I that conforms to S and given a schema mapping M = (S,T,Σ), the

goal of data exchange is to create an instance J over T usingM such thatM is satisfied.

Schema mappings are specified in some schema mapping language, such as the lan-

guage of GLAV (Global-and-Local-As-View) constraints (also known as source-to-target

tuple-generating dependencies, or s-t tgds). GLAV constraints belong to the universal-

existential fragment of first-order logic. The language of GLAV constraints is considered

to be a standard language for specifying schema mappings [23,29]. As an illustration, the

following first-order sentence is an example of a GLAV constraint over a source schema

S = {Student(studentID), Enrolls(studentID, courseID)} and a target schema T =

{Teacher(teacherID, courseID), Grade(studentID, courseName, grade)}:

∀s∀c
(

Student(s) ∧ Enrolls(s, c)→ ∃t∃g Teacher(t, c) ∧Grade(s, c, g)
)
.

Semantically, the GLAV constraint above specifies that for every student s who enrolls

in the course c, there is a teacher t who teaches the course c and the student s receives

a grade g. Once a GLAV schema mapping M between S and T is established, we can

2



then translate1 an instance I over S to an instance J over T usingM. Schema-mapping

design is therefore the task of deriving high-level declarative specifications (expressed

in the language of GLAV constraints) that describe the relationship between a source

schema and a target schema.

Entity resolution is typically considered to be an algorithmic problem. An entity

resolution task has one or more input datasets. The problem of entity resolution is to find

all pairs of records, among the input datasets, that represent the same real-world object.

Both the research community and the industry have been working on developing different

ER algorithms for various ER tasks (see [31,35,36]). Traditionally, ER algorithms are

implemented as statistical pairwise classifiers that determine whether a pair of records

is a match or a non-match. Since the late 1960s, various advanced machine learning

techniques have been developed for ER tasks (e.g., [14, 26, 28, 32, 39]). These works

have put significant efforts into designing, testing, and tuning ER algorithms that are

based on programs written in a procedural fashion. Lately, there has been research

that developed new frameworks that define the process of entity resolution in a logical

formalism, such as [6,7,19,34,42]. In particular, the language of HIL [42], introduced by

IBM, specifies the process of entity resolution in the language of entity resolution rules

(or, matching rules). ER rules are SQL-like declarative constraints. Figure 1.1 shows

an example of an ER rule (i.e., Rule1) that is used to detect matches between a set of

Twitter user profiles and a set of customer records (e.g., from Walmart). Semantically,

Rule1 specifies that a Twitter user profile and a customer record are considered to be

1The translation can be done by performing the chase procedure introduced in [29].

3



a match if (1) they have the exact same last name, (2) their first names match via a

user-defined function (i.e., firstNameMatch(x,y)), and (3) their states are the same.

match Twitter T, Customer C by Rule1 :

T.lastname = C.lastname

AND firstNameMatch(T.firstName, C.firstName)

AND T.state = C.state

Figure 1.1: An example of an ER rule

Rule-based ER algorithms have several good properties including: (1) they are relatively

easy to understand (rules are typically human-readable), (2) they are relatively easy to

maintain and customize, and (3) they are amenable to efficient evaluation on datasets

(e.g., Rule1 could be evaluated as a regular database join between the Twitter and

Customer datasets). The result of executing an ER rule R is a set of links, that is,

pairs of records that satisfy R. A rule-based ER algorithm can include a disjunctive of

rules. Therefore, the result of executing an rule-based ER algorithm A is the set of

links obtained by taking the union of the links produced by each ER rule of A. The

entity resolution learning problem is therefore the task of learning (rule-based) entity

resolution algorithms that can be subsequently used to create links with high precision

and high recall (see more details in Section 4.2 of Chapter 4).

Defining schema mappings and entity resolution in a high-level, declarative

fashion allows the user to focus on the computation at a logical level without spelling out

the implementation details relevant to the physical level. The above discussion briefly

reviewed the language of GLAV constraints for schema mappings and the language of ER

rules for entity resolution. Although they are two different languages for two different

4



information integration problems, there is a connection between them. In Section 4.1

of Chapter 4, we discuss the similarities between the two languages and how they are

related to each other.

Example-Driven Approaches to Schema Mapping Design and the Rule-

Based Entity Resolution Algorithms

Many of today’s data-centric applications rely on schema mappings and/or

entity resolution. For instance, when a user searches for rental cars on some websites

(e.g., Expedia.com), the user’s query is sent to multiple rental car companies. Then a

unified answer, which is obtained from multiple databases belonging to different rental

car companies, is presented to the user. Schema mappings play important roles in

such kind of application. Entity resolution also has been used in many tasks that are

important in daily life. For instance, most credit report agencies use entity resolution to

draw a complete picture of a person across multiple data sources. A second example

is when two companies merge, they may need to combine their customer databases. If

they have a customer in common, they need to create a new composite customer record

that combines information from the two original records. Entity resolution is used to

find the matching records in the two customer databases in question.

Although schema mapping and entity resolution have been successfully used in

many domains, manually designing schema mappings and entity resolution algorithms

is a labor-intensive and time-consuming process. Therefore, it is important to develop

automatic or semi-automatic methods to facilitate the process of designing and refining

5



schema mappings and entity resolution algorithms. In recent years, data examples have

been at the core of many approaches both to schema-mapping design (e.g., [3, 21,24,38])

and to learning statistical entity resolution classifiers (see [36]). In the setting of schema-

mapping discovery, a data example is a pair (I, J) consisting of a source instance I

and a target instance J . In the setting of entity resolution learning, a data example

is a pair (r, s) consisting of two records r and s, which can be labeled as a match

or a non-match by a human user. In this dissertation, we develop example-driven

discovery/learning methods for high-level declarative schema mapping specifications

and high-level declarative rule-based entity resolution algorithms. In the rest of this

chapter, we discuss the background of our work, limitations of existing offerings, and

our contributions.

1.1 Discovering Schema Mapping Specifications from Data

Examples

Deriving a schema mapping between two schemas can be an involved and

time-consuming process. One reason is the complexity and scale of many real world

schemas, which makes it difficult to understand which schema mapping should be derived

and how they should be derived. Another reason is that, even if the source and target

schemas are simple, there can still be many different, logically inequivalent, candidate

schema mappings. In view of this state of affairs, several different approaches have been

developed to facilitate the process of discovering the “correct” schema mapping between

6



two schemas. Two main such approaches are the derivation of schema mappings through

graphic-interface systems and the derivation of schema mappings via data examples.

Graphical-interface systems that are used to derive schema mappings first solicit

a visual specification of correspondences between the elements of the two schemas from

a user. In addition to depicting the source and target schemas, the interface allows the

user to provide input by specifying which pairs of elements from the two schemas are

related; moreover, a schema-matching module can also be used to derive such pairs.

Once the visual specification (i.e., schemas and correspondences between elements of the

schemas) has been completed, the system automatically produces a schema mapping. A

shortcoming is that multiple logically inequivalent schema mappings may conform to the

same visual specification [1], and these systems often make implicit assumptions about

the visual specification to arrive at a single schema mapping. Examples of such systems

include research prototypes (e.g., [16, 41, 56]) and commercial systems (e.g., Altova

Mapforce 2 and Stylus Studio 3).

In recent years, data examples have been at the core of several approaches to

schema mapping design. A data example is a pair (I, J) consisting of an instance I

conforming to a source schema and an instance J conforming to a target schema. Using

data examples to facilitate the schema mapping design is a preferable way because, in a

precise sense, data examples describe the underlying semantics between the source schema

and the target schema in question. There are three main example-driven schema-mapping

discovery frameworks:

2http://www.altova.com/mapforce.html
3http://www.stylusstudio.com/xml mapper.html
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• the fitting framework [3];

• the Gottlob-Senellart framework [38];

• the learning framework [21].;

The three example-driven frameworks draw from different areas, such as

database, logic, and computational learning theory. We next provide a high-level

review of the three frameworks.

• Fitting framework. In [3], the authors studied the problem that, given a set E

of data examples, determines whether or not there is a GLAV schema mapping

that fits E, and, if so, deriving such a schema mapping. Here, a schema mapping

M fits a set E of data examples if for every data example (I, J) in E, we have

that J is a universal solution of I w.r.t. M, which, intuitively, means that J is a

“most preferred” solution for I w.r.t. M [29]. A sound and complete algorithm for

solving this problem was designed in [3] and experiments with its implementation

were reported. Moreover, if, given a set of data examples, there exists a GLAV

schema mapping that fits them, then the algorithm returns a fitting GLAV schema

mapping M that is linear in the size of the data examples and has the property

that it is the most general one, which means that ifM′ is some other fitting GLAV

schema mapping, then M′ logically implies M.

• Gottlob-Senellart framework. In [38], the authors introduced and studied a

cost model for deriving a schema mapping from a single ground data example, i.e., a

data example consisting of instances without labelled nulls. Ideally, given a ground

data example (I, J), one would like to find a GLAV schema mapping M that is

8



valid and fully explaining4 for (I, J); here, valid means that (I, J) satisfies the

constraints ofM, while fully explaining means that every fact in J belongs to every

target instance K such that (I,K) satisfies the constraints of M. However, such a

schema mapping may not exist for a given data example. For this reason, Gottlob

and Senellart developed a framework that uses two schema-mapping languages:

the standard language of GLAV constraints and an extended language GLAV=,6= of

repairs that augments GLAV constraints with equalities, inequalities, and ground

facts. The cost of a GLAV schema mapping M w.r.t. a data example (I, J) is the

minimum size of a valid and fully explaining repair of M, where a repair of M is

a schema mapping M′ in the extended language that can be obtained from M via

a sequence of specified repair operations. Given a ground data example (I, J), the

goal then is to find an optimal GLAV schema mapping for (I, J), that is to say, a

GLAV schema mapping whose cost w.r.t. (I, J) is as small as possible.

• Learning framework. In [21], the derivation of a schema mapping is cast as a

computational learning problem. In computational learning, the main task is to

(exactly or approximately) identify a goal concept G by asking a number of queries

about it through oracles. Typical queries are the following:

– Membership queries, which ask the question that whether a data example e is

a positive example for the goal concept G. The answer is yes if e is positive

for G; otherwise, no.

– Equivalence queries, which ask the question that whether a candidate concept

4In the setting of a ground data example, valid and fully explaining is equivalent to fitting

9



H is logically equivalent to G. If yes, then the equivalence oracle returns true;

otherwise, a counterexample e, which is positive example for one of the two

concepts but not for both, is returned.

– Random example queries, which ask for randomly generated labeled examples

according to the goal concept G.

Under the learning framework introduced in [21], schema mappings are viewed

as concepts which can be identified either by positive/negative examples or by

universal examples. The learnablility of GAV (stands for Global-As-View) schema

mappings were studied in the learning framework. The main question investigated

in [21] is “under what standard models of learning are GAV schema mappings

learnable using data examples?”. Two well-known learning models were considered:

(1) the exact learning model introduced by Angluin [5] and (2) the PAC (Probably-

Approximately-Correct) learning model introduced by Valiant [69].

Although the three frameworks all derive schema mappings from data examples, there are

essential differences among them. As an illustration, consider a simple schema-mapping

discovery scenario, in which a single data example (I, J) (see below) is provided.

Assume that the intended schema mapping is M = (S,T,Σ), where

S = {R,S,Q}, T = {T}, and Σ = {R(x, y) ∧ S(y, z)→ T(x, z)}.

10



Here, the goal is to drive some schema mapping from (I, J) that is semantically close to

the intended schema mapping M.

When using the fitting approach, the fitting approach first checks whether there

is a fitting schema mapping for (I, J) using a procedure called homomorphism extension

test [3]. It turns out that the answer is yes, and thus the fitting approach returns the

canonical GLAV schema mappingMfit = (S,T,Σfit), where Σfit (see below) is obtained

by spelling out the facts in (I, J). By construction, Mfit is a fitting schema mapping

for (I, J) that perfectly describes the transformation from I to J .

Σfit = {R(x1, y1) ∧ S(y1, z1) ∧ R(x2, y2) ∧ S(y2, z2) ∧Q(u, v)∧ → T(x1, z1) ∧ T(x2, z2)}.

When using the Gottlob-Senellart approach, the Gottlob-Senellart approach

considers all schema mappings that are valid and fully explaining for (I, J), including

Mfit. However, the Gottlob-Senellart approach would not choose Mfit because there

are other schema mappings that are “better” than Mfit according to its cost model.

For example, consider the mapping Mgs = (S,T,Σgs), where

Σgs = {R(x, y) ∧ S(y, z)→ T(x, z)}.

It can be verified that both Mfit and Mgs are valid and fully explaining for (I, J),

but Mgs is syntactically more concise. In fact, according to the cost model of the

Gottlob-Senellart framework, the mapping Mgs is considered to be an optimal solution

for (I, J). We can see that Mgs is identical to the intended mapping M.

When using the learning approach, the learning approach further assumes that

two oracles (i.e., a membership oracle and an equivalence oracle) that can answer specific
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queries about M are given. Intuitively, in the setting of schema-mapping learning,

a membership oracle can answer queries like “is a particular data example a positive

example for the goal schema mapping?”; an equivalence oracle can answer queries like “is

a particular candidate schema mapping logically equivalent to the goal schema mapping?”.

When the two mappings are not logically equivalent, the equivalence oracle would

also return a counterexample, that is, a data example that is positive for one of the

two mappings but not for both. During the learning, the learning approach can use

the provided oracles to generate a number of new data examples from (I, J). In the

present schema-mapping discovery scenario, a new data example (I learn, J learn) would be

generated from the input data example (I, J), where

I learn = {R(a1, b1), S(b1, c1)} and J learn = {T(a1, c1)}.

It follows that the learning approach would convert the data example (I learn, J learn) into

a schema mapping that is identical to Mgs.

Note that Mfit and Mgs are semantically indistinguishable with respect to

(I, J). Now suppose that we use both Mfit and Mgs to translate a new source instance

I ′ (see below) to a target instance.

It follows that Mfit would produce an empty target instance because the left-hand side

of the GLAV constraint ofMfit is not triggered (i.e., the left-hand side of the constraint
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of Mfit is not satisfied in I ′) due to an absence of a corresponding Q-fact. In contrast,

the mapping Mgs would produce the following instance J ′, which is the same instance

that would be produced by applying M to I ′.

J ′ = {T (a3, cc), T (a4, c4)}.

As shown in the schema-mapping discovery scenario above, the mapping pro-

duced by the fitting approach does not work well on the new instance I ′, and that

is because the main focus of the fitting approach is on the fitting decision problem,

namely, determining whether there is a fitting GLAV schema mapping for a finite set

of data examples. If the answer is yes, then the fitting approach would return the

canonical GLAV schema mapping that is very specific to the input example (I, J). In

contrast, both the Gottlob-Senellart approach and the learning approach would not

produce a mapping that is a full description of (I, J). In particular, the Gottlob-Senellart

approach chooses the most syntactically succinct schema mapping among all valid and

fully explaining schema mappings for (I, J). The learning approach avoid producing

a full-description mapping of (I, J) by generating a number of guided data examples

that would lead the learning algorithm towards a schema mapping that is semantically

close to the intended schema mapping. However, the Gottlob-Senellart framework and

the learning framework both have practical limitations, which prevent us from applying

them to real-world schema-mapping discovery problems. Therefore, we embarked on

research that extends, refines, and investigates these two frameworks in more depth. We

next discuss the limitations of the two frameworks and summarize our contributions.
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1.1.1 Our Contributions

Extending the Gottlob-Senellart framework. In Chapter 2, we present

our work on extending and refining the Gottlob-Senellart framework in more depth.

We extend the framework by allowing any finite number of ground data examples,

instead of a single ground data example. We also refine the framework by considering

several different schema-mapping languages. We consider sublanguages L of the standard

language of GLAV constraints. For each of these schema-mapping languages L, we

consider two corresponding repair languages, namely, L=,6= and L=; the former extends

L with equalities, inequalities, and ground facts (as in [38]), while the latter extends L

with equalities and ground facts only.

The main algorithmic problem in the Gottlob-Senellart framework is to compute

an optimal schema mapping for a given ground data example. The tractability of this

optimization problem was left open in [38]. We show that this optimization problem

is indeed hard for GLAV mappings, for both GLAV=,6=-repairs and GLAV=-repairs.

More precisely, under a certain assumption, namely, assuming RP 6= NP, there is

no polynomial-time algorithm that, given a ground data example, computes a GLAV

mapping whose cost is bounded by some fixed polynomial in the cost of the optimal

GLAV schema mapping. Moreover, an analogous result hods for GAV mappings. We

also designed a log(n)-approximation algorithm for computing near-optimal schema

mappings in the more restricted case of GLAV schema mappings. Furthermore, we

show that this is a best possible approximation result one could achieve under a certain
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assumption, namely, assuming P 6= NP. In addition to the complexity-theoretic results,

we also implemented the aforementioned log(n)-approximation algorithm and carried

out an experimental evaluation in a real-world mapping scenario, where the task is to

find a schema mapping from a relational database to an ontology.

A preliminary version of this work appeared in [24], and an extended version

of [24] has been accepted by ACM Transaction on Database System in the January of

2017. The co-author listed in [24] directed and supervised the research which forms the

basis for this work.

Extending the learning framework. In Chapter 3, we present the a PAC

learning algorithm for the class of GAV schema mappings. In fact if an oracle for NP is

provided, the proposed algorithm is an efficient PAC learning algorithm for GAV schema

mappings. We implemented the proposed learning algorithm and evaluated it using

mapping scenarios created by a state-of-the-art benchmarking tool named iBench [8].

As a byproduct of the experimental evaluation, we introduce a new measure (i.e., the

F-score measure) that is used for evaluating the quality of schema mappings. By a

comparison study of the proposed learning algorithm with two prior methods, we show

that our learning algorithm is able to produce better (in terms of F-scores) GAV schema

mappings than the other two methods in mapping scenarios synthetically generated by

iBench.
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1.2 Learning Rule-Based Entity Resolution Algorithms

from Data Examples

Entity resolution is a hard problem that often requires extensive exploration and

understanding of the data domain characteristics even before attempting to formulate the

matching algorithms. In many unstructured or semi-structured data scenarios, one needs

to know first which attributes are present in the data and how frequently populated,

which attributes can actually “identify” an entity and/or are relevant for matching, which

are the good comparison functions to apply for the various types of attributes, and so

on. As a result, there is a significant amount of human labor that goes in designing and

customizing the entity resolution algorithms in a given domain. Furthermore, the scale

of the data in modern “big data” applications adds to the complexity of the problem.

As an example, assume that the entity resolution task at hand is to identify all matches

between a set of Twitter user profiles and a set of Customer (e.g., from Walmart) records.

If each set contains about 100 million (108) records, then the space of potential matches

(the cross product of the two datasets) contains about 108 × 108 records, and becomes

prohibitive.

Traditionally, ER has a strong history of applying supervised learning ap-

proaches to first learn a model that can be subsequently used to detect duplicates [36].

The availability of fully labeled training data is a pre-condition for applying supervised

learning. For ER, this usually implies labeling a large number of examples since the

non-matches far outnumber matches and a substantial amount of human effort needs to
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be invested up front so that the training data consists of more than just a handful of

matches. Going back to the previous example of matching Twitter user profiles with

customer records, let us further assume that the ratio of matches to non-matches is

1h on average. Randomly exploring the space of examples, one would expect to label

105 pairs of records in order to obtain a training set consisting of 100 matches. For

this reason, recent work in ER has adopted active learning approaches that use a more

guided approach to select examples to label [6, 62].

The main idea of active learning in the ER setting is to reduce the number

of pairs that need to be labeled by actively selecting the most informative examples.

In [62], the user is asked to label pairs of records that lead to maximum disagreement

among a committee of statistical classifiers learned by randomizing the input. One

shortcoming of these approaches is that they do not provide any quality control over the

resulting models. Combined with the necessity of randomization, such approaches lead

to very unstable results. In other words, multiple runs over the same input can lead

to ER results with drastically varying precision. In contrast, the recent work of Arasu

et al [6] uses active learning to learn ER rules whose precision is greater than or equal

to a user-defined threshold. The work of Arasu et al [6] has been successful in actively

learning a single ER rule with high precision guarantees. Concretely, the focus of [6]

is in exploring likely false positives, i.e., examples that are covered by the current rule

but are likely to be non-matches. By sending such examples to a user for labeling, the

learning algorithm can then refine the current rule into a more accurate rule. However,

this approach misses some opportunities towards further improving recall; it is also less
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successful in learning of a second good conjunction or, in general, of a set of conjunctions

that are sufficiently different from each other.

1.2.1 Our Contributions

In Chapter 4, we introduce a new active learning system for entity resolution

that learns high-quality rule-based entity resolution algorithms at scale. The work

presented in Chapter 4 was jointly done with Lucian Popa (IBM Research - Almaden)

and Prithviraj Sen (IBM Research - Almaden). In entity resolution, a data example is a

pair (r, s) of records where r and s are two records of the input datasets. Moreover, in

the setting of ER, every data example can be labeled either as positive (match) or as

negative (non-match) by a human user. As an illustration, Figure 1.2 shows two data

examples (one positive and one negative) for the Twitter-Customer scenario. As with

other active learning in general, the goal of our system is to interleave, in a continuous

loop, the generation of ER algorithms with the active exploration of examples, which in

turn will lead to the refinement of the rule-based ER algorithms.

Figure 1.2: Examples of matches: (a) positive, (b) negative.
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Similar to the work of Arasu et al [6], the ER rules learned by our active

learning system have precision greater than or equal to a user-specific threshold. The

main difference between our system and the work done by Arasu et al [6] is that, our

learning approach actively searches for both likely false positives that are used to improve

the precision of current rule, and likely false negatives, that is, examples that are not

covered by the current rule but are likely positive matches (true matches). The latter

type of examples are more challenging to identify since they are outside the space covered

by an existing rule; at the same time, they can have a tremendous impact in refining an

existing rule towards better recall and in finding additional good rules. One of our main

contributions is precisely the ability to generate likely false negatives that in turn, enable

learning at scale of multiple ER rules, each having significant coverage (i.e., recall) of

the space of true matches.

We summarize our main contributions as follows.

• We propose an active learning system that can learn high quality entity resolution

algorithms at scale on big data.

• As part of the overall system, we develop a learning algorithm that can learn a

single conjunction (rule) given a set of positive and negative examples. A salient

feature of this algorithm is that it maximizes recall while satisfying a high-precision

constraint, with respect to the examples.

• We develop techniques to actively search for examples, including both likely false

positives and likely false negatives. While determining likely false positives is often
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a step in prior active learning algorithms for ER, to the best of our knowledge, we

are the first to exploit likely false negatives in a significant way, leading to multiple

non-trivial rules.

• We show experimentally that our approach outperforms state-of-the-art methods

in terms of quality of the learned algorithms and also in terms of the number of

examples that need to be labeled by a human user. The methods that we compare

against range from supervised learning methods including an SVM-based pairwise

ER classifier and the LSM method that learns Markov Logic Networks (MLNs) [48],

to the more closely related active learning method by Arasu et al [6].

• We demonstrate the robustness of our method, by showing that the learned ER

rules (i.e., the conjunctions of predicates) produce almost identical sets of matches

when evaluated on two very different platforms (both using rules as input): 1) the

deterministic HIL-based system [42], running on MapReduce, and 2) a state-of-the

art probabilistic inference engine based on Probabilistic Soft Logic (PSL) [11].

Thus, our method provides a general way to learn good quality rules that apply

to a variety of entity resolution engines.
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Part I

Discovering Schema Mappings
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Chapter 2

Discovering Optimal and Near-Optimal

Schema Mappings from Data Examples

In this chapter, we contribute to the study of schema-mapping discovery from

data examples by refining, extending, and investigating the Gottlob-Senellart framework

in more depth. A preliminary version of the work presented in this chapter was published

in [24]. We first extend the framework by allowing any finite number of ground data

examples, instead of a single ground data example. While, given a finite set E of data

examples, there may not be a valid and fully explaining schema mapping for E in the

extended language, we give a simple necessary and sufficient condition for the existence

of such a schema mapping, a condition that is also easy to verify algorithmically. We

also refine the framework by considering several different schema-mapping languages. At

the base level, we consider sublanguages L of the standard language of GLAV constraints,

such as the languages of GAV constraints, LAV (Local-As-View) constraints, and SH-
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LAV (single-head LAV) constraints. For each of these schema-mapping languages L, we

consider two corresponding repair languages, namely, L=,6= and L=; the former extends

L with equalities, inequalities, and ground facts (as in [38]), while the latter extends L

with equalities and ground facts only.

The main algorithmic problem in the Gottlob-Senellart framework is to compute

an optimal schema mapping for a given ground data example. The tractability of this

optimization problem was left open in [38]. We show that this optimization problem

is indeed hard for GLAV mappings, for both GLAV=-repairs and GLAV=,6=-repairs.

More precisely, unless RP = NP, there is no polynomial-time algorithm that, given a

ground data example, computes a GLAV mapping whose cost is bounded by some fixed

polynomial in the cost of the optimal GLAV mapping. Moreover, an analogous result

holds for GAV mappings.

On the positive side, we design a log(n)-approximation algorithm for computing

near-optimal schema mappings in the more restricted case of SH-LAV schema mappings.

Specifically, we present a polynomial-time log (n)-approximation algorithm that, given

a set E of data examples, produces a SH-LAV mapping M whose cost is within a

logarithmic factor of the cost of the optimal SH-LAV mapping for E, together with

a witnessing SH-LAV=-repair M′ of M for E. Furthermore, we show that this is a

best possible approximation result. SH-LAV schema mappings and the corresponding

repair languages form important classes of schema mappings. For instance, many of

the primitives of two well-known schema mapping benchmarks can be expressed in

these languages (see Section 2.3.2 for a more detailed discussion). In addition to the
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complexity-theoretic results, we implemented the aforementioned log(n)-approximation

algorithm and then tested the implementation on a real-world mapping scenario, where

the task is to find a schema mapping from a relational database to an ontology.

The rest of the chapter is organized as follows. In section 2.1, we introduce

additional needed concepts and notations (in fact they are both used in Chapter 2

and in Chapter 3). In Section 2.2, we review the repair framework and cost model

introduced by Gottlob and Senellart, and also extend it to a finite set of data examples.

In Section 2.3, we study the complexity of computing optimal and near-optimal schema

mappings. In particular, we first present several negative results on approximating GAV

schema mappings (Section 2.3.1) and also show how we can extend the results to the

GLAV case (Section 2.3), and then we present the complexity results regarding LAV and

SH-LAV schema mappings (Section 2.3.2). In Section 2.4, we present a positive result,

that is, a log (n)-approximation algorithm for SH-LAV schema mappings with respect to

the repair language SH-LAV=; moreover, we show that the approximation factor (i.e.,

logarithmic factor) cannot be improved (assuming P 6=NP). In Section 2.5, we present an

experimental evaluation of that approximation algorithm. Finally, in Section 2.6, we

summarize our results and discuss open questions and directions for future work.

2.1 Preliminaries

In this section, we introduce the basic notations and concepts needed. Note

that the following notations and concepts are used both in Chapter 2 and in Chapter 3.
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Schemas and Instances An instance over a schema R = {R1, . . . , Rk} can be identified

with the finite set of all facts Ri(a1, . . . , am), such that Ri is a relation symbol of R and

(a1, . . . , am) is a tuple that belongs to the relation RIi of I interpreting Ri. Database

instances contain values that are either constants or nulls.

A ground instance is an instance such all of its facts are ground , i.e., they

consist entirely of constants. In this chapter, we will primarily consider ground instances,

and we will, at times, drop the adjective “ground”. We write adom(I) to denote the

active domain of an instance I.

A homomorphism h : I1 → I2 is a function from adom(I1) to adom(I2) such

that for every fact P (a1, . . . , am) of I1, we have that P (h(a1), . . . , h(am)) is a fact of I2.

By convention, a source instance refers to an instance of source schema S, and

a target instance refers to an instance of target schema T.

Schema Mappings Let S,T be two relational schemas, called the source schema and

the target schema. A schema mapping is a triple M = (S,T,Σ) consisting of a source

schema S, a target schema T, and a set Σ of GLAV constraints.

A GLAV (Global-and-Local-As-View) constraint, also known as a tuple-generating

dependency (tgd), is a first-order formula of the form

∀x(ϕ(x)→ ∃yψ(x,y)),

where ϕ(x) is a conjunction of atoms over S and ψ(x,y) is a conjunction of atoms over

T. We will often drop the universal quantifiers when writing constraints. There are two

important special cases of GLAV constraints:
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(1) A GAV (Global-As-View) constraint is a GLAV constraint whose right-hand

side is a single atom without existential quantifiers, i.e., it is of the form

∀x(ϕ(x)→ T (x)).

(2) A LAV (Local-As-View) constraint is GLAV constraint whose left-hand

side is a single atom, i.e. it is of the form

∀x(S(x)→ ∃yψ(x,y)).

There is another special case of LAV constraints, called SH-LAV (Single-Head LAV)

constraints. A SH-LAV constraint is a GLAV constraint in which both the left-hand

side and right-hand side are a single atom, i.e., it is of the form

∀x(S(x)→ ∃yT (x,y)).

Example 2.1 (GLAV, GAV, LAV and SH-LAV constraints) The following is a GLAV

constraint:

∀s∀c (Student(s) ∧ Enrolls(s, c)→ ∃t∃g Teacher(t, c) ∧Grade(s, c, g)) .

The following constraint is a GAV constraint:

∀u∀v (Node(u) ∧Node(v)→ Edge(u, v)) .

The following is a LAV constraint that is also a GAV constraint, and hence, in particular,

is a SH-LAV constraint:

Geo(x, y)→ City(y).
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The following constraint is a SH-LAV constraint that is not a GAV constraint.

Geo(x, y)→ ∃zCity(z).

Finally, the following constraint is a LAV constraint but not a SH-LAV constraint.

∀u∀v(Edge(u, v)→ ∃x Edge(u, x) ∧ Edge(x, v)).

A GLAV schema mapping is a schema mapping M = (S,T,Σ), where Σ is

a finite set of GLAV constraints. The notions of GAV, LAV, and SH-LAV schema

mappings are defined in an analogous way.

Data Examples. Let S be a source schema and T be a target schema. A data example

is a pair (I, J) such that I is a source instance that conforms to S and J is a target

instance that conforms to T. A data example (I, J) is ground if both I and J are ground

instances.

The size ||(I, J)|| of a data example (I, J) is the total number of facts in I and

J . The size ||E|| of a set of data examples is the sum of the sizes of the data examples

in E.

Solutions, Universal Solutions, and Fitting Schema Mappings. We say that a

target instance J is a solution for a source instance I with respect to (w.r.t.) a schema

mapping M = (S,T,Σ) if (I, J) |= Σ, that is, (I, J) satisfies every constraint of M.

We say that two schema mappings M and M′ are logically equivalent, denoted
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byM≡M′, if for every pair (I, J) of source instance and target instance, J is a solution

for I w.r.t. M iff J is also a solution for I w.r.t. M′.

We say that a target instance J is a universal solution for a source instance

I w.r.t. M if for every other solution J ′ for I w.r.t. M′, there is a homomorphism from

J to J ′ that is the identity on the active domain of I, i.e., such that h(a) = a for all a ∈

adom(I)∩adom(J). In this case, we also say thatM is a fitting schema mapping for (I, J).

Universal solutions have been considered as the preferred solutions for data exchange [29].

WhenM is a GAV schema mapping, then for every source instance I there is a

unique target instance J with adom(J) ⊆ adom(I) that is a universal solution for I with

respect to M. We call this target instance the canonical universal solution of I w.r.t.

M and denoted by can-solM(I), and it is poly-time computable [29]. The process of

computing can-solM(I) from I using M was called as a chase procedure [29].

Note that if J is a canonical universal solution for I w.r.t. a GAV schema

mappingM, the pair (I, J) is also called a universal data example (or, universal example

in short) for M. However, if (I, J) is a universal example for M, J may not to be a

canonical universal solution for I w.r.t. M. In chapter 3, we consider universal examples

where the target instances are canonical universal solutions for the corresponding source

instances. In chapter 3, when we say a data example (I, J) is universal for a GAV schema

mapping M, we mean that J is the canonical universal solution for I w.r.t. M.

Canonical Schema Mappings. Let (I, J) be a data example for which there is a

fitting GLAV schema mapping. We then define the canonical GLAV constraint of (I, J)
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is the GLAV constraint

∀x
(
qI(x)→ ∃yqJ(x,y)

)
,

where qI(x) is the conjunction of all facts of I (with each value from the active domain of I

replaced by a universally quantified variable from x) and qJ(x,y) is the conjunction of all

facts of J (with each value from adom(J)\adom(I) replaced by an existentially quantified

variable from y). If E is a finite set of data examples over a source schema S and a

target schema T, then the canonical GLAV schema mapping of E is the schema mapping

M = (S,T,Σ), where Σ consists of the canonical GLAV constraints of the data examples

in E. It follows that the canonical GAV schema mapping of E is defined in the same way

as the canonical GLAV schema mapping of E, but ignoring all target facts containing

nulls. In other words, the canonical GAV schema mapping of E is the canonical GLAV

schema mapping of {(I, J↓) | (I, J) ∈ E}, where J↓ consists of all facts of J that contain

only values from adom(I). Note that this is indeed a GAV schema mapping.

Validity and Explanation. Let M = (S,T,Σ) be a schema mapping, and let (I, J)

be a ground data example. We say thatM is valid for (I, J) if (I, J) |= Σ, that is, (I, J)

satisfies all constraints in Σ.

We say thatM explains a fact f of J with respect to I if, for all target instances

K such that (I,K) |= Σ, we have that f ∈ K. Finally, we say thatM is fully explaining

for a data example (I, J) if M explains each fact of J with respect to I.

In the scenario of multiple data examples, we say thatM is valid for a set E of

data examples if for every (Ik, Jk) ∈ E, (Ik, Jk) |= Σ. We say that M is fully explaining
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for E if M is fully explaining for every data example (Ik, Jk) in E. We will use the

expression vfe as a shorthand for “valid and fully explaining”.

Example 2.2 LetM = (S, T, Σ), where S = {Geo(area, city)}, T = {City(cityName)},

Σ = {Geo(x, y)→ City(y)}. Consider the data examples (Ii, Ji), i = 1, 2, 3, where

I1 : {Geo(CA, San Francisco),Geo(CA,San Jose),Geo(US,Boston),Geo(US, Los Angeles)}
J1 : {City(San Francisco),City(San Jose)}
I2 : {Geo(CA, San Francisco)}
J2 : {City(San Francisco),City(New York)}
I3 : {Geo(CA, San Francisco),Geo(US,New York)}
J3 : {City(San Francisco),City(New York)}

In these data examples, since I1 contains Geo(US,Boston), but City(Boston)

is not in J1, we have that M is not valid for (I1, J1); moreover, M is valid for (I2, J2),

but not fully explaining, as it fails to explain the target fact City(New York); however,

M is valid and fully explaining for (I3, J3). Using a simple automorphism argument,

it can be shown that there is no valid and fully explaining GLAV schema mapping for

(I1, J1). Similarly, since J2 contains a constant that does not appear in the I2, there is

no valid and fully explaining GLAV schema mapping for (I2, J2).

2.2 Repair Framework and Cost Model

In [38], the language of GLAV constraints was used as the “base language”, and

an extended “repair language” was introduced; the repair language includes equalities,

inequalities, and ground facts, and is used for “repairing” GLAV schema mappings,

so that they become valid and fully explaining for a given ground data example. We
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refine this framework by considering different sublanguages of the language of GLAV

constraints, as well different repair languages.

Definition 2.3 Fix a schema-mapping language L (e.g., GLAV). An L=, 6=-constraint

is a formula θ of the form ∀x(ϕ(x) ∧ α(x)→ ∃y(ψ(x,y) ∧ β(x,y))), where

1. ∀x(ϕ(x)→ ∃yψ(x,y)) is an L-constraint;

2. α(x) is a possibly empty conjunction of formulas of the form x ∼ c, where

∼ ∈ {=, 6=}, x ∈ x, and c is a constant;

3. β(x,y) is a possibly empty conjunction of formulas of the form

(x1 = c1 ∧ . . . ∧ xn = cn)→ y = c,

where each xi ∈ x, y ∈ y, and c1, . . . , cn, c are constants.

An L=-constraint is an L=, 6=-constraint with no conjuncts of the form x 6= c in α.

In what follows, we will continue using L to denote a schema-mapping language

(e.g., GLAV), and we will write L=,6= and L= to denote the corresponding repair language

(with and without inequalities). We will use L∗ to refer to either L=, 6= or L=. We say

that the formula θ as above is a L∗-repair of the constraint ∀x(ϕ(x)→ ∃yψ(x,y)).

The definition of L=, 6= above was given in [38], and extensive justification for

this repair language was given in that work. The significance of L= (introduced here)

will become clear later on.

Definition 2.4 An L∗-repair of an L-schema mappingM = (S,T,Σ) is an L∗-schema
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mapping M′ = (S,T,Σ′) such that each ψ ∈ Σ′ is either a ground target fact or is an

L∗-repair of some φ ∈ Σ, and, for each φ ∈ Σ, at least one L∗-repair of φ belongs to Σ′.

We write repairL∗(M) to denote the set of all L∗-repairs of M.

The above definition differs from that of repairs in [38] in that we allow M′

to contain multiple repairs of the same L-constraint from M, whereas, in [38], the

L∗-constraints of M′ stand in a one-to-one correspondence with the L-constraints of

M. There are cases in which an L-constraint may need to be repaired more than

once with, say, different combinations of equalities and inequalities. In such cases,

the optimal schema mapping in [38] may contain multiple copies of the same GLAV

constraint or multiple GLAV constraints that are identical up to a renaming of variables

(see Example 2.6). Our definition addresses this shortcoming. It does not impact our

complexity results.

Example 2.5 Recall that the data example (I1, J1) in Example 2.2 had no vfe GLAV

schema mapping. Let S = {Geo(area,city}} and T = {City(cityName)}. Consider the

GLAV=, 6= schema mappings Mk = (S,T,Σk), where Σk (k = 1, . . . , 5) is

• Σ1={Geo(x, y) ∧ (x = CA)→ City(y)};
• Σ2={Geo(x, y)→ ∃z City(z) ∧ (y = San Jose→ z = San Jose)

∧ (y = San Francisco→ z = San Francisco)};
• Σ3={City(San Francisco),City(San Jose)};
• Σ4={Geo(x, y) ∧ (x 6= US)→ City(y)};
• Σ5={Geo(x, y) ∧ (x = moon)→ City(x)}

The mappings M1, M2, M3, and M4 are vfe for (I1, J1), but are obtained in different

ways: M1 consists of a repair of Geo(x, y)→ City(y) that uses an equality to restrict the

constraint to source facts whose first attribute has value CA; M2 consists of a repair of
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Table 2.1: Data Example (I, J)

Source Instance

Geo(US, San Francisco) Geo(Calif, San Jose)
Geo(US, Los Angeles ) Geo(Calif, San Francisco)
Geo(US, Miami) Geo(Calif, Los Angeles)
Geo(US, Boston) Geo(Calif, San Diego)
Geo(US, New York) Geo(Canada, Vancouver)
Geo(NorthAm, Boston) Geo(Germany, Berlin)
Geo(NorthAm, Toronto) Geo(Japan, Tokyo)
Geo(NorthAm, New York) Geo(China, Beijing)
Geo(NorthAm, Miami) Geo(France, Paris)

Geo(UK, London)

Target Instance

City(San Francisco)
City(San Jose)
City(San Diego)
City(Los Angeles)
City(Boston)
City(Toronto)
City(New York)
City(Miami)

Geo(x, y)→ ∃zCity(z) that uses two conditional equalities to explicitly specify a value of

z depending on the value of y;M3 is a repair of the empty schema mapping, and it lists all

the ground facts of J1; finally,M4 consists of a repair of the same constraint asM1 that,

instead, uses an inequality. M5 is valid, but not fully explaining for (I1, J1). It uses the

equality (x = moon), where moon is outside the active domain of (I1, J1). We informally

say that this equality cancels M5 (with respect to the data example (I1, J1)).

Example 2.6 The following examples illustrates why, in Definition 2.4, we allow for

multiple repairs of the same constraint. Consider the data example (I, J) in Table 2.1,

and consider the GLAV schema mappings

• M1 = {Geo(x, y)→ City(y)},
• M2 = {Geo(x1, y1)→ City(y1),Geo(x2, y2)→ City(y2)}.

Consider the GLAV=, 6=-schema mapping Mr specified by the constraints

Geo(x, y) ∧ (x = Calif)→ City(y) and Geo(x, y) ∧ (x = NorthAm)→ City(y).

Note that Mr is vfe for (I, J). Note also that M2 consists of two renamings of
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the GLAV constraint of M1. By our definition of repair, Mr is a repair of M1 and also

of M2. However, according to the definition of repair in [38], Mr does not qualify as a

repair of M1, and, indeed, an example of a minimal-size repair of M1 is obtained by

adding an equality (x = US) to the left-hand side of the constraint in M1 together with

adding three ground facts: City(San Jose), City(Toronto), and City(San Diego). Since

the cost of a schema mapping w.r.t. a data example will be measured by the size of the

smallest repair (see Definitions 2.9 and 2.10 below), we have that, under the cost model

of [38], M2 has a lower cost than M1, which is counterintuitive. The definition of cost

we use here solves this problem.

As pointed out in [38], if (I, J) is a ground data example, then there is always a

vfe GLAV=, 6= schema mapping for (I, J). In fact, trivially, the collection of all the ground

facts in J is a vfe schema mapping for (I, J). This shows that, for all schema-mapping

languages L considered here, every ground data example has a vfe L= repair. Indeed,

for every data example (I, J) it holds that every L-schema mapping has a L=-repair

that is vfe (which can be obtained, for instance, by cancelling all constraints and adding

all ground target facts). However, the same result does not hold for a set of ground

data examples (note that the trivial schema mapping consisting of all the ground target

facts occurring in the input set of data examples is not always vfe). Theorem 2.7, below,

establishes a necessary and sufficient condition for the existence of a vfe GLAV=,6=

(resp. GLAV=) schema mapping for a set E of data examples.

Theorem 2.7 Let E be a finite set of ground data examples. There exists a vfe
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GLAV=, 6= schema mapping for E if and only if the following condition holds: for every

pair of data examples (I, J), (I ′, J ′) ∈ E, if I ⊆ I ′, then J ⊆ J ′. The same holds

true when GLAV=, 6= is replaced by GLAV=. Moreover, this condition is checkable in

polynomial time.

Note that, in particular, Theorem 2.7 implies that GLAV= and GLAV=, 6= are,

in a sense, equally powerful repair languages: a finite set of ground data examples has

a vfe GLAV= schema mapping if and only if it has a vfe GLAV=,6= schema mapping.

Before we give the proof of Theorem 2.7, we need a definition:

Definition 2.8 The complete-description constraint of a ground data example (I, J) is

the GLAV= constraint t that is of the form ∀x(qI(x) ∧ α(x)→ ∃yqJ(y) ∧ β(y)), where

qI(x) is the conjunction of all facts of I (with each value from the active domain of I

replaced by a universally quantified variable from x) and qJ(y) is the conjunction of

all facts of J (with each value replaced by an existentially quantified variable from y);

α(x) is the conjunction of all equalities (xi = ci), where xi is the variable corresponding

to ci, and likewise for β(y). For instance, if I = {S(a), S(b)} and J = {T (a, b)}, then

the complete-description constraint of (I, J) is ∀xy(S(x) ∧ S(y) ∧ (x = a) ∧ (y = b)→

∃wu(T (w, u) ∧ (w = a) ∧ (u = b)).

Proof of Theorem 2.7. (⇐) Suppose the condition holds, and consider the set Σ consist-

ing of the complete-description constraint of each data example (Ik, Jk) ∈ E. We show

that the schema mapping specified by Σ is vfe for E.

Validity. We need to show that for each data example (Ik, Jk) ∈ E and for each
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σ ∈ Σ, we have (Ik, Jk) |= σ. By construction, σ is the complete-description constraint of

some data example (Iσ, Jσ) ∈ E. If Ik 6⊆ Iσ, then σ is trivially valid in (Ik, Jk), because

facts of Ik would never fire the left-hand side of σ. If, on the other hand, Iσ ⊆ Ik, then, by

assumption Jσ ⊆ Jk, and hence σ is valid in (Ik, Jk)., We conclude that Σ is valid for E.

Explanation. We need to show that Σ fully explains every data example of

E. Consider any (I, J) ∈ E, and let σ be the complete-description constraint of of

(I, J). In order to show that σ fully explains (I, J), we need to show that for every

instance K such that (I,K) |= σ, we have J ⊆ K. Since (I,K) |= σ,we have that the

homomorphism from the left-hand side of σ to I can be extended to a homomorphism

from the right-hand side of σ to K. By construction of σ, it follows that J ⊆ K, and

thus σ fully explains (I, J). Since the same argument applies to each data example in

E, we have that the schema mapping specified by Σ fully explains E.

(⇒). Suppose that there is a vfe schema mapping M for E, and consider any

pair of data examples (I, J), (I ′, J ′) in E, such that I ⊆ I ′. We have that, in this case, J ′

must be also a solution for I w.r.t. M (because every homomorphism from the left-hand

side of a constraint to I is also a homomorphism from the left-hand side of the same

constraint to I ′). Since M is fully explaining for E, we conclude that J ⊆ J ′. Since no

inequality is used, the same holds for when GLAV=,6= is replaced by GLAV=.

The condition is checkable in polynomial time, because if there are n data

examples in E where each data example has at most n facts, the checking function needs

to compare n2 pairs of examples. In each comparison, we need to examine at most 4n

facts, thus this can be done in polynomial time.
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The cost model introduced in [38] focuses on finding a schema mapping in the

base language, such that the cost of transforming it to a vfe schema mapping in the

repair language is as small as possible.

Definition 2.9 [38] The size of a first-order formula ϕ, denoted size(ϕ), is the number

of occurrences of variables and constants in ϕ (each variable and constant is counted as

many times as it occurs in ϕ); occurrences of variables as arguments of quantifiers do

not count. A ground fact R(a1, . . . , an), for present purposes, is viewed as shorthand for

∃x1, . . . , xnR(x1, . . . , xn) ∧ x1 = a1 ∧ · · · ∧ xn = an; therefore, we consider its size to be

3n. The size of a repair of a schema mapping is the sum of the sizes of the constraints

and the ground facts of the repair.

Note that the motivation for the above treatment of ground facts is to discourage

the use of ground facts in repairing schema mappings.

Definition 2.10 The cost of an L-schema mapping M for a set E of data examples

and a repair language L∗, denoted by cost(M, E,L∗), is the smallest size of a vfe L∗-

repair of M for E. An L-schema mapping M is L∗-optimal for E if cost(M, E,L∗)

is the minimum of the quantities cost(M′, E,L∗), where M′ ranges over all L-schema

mappings.

Example 2.11 We continue from Example 2.5 by considering the schema mappings

Ma = {Geo(x, y)→ City(y)}, Mb = {Geo(x, y)→ ∃z City(z)}, and Mc = ∅.

BothM1 andM4 are vfe repairs ofMa for (I1, J1) and both have size 5; in fact
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no other vfe repairs ofMa has size less than 5, hence cost(Ma, {(I1, J1)},GLAV=,6=) = 5.

The repair M3 is the only vfe repair of Mc, and cost(Mc, {(I1, J1)},GLAV=,6=) = 6

(recall that the size of a ground fact is three times its arity). Moreover, M2 is a vfe

repair of Mb and size(M2) = 11, but the cost of Mb is not 11. To see this, consider the

schema mapping M′2 specified by the constraint

M′
2 = {Geo(x, y)→ ∃z City(z) ∧ (z = San Jose),City(San Francisco)}.

Clearly, M′2 is also a vfe repair of Mb for (I1, J1) and has size of 8.

Recall that we consider a slightly different notion of repair than the one in [38],

as explained in the remarks following Definition 2.4. As a consequence, the cost of a

schema mapping, under our cost model, may be less than the cost under the cost model

in [38]. Nevertheless, every optimal schema mapping in our cost model has the same

cost as the cost of an optimal schema mapping in the cost model of [38]. However, the

complexity-theoretic results concerning the various algorithmic problems do not depend

on this, and, indeed, the proofs are not affected by this change.

2.3 Hardness of Computing Optimal and Near-Optimal

Schema Mappings

As we have seen, the main idea of the framework introduced in [38] and refined here,

is to cast schema-mapping discovery as an optimization problem: given a finite set of

ground data examples, produce a schema mapping of minimum cost. Two different

decision problems naturally arise in this setting.
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Definition 2.12 The decision problem CostL∗ asks: given a ground data example

(I, J) given a set E of ground data examples, a L-schema mapping M, and an integer

k ≥ 0, is cost(M, E,L∗) ≤ k?

Definition 2.13 The decision problem Existence-CostL∗ asks: given a ground data

example (I, J) given a set E of ground data examples and an integer k ≥ 0, does there

exist a L-schema mapping M such that cost(M, E,L∗) ≤ k

In these two problems, the source schema and the target schema are part of

the input. One can also consider the variants of these problems, such as Existence-

CostL∗(S,T), obtained by fixing the source and target schemas.

The above problems (where E consists of a single ground data example) were

introduced and studied in [38] for the case where the base language L is GLAV or GAV,

and the repair language is L=, 6=. It was shown there that CostGLAV=,6= belongs to Σp
3

(the third level of the polynomial hierarchy) and is Πp
2-hard, while CostGAV=,6= belongs

to Σp
2 and is DP-hard. It was also shown that Existence-CostGLAV=,6= belongs to Σp

3

and that Existence-CostGAV=, 6= belongs to Σp
2; moreover, both these problems were

shown to be NP-hard1 These results are also summarized in Table 2.2.

The Cost and Existence-Cost problems for LAV schema mappings and

its sub-language SH-LAV schema mappings were not considered in [38]. In addition,

exploring the approximation properties of different schema mappings was left as a future

work in [38]. In the rest of this paper, we study the aforementioned open questions in

1The NP-hardness proof given in [38] is flawed. The authors have shared with us, in private
communication, a correct NP-hardness proof.
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Table 2.2: Relevant complexity results in [38]

Decision problem complexity results

CostGLAV=, 6= in Σp
3, Πp

2-hard

CostGAV=, 6= in Σp
2, DP-hard

Existence-CostGLAV=, 6= in Σp
3, NP-hard

Existence-CostGAV=, 6= in Σp
2, NP-hard

more depth. The main results, in this section, are:

1. We show that (assuming RP 6= NP) there is no polynomial time algorithm that,

given a ground data example, computes an optimal GLAV schema mapping, or

even a GLAV schema mapping whose cost is bounded by a fixed polynomial in

the cost of the optimal GLAV schema mapping. The same result holds for GAV

schema mappings, regardless of the repair language considered (see Theorem 2.14).

2. We show that the Cost and Existence-Cost problems are NP-complete for LAV

schema mappings and SH-LAV schema mappings, regardless of the repair language

considered (see Theorem 2.23).

2.3.1 Hardness of Computing Optimal and Near-Optimal GAV Schema

Mappings

We first show that the problem of computing optimal GLAV schema mappings

is not solvable in polynomial time, unless RP = NP. Note that this does not follow

directly from the NP-hardness of Existence-CostGLAV=,6= established in [38], because

CostGLAV=,6= is Πp
2-hard.

Actually, we show a stronger result: unless RP = NP, there is no polynomial-
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time algorithm that, given a ground data example (I, J), computes a GLAV schema

mapping whose cost is bounded by a polynomial in the cost of the optimal GLAV schema

mapping; moreover, the same holds true for GAV schema mappings.

Theorem 2.14 Let L ∈ {GLAV,GAV }, let L∗ ∈ {L=,L=,6=}, and let p(x) be any

polynomial. Unless RP = NP, there is no polynomial-time algorithm that, given a ground

data example (I, J), computes a L-schema mapping M such that cost(M, (I, J),L∗) ≤

p(cost(Mopt, (I, J),L∗)), where Mopt is an L∗-optimal schema mapping for (I, J). In

fact, there are fixed source and target schemas for which this result holds.

Theorem 2.14 also shows that the computational hardness is, to some extent,

robust under changes to the precise cost function.

The proof of Theorem 2.14 will make use of a result from [21] (the preliminary

version appeared in [20]); we spell that result first and then give a roadmap for the proof

of the desired Theorem 2.14.

We say that a class of data examples is GLAV-tractable if there is a polynomial

time algorithm that, given as input a data example from the class and a GLAV-constraint,

checks if the data example satisfies the GLAV-constraint.

Theorem 2.15 (from [21]) There exist schemas S and T and a GLAV-tractable class

K of data examples over S and T, where T consists of unary relations, such that the

following holds: let p(x) be any polynomial function. Unless RP = NP, there is no

polynomial-time algorithm that, given a ground data example (I, J) ∈ K for which there

exists vfe GAV-schema mappings, computes a vfe GAV-schema mapping M such that
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size(M) ≤ p(size(Mmin)), where Mmin is the minimal-size vfe GAV-schema mapping

for (I, J).

Proof. The result was proved in [21] without reference to GLAV-tractability. Careful

inspection of the proof in [21] shows that the class of source instances used is CQ-tractable

(defined below), and that the target schema is unary. As we will show, this implies the

data examples are GLAV-tractable. We say that a class C of instances (for a schema S)

is CQ-tractable if there is a polynomial-time algorithm that given an instance I ∈ C,

an n-ary conjunctive query q (n ≥ 0), and a tuple a ∈ adom(I)n, decides if a ∈ q(I).

Note that CQ-tractable classes of instances are rare. Indeed, the classic reduction from

3SAT to conjunctive query evaluation shows that there is singleton class C consisting

of a two-element instance, such that C is CQ-intractable unless P = NP. A non-trivial

example of a CQ-tractable class of instances is the class of disjoint unions of oriented

paths (viewed as instances over a schema consisting of a single binary relation) [40].

Let K be a class of data examples over source and target schema S and T,

such that the source instances of the data examples in K belong to a CQ-tractable class,

and T contains only unary relations. We will show that K is a GLAV-tractable class of

data examples.

Let (I, J) be a data example from K and consider any GLAV-constraint t of the

form ∀xy ϕ(x,y)→ ∃z ψ(x, z). We can split t into a finite set Σ of GLAV-constraints

such that each GLAV-constraint in Σ has only one variable occurring in the right-hand

side. Concretely, for each GLAV-constraint t with m variables occurring in the right-
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hand side, where m > 1, we split t into m GLAV-constraints in the following way: for

each variable z occurring in the right-hand side of t, we create a new GLAV-constraint

t′ with identical left-hand side as t, and the right-hand side of t′ contains only those

atoms that use the variable z. After this splitting, each GLAV-constraint is of the

form (1) ∀xy ϕ(x, y)→ ψ(y), or (2) ∀x ϕ(x)→ ∃y ψ(y), where ψ is a conjunction of

relational atoms. Note that t and Σ are logically equivalent, and the combined size

of the constraints in Σ is O(n2) where n is the size of t. It therefore suffices to show

that we can check the validity of the constraints from Σ in (I, J) in polynomial time.

This follows immediately from the fact that I belongs to a CQ-tractable class: we can

evaluate the left-hand side ∃xϕ in I in polynomial time, and check that the right-hand

side is satisfied.

We now provide a roadmap of the proof of Theorem 2.14. The proof proceeds

by contradiction: we show that if there is a polynomial-time algorithm A that solves the

problem described in Theorem 2.14, then, using A as an oracle, we can also solve the

problem described in Theorem 2.15 in polynomial time. More precisely, our construction

is based on a procedure that transforms a ground data example (I, J) (for which there

is a vfe GAV schema mapping) into another ground data example (I ′, J ′) that contains

many isomorphic copies of the original data example (I, J). Intuitively, after creating

“sufficiently” many isomorphic copies of (I, J) in (I ′, J ′), every GAV schema mappingM

that needs to be repaired so as to be vfe for (I, J) will have to contain a large number

of repairs so as to be vfe for (I ′, J ′) (see Lemma 2.20). As a result, if the hypothetical
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Algorithm A returns a near-optimal GAV schema mappingM′ for (I ′, J ′), then a “small”

vfe GAV schema mapping Msmall for (I, J) can be extracted from M′ in polynomial

time (see Lemma 2.20 and Proposition 2.21). We show that Msmall is a solution for the

problem in Theorem 2.15, and the contradiction is established.

The rest of the section is dedicated to a detailed proof of Theorem 2.14. We

will give a detailed proof for the GAV=,6= case, which applies also to the GAV= case.

In Section 2.3, we will explain how the proof can be modified to be a proof for the

GLAV=, 6= and GLAV= case.

Lemma 2.16 ( [3]) Let E be any finite set of data examples. If there is a vfe GAV

schema mapping for E, then there is one of size at most ||E||2.

We say that a GAV constraint is connected if the graph, where the nodes are the

atoms (both on the left-hand side and on the right-hand side) in the constraint and two

atoms are connected by an edge if they have a variable in common, is connected. Thus,

for example, the GAV constraints ∀xy(R(x, y)→ S(x, y)) and ∀xyP (x)∧Q(y)→ R(x, y)

are connected, while the GAV constraint ∀xyzv(R(x, y) ∧ U(z, v) → S(x, y)) is not

connected. We say that a GAV schema mapping is connected if it consists of connected

GAV constraints.

Lemma 2.17 Every GAV schema mapping M that is a minimal-size vfe GAV schema

mapping for a data example (I, J) is connected.

Proof. Let M be a minimal vfe GAV schema mapping for (I, J), and suppose, for the

44



sake of a contradiction, that M is not connected. If a GAV constraint is not connected,

(the graph of) its atoms can be divided into two or more connected components. One of

these connected components must contain the right-hand side of the constraint. Let M̂

be obtained from M simply by removing, from left-hand side of each GAV constraint,

all atoms that do not belong to the connected component containing the right-hand side.

Note that M̂ is strictly smaller than M. We will show that M̂ is vfe for (I, J), which

contradicts the assumption that M was a minimal vfe GAV schema mapping for (I, J).

Since M is assumed to be a minimal vfe schema mapping for (I, J), every

constraint σ ofM explains at least one target fact. This implies that there is at least one

homomorphism h from the left-hand side of σ to I. Let σ̂ be the connected constraint

of M̂ that was obtained from σ. Clearly, every target fact that is explained by σ is

also explained by σ̂. Conversely, every target fact explained by σ̂ is explained by σ,

because every homomorphism g from the left-hand side of σ̂ to I can be extended to

a homomorphism g′ from the left-hand side of σ to I (where g′ simply extends g by

mapping every variable x ∈ dom(h) \ dom(g) to h(x)). It follows thatM and M̂ explain

the same target facts, and hence M̂ is vfe for (I, J).

Lemma 2.18 For each GAV schema mapping M, there is a connected GAV schema

mapping M′, such that, for all data examples (I, J),

cost(M′, {(I, J)}, GAV =,6=) ≤ 2 · cost(M, {(I, J)}, GAV =, 6=)

and the same holds for when GAV =,6= is replaced by GAV =. Moreover, in both cases,
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M′ can be computed from M in polynomial time.

Proof. If a GAV constraint is not connected, (the graph of) its atoms can be divided

into two or more connected components. One of these connected components must

contain the right-hand side of the constraint. Let M̂ be obtained from M simply by

removing, from left-hand side of each GAV constraint, all atoms that do not belong to

the connected component containing the right-hand side. This can clearly be done in

polynomial time. We claim that M̂ satisfies the requires properties.

Let (I, J) be an arbitrary data example and Mr be a minimal vfe repair of M

with respect to (I, J). We have to show that there is a repair M̂r of M̂ such that M̂r

is vfe with respect to (I, J), and such that the size of M̂r is at most twice the size of

Mr. We take

M̂r = {ψ̂ | ψ ∈Mr}

where, for each repaired GAV constraint ψ ∈Mr, ψ̂ as follows: let φ ∈M be the GAV

constraint of which ψ is a repair, and let φ̂ be the corresponding GAV constraint in M̂

(that is, φ̂ is obtained from φ by removing disconnected atoms from the left-hand side).

We distinguish two cases:

First, we consider the case where ψ explains at least one fact of J . In particular,

this means that there is a homomorphism h from the left-hand side of ψ into I. In this

case, we simply let ψ̂ be the repair of φ̂ obtained by applying the same repair operations

as in ψ, insofar as they concern variables that still belong to φ̂. Clearly, all atoms in the

left-hand side of ψ̂ occur also in the left-hand side of ψ. Therefore, ψ̂ explains all facts
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of J explained by ψ. Moreover, ψ̂ is valid in (I, J) because every homomorphism g from

the left-hand side of ψ̂ can be extended to a homomorphism g′ from the left-hand side

of ψ to I (where g′ simply extends g by mapping every variable x ∈ dom(h) \ dom(g) to

h(x)).

Next, consider the case where ψ does not explain any fact of J . Since Mr

is valid with respect to (I, J), this implies that there is no homomorphism from the

left-hand side of ψ to I (because, if there were, then the right-hand side of ψ would be

satisfied in J , and hence ψ would explain at least one fact of J). If φ is connected (and

hence φ̂ = φ), we simply take ψ̂ = ψ. Otherwise, we construct ψ̂ from φ̂ by adding a

single equality with a constant outside the active domain of I. We then have that the

size of ψ̂ is at most twice the size of ψ, and ψ is trivially valid in (I, J).

In each of the above cases, ψ̂ was constructed so that it is valid with respect to

(I, J) and it explains all facts of J explained by ψ, while at the same time having a size

at most twice the size of ψ. It follows that the cost of M̂ with respect to (I, J) is at

most twice as large as the cost of M with respect to (I, J).

We will prove Theorem 2.14 by contradiction: if a poly-time algorithm A for

the problem in Theorem 2.14 exists, then, using A as an oracle, we can solve the problem

in Theorem 2.15 in polynomial-time as well.

Let p be a fixed polynomial. Take an arbitrary ground data example (I, J) ∈ K

for which there exists a vfe GAV schema mapping, where K is the GLAV-tractable class

of data examples given by Theorem 2.15. Let S and T be the source schema and target
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schema involved. We transform (I, J) to another data example (I ′, J ′) over the same

source and target schemas: let E = { (I1, J1), · · · , (In, Jn) }, where each (Ik, Jk) is an

isomophic copy of (I, J) using fresh constants, and where n = 3 · p(||(I, J)||2). We define

(I ′, J ′) to be the data example where I ′ =
⋃
k=1...n Ik and J ′ =

⋃
k=1...n Jk.

Clearly, the transformation from (I, J) to (I ′, J ′) described above is computable

in polynomial time. In the remainder of this section, we show that, from a near-optimal

GAV schema mapping for (I ′, J ′) (in the sense of Theorem 2.14) we can extract, in

polynomial time, a near-minimal vfe GAV schema mapping for (I, J) (in the sense of

Theorem 2.15).

Lemma 2.19 Let M = (S,T,Σ) be any connected GAV schema mapping (where S

and T are the source and target schema of the data example (I, J)). If M is vfe for

(I, J), then M is vfe for (I ′, J ′).

Proof. By invariance under isomorphism, M is vfe for (Ik, Jk), for all k ≤ n. Since T

consists of unary relations, it follows that, for every connected GAV constraint σ ∈ Σ, we

in fact have that the left-hand side of σ is connected, and hence, for every homomorphism

h from the left-hand side of σ into I ′, the range of h is, in fact, contained in Ik for some

k ≤ n, and therefore, since (Ik, Jk) |= Σ, h is a homomorphism from the right-hand side

of σ to Jk, which is contained in J . It follows that M is valid for (I ′, J ′). Moreover,

since every fact in J ′ belongs to Jk for some k and M is vfe for (Ik, Jk), we have that

M explaines every fact in J ′.

Lemma 2.20 Let M = (S,T,Σ) be any GAV schema mapping, where S and T are
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the source and target schema of the data example (I, J).

1. If every vfe repair of M for (I, J) contains at least one constant in (I, J), then

cost(M, E,GAV =, 6=) ≥ 2n, where n is the number of data examples in E.

2. If there is a vfe repair of M for (I, J) that does not contain any constant in (I, J),

then there is a subset Σ′ ⊆ Σ such that M′ = (S,T,Σ′) is a vfe GAV schema

mapping for (I, J).

Proof. (1) Since every vfe repair of M for (I, J) contains at least one constant in (I, J),

every vfe repair of M for (Ik, Jk) also contains at least one constant in (Ik, Jk) , where

k = 1, · · · , n due to the fact that (Ik, Jk) is a copy of (I, J). Let Mr be a minimal

vfe repair of M for E, by definition of vfe for a set of ground data examples, Mr

is also a valid and fully explaining GAV=,6= schema mapping for each (Ik, Jk) ∈ E.

Therefore, Mr contains at least one constant from each data example (Ik, Jk) ∈ E. This

indicates that Mr contains at least n distinct constants. By the definition of repair

language, every repaired schema mapping containing a constant has size at least 2, hence

cost(M, E,GAV =, 6=) ≥ 2n.

(2) Let Mr = (S′,T′,Σ′′) be a valid and fully explaining repair of M =

(S′,T′,Σ) for (I, J) and that does not contain any constant in (I, J). Consider the

following repairs that can appear in Mr.

(i) An equality (x = c), where c is not in (I, J), in the left-hand side of a GAV-

constraint t in M. This equality is cancelling t, thus t can be removed from Mr

without changing the validity and explanation of Mr for (I, J).
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(ii) An inequality (x 6= c), where c is not in (I, J), in the left-hand side of a GAV

constraint t in M. Clearly, it is a redundant repair and can be removed from t.

This implies a contradiction to the fact that Mr is a minimal, hence cannot be

the case.

(iii) A ground fact f such that f 6∈ J . This cannot be the case, because it makes Mr

invalid in (I, J).

Since Case (ii) and Case (iii) cannot arise, the only possible repair is Case (i). If Mr

contains such an equality, then we can remove the constraint that contains such kind of

equality, because the repair is cancelling the constraint. Therefore, we can find a subset

Σ′ ⊆ Σ′′ and that is a vfe for (I, J), and, clearly, Σ′ is also a subset of Σ.

Proposition 2.21 Let (I, J) be any data example from the GLAV-tractable class K

given by Theorem 2.15, and let (I ′, J ′) be as constructed above (that is, by making

isomorphic copies of (I, J)). Let M be any connected GAV schema mapping such that

cost(M, (I ′, J ′), GAV =, 6=) ≤ p(cost(Mopt, (I ′, J ′), GAV =,6=)), whereMopt is the optimal

GAV schema mapping for (I ′, J ′). From M and (I, J), we can compute in polynomial

time a GAV schema mapping M′ such that size(M′) ≤ 2p(size(Mmin)), where Mmin

is the smallest vfe GAV schema mapping for (I, J).

Proof. By Lemma 2.16 and Lemma 2.17, there is a vfe connected GAV schema mapping

for (I, J) of size at most ||(I, J)||2. By Lemma 2.19, the same schema mapping is also

vfe for (I ′, J ′), and, therefore, cost(Mopt, (I ′, J ′), GAV =, 6=) ≤ ||(I, J)||2. Let Mconn be
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the connected GAV schema mapping obtained from M through Lemma 2.18. Then

cost(Mconn, (I
′, J ′), GAV =,6=) ≤ 2cost(M, (I ′, J ′), GAV =,6=) ≤ 2p(||(I, J)||2) .

Recall that n = 3p(||(I, J)||2). By Lemma 2.20, we obtain that Mconn = (S,T,Σ)

“contains” a GAV mappingM′ = (S,T,Σ′) (with Σ′ ⊆ Σ) that is vfe for (I, J). Moreover,

M′ is computable in polynomial time due to the GLAV-tractability of K, and

size(M′) ≤ size(Mconn) ≤ 2cost(M, (I ′, J ′), GAV =,6=) ≤ 2p(cost(Mopt, (I ′, J ′), GAV =,6=)).

By Lemma 2.17, we may assume without loss of generality that Mmin is connected. By

Lemma 2.19, then, Mmin is vfe for (I ′, J ′) and we have that

cost(Mopt, (I ′, J ′), GAV =,6=) ≤ size(Mmin).

Putting everything together, we have that

size(M′) ≤ 2p(cost(Mopt, (I ′, J ′), GAV =,6=)) ≤ 2p(size(Mmin)).

Proposition 2.21 together with Theorem 2.15 immediately implies Theorem 2.14.

Extending the proof of Theorem 2.14 for GLAV schema mappings

Here, we show that how to extend the proof of Theorem 2.14 to hold both for

GLAV=, 6= schema mappings and for GLAV= schema mappings.

Proposition 2.22 Let (I, J) be a data example over source and target schema S and

T, where T contains only unary relations. For every GLAV schema mapping M there is

a GAV schema mapping M′, which can be obtained from M in polynomial time, such

that
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i cost(M′, (I, J), GAV =, 6=) = O(cost(M, (I, J), GLAV =, 6=)2), and

ii cost(M′, (I, J), GAV =) = O(cost(M, (I, J), GLAV =)2)

Proof. Let M = (S,T,Σ). We denote by Mgav the GAV mapping (S,T,
⋃
σ∈Σ Σgav),

where Σgav is the set of GAV constraints obtained by removing all atoms containing

existentially quantified variables, as well as all existential quantifiers, from the right-hand

side of σ, and, in case of multiple atoms in the right-hand side, splitting the constraint

into several constraints, each having a single atom in the right-hand side. For example, if

σ is the GLAV constraint ∀xy(P (x)∧Q(y)→ ∃z(R(x)∧ S(y)∧ T (z)∧U(z)), then Σgav

consists of the GAV constraints ∀xy(P (x)∧Q(y)→ R(x)) and ∀xy(P (x)∧Q(y)→ S(y)).

We claim that Mgav satisfies the properties. We describe the argument for (i),

but the argument for (ii) is similar. Consider any GLAV=,6= repair M̂ of M that is vfe

for (I, J). We construct a corresponding GAV=,6= repair M̂gav for Mgav as follows:

(a) whenever M̂ contains a repaired σ̂ of a constraint σ ∈ Σ, then we add to M̂gav a

set Σ̂gav consisting of the repair of each constraint in Σgav obtained by applying

the same equalities and inequalities that involve universally quantified variables.

(b) whenever a M̂ contains a repaired constraint σ̂ containing a conditional equality

of the form (. . .→ y = c), where y is an existentially quantified variable, then for

each atom T (y) in the right-hand side of σ̂, we add the ground fact T (c) to M̂gav.

(c) whenever there is a ground fact f in M̂, we add f to M̂gav

We next show that M̂gav is vfe for (I, J) and it is only quadratically larger than M̂.

Validity. By construction, the ground facts included in M̂gav are valid for
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(I, J), and it suffices to show that the GAV constraints of M̂gav are also valid for

(I, J). To show that, we take an arbitrary homomorphism h from the left-hand side of

some GAV constraint in M̂gav to I. By construction of M̂gav, we have that h is also a

homomorphism from the left-hand side of some constraint in M̂ to I (for every constraint

tgav ∈ M̂gav, we can find a constraint t ∈ M̂ that has identical left-hand side as tgav).

Since M̂ is valid for (I, J), we know that h can be extended to a homomorphism h′

from the right-hand side of M̂ to J . We can easily extract a homomorphism h′′ from h′

such that h′′ is a homomorphism from the right-hand side of M̂gav to J (where h′′ is

the restriction of h′ to the universally quantified variables). Therefore, M̂gav is valid for

(I, J).

Fully Explaining. Since M̂ is fully explaining for (I, J), we have that each fact

in J is either one of the ground target facts of M̂ or is explained by some constraint in

M̂. For those facts in J that are among the ground target facts in M̂, they will also

belong to M̂gav (because of Procedure (c) described above). Now, consider a (unary)

target fact P (a) that is explained by a constraint σ̂ ∈ M̂. Intuitively, this means that,

if we chase I with respect to σ̂, the fact P (a) belongs to the chase result — see [29]

for more details about chase procedure). Let σ′ be the constraint obtained from σ by

dropping all atoms containing existentially quantified variables, and let σ̂′ be the repair

of σ′ obtained from σ̂ in the same way. Then either P (a) is already explained by σ̂′,

or, otherwise, the right-hand side of σ̂ must contain an atom of the form P (y) and

a conditional equality of the form (· · · → y = a). In either case, it follows from our

construction that P (a) is explained also by M̂gav.
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We now show that the size of M̂gav is bounded quadratically in the size of

M̂. By construction, the operations described in procedure (c) will never result in a

schema mapping that has greater size than the original one, and the procedure described

in (b) will blows up the size by a constant factor. This is because each conditional

equality explains at most one ground target fact (note that the target schema contains

unary relations only), and it has size at least two). However, the operations described in

procedure (a) may blow up the size to a quadratic factor. Therefore, the size of M̂gav is

bounded quadratically in the size of M̂, and the proposition is proved.

Proposition 2.22, intuitively, shows that the problem of computing near-optimal

GAV schema mappings (for unary target schemas) reduces to the problem of computing

near optimal GLAV schema mappings. Since the proof of Theorem 2.14 uses a unary

target schema, it immediately implies that Theorem 2.14 holds true where GAV is

replaced by GLAV.

2.3.2 Complexity of the problems Cost and Existence-Cost for LAV

and SH-LAV schema mappings

Next, we show that the problems Cost and Existence-Cost are NP-complete

for the languages of LAV schema mappings and SH-LAV schema mappings. Neither of

these schema-mapping languages was considered in [38].

Although restrictive, SH-LAV schema mappings together with the SH-LAV=

repair language, can capture projection, column addition, column reordering, and

selection conditions. Many of the primitives of two well-known primitive-based schema
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mapping benchmarks (STBenchmark [2] and iBench [8]) can be expressed as SH-LAV

schema mappings and SH-LAV= repairs. In particular, three out of eleven primitives of

STBenchmark correspond to SH-LAV schema mappings and SH-LAV=-repair: Copy,

Constant Value Generation, Horizontal Partition. In iBench, there are five out of

fifteen: Copy, Horizontal Partition, Add Attribute, Delete Attribute, and Add & Delete

Attribute.

In addition, SH-LAV constraints capture a large fragment of the DL-Lite

language used in ontology based data access (OBDA) [10]. More precisely, as pointed

out in [22], a knowledge base (as defined in the OBDA literature) can be captured,

in a precise formal sense, by a schema mapping that is specified by source-to-target

copy-constraints as well as target constraints. If the knowledge base is specified in the

core DL-Lite language, it turns out that each target constraint is either a SH-LAV

constraint or a denial constraint (i.e., a first-order sentence of the form ∀x(φ→ ⊥) where

φ is a conjunction of atoms).

Theorem 2.23 Let L∗ ∈ {LAV=, 6=,LAV=, SH-LAV=,6=,SH-LAV=}. Then the problems

CostL∗ and Existence-CostL∗ are NP-complete. In fact, there are fixed schemas S

and T for which these problems are NP-complete.

Theorem 2.23 is established via a reduction from the Set-Cover problem.

The following lemmas and propositions will be helpful for establishing the NP-upper

bounds.

Lemma 2.24 Let E be a finite set of ground data examples and M a LAV schema
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mapping with cost(M, E,LAV=,6=) = n. Then there is a SH-LAV schema mapping M′

such that cost(M′, E, SH-LAV=, 6=) ≤ n2. The same holds for when =, 6= is replaced by =.

Proof. Let E be a finite set of ground data examples, letM = (S,T,Σ) be a LAV-schema

mapping, and letMr = (S,T,Σr) be a minimal-size vfe LAV∗-repair ofM for E, where

∗ is either = or =, 6=.

We will denote by Mshlav
r the SH-LAV∗-schema mapping (S,T,Σshlav

r ) where

Σshlav
r is obtained as follows: for each LAV∗-constraint σ ∈ Σ of the form

R(x) ∧ α(x)→ ∃y(S1(x,y1) ∧ · · · ∧ Sn(x,yn) ∧ β(x,y)) ,

(with y1, . . . ,yn ⊆ y) we take all n SH-LAV∗ constraints σ′ of the form

R(x) ∧ α(x)→ ∃yi(Si(x,yi) ∧ β′(x,yi)) ,

where 1 ≤ i ≤ n, and where β′ is obtained from β by keeping only those conjuncts that

contain an existentially quantified variable belonging to yi. Thus, for example, if Mr

contains the LAV=-constraint R(x, y)→ ∃uv S(x, u)∧T (z, u, v)∧(x = c1∧y = c2 → u =

c3)∧ (x = c1 → v = c4), thenMshlav
r contains R(x, y)→ ∃u S(x, u)∧ (x = c1∧y = c2 →

u = c3) and R(x, y)→ ∃uv T (z, u, v) ∧ (x = c1 ∧ y = c2 → z = c3) ∧ (x = c1 → v = c4).

We will denote by Mshlav
r the SH-LAV schema mapping obtained in the

same way from M. Observe that Mshlav
r is a SH-LAV∗-repair of Mshlav, and that

size(Mshlav
r ) ≤ size(M2

r). It only remains to show that Mshlav
r is vfe for E. Validity is

immediate from the construction (note that Mr logically implies Mshlav
r . It is also clear

from the construction that every fact in the target instance of a data example from E
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explained by a LAV∗-constraint σ of Mr is also explained by one of the corresponding

SH-LAV∗-constraints of Mshlav
r .

Definition 2.25 (csize(E)) The constant-based size of a set E of ground data examples,

denote by csize(E), is the total number of occurrences of constants in all data examples

in E.

Note that the quantity csize(E) is different from the quantity ||E|| introduced

in Section 2.1: the former gives the total number of occurrences of constants in E,

while the latter gives the total number of facts in E. We use ||E|| as an amplification

parameter in Lemma 2.16, which is part of the proof of Theorem 2.14. In the next

lemma, we will use csize(E) to show that when a vfe SH-LAV=-schema mapping for E

exists, then there is a “small” one.

Lemma 2.26 Let E be a finite set of ground data examples for which there exists a

vfe SH-LAV=-schema mapping. There exists a SH-LAV schema mapping M such that

cost(M, E, SH-LAV=) is bounded by a polynomial in csize(E).

Proof. We know that there is a vfe SH-LAV=-schema mapping for E. Each constraint t

in a minimal vfe SH-LAV=-schema mapping can explain at least one target fact (because

otherwise, we can remove all non-explaining constraints and that will still be vfe for E

but has smaller size). In the worst case, suppose that each SH-LAV= constraint in a

minimal vfe SH-LAV=-schema mapping only explains one target fact in E. Let M be a

minimal vfe SH-LAV=-schema mapping, let n be csize(E). The arity of atoms occurring
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in a SH-LAV=-constraint t ∈M are both bounded by n, becauseM is minimal vfe for E.

Each variable occurring in the left-hand side of t can only be involved in at most

one equality, because, if the left-hand side of t two equalities involving same universally

quantified variable but using different constants, then this constraint is trivial and can

be removed. Also, in the worst case that all variables occurring in the right-hand side

are existentially quantified, we have to add repairs that involve every variable in the

right-hand side. The most costly way to repair an existentially quantified variable is

to add a conditional equality with a conjunction of n equalities in the premise, and

thus the maximum size of a repair on the right-hand side is n× (2n+ 1). (Note that

in fact the same existentially quantified variable can be repaired by multiple conditional

equalities. However, it is enough to explain one fact with the repaired constraints with

one conditional equality per existentially quantified variable). Therefore, the maximum

size of an explaining SH-LAV= constraint for E is 2n2 + 5n (n for unrepaired left-hand

side, n for unrepaired right-hand side, 2n for the equalities on the left-hand side, and

2n2 + n for the conditional equalities on the right-hand side). Since the number of facts

in E is at most n, the maximum size of a minimal vfe SH-LAV= schema mapping for

E is at most 2n3 + 5n2, therefore polynomial in csize(E).

Proposition 2.27 Fix a source S and target schema T. Let E be a finite set of ground

data examples over S and T. If there exists a vfe LAV=,6=-schema mapping for E, then

there is a vfe LAV=, 6=-schema mapping (in fact, a SH-LAV=-schema mapping) M for E

whose size is bounded by a polynomial in csize(E).
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Proof. Lemma 2.24 shows that if a vfe LAV=,6=-schema mapping for E exists with cost

n, then a vfe SH-LAV=, 6=-schema mapping, whose cost is bounded by n2, for E exists.

To prove the Proposition, we first show that for every vfe SH-LAV=,6=-schema mapping

M for E, we can efficiently (in polynomial time) rewrite M into a SH-LAV=-schema

mapping M′ such that M and M′ are logically equivalent. This will show the existence

of a vfe SH-LAV=-schema mapping for E. Then, by Lemma 2.26, we know that there

must be a SH-LAV=-schema mapping for E whose size is polynomial in csize(E).

Let M be the SH-LAV=,6=-schema mapping that is vfe for E, and assume that

every constraint t ∈M is of the form:

S(x) ∧ α(x) ∧ β(x)→ ∃yT (x,y) ∧ θ(x,y), where

α(x) is a collection of equalities with each of the form (x = c),

β(x) is a collection of inequalities with each of the form (x 6= c).

and θ(x,y) is a collection of conditional equalities with each of the form
∧
ixi =

ci → yk = ck). (Note that xi ∈ x, yi ∈ y, and c, ci, ck are constants.)

Let adom(E) be the union of the active domain of all source and target instances in E.

We construct a SH-LAV=-schema mapping M′ from M such that M′ is the schema

mapping that contains, for each constraint t ∈M, all constraints t′ that can be obtained

from t by replacing each inequality x 6= c by an equality x = d for some constant

d ∈ adom(E) such that d 6= c, provided that t′ does not contain multiple equalities

x = d1 and x = d2 for the same universally quantified variable, with d1 6= d2. As an

illustrative example, assume that we have a ground data example (I, J), where
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I = {S(a), S(b), S(c)}

J = {R(a), R(b)},

and we are given following SH-LAV=, 6=-schema mapping that is vfe for (I, J)

M =
(
{S}, {R},Σ = {S(x) ∧ (x 6= c)→ R(x)}

)
.

Then we can obtain a new schema mapping M′ by rewriting Σ into set Σ′ of

constraints (see below):

M′ =
(
{S}, {R},Σ′ = {S(x) ∧ (x = a)→ R(x), S(x) ∧ (x = b)→ R(x)

)
In this way, the newly constructed schema mapping M′ has the same validity

and explanation properties with respect to E as the original schema mapping M.

Moreover, since the number of universally quantified variables in a constraint is bounded

by a constant (i.e., the arity of the source schema) the number of constraints in M′ is

polynomial in the number of constraints of M.

Note that a SH-LAV=-schema mapping is also a SH-LAV=, 6=-schema mapping

and a LAV=, 6=-schema mapping. Moreover, for any schema mapping language L, given

a finite set E of ground data examples, the size of smallest vfe L=,6=-schema mapping for

E is no greater than the size of smallest vfe L=-schema mapping. Therefore, the above

two lemmas (Lemmas 2.24 and 2.26) imply Proposition 2.27.

Before presenting the reduction from Set-Cover problem to our problem, we

need to show that our problem is in NP and the following lemma serves the purpose.
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Lemma 2.28 Given a finite set E of ground data examples and a LAV=,6= schema

mapping M = (S,T,Σ), determining whether M is vfe for E is in NP. If M is a

SH-LAV=, 6= schema mapping, the same problem is in P.

Proof. Since M is LAV=, 6=, each constraint in Σ is of the form

∀x(S(x) ∧ α(x)→ ∃y(T1(x1,y1) ∧ · · · ∧ Tm(xm,ym) ∧ β(x,y)))

where S(x) is a relational atom over source schema, α(x) is a collection of

equalities with each of the form (x = c), β(x,y) is a collection of conditional equalities

with each of the form (
∧
ixi = ci → yk = ck). (Note that xi ∈ x, yi ∈ y, and c, ci, ck

are constants), and Ti(xi,yi) is a relational atom over target schema. Let n be the

combined size of E and M, that is, n = csize(E) + size(M). For simplicity, we consider

the case where Σ contains only one constraint σ. The same arguments apply in the case

of a set of constraints.

Validity checking. There are at most n homomorphisms from S(x) (one for each

source fact in E) to a source instance I, with (I, J) ∈ E. For every such homomorphism,

we can efficiently check if α(x) is satisfied. For each homomorphism h that makes

S(h(x))∧α(h(x)) be true, we non-deterministically guess an extension h′ of h w.r.t. the

existential variables in the right-hand side of σ, such that β(h′(x), h′(y)) holds. We can

then verify in polynomial time that h′ is a homomorphism from the right-hand side of σ

to the target instance J .

Explanation checking. The total number of target facts in the data examples

is at most n, and it suffices to check that each target fact is explained by M. Let
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(I, J) ∈ E and let T (a) be a fact belonging to J . To test if M explains T (a), we guess

a homorphisms h from the left-hand side of σ to I such that the right-hand side of

σ under h (i.e., ∃y(T1(h(x1),y1) ∧ · · · ∧ Tm(h(xm),ym) ∧ β(h(x),y))) logically implies

T (a). This can be done in polynomial time (due to the fact that T (a) is a ground atom).

If the answer is positive, then, clearly, every solution of I w.r.t. M (that is, every target

instance J such thatM is valid w.r.t. (I, J)) must contain T (a), and hence,M explains

T (a) w.r.t. (I, J). If not, then construct a solution of I with respect to M that does

not contain T (a), and hence, M does not explain T (a) w.r.t. (I, J).

On the other hand, checking the validity and explanation of SH-LAV=, 6=-schema

mapping is in P. Because there are at most n homomorphisms from the left-hand side of

a SH-LAV=, 6=-constraint t to E and for each homomorphism h that makes the left-hand

side of t be true, there are also at most n homomorphisms from the right-hand side

of a SH-LAV=, 6=-constraint to E. We can try then all, and the total computation is

polynomial in the size of input.

We are ready to prove Theorem 2.23.

Proof of Theorem 2.23. We will prove NP-completeness of Existence-CostLAV=,6= .

The proof of the other items in Theorem 2.23 is identical.

First, we need to show the problem is in NP. Let S be a source schema, T be

a target schema. Given a finite set E of ground data examples such that E conforms to

S and T. By Proposition 2.27 we know that if there is a vfe LAV=, 6= schema mapping

for E, then there is one whose size is bounded by p(||E||), for some polynomial p. This
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places the problem in NP: we can guess a schema mapping of size at most p(||E||), and

verify the guess in polynomial-time with an additional non-deterministic guess using

Lemma 2.28. Note that both non-deterministic guesses can be combined into one guess.

The NP-hardness is shown via a reduction from Set-Cover [45].

Set-Cover: an instance of the set-cover problem is a pair (X,S) where X is a set and

S is a collection of subsets of X, such that
⋃
Si∈S Si = X. A solution for (X,S) is a

subset S′ of S such that
⋃
Sk∈S′ Sk = X. An optimal solution is a solution such that the

size of S′ is minimum.

The following problem is known to be NP-complete: given an instance of the set-cover

problem (X,S) and a natural number K, does there exist a solution S′ with |S′| ≤ K?

We encode an instance (X,S) of the set-cover problem by a data example (I, J)

over the schemas S,T, where S consists of a single 5-ary relation P , and T consists of

a single 4-ary relation Q. For each element a ∈ X, we create four distinct constants

a1, a2, a3, a4. The source instance I contains all facts P (i, a1, a2, a3, a4) for Si ∈ S and

a ∈ Si (we assume, without loss of generality, that the index i is not itself an element in

X). In addition, I contains 7|X| facts of the form P (b, c, d, e, f), where b, c, d, e, f are

fresh distinct constants not contained in X. We will refer to these additional facts as

garbage facts below. The target instance J contains all facts Q(a1, a2, a3, a4) for a ∈ X.

Obviously, the construction of (I, J) from (X,S) is a polynomial-time transformation.

Claim: the optimal solution for (X,S) has size of k iff cost(Mopt, {(I, J)}, LAV =,6=) =

11k, where Mopt is LAV=, 6=-optimal for (I, J)
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(⇒) Let S′ ⊆ S be an optimal solution for the set-cover problem (X,S), and

let |S′| = k. We will construct a vfe LAV=, 6= schema mapping for (I, J) and that has

size 11k. Consider the LAV schema mapping M = (S,T,Σ) where Σ = {t} for

t : P (x1, y1, y2, y3, y4)→ Q(y1, y2, y3, y4).

Let Σr be the set containing, for each Si ∈ S′, the LAV=,6= constraint

t′i : P (x, y1, y2, y3, y4) ∧ (x = i)→ Q(y1, y2, y3, y4).

Clearly, Mr = (S,T,Σr) is a repair of M, and Mr is vfe for (I, J), and the size of Mr

is 11k. Now we will show that M is LAV=,6=-optimal for (I, J), because no other vfe

LAV=, 6= schema mapping for (I, J) has smaller size than Σr.

Let M′ = (S,T,Σ′) be any vfe LAV=,6=-schema mapping for (I, J) of size `.

We may assume that Σ′ does not contain ground facts: every ground fact costs 12 (recall

that a ground fact costs 3n, where n is the arity of the fact), while the same fact can be

explained by a valid constraint of the form t′i above, for suitable choice of i, which costs

only 11. Therefore, Σ′ consists of LAV=,6=-constraints of the form

P (x) ∧ α(x)→ ∃wQ(x,w) ∧ · · · ∧Q(x,w) ∧ β(x,w).

We may furthermore assume that each constraint in Σ′ explains at least one target fact

(all constraints that do not explain any target fact can be removed without increasing

the size of M′ and the resulting schema mapping is still vfe for (I, J)).

Consider the left-hand side of the above constraint. We claim that all variables

occurring in the P -atom are distinct, that is, P (~x) is of the form P (x, y1, y2, y3, y4):
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otherwise, the constraint cannot explain any fact in J . Furthermore, the variable x that

is in the first position of P-atom does not occur in the right-hand side of the constraint

(otherwise either the constraint is invalid for (I, J), or it does not explain any fact),

and that the variable yj (for 1 ≤ j ≤ 4) occurs only in the j-th position of atom in the

right-hand side of the constraints (again, otherwise the constraint is either invalid or

unable to explain a fact).

Now consider the right-hand side of the constraint. We may assume without

loss of generality that every Q-atom contains at least one variable that is not existentially

quantified. Indeed, if some atom Q(w1, . . . , w4) consisted entirely of existentially quanti-

fied variables, then, in order for the atom to explain a fact, β must include 4 (possibly

conditional) equalities of the form (wj = cj) (1 ≤ j ≤ 4). These equality conditions can

be removed at the expense of adding the constraint t′i (as defined above) for some Si ∈ S

with c ∈ Si (which is valid and explains the same fact, while having a lower cost), after

which the atom Q(w1, . . . , w4) can be removed from the right-hand side of the constraint

entirely.

Thus, each Q-atom contains one of the variables yj in its j-th position. It

follows, through the construction of (I, J) that, under any given assignment of values

to the variables x, y1, . . . , yn that makes the left-hand side true, each Q-atom in the

right-hand side can explain at most one fact of J , namely the fact that has the value

of yj in its j-th position. But this means that any Q-atom of the form Q(. . . , yj , . . .)

can be replaced by Q(y1, . . . , yn) without changing the collection of facts explained by

the constraint, or the validity of the constraint, and without increasing the size of the
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constraint. This also shows that there is no benefit in having more than one Q-atom in

the right-hand side of the constraint. To summarize, from the assumption that M′ is a

minimal vfe LAV=, 6=-schema mapping for (I, J), we have derived that every constraint

of M′ is of the form

P (x, y1, y2, y3, y4) ∧ α(x,y)→ Q(y1, y2, y3, y4)

Finally, we argue that, without loss of generality, α(x,y) is of the form (x = i).

If α(x) contains an equality of the from yj = c we can replace it by an equality of

the form x = i for any i such that c ∈ Si, without affecting validity and the resulting

constraint explains all the same facts and possibly more. If α contains an inequality

z 6= c, then, it follows from the construction of the data example (I, J) that either

the inequality can be removed without affecting the validity of the constraint, or the

left-hand-side must contain as many inequalities as the number of garbage facts, in which

case the size of the constraint is at least 14|X| (each inequality has size 2). In the latter

case, we can replace the schema mapping by one that consists of |X| many constraints

of the form t′i — at most one for each element of X in the worst case, with a total cost

of at most 11|X|.

In summary, we may assume without loss of generality that the constraint is of

the form

P (x, y1, y2, y3, y4) ∧ (x = i)→ Q(y1, y2, y3, y4)

and indeed, by the above arguments, every minimal-size vfe LAV=,6=-schema mapping for

(I, J) must consist entirely of constraints of the above form. The collection of target facts
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explained by this constraint corresponds precisely to the the set Si from the set-cover

problem. In this way, we obtain that every minimal-size vfe LAV=,6=-schema mapping

for (I, J) has cost 11k for some k, and induces a solution of the set-cover problem (X,S)

that has size k.

(⇐) Suppose the cost of a LAV=, 6=-optimal schema mappingM for (I, J) is 11k.

Let Mr be the minimal vfe LAV =,6=-repair of M. By the above arguments, we know

that each constraint of Mr is of the form P (x, y1, . . . , yn) ∧ (x = c) → Q(y1, . . . , yn).

But then, by the above arguments, we have that the set-cover problem (X,S) admits a

solution of size k, and, moreover, we have that the set-cover problem admits no smaller

solution (as such as smaller solution would entail a smaller vfe LAV=, 6= for (I, J).

The NP-completeness of the Cost problems now follows, since Set-Cover is

NP-hard.

2.4 Approximation of Optimal Single-Head LAV Mappings

We now study the approximation properties of the following optimization

problem:

Definition 2.29 The Optimal-RepairL∗(S,T) problem asks: given a set E of ground

data examples with source schema S and target schema T, compute a minimal-size valid

and fully explaining L∗-schema mapping for E.

Note that, in the above formulation of the problem, the source and target

schemas are fixed. One may also consider a variant where the schemas are part of the
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input. We will not consider the latter here, and we leave its complexity as an open

problem to be addressed in future work. We note, though, that the difference between

these two variants (i.e., the variant in which the source and target schemas are fixed and

the variant in which they are part of the input) is, in some sense, the difference between

data complexity and expression complexity ; for this reason, we expect that the second

variant will be of higher complexity than the first.

The above problem is equivalent to the problem that asks to compute an optimal

L-schema mapping M together with a minimal-size L∗-repair of M; in particular, it

contains, as a special case, the problem of computing an optimal L-schema mapping

for a given ground data example. This is so because, from a minimal-size valid and

fully explaining L∗-schema mapping, we can immediately extract an optimal L-schema

mapping by dropping all equalities, inequalities, and ground facts. Therefore, it follows

from Theorem 2.14 that (assuming RP 6= NP) there is no polynomial-time algorithm

that solves Optimal-RepairL∗ , when L∗ ∈ {GLAV=,GLAV=,6=,GAV=,GAV=,6=}.

We establish a positive approximability result for SH-LAV= mappings.

Theorem 2.30 Fix a pair of schemas S,T. There is a polynomial-time H(n)-

approximation algorithm for Optimal-RepairSH-LAV=(S,T), where H(n) =
∑n

i=1
1
i is

the n-th harmonic number.

Our approximation algorithm, see Algorithm GreedySHLAV=(S,T) shown in

Figure 2.1, is obtained by establishing a close connection between Optimal-RepairL∗

and Set-Cover. It is known that, although the Set-Cover problem is not constant-
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Figure 2.1: Algorithm GreedySHLAV=(S,T)

approximable, it is H(n)-approximable, where n is the size of the universe. Moreover,

this approximation ratio is known to be asymptotically optimal: unless P = NP, Set-

Cover can only be approximated up to a factor of c ln(n), where c is a constant

(specified in [4, 44]) and n is the size of universe (recall that H(n) = O(lnn)). Our

approximation algorithm is largely based on the approximation algorithm for Weighted

Set-Cover [27]. Here, we can think of each constraint as describing a set of facts,

namely, the set of target facts that it explains, and the size of the constraint is the

weight of the corresponding set.

The above approximation algorithm can be extended in a straightforward

manner to the case of SH-LAV=,6=-constraints with a bounded number of inequalities

per variable, as well as to LAV=, 6=-constraints with a bounded number of inequalities per

variable and a bounded number of atoms in the right-hand side. We leave it as an open
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problem whether an analog of Theorem 2.30 holds for the general case of SH-LAV=,6=

and LAV=, 6=.

For a data example (I, J) and a SH-LAV= constraint t, we denote by Facts(I,J)(t)

the set of ground target facts that are explained by t in (I, J). For a ground target fact

t, Facts(I,J)(t) = {t} if t ∈ J and Facts(I,J)(t) = ∅ otherwise. Our algorithm, called

GreedySHLAV= is given in Figure 2.1.

The Algorithm GreedySHLAV=(S,T) is established based on a known greedy

algorithm for the Weighted Set-Cover problem. The set of all target facts occurring

in a given finite set E of data examples can be seen as the universe of elements that

needs to be covered (explained), and each valid SH-LAV=-constraint can be seen as

inducing a subset that covers a number of elements (explained target facts) of the

universe, and the size of such a SH-LAV=-constraint can be seen as the cost associated

to the corresponding subset. Specifically, Line 1 initializes the variable “Candidates”

that contains all possible SH-LAV= constraints that are valid for E over S and T, and

this corresponds to creating the collection of “subsets” of the Weighted Set-Cover

instance. Line 2 initializes the variable “Unexplained” that corresponds to the “universe”

of the Weighted Set-Cover instance for which we are trying to find a cover. The

while loop in the algorithm is precisely the greedy algorithm for Weighted Set-Cover.

In particular, at each iteration, the algorithm will pick a constraint (corresponds to a

subset) that has the highest cost effectiveness (which is defined on Line 8). The following

theorem formally shows that this algorithm is a polynomial-time H(n)-approximation

algorithm for our problem.
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Theorem 2.31 For each fixed pair of schemas S,T, GreedySHLAV=(S,T) is a poly-

nomial time H(n)-approximation algorithm for Optimal-RepairSH-LAV=(S,T) .

We first introduce the following helper lemma for the proof of Theorem 2.31

Lemma 2.32 Let E be a finite set of ground data examples with fixed source schema

S = {S1, · · · , Sp} and target schema T = {T1, · · · , Tq}. Let m be the maximum arity of

source relations and n the maximum arity of target relations, and let |adom(E)| be the

size of active domain of E. There are at most pqmm(m+ n)n(|adom(E)|mn)n distinct

SH-LAV=-constraints for E, up to renaming of variables.

Proof. Note that p, q,m, n are constants since schemas are fixed. Observe that there

are at most pqmm(m+ n)n distinct SH-LAV constraints over S,T, up to renaming of

variables. In particular, we can decompose the number as follows.

(1) p× q - maximum of combinations of source relation and target relation.

(2) mm - given a source relation Sk in S, the maximum number of distinct single

relational atoms over Sk.

(3) (m + n)m - given a source relation Sk ∈ S and a target relation Tk ∈ T, the

maximum number of distinct single relational atoms over Tk. In particular (m+n)

is the maximum number of variables, both universally quantified and existentially

quantified, that can be used for constructing an atom over Tk.

Since only equalities are allowed in the repairs, thus for each SH-LAV constraint there

are at most |adom(E)|m distinct repairs on the left-hand side, and at most n existentially
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quantified variables on the right-hand side. For each existentially quantified variable yk

on the right-hand side, there is possibly a conditional equality. It follows that we have at

most |adom(E)|m distinct ways to construct the premise of a conditional equality, and

at most n ways to construct the conclusion of the corresponding equality. It follws that

there are at most (|adom(E)|mn)n ways to construct the right-hand side. Therefore,

there are at most pqmm(m+ n)n(|adom(E)|mn)n distinct SH-LAV=-constraints over S,

T, and E.

We are now ready to prove Theorem 2.31.

Proof of Theorem 2.31. The GreedySHLAV=(S,T) algorithm is derived from the H(n)-

approximation algorithm for Weighted Set-Cover problem. Indeed, the problem of

finding a minimal-size vfe SH-LAV=-schema mapping can be cast as a weighted set-cover

problem: the set of all target facts of a given finite set E of data examples can be seen

as the universe of elements that needs to be covered (explained), and each valid and

explaining SH-LAV=-constraint can be seen as a subset that covers (explain) a number

of elements (target facts) of the universe, and the size of such a SH-LAV=-constraint

can be seen as the cost associated to the corresponding subset. Note that the optimal

SH-LAV=-schema mapping for a finite set E of data examples, if exists, must be a

subset of the set of all valid and explaining SH-LAV=-constraints over S, T, E, plus all

ground facts of E. We can view the GreedySHLAV=(S,T) algorithm as a special case

of the well-known greedy H(n)-approximation algorithm for Weighted Set-Cover

problem. In particular, the correctness of our algorithm follows from the correctness of
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the aforementioned approximation algorithm for Weighted Set-Cover [27].

It remains to show that the algorithm runs in polynomial time. Since the

schema mappings in consideration are SH-LAV=, by Lemma 2.28, checking validity and

explanation of a SH-LAV=-schema mapping for a finite set E of ground data examples

can be done in polynomial time. Moreover, since the source schema and target schema

in question are fixed, it suffices to show that the number of SH-LAV=-constraints is

polynomial in the size of E. By Lemma 2.32, this is indeed the case. Therefore,

GreedySHLAV=(S,T) runs in polynomial time and it is a poly-time H(n)-approximation

algorithm for Optimal-RepairSH-LAV=(S,T) .

In Section 2.5.1, we will discuss practical implementation details for the ap-

proximation algorithm.

2.4.1 A Matching Lower Bound

We conclude with a matching lower bound for the approximability of Optimal-

RepairSH-LAV=(S,T). This result is established via an approximation-preserving reduc-

tion (more precisely, an L-reduction [58]) from Minimum Set Cover.

Theorem 2.33 Let L ∈ {LAV,SH-LAV}. There are fixed schemas S and T, and a

constant c such that there is no polynomial-time c ln(n)-approximation algorithm for

Optimal-RepairL=(S,T), where n is the total number of target facts in the input data

example. The same holds true for Optimal-RepairL=,6=(S,T).

We first recall the definition of L-reduction. Let Π,Π′ be two optimization
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problems, we say Π L-reduces to Π′, denoted by Π �L Π′, if there is a pair of polynomial-

time algorithms f, g, and constants α, β > 0 such that for each instance Ins of Π, the

following hold:

(a) Algorithm f produces an instance Ins′ = f(Ins) of Π′ such thatOPT (Ins′) ≤

α·OPT (Ins), where OPT (Ins′) is the cost of an optimal solution for Ins′ and OPT (Ins)

is the cost of an optimal solution for Ins.

(b) Given any solution of Ins′ with cost c′, algorithm g produces a solution of

Ins with cost c such that |c−OPT (Ins)| ≤ β|c′ −OPT (Ins′)|.

To prove Theorem 2.33, it suffices to prove the following theorem.

Theorem 2.34 There are L-reductions from Minimum Set-Cover to Optimal-

RepairL=(S,T) and to Optimal-RepairL=,6=(S,T), where L ∈ {LAV, SH-LAV}.

Proof. We spell out the proof for the LAV=, 6= case. The proof can be adapted to obtain

also the L-reductions to L= and L=,6=, where L ∈ {LAV,SH-LAV}.

Let f be the transformation function used in the reduction of the proof of

Theorem 2.23. f is a poly-time computable function that transforms an instance Ins

of Min Set-Cover to an instance (I, J) (a LAV=,6=-schema mapping) of Optimal-

RepairLAV=,6=(S,T).

We must show that the following hold for suitable α, β > 0.

(a) For all instance Ins of Min Set-Cover, algorithm f produces an instance

(I, J) = f(Ins) such that OPT ((I, J)) ≤ α ·OPT (Ins), where OPT ((I, J)) is the cost

of the optimal LAV schema mapping for (I, J) in the LAV=,6= repair language, and
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OPT (Ins) is the cost of an optimal solution for the Min Set-Cover instance Ins.

(b) For all vfe LAV=, 6=-schema mappings for (I, J) with size c′, there is a

polynomial-time algorithm g that produces a set cover for Ins with cost c such that

|c−OPT (Ins)| ≤ β|c′ −OPT (Ins′)|.

Since we know that OPT (Ins) = k iff OPT ((I, J)) = 11k, property (a) holds

for α = 11.

For property (b), suppose that we are given an arbitrary vfe LAV=,6=-schema

mapping M = {S,T,Σ}. By the arguments given in the proof of Theorem 2.23, we

may assume without loss of generality that Σ consists entirely of LAV=,6=-constraints of

the form

ti = P (x, y1, y2, y3, y4) ∧ (x = i)→ Q(y1, y2, y3, y4)

Note that the relevant arguments in the proof of Theorem 2.23 involve polynomial-

time computable transformations. In particular, we are using the fact that the problem

whether a LAV=, 6=-constraint explains a target fact is polynomial-time computable. The

fact is true because we can chase the source instance with the given LAV=,6=-constraint

and see if the chase result contains the target fact in question. Note that the chase

procedure, introduced in [30], runs in polynomial time.

We define the function g(M) to be { i | ti ∈ Σ }, and g(M) is a set cover for

Ins. Let c be the cardinality of g(M). We show that g(M) satisfies the property (b).

Let c′ be the size of M. Obviously, c′ is a multiple of 11 because each constraint of

the form ti in M has cost 11. Moreover, we have that c′ ≥ 11c because the number of

constraints in M is at least c. It follows that we have following inequality:
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|c− k| = 1

11
|11c− 11k| ≤ 1

11
|c′ − 11k|

This shows that property (b) holds with β = 1
11 . The theorem is proved. Note

that the proof for the L= case follows immediately from the proof of L=,6= case.

It was shown in [60] that there is a constant c such that there is no polynomial

time c ln(n)-approximation algorithm for Minimum Set Cover, where n is the size

of the universe of a given set-cover problem instance. The L-reduction established in

Theorem 2.34 translates every Minimum Set Cover problem instance with universe of

size n into an Optimal-Repair problem instance consisting of a single data example

with at most n target facts. Therefore, Theorem 2.33 is proved.

2.5 Experimental Evaluation

We implemented the approximation algorithm presented in the previous sec-

tion. In this section, we present an experimental evaluation of the proposed H(n)-

approximation on a real-world schema mapping scenario.

2.5.1 Optimized Implementation

The first step of the approximation algorithm, described in Figure 2.1, consists

of two phases:

(1) Constraints-generation phase: compute all SH-LAV=-constraints for the input set

E of data examples.
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(2) Validity-checking phase: check the validity of each constraint obtained in Step 1

w.r.t. E, and omit the constraints that are invalid.

The Constraints-generation phase (Phase 1) is computationally expensive, and

must be optimized so that the approximation algorithm is practically feasible. We

have applied several optimizations to improve the efficiency of the implementation.

The optimizations help reduce the space of SH-LAV=-constraints that is considered

by the algorithm. In this way, the optimized algorithm can produce vfe SH-LAV=-

schema mappings that are still within the log(n)-factor approximation ratio. In our

implementation, we have applied two kinds of optimizations: (1) zero-amplification

optimizations, and (2) constant-amplification optimizations.

Intuitively, zero-amplification optimizations prune away constraints that would

not be picked by the greedy algorithm. Hence, the approximation bound remains

unchanged by this kind of optimizations. For instance, one of the zero-amplification

optimizations we applied is the Global Threshold Rule. This rule is established based

on the observation that, for a given ground data example (I, J), the schema mapping

consisting of all facts in J is a trivial vfe schema mapping for (I, J). We can therefore

use the cost of the trivial vfe mapping as a global threshold so that we can ignore every

candidate constraint whose size is greater than or equal to this threshold. Clearly, such

an optimization never increases the log(n)-approximation bound. In contrast, we also

consider constant-amplification optimizations which may improve the running time of

the algorithm but at the expense of increasing the approximation bound by a fixed

constant-factor. Example 2.35 below illustrates both the algorithm and some of the
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optimizations we have implemented.

Example 2.35 In this example, we will first illustrate the workflow of the approxi-

amtion algorithm (PART I) and then illustrate an example of constant-amplification

optimizations (PART II).

PART I- workflow of the approximation algorithm.

Consider the data example (I, J) shown in Table 2.1. There is no vfe SH-LAV

schema mapping for (I, J) and that there are only five pairwise logically inequivalent

SH-LAV constraints (up to variable renaming) for these schemas:

σ1:Geo(x, x)→City(x) σ2:Geo(x, y)→City(y) σ3:Geo(x, y)→City(x)

σ4:Geo(x, x)→ ∃mCity(m) σ5:Geo(x, y)→ ∃mCity(m)

Each of the five SH-LAV constraints has many possible SH-LAV= repairs. The

first step of the algorithm computes the set of all SH-LAV= constraints (up to renaming

of variables) that are valid in (I, J), and all ground target facts in J . Our implementation

will perform the following optimizations to avoid searching through the large number of

SH-LAV=-constraints in general.

For our example, observe that all SH-LAV=-repairs of σ1 can be immediately

disregarded because their left-hand side cannot be satisfied in I. The same argument

applies to σ4. Similarly, all SH-LAV=-repairs of the SH-LAV constraint σ5 can be omitted,

because the only way they could explain a target fact is if they have a conditional equality

in their right-hand side of the form (x = c→ m = d) or (m = d). Each implication of

the form (x = c→ m = d) costs 4 and only helps explain one target fact. The equality
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of the form (m = d) costs 2 but the entire constraint can only explain one target fact.

Hence, the cost would be lower if we had simply included the corresponding target facts

as ground facts in the SH-LAV= schema mapping. These optimizations are examples of

zero-amplification optimizations, because they do not increase the approximation bound.

Next, consider σ3. We know that there is no SH-LAV=-repair of σ3 that is both valid

for (I, J) and that explains even a single fact (in general, we can restrict attention to

L-constraints where a universally quantified variable occurs in a specific position of the

right-hand side, only when one of the data examples actually contains facts matching it).

This is another example of a zero-amplification optimization.

To summarize, for this data example, it is sufficient to consider SH-LAV=

repairs of σ2, and ground target facts, without affecting the quality of the schema

mapping produced by the algorithm. Finally, observe that it is sufficient to consider

only equalities that “are realized in the data example” when considering repairs of σ2.

In other words, it is unnecessary to consider a repair of σ2 that includes equalities such

as (x = US) ∧ (y = London) because no fact of I will satisfy these equalities.

After applying these optimizations, the number of candidate SH-LAV=-constraints

is 57 (plus ground target facts).

Next, the algorithm will repeatedly pick a constraint or ground fact that has

highest cost effectiveness at each iteration until all facts from J are explained. The

algorithm will perform the following in order

• 1: select “Geo(x,y)∧(x=US)→ City(y)”, which explains 5 previously-unexplained
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facts

• 2: select “Geo(x,y)∧(x=California)→City(y)”, which explains 2 previously-unexplained

facts

• 3: add a ground fact “City(Toronto)”.

After these three iterations, the algorithm terminates and output the following

SH-LAV schema mapping:

Mgreedy={Geo(x,y) ∧ (x=US)→ City(y), City(Toronto)

Geo(x,y) ∧ (x = California)→ City(y)}

Hence, our algorithm obtains a SH-LAV schema mapping of size(Mgreedy) = 13. The

following SH-LAV=-schema mapping (which can be shown to be minimal) has size 10.

{Geo(x,y)∧(x=Calif)→ City(y), Geo(x,y)∧(x=NorthAm)→ City(y)}

PART II - constant-amplification optimizations.

The first step of our approximation algorithm is to compute a set of candidate

SH-LAV-constraints (in the base language) together with their SH-LAV=-repairs which

will be later used by the Set-Cover greedy algorithm. To illustrate the constant-

amplification optimizations, consider the following simple data example (I, J) and a

SH-LAV-constraint t for which we need to compute repairs.

I = {S(a, 1), S(b, 2), S(c, 3)}, J = {T (a, a, a), T (b, b, b)}

t : S(x, y)→ ∃m T (m,m,m)
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The optimal SH-LAV=-repair of t that is vfe for (I, J) is

t′ : S(x, y)→ ∃m T (m,m,m) ∧ (y = 1→ m = a) ∧ (y = 2→ m = b)

The constraint t′ uses multiple conditional equalities to explain more than one

target fact. In practice, computing all possible combinations of conditional equalities

that are valid and explaining for multiple target facts is computationally expensive.

In order to make the runtime be within reasonable range, our implementation adds

only one conditional equality to each existentially quantified variable in a constraint

in consideration. If we want to add an additional conditional equality over the same

existentially quantified variable, we make a copy of the original SH-LAV-constraint and

then add the new conditional equality. For instance, for the data example (I, J) and t

shown above, our implementation will generate two SH-LAV=-constraints as follows:

t1 : S(x, y)→ ∃m T (m,m,m) ∧ (y = 1→ m = a)

t2 : S(x, y)→ ∃m T (m,m,m) ∧ (y = 2→ m = b)

Clearly, t′ and {t1, t2} are both vfe for (I, J), but {t1, t2} has larger size. We have results

that show that this type of optimizations may increase the size of a schema mapping but

the increase in the size of the schema mappings is bounded by a constant-factor that

depends only on the source and target schemas (assuming schemas are fixed). Altogether,

this means that we are able to improve the runtime efficiency at the expense of increasing

the cost of the solution by a fixed constant factor.
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2.5.2 Experiments

We now demonstrate that the optimized approximation algorithm is practically

feasible in a real-world mapping scenario, and show the quality of the mappings returned

by the algorithm is good.

Mapping Scenario

We use the mapping scenario derived from the OBDA (Ontology-Based Data

Access) mappings in [50]. As part of the Ontop project, the authors of [50] developed

an ontology for movies 2 and map the schema of the IMDB database to the ontology

so as to populate the movie ontology with data from the IMDB database. The Ontop

project contains a mapping consisting of a collection of OBDA constraints, and that

were developed by UNIBZ students as part as a lab assignment and later improved by

the research team. We use their OBDA constraints as the “ground truth” and compare

the constraints returned by our approximation algorithm against these constraints to

understand how well our algorithm performs.

Statistics of source and target schemas

The movie ontology uses a 〈subject, predicate, object〉-model. In our experi-

ment, we turn every 〈subject, predicate, object〉 ontological concept into a binary fact

predicate(subjuect, object). We draw data examples from IMDb dataset (source) and

Movie ontology (target). IMDB dataset contains twenty-one relations and eight of them

2see https://github.com/ontop/ontop/wiki/Example_MovieOntology for more details
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are used in the mapping from IMDB to movie ontology (A full description of the IMDB

schema can be found at [51], and the OBDA mappings that are constructed by hand

can be found at [49]). There are sixty-eight authored OBDA constraints and therefore

there are sixty-eight movie ontology concepts (i.e., sixty-eight target binary relations).

A close examination reveals that these sixty-eight OBDA constraints can be categorized

into following four types:

• Type I: Copying SH-LAV-constraints.

E.g., name(id, name)→ HasBirthName(id, name)

• Type II: Projection SH-LAV-constraints.

E.g., company name(id, name, country code, IMDB id, name nf, name sf)

→ compHasName(id, name)

• Type III: SH-LAV=-constraints with one equality on the left-hand side.

E.g., cast info(id, person id,movie id, p role id, note, nr order, role id)
∧ (role id = 8)→ hasDirector(movie id, person id)

• Type IV: SH-LAV=-constraints with two equalities on the left-hand side.

E.g., movie info(id,movie id, info type id, info, note) ∧ (info type id = 3)
∧ (info = Thriller)→ SensibleThrilling(movie id, info)

In our experiments, we choose some constraints in each category to test our

algorithm. Concretely, we have chosen one copying constraint, one project constraint,

and three constraints from Type III and Type IV (for Type III and IV, we choose

those constraints whose source relations have different arities). We chose only one

constraint from Type I and Type II because copying and projection are relatively simple

transformations comparing with the transformations in Type III and Type IV. The

statistics of selected IMDB relations and Movie ontology concepts are shown in Table 2.3.
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Table 2.3: Statistics of source and target schemas

IMDB Movie ontology
number of relations 8 8
average arity 7.5 2
max. arity 11 2
min. arity 5 2

Adjusted mapping scenario

As mentioned, we use the OBDA constraints that were developed by human

for the IMDB-to-Ontology mapping as ground truth. Hence, we can directly compare

them with the constraints that are returned by our approximation algorithm. The

IMDB database is populated with real data from IMDB.com and the size of the smallest

table has about 219K records. Since our schema-mapping approximation algorithm is

designed to run over small data examples and not over large datasets in general, we

cannot simply execute our algorithm directly on the datasets obtained. Hence, in our

experiments, we first generate small data examples from the real datasets before we

apply our approximation algorithm and test the scalability of our algorithm by executing

it on data examples of increasing sizes.

Data example generation

The purpose is to obtain a series of data examples of different sizes. We generate

data examples with the following procedures. All OBDA constraints in the mapping

specified in the Ontop project is of the form

S(x) ∧ α(x)→ T (x)

where α(x) is of a collection of equalties (x1 = c1) ∧ · · · ∧ (xn = cn)
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We first take an OBDA constraint t, and then randomly sample k (e.g., k = 10) facts,

denoted by I = {f1, f2, . . . , fk}, from the S-relation, and we chase the k sampled facts

with t (see [29] for more details about the chase procedure for data exchange) to generate

a set J of T -facts which will be served as target facts. It follows that, (I, J) will be

the data example generated. To obtain larger data examples, we simply increase the

sampling size and repeat the above procedure. For generating a set of m data examples

(used in Experiment 4), we simply run the same procedures m times to obtain m data

examples, and these examples form a set E of data examples.

Experiments

Our goal is to understand the actual running time of the implementation in

various settings, and the quality of constraints returned by the approximation algorithm

on the IMDB-to-Ontology scenario. The approximation algorithm was implemented in

Java, with PostgreSQL v9.3 as the underlying database engine. All the experiments

were running on an Intel Core i7-4770 3.4GHz CPU Linux machine with 16GB memory.

Experiments presented here take a single ground data example as input unless otherwise

stated. We are interested in the following aspects:

(a) Compare the running time of the approximation approach with the exhaustive

algorithm (i.e., the exact algorithm).

(b) Scalability of the optimized implementation with respect to:

– data examples of different sizes.

– different number of source relations and target relations.
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(c) Running time of each of the three phases of the approximation algorithm (i.e.,

constraints-generation phase, validity-checking phase, and greedy phase).

(d) Compare the constraints produced by our approximation algorithm with the ground

truth OBDA constraints.

(e) Understand the runtime efficiency of our algorithm on multiple data examples.

Experiment 1 - Approximation algorithm vs. exhaustive algorithm.

We show that the exhaustive algorithm is not feasible because it runs out of memory

even for a small input data example. The exhaustive algorithm is implemented in

a straightforward way: after computing the set C of candidate valid and explaining

constraints for a given data example, the exhaustive algorithm will then compute all

subsets of C and then try to find a a minimum subset of C that is vfe for the given data

example. Obviously, this is a O(2n) algorithm where n is the size of C. We run our

approximation algorithm and the exhaustive algorithm on three small data examples of

sizes 10, 15, and 20 (total number of source and target facts). The results are list in

Table 2.4.

Table 2.4: Running time - approximation algorithm vs. exhaustive algorithm

Size of
data

examples

# candidate
valid &

explaining
constraints

running time of
approx.

algorithm
(seconds)

running time of
exhaustive
algorithm
(seconds)

10 22 0.001 7.14

15 24 0.001 31.25

20 26 0.001 Out of memory

Clearly, as shown in Table 2.4, the exhaustive search performs much worse than

the approximation algorithm in terms of running time. Table 2.4 shows that even for
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the case where the number of valid and explaining constraints is small, the exhaustive

algorithm ran out of memory and therefore it is not feasible. On the other hand, the

approximation algorithm is very efficient.

Experiment 2 - Scalability in terms of data examples of different

sizes. In this experiment, the data examples used are composed of facts from two source

relations and two target relations. The two source relations have arity five and seven

respectively, and the two target relations are binary relations. These four relations are

selected from two OBDA constraints in the ground truth solution (one from Type III

and one from Type IV). We start our test with a small data example, and increase the

sizes of data examples in the subsequent tests. Initially, the data example has six source

facts from two source relations and four target facts from two target relations. In the last

test, there are a total of 100 facts in the example tested (note that in each test, there are

roughly 60% of the facts contained in the data examples are source facts, and roughly

40% are target facts). The overall running time is shown in Figure 2.2a. Moreover, the

running time of each phase of our algorithm is also shown in the same figure.

Figure 2.2a shows that our algorithm executes fast for data examples with

smaller number of facts (e.g., less than six seconds for a data example of size forty), and

is still efficient for large data examples (e.g., finished within twenty-four seconds for a

data example of size 100). The approximation algorithm is a high polynomial degree

algorithm. The running time shows that the optimizations applied in the implementation

is capable of improving the efficiency of the algorithm. Another observation is that the
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Figure 2.2: Runtime efficiency and size of generated constraints

greedy phase is extremely fast (in all tests, the greedy phase finished within a second).

We also see that the constraints generation phase (i.e., Phase 1 of the algorithm) is the

most time-consuming part of the algorithm. We did another experiment to record the

number of constraints generated in Phase 1. The numbers are shown in Figure 2.2b.

We can see that the runtime of Phase 1 and the number of constraints generated in

Phase 1 are highly related. Moreover, the validity and explanation checking phase (i.e.,

VE-Checking phase) has similar runtime as Phase 1, this is because the runtime of

VE-Checking phase is determined by the number of constraints generated in Phase 1.
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Therefore, we can conclude that, Phase 1 contributes the most to the overall runtime of

our approximation algorithm.

Quality of results in Experiment 2. We did fourteen tests in Experiment

2, and we compared the constraints returned by the approximation algorithm with

the ground truth OBDA constraints. It turned out that our approximation algorithm

produced optimal schema mappings in all cases.

Experiment 3 - Scalability in terms of different numbers of relations.

In each test of this experiment, the data examples are constructed by drawing five facts

from each source instance and five facts from each target instance, and we keep increasing

the number of source relations and target relations. We increase the number of source

relations and target relations in turn in each subsequent test. In this experiment, only

constraints of Type III and Type IV are involved. Initially, there are one source relation

and one target relation involved (total 10 facts), and eventually there are five source

relations and five target relations involved (total 100 facts).

Table 2.5: Running time with respect to different number of relations

Total #
of

relations

# of
source

relations

# of
target

relations

max.
source
schema
arity

# of constraints
after validity

checking

Running time of
the approximation
algorithm (seconds)

2 1 1 5 16 0.069

3 2 1 7 18 0.11

4 2 2 7 1908 0.275

5 3 2 7 3664 0.166

6 3 3 7 5414 0.382

7 4 3 7 6284 0.346

8 4 4 7 9667 0.356

9 5 4 11 14301 10.175

10 5 5 11 38465 48.284
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The results are listed in Table 2.5. In the first seven tests, our algorithm

executes to completion under one second in all cases. However, the runtime became

significantly slow in the cases when larger (arity of eleven) source relations are involved.

Concretely, in the last two tests, we included facts from a source relation of arity

eleven. In contrast, in the first seven tests, all relations involved have arity either five or

seven. The results in Table 2.5 are not surprising since our approximation algorithm has

exponential complexity in the worst case when the schema is part of the input.

Quality of results in Experiment 3. We did nine tests in this experiment,

and the approximation algorithm produced the same OBDA constraints that are specified

in the ground truth in eight of the tests. There is one test in which our approximation algo-

rithm produced a constraint that is different from the corresponding ground truth OBDA

constraint. Concretely, the constraint t shown below is the one included in the ground

truth, and the constraint t′ is the one returned by our approximation algorithm. The

constraint t′ does not have the equality (info type id = 3) showing on its left-hand side.

t : movie info(id,movie id, info type id, info, note) ∧ (info type id = 3)

∧ (info = Thriller)→ SensibleThrilling(movie id, info)

t′ : movie info(id,movie id, info type id, info, note) ∧ (info = Thriller)

→ SensibleThrilling(movie id, info)

We looked into the full IMDB dataset and verified that our approximation algorithm

made the right decision. The equality (info type id = 3) is redundant, since every tuple

p in the movie info table that has value “3” in attribute info type id, the tuple p also
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has value “Thriller” in attribute info. In other words, t and t′ agree on validity and

explanation, but t′ has smaller size. In other words, our algorithm derived a constraint

that is in fact better than the constraint that corresponds to our ground truth.

Experiment 4 - runtime efficiency on multiple data examples. In this

experiment, we try to understand the runtime efficiency of our approximation algorithm

on multiple data examples. In this experiment, the input to our approximation algorithm

is a set E of data examples, and we test our algorithm with respect to different sizes of

E (i.e., test with respect to different numbers of data examples in E). First, we selected

four OBDA constraints (which are exactly those constraints shown in Section 2.5.2 as

example constraints) to generate our data examples. We then randomly choose five facts

from each source relation specified in the four OBDA constraints, and obtain target

instance by chasing the randomly selected facts with the four OBDA constraints. To

get m ≥ 2 examples, we simply repeat the same procedure m times. We have tested

our approximation algorithm on ten different sets of data examples, and the results are

listed in Figure 2.3. We can see that the overall runtime grows linearly, and the runtime

of Phase 1 has similar behaviour. However, the runtime of the validity and explanation

checking phase grows a bit faster. Note that the data examples used in the experiments

have comparable sizes due to the way we generate them. We run our approximation

algorithm on each individual data example of the input set E of data examples and

obtain a collection C of constraints. We then check the validity and explanation of C

on every data example in E, and keep those that are valid and explaining for every
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data example in E. Hence, the runtime of VE-checking phase grows quadratically in the

number of examples in the input set of data examples. On the other hand, the runtime

of Phase 1 grows linearly in the size of input set of data examples because the algorithm

generates constraints for each data example independently. However, as the number of

examples grows, the runtime of our approximation algorithm will be dominated by the

runtime of VE-checking phase, since it grows quadratically. Notice that, in this set of

experiments, we no longer have the ground truth constraints since we now have multiple

data examples as input (The ground truth OBDA constraints do not need to be vfe

when there are multiple data examples). Therefore, we do not measure the quality of

results in this experiment.
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Figure 2.3: Runtime with respect to multiple data examples

Discussion. We have conducted experiments to evaluate our optimized im-

plementation on a real mapping scenario. Our experimental results reveal that the

optimized approximation algorithm is efficient for this mapping scenario. Moreover,

the SH-LAV=-schema constraints returned by the approximation algorithm for the
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case where the input consists of a single data example are as good as authored OBDA

constraints which we take as ground truths. In fact, our approximation algorithm

produced a constraint that is better than the authored OBDA constraint in one of the

data examples. We also validated that our approximation algorithm is efficient when

the input consists of multiple data examples. Our experimental results show that the

performance of the algorithm is dominated by the arity of the schemas; as the schemas

are larger, our algorithm runs slower. In fact, if schemas are part of the input, our

approximation algorithm runs in exponential time, and that is inevitable.

2.6 Conclusions

We investigated the derivation of an optimal schema mapping from a set of

data examples and focused on the approximation properties of this optimization problem.

We considered several different sublanguages of the language of GLAV schema mappings

and delineated the boundary as regards good approximation properties. To this effect,

we established negative results about the existence of approximation algorithms for GAV

and GLAV schema mappings, but also showed that the collection of SH-LAV schema

mappings is the largest subclass of GLAV mappings for which we can obtain a positive

approximation result. These results pave the way for leveraging further the rich area of

approximation algorithms and applying it to schema-mapping discovery.

We enchanced our approximation algorithm with heuristic rules, implemented it,

and evaluated it on a real-world schema mapping scenario. Our experimental evaluation

93



suggests that this approach may indeed be applied in practice to construct a near-optimal

schema mapping from a set of data examples.

An important question that remains to be answered is the existence of a

polynomial time H(n)-approximation algorithms for computing near-optimal LAV=,6=

schema mappings, as well as near optimal SH-LAV=, 6= schema mappings.
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Chapter 3

Learning GAV Schema Mappings from

Universal Examples

In this chapter, we introduce a PAC learning algorithm for GAV schema map-

pings. The work presented in this chapter is built on the learning framework introduced

in [21]. Our work is motivated by the following scenario. Suppose that the user is

provided with a black box implementing some schema mappingM, whose specification is

unknown due to proprietary reasons. By using the provided black box, we can convert a

source instance I to a target instance J such that the underlying mappingM is satisfied.

A natural question to ask is: “is there a way to recover the specification of M from

the black box?”. We can attempt to answer this question if we can collect a set of data

examples. The derivation of the specification of a schema mapping from data examples

can be seen as a reverse engineering problem, that is, a problem in which the specification

of a “goal” device has to be discovered from the behavior of that device. In our problem,

95



the mapping M hidden in the black box is the goal device that we are trying to reveal.

Data examples that satisfy M, in a precise sense, describe the data-exchange behavior

of the goal schema mapping. Going back to our motivating scenario, in practice, users

may have some pre-existing source instances at hand, or, a set of source instances can be

collected from some data source. In either case, users can collect a set of data examples

(using the provided black box). Then the main question to answer is: “is there a way

to reveal the specification of the underlying schema mapping using both the collected data

examples and the provided black box?”.

At first glance, the three major example-driven schema-mapping discovery

approaches (i.e., the fitting, the Gottlob-Senellart, and the learning approaches) all look

adequate for this problem. However, there are essential differences among them. By

a careful inspection, we notice that the fitting framework and the Gottlob-Senellart

framework both take into account only the set of data examples1. In other words, the

two frameworks do not take into account the goal schema mapping even if it is provided

as an oracle. As a result, the two frameworks would just produce a schema mapping that

is fitting (or, valid and fully explaining) for the input set of data examples. Concretely,

the fitting framework would, given a set E of data example, return the canonical GLAV

schema mapping which is obtained by spelling out the facts of E (assuming there is a

fitting GLAV mapping for E). By construction, the canonical GLAV mapping of E is

fitting for E [3]. As already discussed in Section 1.1, such a canonical GLAV schema

mapping will unlikely work well on future data examples because it is very specific

1Note that the work presented in Chapter 2 extends the Gottlob-Senellart framework by allowing
multiple data examples.
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to the input set of data examples. The Gottlob-Senellart framework proposed a cost

model that would avoid producing a mapping that is a full description of the input.

Recall that, given a set E of ground data examples, the cost model of Gottlob-Senellart

framework would produce a valid and fully explaining mapping for E with minimum

size (syntactically). One shortcoming of the cost model is that, there could be multiple

logically inequivalent schema mappings that achieve the same optimality for the same

input. Since the cost model does not take into account the goal schema mapping, the

Gottlob-Senellart approach would arbitrarily choose one of the optimal schema mappings.

Even if there is only one optimal schema mapping, the optimal mapping may not be the

“right” mapping.

As opposed to the fitting and the Gottlob-Senellart frameworks that make

use of only the input set of data examples, the learning framework provides a way

to learn schema mappings by using both the input set of data examples and the goal

schema mapping, which is provided as an oracle. The learning framework views schema

mappings as concepts that can be identified by data examples (e.g., positive examples

and negative examples). The task is then to identify the goal concept (i.e., goal schema

mapping) by asking a number of queries about it to different oracles. Typical queries

include: equivalence queries (whether two schema mappings are logically equivalent?);

labeling queries2 (return the intended target instance, e.g., the universal solution, of

an input source instance w.r.t. the goal mapping). Our motivating scenario can be

naturally viewed as a learning problem, where the provided black box is both the goal

2In the learning framework, membership queries were considered. We will show shortly that member-
ship queries are special cases of labeling queries.
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schema mapping that we are trying to learn and an oracle that answers labeling queries.

In [21] the learnability of GAV schema mappings with respect to different

learning models (including Angluin’s exact learning model [5] and Valiant’s PAC model

[69]) was studied. In particular, the author presented a concrete learning algorithm,

which we call exactGAV, that efficiently and exactly learns GAV schema mappings

using both a labeling oracle and an equivalence oracle. In addition to an exact learnability

of GAV schema mappings, by a series of reductions shown in [21], the authors showed

that there exist a PAC learning algorithm, which makes use of a labeling oralce, for GAV

schema mappings. However, no concrete PAC learning algorithm was spelled out in [21].

The goal of our work is to develop a practical learning algorithm that, given a goal GAV

mapping G (available as an oracle) and given a set of universal examples for G, produces

a GAV mapping that is semantically close to G. In this chapter, we present a learning

algorithm for GAV schema mappings. We show that the proposed algorithm is an Occam

algorithm [15] leading up to a PAC learning algorithm for GAV schema mappings. We

implemented the aforementioned algorithm and carried out an experimental evaluation

using mapping scenarios created by a state-of-the-art benchmarking tool called iBench [8].

The rest of the chapter is organized as follows: In Section 3.1, we introduce

concepts and notations needed and related prior work. In Section 3.2, we present the

promised PAC learning algorithm for GAV schema mappings. In Section 3.3, we present

an experimental evaluation of the proposed learning algorithm. Finally, in Section 3.4,

we summarize our results and discuss open questions.
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3.1 Preliminaries and Prior Work

In this section, we introduce the concepts and notations relating to computa-

tional learning theory. Note that the preliminaries introduced in Section 2.1 are also

used in this chapter.

Computational learning models. We introduce two major computational learning

models:

(1) the exact learning model introduced by Angluin [5];

(2) the PAC (probably-approximately-correct) model introduced by Valiant [69].

Before defining the two learning models, we first introduce the following notations.

Labeled examples and concept. Let X be a (possibly infinite) set of examples. A

labeled example is an element of X × L, where L is a set of labels. In most machine

learning scenarios, L = {0, 1} (i.e., positive and negative).

A concept over X is a function c : X → ` where ` ∈ L, and a concept class C is

a collection of concepts. We assume that concepts are specified by some representation

system, that is, a representation system for a concept class C is a string language L over

some finite alphabet, together with a surjective function r : L → C. For every concept

representation l ∈ L, we write |l| to denote its length. As a concrete example, suppose

that X = {0, 1}n is the set of all n-ary boolean assignments. Then we could consider the

concept class consisting of all Boolean functions c : {0, 1}n → {0, 1} specified by Boolean

formulas in DNF (disjunctive normal form) formulas over the set of variables x1, . . . , xn.

Labeling and equivalence queries. We often assume that the learning algorithm is
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provided with various oracles (depending on the learning task at hand) that have access

to the goal concept such that these oracles can answer specific queries about it. For

every concept c, we denote by LABELc the labeling oracle for c, that is, the oracle that

takes as input an example x ∈ X and return its label, c(x) (i.e., some ` ∈ L), according

to c. Note that when L = {0, 1}, labeling oracles are also known as membership oracle.

For every concept c, we denote by EQc the equivalence oracle for c, that is, the

oracle that takes as input another concept c′ and return “Yes” if c and c′ are logically

equivalent (i.e., c ≡ c′); otherwise, it returns a counterexample x (i.e., an example x

such that c(x) 6= c′(x)).

Exact learning. We say an algorithm alg exactly learns a concept class C with labeling

and/or equivalence queries if, for all natural number n and for all concept c ∈ C with

size(c) ≤ n, when alg is run on input n and with a labeling oracle LABELc and/or an

equivalence oracle EQc, it outputs a representation of c. A concept class C is efficiently

exactly learnable with labeling and/or equivalence queries if there is an exact learning

algorithm with labeling and/or equivalence queries for C that runs in polynomial time.

PAC learning. The task of a PAC learning algorithm is to approximately learn an

unknown goal concept c ∈ C based on the labeled examples that have been randomly

generated according to some probability distribution. Recall that [0, 1] is the closed

unit interval of the real numbers, and recall that a a probability distribution over X

is a function D : X → [0, 1] such that Σx∈XD(x) = 1. For every concept c ∈ C and

probability distribution D : X → [0, 1], we denote by EXc,D the example oracle for c
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and D, that is, the oracle that, upon request, returns a labeled example (x, c(x)), where

x ∈ X is randomly chosen according to the probability distribution D.

A PAC learning method takes as input: a rational accuracy parameter 0 < ε < 1,

a rational confidence parameter 0 < δ < 1, and a natural number n, and that has access

to an example oracle for an unknown goal concept of size at most n with respect to a

probability distribution D. The PAC learning method must halt and return a candidate

concept h. In particular, the returned concept h needs not to be exactly the same as

the goal concept, instead, it is rather an approximation of it. We then can define the

error , denoted by ERR(h), for the returned concept h with respect to D and c as

ERRc,D(h) = Pr
x∈D

(c(x) 6= h(x))

where Prx∈D(c(x) 6= h(x)) denotes the probability that the event c(x) 6= h(x) when

x ∈ X is drawn from the probability distribution D.

We say that an algorithm alg PAC learns a concept class C if for all rational

number ε and δ with 0 < ε, δ < 1, for all natural numbers n, for all concepts c with

size(c) ≤ n, and for all probability distributions D over the example set X of C, when alg

is run with inputs ε, δ, n and oracle EXc,D, the algorithm alg outputs with probability

at least 1− δ a concept h with ERR(h)≤ ε. A concept class C is PAC learnable if there

is a PAC algorithm alg that learns it. If alg also runs in polynomial time then we say

that C is efficiently PAC learnable. If a concept class can be learned by a (polynomial

time) PAC algorithm with access to labeling oracle, then the concept class C is said to

be (efficiently) PAC learnable with labeling queries.
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Occam learning and its relation to PAC learning. Occam learning is another

important model of algorithmic learning [15]. Recall the definition of an Occam algorithm.

Definition 3.1 [15] An Occam algorithm for a concept class C with constant pa-

rameter 0 ≤ α < 1 and k ≥ 1 is an algorithm A that takes as input a collection of

(x1, c(x1)), . . . , (xm, c(xm)) of examples labeled according to some unknown concept

c ∈ C and produces a hypothesis h consistent with the input of size at most mαnk where

n is the size of c.

Note that, unlike [15], the above definition does not require the algorithm A to

run in time polynomial in the combined size of the input examples. Blumer et al. [15]

proved the following theorem.

Theorem 3.2 [15] If there is an efficient Occam algorithm for some concept class C,

then C is efficiently PAC learnable.

In particular, if A is an efficient Occam algorithm for C, then we can obtain an

efficient PAC learning algorithm A′ for C by (1) asking for m many random examples

with

m =

(
nk ln 2 + ln (2/δ)

ε

)1/(1−α)

that are fed to A, and (2) output the hypothesis that is returned by A. It follows that

A′ is an efficient PAC learning algorithm for C.

GAV schema mappings as concepts. Fix a source schema S and a target schema

T. Let M = (S,T,Σ) be a GAV schema mapping (where Σ is a finite set of GAV
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constraints over S and T). In [21] , the authors showed that we can identify a GAV

schema mapping by all its universal examples, where the example space is the set of all

source instances and the corresponding canonical universal solutions are labels. A GAV

schema mapping M can be seen as a function that maps every source instance I into

its canonical universal solution can-solM(I) (i.e., the label of I according to M). We

shall denote by GAV(S,T) the concept thus defined.

The following are relevant results from [21]. We remark that the following

results are not exactly stated as they were in [21]. In particular, the following results

are formulated in terms of universal examples, whereas the corresponding results in [21]

were formulated in terms of positive/negative examples. In [21], the authors showed that

there is no fundamental difference between learning from positive/negative examples

and learning from universal examples. In this chapter, we consider universal examples,

and thus we formulate the following results from [21] in terms of universal examples.

Theorem 3.3 [21] Let S be a source schema and T a target schema. If S contains a

relation symbol of arity at least two, then GAV(S,T) is not efficiently exactly learnable

with labeling queries.

Theorem 3.3 shows that GAV(S,T), in general, is not efficiently and exactly

learnable if only a labeling oracle is provided. This negative result indicates that there is

no efficient and exact learning algorithm for our motivating problem. However, ten Cate

et al. showed that, if both a labeling oracle and an equivalence oracle are available then

GAV(S,T) is efficiently and exactly learnable (see the following theorem from [21]).
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Theorem 3.4 [21] For every source schema S and every target schema T, the concept

class of all GAV mappings from S to T is efficiently exactly learnable with equivalence

and labeling queries.

In addition to Theorem 3.4, ten Cate et al. presented a concrete algorithm (i.e.,

the exactGAV algorithm) that efficiently and exactly learns GAV schema mappings

using both labeling queries and equivalence queries. However, the exactGAV algorithm

is not practical because, unless the required equivalence oracle is provided, it is impossible

to implement the equivalence oracle in question. Concretely, in order to implement the

equivalence oracle, one would have to test, whether a candidate mapping H and a goal

mapping G (given as an oracle) produce the same solution for every possible input source

instance. Naturally, one may consider learn GAV schema mappings approximately. By

a series of reductions shown in [21], the following corollary was presented.

Corollary 3.5 [21] For every source schema S and every target schema T, the concept

class of all GAV mappings from S to T is efficiently PAC learnable with labeling queries

and an oracle for NP.

Although Corollary 3.5 shows the existence of a PAC learning algorithm for

GAV(S,T) using labeling queries, no concrete algorithm was spelled out in [21]. In this

chapter, we propose a PAC learning algorithm, which we call GAVLearn, for GAV(S,T).

The GAVLearn algorithm was adapted from the exactGAV algorithm presented in [21].

It turned out that GAVLearn is in fact an Occam algorithm leading up to a PAC learning

algorithm for GAV(S,T). Moreover, if GAVLearn is provided with an oracle for NP then
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GAVLearn is an efficient PAC learning algorithm for GAV(S,T).

A Connection to Learning Union of Conjunctive Queries. GAV schema map-

pings, in a precise sense, are equivalent to union of conjunctive queries. Concretely,

given a source instance I, chasing a GAV constraint t with I to obtain a target instance

J can be seen as, using the left-hand side of t as a conjunctive query and execute it on

I, and the the instance J is the query result. It follows that a GAV schema mapping,

which consists of multiple GAV constraints, corresponds to a union of conjunction

queries. Therefore, learning GAV schema mappings is equivalent to learning union of

conjunctive queries. Conjunctive queries are important because they are supported by

every relational database system. Futhermore, conjunctive queries correspond to the

SELECT-FROM-WHERE queries in SQL, where the WHERE clause contains only

equalities.

There have been a number of papers working on learning conjunctive queries.

Active learning approaches based on human interactions have been proposed in [17,18,52].

In these approaches, queries are learned from raw data, and the learning process involves

a human user who labels “informative” tuples selected by the algorithm. The assumption

of these works was different from ours. They assumed that the user has a query in mind.

However, we assume that the user has no prior knowledge of the goal GAV schema

mapping, but an oracle access to the goal mapping is provided. In practice, the goal

schema mapping we are trying to learn may contains tens of complex GAV constraints,

which is extremely difficult for a human user to maintain. Moreover, they assumed
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that their algorithm is always able to produce the goal query from human interactions.

Therefore, the focus of these approaches is not to learn a query that is logically equivalent

to the goal query but rather to minimize the human effort needed.

There is another line of research that focuses on learning queries based on the

knowledge of database integrity constraints [64,68,73]. One of the key ingredients of the

approaches proposed in these works is a concept called schema graph, which is based on

database integrity constraints, such as primary key and foreign key constraints. Among

the three, [68] (which was an extended version of [67]) proposed a system called TALOS

that supports reverse engineering union of conjunctive queries from a given data example.

In Section 3.3, we present an comparison study of GAVLearn and TALOS with respect

to synthetically generated mapping scenarios.

3.2 The GAVLearn Algorithm

In this section, we first introduce several lemmas and concepts leading up to

the GAVLearn algorithm for GAV(S,T). We then present the GAVLearn algorithm and

prove that it is an Occam algorithm. We also provide a concrete example to illustrate

the workflow of the GAVLearn algorithm.

Before we present the GAVLearn algorithm, we need several concepts and

lemmas, some of which were introduced in [21]. The basic idea of the GAVLearn

algorithm is to iteratively learn and maintain a GAV schema mapping H that consists

of constraints that are critically sound with respect to the goal mapping G, and it
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terminates when H fits E.

We say a GAV constraint C is critically sound with respect to G if (1) G

logically implies C, that is, for every example (I, J) that satisfies G we have that (I, J)

also satisfies C, and (2) for every GAV constraint C ′ obtained by removing one of the

conjuncts of the left-hand side of C, we have that G does not logically imply C ′.

Same as [21], we will also often identify a GAV constraint ∀x(φ → ψ) with

the pair (Iφ, Jψ) where Iφ, Jψ are the canonical instances of φ and ψ (note that Jψ

must consist of a single fact). We also identify the GAV constraint ∀x(φ → ψ) with

the (S ∪T)-instance Iφ ∪ Jψ. In this way, a homomorphism h : C → C ′ between GAV

constraints is a function that maps atomic formulas occurring in the left-hand side or

right-hand side of C to atomic formulas occurring in the left-hand side or right-hand

side of C ′ (we write C → C ′ to denote the existence of homomorphism from C to C ′).

The following lemma is presented in [21], and it is a direct generalization of a

results by Chandra and Merlin [25].

Lemma 3.6 [21] For all GAV constraint C = (I, F ), the following are equivalent:

• G logically implies C;

• C ′ → C for some C ′ ∈ G
• F ∈ can-solG(I).

The proof of Lemma 3.6 can be found in [21]. Here we remark that, in our

setting, computing can-solG(I) is in polynomial time by using the chase procedure [29].

This further means that we have a simple way to check whether or not a GAV constraint

C = (I, F ) is logically implied by a mapping G (we can simply verify if can-solG(I)
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contains F ). We also have the following lemma.

Lemma 3.7 (A direct generalization of a lemma in [21]) Let G be the goal schema

mapping in question. Given a GAV constraint C = (I, F ), if G logically implies C, then

one can compute a GAV constraint CritG(C) in polynomial time with an access to a

labeling oracle for G, and CritG(C) has following properties.

(1) CritG(C) ⊆ C (CritG(C) and C are viewed as instances)

(2) CritG(C) is critically sound with respect to G.

Proof. To compute CritG(C) we can start with I and then try to repeatedly remove

facts of I, as long as can-solG(I ′) contains F , where I ′ is the subinstance obtained from

I. We stop the procedure until a minimal subinstance I ′ of I is reached. The source

instance I ′ ⊆ I obtained in this way is, by construction, such that the constraint (I ′, F )

is critically sound with respect to G. Note that there are |I| many facts, and therefore

at most |I| many iterations are needed.

For two GAV constraints C,C ′ that contain the same target relation, we denote

by C × C ′ the GAV constraint that, viewed as an instance, the direct product of C and

C ′, if well defined. Note that, in general, C × C ′ may not be well defined even if C and

C ′ have the same target relation. However, in what follows, whenever we take a product

of two GAV constraints (in the GAVLearn algorithm), the result is well defined. In fact

we have the following lemma (introduced in [21]).

Lemma 3.8 [21] Let C,C1, C2 be GAV constraints, such that there are homomomor-

phisms h1 : C → C1 and h2 : C → C2. Then C1 × C2 is well defined.
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Input: G - an oracle to the goal mapping; E - a set of universal examples for G
Output: a mapping that fits E.

1: H ← ∅
2: while true do
3: if for every example (I, J) ∈ E,

it holds that J = can-solH(I) then
4: return H
5: end if
6: choose an (I, J) ∈ E such that J 6= can-solHi−1(I)
7: /* in the proof of Theorem 3.9, we will show that

can-solH(I) is a solution for I w.r.t. H but not

a solution for I w.r.t. G, and can-solH(I) ( J */

8: F ← choose a fact F ∈ J \ can-solHi−1(I)
9: Let C be the canonical GAV constraint of (I, F )

10: if G logically implies (I, F )× C for some C ∈ H then
11: Let C ∈ H be the most recently added constraint

for which it holds for that G logically implies (I, F )× C
12: C ′ = (I, F )× C
13: else
14: C ′ ← (I, F )
15: end if
16: H ← H ∪ {CritG(C ′)}
17: end while
18: return H

Figure 3.1: Algorithm GAVLearn

The promised GAVLearn algorithm is shown in Figure 3.1. The input of the

GAVLearn algorithm include a goal GAV mapping G whose specification is unknown

and a set E of universal examples for G. The GAVLearn algorithm is an iterative

learning algorithm. In each iteration, the GAVLearn algorithm checks if the current

candidate mapping H fits the input set E of data examples. If yes, H is returned;

otherwise, the algorithm will construct a counterexample (I, can-solH(I)) obtained from

the data example (I, J) ∈ E such that H does not fit (I, J). In fact we will show that it

must be the case that J ( can-solH(I). Subsequently, the GAVLearn algorithm will
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compute a candidate constraint from (I, F ) where F is a fact in the set J \ J ′. The

candidate constraint (I, F ) is informative for the learning, because it intuitively describes

a transformation that is not captured by the current mapping H but is captured by the

goal mapping. It follows that a new GAV constraint will be extracted from (I, F ) and

be added to H.

We next show that the GAVLearn algorithm is an Occam algorithm that leads

to a PAC learning algorithm for GAV(S,T). We have the following theorem.

Theorem 3.9 Assume a goal schema mapping G of size at most n. GAVLearn is an

Occam algorithm. In fact, given an oracle access to G and given a set E of canonical

universal examples for G, GAVLearn returns a GAV schema mapping H that fits E and

the size of H is at most n2.

Proof. Let us denote by Hi the value of the variable H after the i-th iteration of the

while loop of GAVLearn, where H0 = ∅, and Hi is undefined if i is larger than the total

number of iterations of the while loop; let us also denote by Ci the GAV constraint

that was added at the i-th iteration, that is, Hi = Hi−1 ∪ {Ci}. For every GAV schema

mapping H, and for every C ∈ G, let H(C) = {C ′ ∈ H | C → C ′}.

We first prove the following claim that is an adaptation of a lemma in [21].

Claim 3.10 For every i ≥ 0 such that Hi is defined, the following statements are true.

(a) Hi consists of GAV constraints that are sound with respect to G. In particular,

the canonical solution can-solHi(I) must be a solution for I w.r.t. Hi but not a
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solution for I w.r.t. G. Moreover, we have that can-solHi(I) ( J (where J is the

target instance of the data example (I, J) obtained at Line 6 of GAVLearn).

(b) If i > 0, then there is no C ∈ Hi−1 such that C → Ci, that is, Hi−1 does not

logically imply Ci.

(c) If C ∈ G, then the set Hi(C) is either empty or has a minimal element with respect

to the homomorphism preorder → (i.e., there is an instance I ∈ Hi(C) such that

for every instance I ′ ∈ Hi(C) we have that I → I ′).

The Claim 3.10(a) is trivially true forH0 = ∅ because, in this case, can-solH0(I)

is an empty instance and thus (I, can-solH0(I)) trivially satisfies H0 and does not satisfy

G (note that G cannot be empty if GAVLearn reaches Line 6). For i > 0, we know that,

by definition of GAVLearn, can-solHi−1(I) is a solution for I w.r.t. Hi−1. It is easy

to see that can-solHi−1(I) 6= J because otherwise (I, J) would not be chosen at Line

6 of GAVLearn. We remain to show that can-solHi−1(I) is not a solution for I w.r.t.

G and can-solHi−1(I) ( J . We show it by contradiction. Suppose that can-solHi−1(I)

is a solution for I w.r.t. G, then we have that J ⊂ can-solHi−1(I) (because J is the

canonical solution of I w.r.t. G). Since can-solHi−1(I) is the canonical universal solution

of I w.r.t. Hi−1. The instance J cannot be a solution for I w.r.t. Hi−1. However, this

contradict the fact that Hi−1 is sound w.r.t. G. This also shows that can-solHi−1(I) ( J .

Therefore, (a) is proved.

For Claim 3.10(b). Let I, can-solHi−1(I), F , and C ′ be as computed in the i-th

iteration of GAVLearn. By construction, we know that can-solHi−1(I) is a solution for
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I w.r.t. Hi−1 but not a solution for I w.r.t. G. Since F /∈ can-solHi−1(I), we have that

Hi−1 does logically implies (I, F ), that is, there is no C ∈ Hi−1 such that C → (I, F )

(by Lemma 3.6). Moreover, by a well-known basic properties of direct products, there

is no C ∈ Hi−1 such that C → C ′; Consequently, since Ci = CritG(C ′), which is a

subinstance of C ′, there is no C ∈ Hi−1 with C → Ci.

For Claim 3.10(c). By induction on i. Let C ∈ G. If Ci 6∈ Hi(C), then the

result follows from the induction hypothesis. Therefore, let Ci ∈ Hi(C), that is, C → Ci.

We will show that, in this case, Ci is a minimal element of Hi(C) with respect to the

homomorphism preorder →. We distinguish two cases:

(1) There is no Cj ∈ Hi−1 such that C → Cj . In this case, Ci is the only GAV

constraint in Hi into which C maps and hense the result hods trivially.

(2) There are Cj ∈ Hi−1 such that C → Cj . By induction hypothesis, there is such

a Cj ∈ Hi−1 that is minimal with respect to the homomorphism preorder, that

is, Cj → Ck for all Ck ∈ Hi−1 that have the property that C → Ck. In particular,

by previous item, we have that Cj is the most recently added GAV constraint

with the property that C → Cj . Let I, J, F , and C ′ be as computed in the i-th

iteration of the algorithm. From the description of the algorithm and from the

previous remarks, we have that Ci = CritG((I, F ) × Ck) for some Ck that was

added no less recently than Cj . Since C → Ci, we have that C → Ck. Hence, Cj

was added no less recently than Ck. In fact, this means that Cj = Ck and hence

Ci = CritG((I, F ) × Cj). It follows that Ci → Cj and we can infer that Ci is a
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minimal element of Hi(C) with respect to the homomorphism preorder →. This

concludes the proof for laim 3.10(c).

Claim 3.11 Let C ′ and CritG(C ′) be as computed in the i-th iteration of GAVLearn.

The size of CritG(C ′) is at most n (recall that n is the size of G).

The proof for Claim 3.11 is straightforward. Recall that CritG(C ′) is critically

sound with respect to some constraint T ∈ G, which means there is a homomorphism

h : T → CritG(C ′). In fact we can see that the homomorphism h is surjective, for

otherwise, CritG(C ′) would not have been a critical sound sub-constraint of T . It follows

that CritG(C ′) is a homomorphic image of T such that the number of atoms on the

left-hand side of CritG(C ′) is bounded by the number of atoms on the left-hand side of

T . Since the size of T is bounded by n, the size of CritG(C ′) is bounded by n.

For every i ≥ 1, define si to be ΣT∈Gs
T
i , where sTi is 0 if Hi(T ) is empty, and

the number of variables occurring in the minimal element of Hi(T ), otherwise (this is

well defined by Claim 3.10(c)). That the schema mapping H returned is fitting for E

follows directly from the definition of the algorithm. We still need to show that the

algorithm terminates after at most n many iterations (recall that n denotes the size of

G, that is, the number of variables occurring in the constraints of G), and the size of H

returned has size at most n2. We first make the following claim.

Claim 3.12 For every i ≥ 1, si+1 > si.

We now prove Claim 3.12. Assume that Hi+1 = H ∪ {Ci+1}. Since Ci+1 is
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critically sound with respect to G, there is some T ∈ G such that T → Ci+1. By Claim

3.10(2) and 3.10(3), Ci+1 is the minimal element of Hi+1(T ). It follows that sTi+1 is the

domain size of Ci+1. If Hi(T ) is empty, then claim holds true trivially. Otherwise, let

Ci be its minimum element. We know that Ci+1 → Ci. In fact, the homomorphism

from Ci+1 to Ci must be surjective, in other words, Ci must be the homomorphic image

of T , for otherwise, we could obtain a nonsurjective homomorphism from T to Ci (via

T → Ci+1), contradicting, via Lemma 3.6, the fact that Ci is critically sound with

respect to G. We also know by Claim 3.10(2) that T is not isomorphic to Ci. It follows

that the domain size of Ci+1 is larger than that of Ci and Claim 3.12 is proved.

It follows that Claim 3.12 shows that GAVLearn terminates after at most n

many iterations, because si is at most n. Note that if for some well defined si such

that si is greater than n, it means that there is a constraint c ∈ H such that c is the

minimum element of H(T ) for some T ∈ G and the domain size of c is greater than that

of T . Since there is a homomorphism from T to c, the homomorphism in question is

not surjective, and that contradicts the fact that c is critically sound with respect to T .

Therefore, GAVLearn terminates after at most n many iterations.

Claim 3.13 The size of the mapping H returned by GAVLearn is bounded by n2.

The proof of Claim 3.13 is immediately followed from Claim 3.11 and the fact

that GAVLearn terminates after at most n many iterations (which we just proved).

The above argument concludes the proof of Theorem 3.9.

Although not explicitly stated, GAVLearn is in fact an active learning algorithm
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that, given a set E of universal examples, generates a number of new universal examples

from E that guide the learning algorithm towards critically sound GAV constraints w.r.t.

the goal mapping G. Concretely, as shown in Lemma 3.7, when computing a critical

sound sub-constraint CritG(C ′) from C ′, the algorithm would repeatedly query the

labeling oracle (i.e., the goal mapping G) with sub-instances obtained from I, and that

would generate O(|I|) (where |I| denotes the number of facts in I) many new universal

examples for G. These additional set of universal examples plays an important role in

the learning.

The following example illustrates the workflow of the GAVLearn algorithm.

Example 3.14 Let Mg = {S,T,Σ} be a GAV schema mapping that we are trying to

learn (i.e., the goal schema mapping), where S= {S,R,M,N}, T= {T,Q}, and Σ is the

following set of constraints.

Σ = {S(x, y) ∧R(y, z)→ T (x, z),M(x, y) ∧N(y, z)→ Q(x, y, z)}.

For illustration purpose, the specification of Mg is revealed. Let E be a set of universal

examples for Mg, and E consists of a single data example (I, J), where

I = {S(a, b), R(b, c),M(a, b), N(b, c)} and J = {T (a, c), Q(a, b, c)}.

There are many GAV schema mappings for which (I, J) is universal. Consider two GAV

mappings M1 = {S,T,Σ1} and M2 = {S,T,Σ2}, where

Σ1 = {M(x, y) ∧N(y, z)→ T (x, z), S(x, y) ∧R(y, z)→ Q(x, y, z)}, and

Σ2 = {M(x, y) ∧N(y, z) ∧ S(x, y) ∧R(y, z)→ T (x, z),

M(x, y) ∧N(y, z) ∧ S(x, y) ∧R(y, z)→ Q(x, y, z)}.

115



The example (I, J) is universal for both M1 and M2, but these two mappings

are quite different from the goal mapping Mg. Both M1 and M2 would not generalize

well on future unseen universal examples of Mg. For instance, if we are provided with a

new source instance I ′ = {S(u, v), R(v, z),M(x, y)}, thenM1 would produce {Q(u, v, z)}

and M2 would produce ∅. It follows that the former would generate an unexpected fact

(i.e., Q(u, v, z)) and the latter would miss an expected fact (i.e., T (u, z)). We next show

that how GAVLearn learns a GAV mapping from the present schema-mapping discovery

scenario.

Suppose that we are executing GAVLearn from scratch. Initially, we have an

empty candidate mapping H = ∅. In the first learning iteration, GAVLearn would check

if H and Mg agree on E. Note that, given a data example (I, J), we say two schema

mappings M1 and M2 agree on (I, J) if can-solM1(I) = can-solM2(I). We say two

mappings agree on a set E of data example if the two mappings agree on every example

of E. The algorithm would detect that H and Mg disagree on (I, J). It follows that

GAVLearn would construct a data exmaple (I, J ′), where J ′ is obtained by chasing I

with respect to H. In particular, J ′ would be an empty instance because H is an empty

schema mapping. Note that J ′ is a solution for I w.r.t. H (but not a solution for I

w.r.t. Mg). Then GAVLearn would select a fact f that is in J but not in J ′. Let us

assume that f = T (a, c) is selected. Subsequently, GAVLearn would extract a new GAV

constraint from (I, {f}) using the computation described in Lemma 3.7. Concretely, the

following procedure illustrates the computation using Lemma 3.7.
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{S(a, b), R(b, c),M(a, b), N(b, c)} Mg−−→ {Q(a, b, c)}: keep S(a, b)

{S(a, b),R(b, c),M(a, b), N(b, c)} Mg−−→ {Q(a, b, c)}: keep R(b, c)

{S(a, b), R(b, c),M(a, b), N(b, c)} Mg−−→ {T (a, c)}: remove M(a, b)

{S(a, b), R(b, c),M(a, b), N(b, c)} Mg−−→ {T (a, c)}: remove N(a, b)

When the computation terminates, the algorithm would convert the simplified

instance (I ′, {f}), where I ′ = {S(a, b), R(b, c)} and f = T (a, c), into a GAV constraint

S(x, y) ∧R(y, z)→ T (x, z) that would be added to H.

In the second learning iteration, we have that H =
(
S,T, {S(x, y) ∧R(y, z)→

T (x, z)}
)
. The two mappings H and Mg still do not agree on (I, J). This time,

a new instance (I, J ′), where J ′ = {T (a, c)}, would be constructed and a new fact

Q(a, b, c) would be selected. By the similar procedure described above, a new constraint

M(x, y) ∧N(y, z)→ Q(x, y, z) would be added to H at the end of the second iteration.

In the third iteration, H and Mg agree on T . Therefore, the algorithm would

terminate and return H, where

H =
(
S,T, {S(x, y) ∧R(y, z)→ T (x, z),M(x, y) ∧N(y, z)→ Q(x, y, z)}

)
.

We can see that H is identical to Mg.

From Occam Learnability to PAC Learnability

Note that Theorem 3.9 shows that GAVLearn is an Occam algorithm with

α = 0 and k = 2 (recall Def. 3.1). Theorems 3.9 and 3.2 imply the following corollary.
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Corollary 3.15 Assume a goal GAV schema mapping G of size at most n. Let ε and δ

be two rational numbers in (0, 1), and let E be a set of m random universal examples for

G obtained according to some probability distribution D. Let H be the GAV mapping

returned by GAVLearn taking E and G as input. When

m ≥
(
n2 ln 2 + ln (2/δ)

ε

)
,

then with probability at least 1− δ, we have that ERRG,D(H) ≤ ε.

Here, ERRG,D(H) denotes the true error rate of the mapping H w.r.t. G and

D. Concretely, ERRG,D(H) = Prx∈D(G(x) 6= H(x)) where Prx∈D(G(x) 6= H(x)) is the

probability of the event G(x) 6= H(x) when x is a source instance drawn from the

distribution D, and G(x) (resp. H(x)) represents can-solG(x) (resp. can-solH(x)).

Corollary 3.15 shows that GAVLearn is a PAC learning algorithm.

Note that GAVLearn does not run in polynomial time because computing

the canonical universal solution for a source instance I w.r.t. a mapping H is not in

PTIME, when both I and H are part of the input. However, if GAVLearn is provided

with an oracle for NP (used for evaluating the candidate mapping Hi on the input set

E of universal examples), then GAVLearn is an efficient PAC learning algorithm for

GAV(S,T).

3.3 Experimental Evaluation

In this section, we present an experimental evaluation of GAVLearn using

mapping scenarios created by iBench, which is a primitive-based integration metadata
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generator [9]. We also compared GAVLearn with two existing methods: (1) the GAV

fitting algorithm, denoted by GAV-Fitting, which is a special case of the GLAV fitting

algorithm introduced in [3], and (2) The TALOS system introduced in [68].

Relevant parameters of iBench. iBench can be used to create schema mapping

scenarios used for evaluating schema mapping systems. iBench defines a mapping scenario

as a pair of a source and target schema and a mapping between the schemas. The

mapping in question is specified by primitives, where each primitive is a simple integration

scenario. iBench permits intricate control over the mapping scenario generation process,

which allows the user to create mapping scenarios of different characteristics using

various parametrized primitives. The following primitives in iBench are relevant to GAV

constraints.

• COPY primitive (copying).
E.g., S(x)→ T (x).

• DelAttr primitive (delete attributes).

E.g., S(x, y)→ T (x).

• Merge primitive (join multiple source atoms to create one target atom).

E.g., S1(x, y) ∧ S2(y, z)→ T (x, y, z).

Moreover, iBench also provides the following relevant configuration options to further

refine the primitives being constructed:

• JoinSize (number of joining source atoms per merge primitive);

• SourceShare and TargetShare (percentage of primitives that share source and
target relations);

• JoinKind (type of joins, such as star and chain, used to construct merge primitives).
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Note that there are other parameters (e.g., number of attributes per source relation) that

can be tuned to create different GAV mapping scenarios. We left them with the default

values since they are less important than the ones listed above. The settings of the above

primitives and configurations define the “shape” of a GAV mapping scenario. Once we

fix a mapping scenario S, iBench can then produce a random mapping specification (i.e.,

a set of GAV constraints) conforming to S. Moreover, once a mapping specification

is finalized, users can ask iBench to create a random source instance for the mapping

specification in question. One relevant parameter is NumOfElements that specifies the

number of facts (per source relation) to be created for the random source instance in

generation.

Mapping scenarios. In our evaluation, we created three GAV mapping scenarios: sim-

ple, moderate, and complex. The three scenarios were created using different parameter

settings and configurations (more details will be provided shortly). For each mapping

scenario M, we create a number of test cases where each consists of a random mapping

specification S that conforms to M and a number of universal examples for M.

Mapping specification generation. In our evaluation, the size (i.e., number of

GAV constraints) of a random mapping specification is determined by the mapping

scenario it conforms to. Concretely, a random mapping specification conforming to

the simple (resp. moderate and complex) scenario consists of 10 (resp. 20 and 30)

GAV constraints. In each mapping specification, 30% (resp. 30% and 40%) of its GAV

constraints are COPY (resp. DelAttr and Merge) constraints. For instance, if S is a

random mapping specification conforming to the moderate scenario, then 6 (resp. 6 and
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8) constraints of S are COPY (resp. DelAttr and Merge) constraints. For all scenarios, in

order to create a set of non-trivial mapping specifications, we also set both SourceShare

and TargetShare to 100%3. We left JoinKind with its default value, which is star join.

Apart from the fact that the three scenarios include a different number of constraints,

we set different JoinSize values for them. Concretely, the simple (resp. moderate and

complex) scenario has JoinSize = 3 (resp. 6 and 9). Clearly, more constraints and a

higher JoinSize lead to a more complicated mapping scenario.

Data example generation. We generate universal examples by leveraging iBench.

Creating a random universal example for a specific mapping specification S by iBench con-

sists of two steps: (1) request a random source instance I conforming to the source schema

of S by specifying the parameter NumOfElements, and (2) compute the can-solS(I) us-

ing S. We remark that, in the first step, iBench would generate a source instance in which

every source relation has exactly n facts if NumOfElements = n. This is counter-intuitive

since such kind of data examples are not common in practice. To address this, we

introduce a sampling parameter α used for creating random sub-instances of the source

instances produced by iBench. Given a source instance I = {f1, . . . , fm} created by

iBench and given a sampling ratio α%, we then create a new instance I ′ from I such that

every fk ∈ I has α% chance to be selected into I ′. It follows that the deliberate introduc-

tion of randomness into the generation process can result in more natural data examples.

As we will show later, the value of the sampling parameter α turned out to have signif-

icant influence on the “quality” of the resulting source instance. Intuitively, if α is low,

3We observed that the actual percentage of shared source and target relations in generated mapping
specifications are around 40%-50%
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Table 3.1: Statistics of mapping scenarios

Copy DelAttr Merge JoinSize

simple 3 3 4 3

moderate 6 6 8 6

complex 9 9 12 9
In each scenario, we consider different combinations of α and ExNum, where α ={0.05,0.1,0.3} and
ExNum={10,30,50,70,90}

the resulting source instance may not have “sufficient” information for the learning task.

We can repeat the above procedure m times to create m random universal

examples, and the number of universal examples is thus another tunable parameter of our

evaluation. As observed in the work of Alexe et al [3], data examples of size comparable

to the size of constraints of the goal schema mapping are common in a user-interactive

schema mapping design environment. Recall that the maximum number of constraints

of our mapping scenarios is 30. In our evaluation, the number of universal examples, i.e.,

ExNum (which are later split into 70% training and 30% evaluation), generated for each

random mapping specification ranges from 10 to 90. An overview of the statistics of the

three mapping scenarios is provided in Table 3.1.

Implementation. GAVLearn was implemented in Java. The underlying

relational database engine is PostgreSQL v9.3.10. All experiments were run on a 64-bit

Linux machine with a Intel i7-4770 CPU (3.40GHz) and 20GB RAM. PostgreSQL engine

was run with default settings.

3.3.1 Evaluation Methodology

Prior works evaluate the quality of a GAV schema mapping according to the

concept of “correctness” (e.g., [3, 21, 38]), that is, a GAV schema mapping M is said
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to be correct if, for a given set E of data examples, the set E is universal for M. In

our evaluation, we use F-score that measures the quality of a GAV schema mapping

with respect to a set E of examples by a real number in [0, 1]. The F-score of a schema

mappingM with respect to a set E of data examples is defined according to the precision

and recall of M with respect to E. We first define some concepts and notations needed.

True positives, false positives, and false negatives. Assume a GAV schema

mapping M and a data example (I, J) where J = {f1, . . . , fn}. Let J ′ = {f ′1, . . . , f ′m}

be can-solM(I). We say that a fact f ′k ∈ J ′ is a true positive fact of M w.r.t. (I, J) if

f ′k ∈ J ; a fact f ′k ∈ J ′ is a false positive fact ofM w.r.t. (I, J) if f ′k 6∈ J ; a fact fk ∈ J is

a false negative fact of M w.r.t. (I, J) if fk 6∈ J ′ (see Figure 3.2 for an illustration).

Figure 3.2: True positives, false negatives, and false positives

Precision and recall. Assume a GAV schema mapping M and a data example (I, J).

We define the precision and recall of M for (I, J) as

Prec(I,J)(M) = TP (M)
TP (M)+FP (M) , Recall(I,J)(M) = TP (M)

TP (M)+FN(M)

where TP (M) (resp. FP (M), and FP (M)) is the number of true positive (resp. false

positive, and false negative) facts of M w.r.t. (I, J). We then define the F-score of a

schema mapping M as follows.

F -score(I,J)(M) =
2×Prec(I,J)(M)×Recall(I,J)(M)

Prec(I,J)(M)+Recall(I,J)(M) .
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We can see that F-score is a combined measure that takes into account both precision

and recall. In order to have a high F-score, a learned mapping must achieve both high

precision and high recall. Note that the above definitions can be naturally extended to

the case of multiple data examples.

Methodology. We evaluate GAVLearn both in terms of quality (i.e., F-scores) and

in terms of runtime efficiency. We are also interested in comparing GAVLearn with

other methods in terms of the two aspects. When evaluating the quality of a schema

mapping, we use the Hold-Out method that is widely used in the machine learning field.

Concretely, in the Hold-Out method, the labeled data examples are randomly divided to

three subsets: a training set, which is used to learn a model; a validation set, which is

used to fine tune model’s parameters and select the best-performing model; a test set,

which is a hold-out set of examples used to estimate the future performance of a model.

Note that not all machine learning evaluations need a validation set. In our evaluation,

we generate a number of universal examples for each test case, and then we randomly

split these examples into a training set (70%) and a hold-out test set (30%). Note that

the ratio of (70%:30%) is commonly used in most machine learning evaluations. Our

evaluation methodology is formally summarized as follows:

Fix a mapping scenario S, for every sampling ratio α ∈ {0.05, 0.1, 0.3} (the

choices of sampling ratios will be discussed later) and for every integer ExNum ∈

{10, 30, 50, 70, 90}, we do the following.

a) Create a random GAV mapping specification M conforming to S using iBench.
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b) Create ExNum many random universal examples for M with sampling ratio α and

NumElements = 20.

d) Randomly split the examples obtained in step b) into a training set E (70%) and

a hold-out test set V (30%).

e) Learn a GAV mapping M` from E, and compute the precision and recall of M`

on V .

To lower the inaccuracy caused by a possible outlier, we performed three random

runs for each test case. We report the average precision and recall of the three random

runs. Moreover, we report an overall F-score computed from the average precision and

recall. We run 45 different tests since there are three scenarios, where each considers three

different sampling ratios and five different numbers of universal examples. Note that each

test case can be seen as a triple (E, V , M), where E (resp. V ) is a training set (resp. a

hold-out test set) and M is the goal GAV schema mapping that we are trying to learn.

Measure the Goodness of A Training Set

We would like to evaluate the quality of the mappings returned by GAVLearn.

Note that, in general, the “quality” of a training set has a significant influence on the

outcome of the learning tasks. In a precise sense, the quality of a training set determines

the best solution that an algorithm can produce. Therefore, it would be good to have

a measure that indicates the “best” mapping can be produced by any GAV mapping

learning algorithm in a particular test case. If we have an idea of what is the best result

one can produce, then we can see how “close” the mappings returned by GAVLearn

125



(and other works) are to the best result.

We introduce the measure Degree of Comprehensiveness (DoC) that can

be used to measure the quality a training set E in a test case (E, V , M). Let

M = {S,T,Σ = {c1, . . . , cn}} be a GAV schema mapping specification, where Σ

is a set of GAV constraints. Let E (resp. V ) be a training set (resp. the corresponding

hold-out test set) created for M = (S,T,Σ) as described above. We define the degree

of comprehensiveness of E with respect to V and M as

DoCM,V (E) =
|ΣE ∩ ΣV|
|ΣE|

,

where Σx denotes the subset of Σ that is triggered in the set x (we say a constraint c is

triggered in E if there is an example (I, J) ∈ E such that there is a homomorphism from

the left-hand side of c to I). The DoC value can indicate the goodness of a training set

with respect to a held-out test set. It follows that the DoC vallue somewhat determines

the best mapping an algorithm can produce. Observe that if DoCM,V (E) = 100%, then

E provides sufficient information for the learning task since for every constraint t of

M such that t is triggered in V , we have that t is also triggered in E. In this case,

theoretically, there could be some learning algorithm that exactly identifies ΣE (not Σ).

On the other hand, if DoCM,V (E) = 50%, then it intuitively indicates that the hold-out

test set V can trigger substantially more (i.e., |ΣE| many more) constraints of M than

E does. It follows that, in this case, we cannot expect that there is a learning algorithm

that exactly identifies ΣE. The above discussion also implies that the DoC value of a

training set E has a significant influence on the recall of GAV mapping learned from E.
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Going back to the choices of sampling ratios, when we created the universal

examples, we noticed that that if the sampling ratio was greater than 0.4, then a training

set consisting of only 7 universal examples would have a DoC value of 1.0 for all mapping

scenarios. Therefore, we used three relatively small sampling ratios such that we could

generate training sets of different DoC values, and use them to test GAVLearn.

3.3.2 Evaluation of GAVLearn

Highlights of the results of executing GAVLearn on the three scenarios are

provided in Tables 3.2, 3.3 and 3.4. The results of test cases of the simple scenario,

where the sampling ratio (i.e., α) equals to 0.3, are omitted, because the GAVLearn

algorithm achieved an F-score of 1 in all these test cases. Each row of the three tables

corresponds to a particular test case. In the rest of the section, we use the expression

“X-α(θ)-n(β) ” to refer to the test case in scenario X with α = θ and n = β, where α is the

sampling ratio and n is the total number of universal examples (including both training

and hold-out examples). Since we used a 70%-30% split, the size of the training set

(i.e., |E|) of a test case of size n equals to n× 0.7. For example, Complex-α(0.0.5)-n(10)

refers to the first row of Table 3.4, that is, the test case of the complex scenario, where

the sampling ratio is 0.05 and the number of universal examples is 10. For each test case,

we report the following measures of the mappings returned by GAVLearn (recall that

every test case has three random runs): the overall F-score (Fs), the average recall (Rec),

the average precision (Prec), the average DoC (DoC), the average number of iterations

(Iter) performed by GAVLearn, and the average running time (Time). We also report
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Table 3.2: Results of running GAVLearn on simple scenario

α n |E| Fs Rec Prec DoC Iter Time

0.05

10 7 0.68 0.51±35%

1

0.55 7.7 3.9s
30 21 0.88 0.78±20% 0.77 10.3 10.6s
50 35 0.94 0.90±13% 0.88 11.7 20.6s
70 49 0.91 0.83±22% 0.83 11 27.1s
90 63 1 1 1 13 36s

0.1

10 7 0.85 0.74±20%

1

0.72 9 7.6s
30 21 0.91 0.84±8% 0.71 11 22.3s
50 35 1 1 1 13 38.5s
70 49 1 1 1 13 54.7s
90 63 1 1 1 13 1m6.7s

Table 3.3: Results of running GAVLearn on moderate scenario

α n |E| Fs Rec Prec DoC Iter Time

0.05

10 7 0.54 0.37±27% 1 0.389 12.3 3.9s
30 21 0.80 0.69±10% 0.95±7% 0.80 19 10.6s
50 35 0.94 0.89±6% 1 0.89 19.6 20.6s
70 49 0.96 0.96±1% 0.96±4% 0.94 25 27.1s
90 63 1 1 1 1 25 36s

0.1

10 7 0.77 0.63±10%

1

0.61 15.7 7.6s
30 21 0.97 0.94±4% 0.94 23.7 22.3s
50 35 1 1 1 25 38.5s
70 49 1 1 1 25 54.7s
90 63 1 1 1 25 1m6.7s

0.3

10 7 1 1

1

1 25 26s
30 21 0.98 0.98±2h 0.93 26.33 1m6s
50 35 0.99 0.99±1h 0.93 29 1m51s
70 49 0.99 0.99±2h 0.93 32.33 2m55s
90 63 0.99 0.99±0h 0.95 31 3m51s

the standard deviation values of precision and recall computed from three random runs

of each test case.

Analysis of Results

By varying the sampling ratio and number of universal examples, we were able

to create a number of training sets with different DoC values. Recall that the DoC

value of a training set E can indicate the best mapping that any GAV mapping learning

algorithm can produce.

As shown in Tables 3.2, 3.3 and 3.4, the GAVLearn algorithm produced
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Table 3.4: Results of running GAVLearn on complex scenario

α n |E| Fs Rec Prec DoC Iter Time

0.05

10 7 0.50 0.35±6%

1

0.33 13.3 8.7s
30 21 0.85 0.75±6% 0.67 17 24.4s
50 35

1 1 1
25 44s

70 49 25 58.5s
90 63 25 1m19s

0.1

10 7 0.78 0.64±22%

1

0.64 16.3 17.6s
30 21

1 1 1

25 51s
50 35 25 1m31s
70 49 25 2m6.5s
90 63 25 2m50s

0.3

10 7 0.97 1 0.96±3% 1 43 1m7s
30 21 0.98 0.98±2% 0.98±2% 1 46.33 2m41s
50 35 1 1 1 1 47.67 4m55s
70 49 0.98 0.99 1 1 55.67 8m6.6s
90 63 0.99 0.99 1 1 53.67 10m9s

mappings that achieved very high precision values (at least 95%) in all test cases. We

also observed that, among those cases where the precision values were not 100%, the

variances of precision values were low (at most 7%). These observations conform to our

expectation. Since, by definition, the GAVLearn algorithm iteratively produces GAV

constraints that are critically sound with respect to the goal mapping, we expect the

produced GAV mappings to be high-precision. In contrast, the average recall values

varied significantly from 0.37 to 1. We also observed an evident dependency of the

recall values on the corresponding DoC values. As we can see in Tables 3.2, 3.3 and

3.4, the recall value of a test case is highly similar to the corresponding DoC value.

Recall that the DoC value of a training set (w.r.t. the corresponding hold-out test

set) has a significant influence on the recall of the mapping produced by a learning

algorithm. In some sense, the similarity between recall values and the corresponding

average DoC values indicates that, the mappings returned by GAVLearn achieved recall

values that were close to the best recall values that could have been achieved by a GAV
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learning algorithm. Moreover, an interesting observation is that, when the number of

training examples was low (e.g., seven), the variance of recall was high (e.g., 35% in the

Simple-α(0.05)-n(10)). The variance of recall reduced significantly when more training

examples were provided to GAVLearn. Moreover, by fixing a sampling ratio, the DoC

value grows as the number of universal examples increases. In most cases, when the

DoC value of a training set was 1, then the recall value was also 1. There were only

three cases, in the complex scenario, where the DoC values were 1 but the recall values

were not 1 (such as the test case Complex-α(0.3)-n(30)). Although, in these three cases,

the recall values were not 1, the recall values were still high (at least 0.98) together with

low variances (≤ 2%). Therefore, the recall values of GAVLearn were high when the

DoC values were high. Since the precision values were high (≥ 95%) with low variances

and the recall values were highly similar to the DoC values, the F-scores of GAVLearn

mainly depended on the recall values. Therefore, the similarity between F-scores and

DoC values, as shown in Tables 3.2, 3.3 and 3.4, indicates that GAVLearn is stable and

effective.

We next discuss the performance of GAVLearn in terms of several other aspects:

Size of training set. We noticed that better results can be achieved by providing

GAVLearn with more data examples (for a fixed sampling ratio). More training examples

provided the learning algorithm with more source facts that may increase the DoC value of

the training set, and/or increase the number of homomorphisms from the left-hand sides of

the constraints of the goal mapping to the training set. In either case, it would provide the

learning algorithm with more information, which would in turn lead to a better mapping.
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Active learning. As already pointed out in Section 3.2, GAVLearn is an active learning

algorithm that systematically generates a large number of guided universal examples

from the provided training set. These additional universal examples are extremely

important for the learning because they will guide the algorithm to critically sound

constraints with respect to the goal mapping. By Lemma 3.7, we know that the number

of new examples generated during the computation of critically sound constraints is

linear in the size of E (i.e., the total number of facts contained in E). For example, in

the test case Complex-α(0.3)-n(90), every example of the training set contains about 320

source facts, meaning that the training set contains about 20K ≈ 63 ∗ 320 source facts.

Therefore, the mapping returned by GAVLearn, in the Complex-α(0.3)-n(90) test case,

was actually an outcome of learning from 20K universal examples. These additional

examples contributed a lot to the high-quality result (i.e., an F-score of 0.99).

Runtime efficiency. The runtime of the GAVLearn algorithm is reported in Tables

3.2, 3.3 and 3.4 (see the last column). The runtime of GAVLearn depended mainly on the

size of the training set. Since GAVLearn is an active learning algorithm that generates a

large number of universal examples, it further increases the runtime of GAVLearn. It will

be a bottleneck if the training set is very large. However, our experiments were designed

to simulate a common user-interactive schema mapping design environment, where the

number of data examples needed is usually comparable to the size of constraints of the

goal schema mapping. Therefore, the runtime of GAVLearn is reasonable.
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Figure 3.3: Comparison of GAV-Fitting, TALOS, and GAVLearn

3.3.3 Comparison with Existing Methods

In this section, we compare GAVLearn with two existing methods: the GAV-

Fitting algorithm [3] and the TALOS system using the aforementioned three mapping sce-

narios. We did not implement the GAV-Fitting algorithm because executing GAV-Fitting

on those test cases is trivial (the reason will be clear shortly), and the authors of [68]

shared with us the implementation of the TALOS system. Figure 3.3 reports the quality

(in terms of F-score) of GAV mappings returned by the three algorithms with respect to

the three scenarios (X-axes are number of training examples). We can see that GAVLearn

produced GAV mappings with much higher F-scores in all test cases than the other two.

TALOS was the sub-optimal, and GAV-Fitting produced the worst results where all

F-scores were close to zeros. We next discuss the differences among them in detail.
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GAV-Fitting. In [3], the author proposed the GAV-Fitting algorithm that,

given a set E of ground data examples, generates the canonical GAV fitting schema

mapping for E if there is a fitting GAV mapping for E. In particular, GAV-Fitting

is a special case of the GLAV fitting algorithm proposed in [3]. GAV-Fitting is a two

step algorithm that first checks if there exists a fitting GAV schema mapping for E

using a procedure called homomorphism extension test (see [3] for more details). If the

answer is yes, then the canonical GAV fitting schema mapping of E will be returned;

otherwise, it reports “none exists” and terminates. In our setting, since the training set

E is a set of universal examples for the goal mapping. This means that there is always

a GAV fitting schema mapping for E, so the GAV-Fitting algorithm will always return

the canonical GAV schema mapping of E. By construction, the canonical GAV schema

mapping of E is obtained by spelling out the facts of E. Hence, it will not work well on

the hold-out test set V . More specifically, the canonical GAV schema mapping obtained

from E would achieve high precision but low recall on V , because the canonical GAV

mapping obtained from E would produce a non-empty target instance only if one of

the source instances of V has a homomorphic image of one of the source instances of

E. In machine learning, the mappings returned by GAV-Fitting are considered to be

overfitting. That is why the F-scores of the GAV-Fitting algorithm were so low.

TALOS. The TALOS system achieved much higher F-scores in almost every

test case of the three mapping scenarios than GAV-Fitting did. The core technique of

TALOS is a classification algorithm based on a decision tree. Concretely, the algorithm

re-organizes the constants of the input database by a decision tree such that multiple
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instance-equivalent Union-Select-Projection-Join (SPJU) queries (i.e., GAV mappings)

can be extracted from the decision tree with respect to the query result provided. Once

the decision tree is ready, the TALOS system will then return one, among all candidate

queries (i.e., mappings), whose cost is minimum (see [68] for more details). One of

the advantages of TALOS over GAV-Fitting is that TALOS takes into account the

“succinctness” of a learned model. Therefore, it will return a succinct model that is less

specific to the input database (i.e., the training set in our setting).

As shown in Figure 3.3, with more training examples and a higher sampling

ratio, the F-score of the GAV mappings produced by TALOS became higher. We noticed

obvious improvements (in terms of F-scores) when we increased the sampling ratio from

5% to 10% (as well as from 10% to 30%). However, these F-scores were still lower than the

corresponding F-scores of GAVLearn. We manually inspected the queries (i.e., GAV map-

pings) returned by TALOS. We found that a substantial portion of these queries included

constants belonging to the training set E (these constants were used in the selection condi-

tions of the resulting SPJ queries). This means that TALOS still has an overfitting issue.

Runtime efficiency. The GAV-Fitting algorithm is the fastest algorithm

among the three because its execution is trivial. The TALOS system is also very efficient.

In particular, all experiments of TALOS finished within 2 seconds. Note that TALOS

learns from the provided training set only, whereas GAVLearn learns from both the

provided training set and the large number of additional universal examples generated

on the fly. GAV-Fitting and TALOS are much faster than GAVLearn, but the quality

of their results is worse.
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Summary. The main difference between GAVLearn and the other two algorithms

is that, GAVLearn uses the provided labeling oracle to generate a large number of

guided universal examples. Our experiments showed that the additional guided universal

examples were extremely important for GAVLearn because, if the guided universal

examples are not available, GAVLearn is essentially the GAV-Fitting algorithm. We note

that both GAV-Fitting and TALOS focus on producing a GAV mapping that perfectly

fits the training set. In other words, learning a GAV mapping that will generalize well on

future universal examples is not considered by their objective functions. In contrast, the

GAVLearn algorithm focuses on producing a GAV mapping that is semantically close to

the goal mapping with respect to both the training set and future unseen data. This

explains the superiority of GAVLearn over the other two methods in our evaluation.

3.4 Conclusions

In this chapter, we presented the GAVLearn algorithm that is a PAC learning

algorithm for GAV schema mappings. The work was built on the learning framework

introduced in [21]. We implemented the GAVLearn algorithm and evaluated it using

mapping scenarios created by iBench. We show experimentally that the GAVLearn

algorithm can produce high-quality GAV schema mappings. As a byproduct of the

experimental evaluation, we also introduced a new measure (i.e., the F-score measure)

to evaluate the quality of schema mappings with respect to a set of data examples.

One important question that remains to be answered is the learnability of LAV schema
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mappings (likewise for GLAV schema mappings).
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Part II

Learning Rule-Based Entity

Resolution
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Chapter 4

Learning Rule-Based Entity Resolution

Algorithms from Data Examples

In this chapter, we present an example-driven active learning system, ER-

LEARN, that learns high-quality rule-based entity resolution algorithms at scale. Note

that the definition of data examples in the setting of entity resolution is different from

that in the setting of schema-mapping discovery. In the setting of schema-mapping

discovery, a data example is a pair (I, J), where I is a source instance and J a target

instance. In the setting of entity resolution, a data example is a pair (r, s), where r and s

are two records of the input datasets. Moreover, in the setting of ER, data examples will

be labeled as matches or non-matches by a human user. The goal of our work is to learn

rule-based entity resolution algorithms that are both high-precision and high-recall from

data examples. An ER rule R is considered to be high-precision if most of the links, i.e.,

pair of records, returned by R are indeed true matches; an ER rule R is considered to be
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high-recall if R covers a significant fraction of the true matches in the datasets. It follows

that a high-quality rule-based ER algorithm should consist of multiple high-precision

ER rules such that the combined recall of these rules is high.

As discussed in Chapter 1, ERLEARN actively searches for two types of data

examples: (1) likely false positive examples that are used to improve the precision of

current rule and (2) likely false negative examples that are not covered by the current

rule but are likely matches. The latter type of examples are more challenging to identify

but have a tremendous impact in refining an existing rule towards better recall and in

finding additional good rules. One of our main contributions is the ability to generate

likely false negatives that in turn, enable learning at scale of multiple ER rules, each

having significant coverage (i.e., recall) of the space of true matches.

Roles of Different Types of Examples

In order to show the roles that different types of examples (i.e., false positives

and false negatives) play in our learning system, consider the following matching scenario,

which follows from our Twitter-Customer scenario discussed in Chapter 1. Assume that

the system has learned an initial rule, Rule1 shown below.

match Twitter T, Customer C by Rule1:

T.lastname = C.lastname

AND firstNameMatch(T.firstName, C.firstName)

AND T.location.state = C.state

Figure 4.1: An ER rule

Assume that a new false positive example, shown in Figure 4.2(b), has just been found.
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This example is a false positive, with respect to Rule1, because it satisfies all the

Figure 4.2: Examples of matches: (a) positive, (b) negative.

conditions of Rule1, but the user labels it as a negative match. As a result of seeing

such example, Rule1 can be automatically refined into a more conservative (and more

precise) rule such as Rule1′ below. This rule adds an extra condition specifying that it

only applies to people whose last names are not in the top 80% frequent last names in

the United States. The refined rule has an increased precision (and, in particular, avoids

false positive examples such as the one just seen). False positive examples are relatively

easier to find, since they live within the result set of the current rules.

match Twitter T, Customer C by Rule1′:

T.lastname = C.lastname

AND firstNameMatch(T.firstName, C.firstName)

AND T.location.state = C.state

AND lastNameFrequencyFilter(C.lastName, 80)

Figure 4.3: Example: ER rule Rule1′ refined from Rule1

In contrast, likely false negative examples are examples of matches that are not

covered by any of the existing rules. Figure 4.4 shows a false negative example for our

scenario; this represents a match that is not covered by the existing rule (Rule1′) but
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the user would label it as positive.

Figure 4.4: A false negative example for Rule1′.

Once the learning algorithm becomes aware of such examples, a second rule

such as Rule2 shown below may be generated (in addition to Rule1′). The false negative

examples enable the learning algorithm to form new combinations of matching conditions

and exploit new attributes (e.g., email and Twitter screen handle, in this case).

match Twitter T, Customer C by Rule2:

T.lastname = C.lastname

AND firstNameMatch(T.firstName, C.firstName)

AND sameHandle(T.screen name, C.emailHandle)

Figure 4.5: Another ER rule

Finding false negatives is challenging, simply because the search space is much

larger (e.g., for our Twitter-Customer scenario, a single high-precision rule may yield

a few thousands or tens of thousands of matches, while the search space of likely false

negatives is as large as the remaining portion of the cross-product of the two datasets,

i.e., 1016 pairs). To address this challenge, we have developed a novel search heuristic,

which we call Rule-Minus, that actively searches for likely false negative examples, by

systematically removing one or more conditions from an existing rule. As we show in the

rest of the chapter, this heuristic is quite effective in increasing the space of examples

that is “seen” by the learning algorithm.

In the rest of the chapter, we describe ERLEARN in detail. In Section 4.1, we introduce
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the language of entity resolution rules. In Section 4.2, we formalize the entity resolution

learning problem. In Section 4.3, we describe our learning system in details including the

system architecture and learning methodology. In Section 4.4, we present a comprehensive

experimental evaluation of our system. In Section 4.6, we give a summary of our work

and discuss future work.

4.1 The Language of ER Rules

In this section, we give the formal definition of the language of ER rules. We

first introduce several notations and concepts.

Without loss of generality, we assume that, unless otherwise stated, the ER

task in consideration has two input datasets, denoted by D1 and D2. We will use (r, s)

to denote a pair of records (in short, a pair) in the cross product of D1, D2, that is,

(r, s) ∈ D1 ×D2, where r ∈ D1, s ∈ D2.

Matching predicates are the basic building blocks of ER algorithms. In our

approach we consider various types of matching predicates, where these predicates range

from basic equalities on attributes of records, to more complex (similarity or threshold-

based) comparison functions, and can also make use of filters and normalization functions.

In fact, learning the “right” compositions of the aforementioned functions is one of

the central tasks of our learning approach. Before giving the definition of matching

predicates, we first define the following key ingredients used in matching predicates.

A matching function f is a boolean function that can apply directly on a pair
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(r, s) or on components of r and s (e.g., projections, or other values extracted from r

and s).

Example 4.1 The equality test r = s is a matching function that applies directly on a

pair (r, s); sim(s1,s2,θ) is another matching function which tests if the similarity score

between two strings is equal to or greater than a given value θ.

We also use unary functions, which are (non-boolean) functions that can apply

directly on an individual record r (resp. s) or on a component of r (resp. s). Unary

functions can be composed to obtain other unary functions.

Example 4.2 The projection T.firstname is a unary function that extracts the “first-

name” value from a Twitter profile T ; the function UpperCase(x) is a normalization func-

tion that converts every character of the string x to its uppercase. Another unary function

is the composition of the previous two functions (e.g., UpperCase(T.firstname)).

We can now define matching predicates. Given a set of matching functions

F = {f1, . . . , fn} and a set of unary functions U = {u1, . . . , um}, a matching predicate is

defined as:

P (r, s) = fk

 u0(r) ◦ · · · ◦ ui(r)︸ ︷︷ ︸
arg1

,

arg2︷ ︸︸ ︷
u′0(s) ◦ · · · ◦ u′j(s), θ

 ,

where: (1) (r, s) ∈ D1 ×D2, (2) arg1 (resp. arg2) is a composition of unary functions

applied on r (resp. s), (3) θ is an optional fixed number (e.g., a threshold) needed

for the case when the matching function fk expects such argument. In a matching

predicate, arg1 and arg2 are optional, but cannot both be missing. Specifically, if
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one of the two arguments is missing, then we sometimes call the resulting predicate a

filter predicate (since it applies only on one of the input datasets). The main difference

between matching functions and matching predicates is that matching predicates are

actual instantiations of matching functions on concrete “paths” within the input records.

Matching predicates also contain concrete instantiations of the numerical parameter θ.

Example 4.3 In the predicate UpperCase(T.lastname) = UpperCase(C.lastname),

the matching function is the equality test =, and the two arguments are obtained via the

composite unary functions UpperCase(T.lastname) and UpperCase(C.lastname). As

an example of a different nature, assume that lastNameFrequencyFilter (x,θ) is a

function that returns true if its first argument x is a last name that is not in the top θ%

of the population in terms of last name frequency. In general, there could be infinitely

many possible values for the numerical parameter θ. Instead of learning the exact value

of θ over a full continuous range (e.g., between 0 and 100% in this case), we use an

approximation strategy to make the space of possible values of θ finite: we discretize

the space of possible parameter values by using certain granularities. For example, if

the granularity is 10, we instantiate the matching function lastNameFrequencyFilter

(x,θ) into multiple matching predicates: { lastNameFrequenceFilter (x, 10), ...,

lastNameFrequencyFilter (x, 90) }, where the value of the parameter θ is built into

the matching predicate. The learning algorithm will then have the role to identify the

right matching predicate (with the right parameter value).

A blocking predicate is defined as a conjunction of one or more matching
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predicates that has the additional property that it “logically” partitions the input

datasets into blocks of records so that the subsequent ER algorithms compare only

records within the same block. Blocking is an essential feature in entity resolution

that is needed to avoid comparing pairs over the cartesian product D1 × D2. While

learning of blocking predicates may be a task in itself, in this paper, we assume that

blocking predicates are marked explicitly by a human user. As an example, the predicate

UpperCase(T.lastname) = UpperCase(C.lastname) may be explicitly marked as a

blocking predicate. If this predicate is used in an ER rule, the effect is that we will

compare only records whose last names are identical (modulo uppercase conversion).

We now define an entity resolution (ER) rule R, with respect to D1, D2, via a

conjunction of matching predicates:

match D1 r, D2 s by

R: P1(r, s) AND . . . AND Pm(r, s),

such that at least one blocking predicate appears in the conjunction. An entity resolution

(ER) algorithm A is then defined via a disjunction of rules:

match D1 r, D2 s by

R1: P 1
1 (r, s) AND . . . AND P 1

m1
(r, s),

. . .
Rk: P k1 (r, s) AND . . . AND P kmk

(r, s).

The result of applying an ER rule R to datasets D1 and D2 is the set of all

pairs (r, s) that satisfy the conjunction of matching predicates of R. We sometimes use

the term links of R, denoted by links(R), for the result of R on D1 and D2. The result

of applying an ER algorithm A is the union of pairs (r, s) that are produced by the
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individual rules of A. Thus, a pair (r, s) is in the result of A if it satisfies the disjunction

of the conjunctions of matching predicates in A.

A Connection to the Language of GAV Constraints. Recall that schema map-

pings are expressed in the language of GLAV constraints. The language of GLAV

constraints and the language of ER rules are two different languages for two different

information integration problems. However, under appropriate assumptions, we can

establish a connection between the two languages. Without loss of generality, we may

assume that each record of the input datasets of an ER task has a unique ID. The result

of an ER algorithm A can be encoded as a binary relation consisting of pairs (r1, r2),

where r1 and r2 are IDs of two records, which are identified as a match by A. Let us

denote the resulting binary relation by Link(id1, id2). It follows that the goal of entity

resolution is thus to populate the target Link(id1, id2) relation from the input datasets

(note that, ideally, the Link relation is expected to contain only the true matches among

the input datasets). Therefore, the spirit of using schema mappings in order to translate

a source instance to a target instance is similar to the spirit of using ER algorithms in

order to create links among input datasets. It follows that, at a high level, every ER

rule can be formulated as a GAV constraint in an extended language of GAV constraints.

Take the ER rule Rule1 shown in Figure 4.1 as an example. Assume that the Twitter

data and the Customer data conform to the following schema:

Twitter(id, firstname, lastname, nation, state)

Customer(id, firstname, lastname, state).
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Consider the following two constraints (shown in Figure 4.6).

t1 : ∀ . . . Twitter(tid, tFN, LN, nation, state) ∧ Customer(cid, cFN, LN, state)
∧ firstNameMatch(tFN, cFN)→ Link(tid, cid)

t2 : ∀ . . . Twitter(tid, tFN, cLN, nation, tState) ∧ Customer(cid, cFN, cLN, cState)
∧ equal(tLN, cLN)
∧ equal(tState, cState)
∧ firstNameMatch(tFN, cFN)→ Link(tid, cid)

Figure 4.6: Rule1 as a GLAV-like constraint

We can see that t1 and t2 are both translated from Rule1 shown in Figure 4.1, where the

elements with underlines correspond to the matching functions of Rule1. The right-hand

sides of t1 and t2 contain a single relational atom Link(tic, cid). We can see that the

two constraints specify the same logic for obtaining links from the source data (i.e., the

Twitter data and the Customer data). The only difference between t1 and t2 is how they

translate the equality functions of Rule1. The constraint t1 uses universal quantified

variables to implicitly express the equality functions (over the two first name attributes

and the two state attributes), whereas the constraint t2 spells out the equality functions

as well as the user-defined function (i.e., firstNameMatch(tFN,cFN)) as special elements.

The two constraints above are syntactically similar to the language of GAV constraints.

Obviously, t1 and t2 are not standard GAV constraints because of the existences of

the special elements such as firstNameMatch(tFN,cFN). However, by extending the

standard language of GAV constraints with special expressions, such as arithmetic

expressions and user-defined functions, we can use GAV-like constraints to define ER

rules.

Although the above discussion shows that there is a connection between the
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two languages, we do not pursue designing a unified declarative language for expressing

both schema mapping constraints and entity resolution rules. The discussion regarding

the similarities of the two languages is meant to provide an intuition on how the two

directions are related to each other.

4.2 Problem Definitions

In this section, we formulate the entity resolution learning problem. We first

need several definitions and notations.

Specific to learning purposes, we will use the term data examples for pairs that

are presented to a human user for labeling. We say a data example (r, s) is positive if it

is identified as a match by a human user; otherwise, it is a negative example (we assume

that a human user has perfect knowledge, so a real world match would be labeled as

positive by a user, and negative otherwise).

Another set of terms highly used in this paper are true positives, false positives,

and false negatives of a rule. A pair (r, s) is a true positive of R if (r, s) ∈ links(R) and, fur-

thermore, represents a true match (in particular, a human user would identify it as a match

if shown1). A pair (r, s) is a false positive of R if (r, s) ∈ links(R) but it is not a true match.

A pair (r, s) is a false negative of R if (r, s) 6∈ links(R) but it is a true match. The same def-

initions but with respect to an ER algorithm A are similarly defined by replacing R with A.

During the learning process, data examples are represented as feature vectors.

Concretely, given a vector 〈P1, . . . , Pm〉 of distinct matching predicates that are applicable

1Note that the examples actually shown to a user will be a much smaller subset, in general.
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on D1, D2, we define a feature-augmented data example F̂ (r, s), where (r, s) ∈ D1 ×D2,

as follows

F̂ (r, s) : 〈 (r, s), P1(r, s), P2(r, s), . . . , Pm(r, s) 〉,

where the value of the k-th feature of F̂ (r, s) is the evaluation of Pk on (r, s) (for a

concrete example, see Example 4.4). In our system, we use a simple algorithm that, given

a collection F of matching functions and a collection U of unary functions, generates the

matching predicates P that are applicable on D1 and D2. We do this by systematically

enumerating matching predicates over F and U that are syntactically valid (i.e., satisfy

the types of attributes in the input schemas, do not repeatedly apply the same unary

function, etc.).

Example 4.4 Figure 4.7 illustrates the process of constructing and augmenting data

examples from a catalog of applicable matching predicates (generated as discussed above).

In our running scenario, data examples are obtained by pairing up Twitter profiles and

customer records2; each pair is then augmented with features by evaluating all the

matching predicates on the given pair. For each data example, the user will then add

the label (shown in a separate column).

Precision and recall are two measures used in this paper to evaluate the ER

algorithms returned by the active learning system. They are defined as

Prec(R) =
TP (R)

TP (R) + FP (R)
, Recall(R) =

TP (R)

TP (R) + FN(R)
,

2The process of obtaining such pairs is described in Section 4.3.
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Figure 4.7: Feature-augmented data examples

where TP (R) is the number of true positives of R, FP (R) is the number of false positives

of R, and FN(R) is the number of false negatives of R. Similar definitions apply for the

case of an ER algorithm A.

We are now ready to define the entity resolution learning problem. Let τ be a

precision threshold (τ ∈ [0, 1]). The goal of the ER learning task is to learn an entity

resolution algorithm A that

maximizes Recall(A)

subject to: ∀R ∈ A, Prec(R) ≥ τ .

In other words, the goal is to maximize the recall of A, while each entity resolution rule

R in A has precision higher than τ .
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4.2.1 Estimating Precision and Recall

In practice, especially on big data scenarios, computing the exact precision

and recall of an ER rule is impractical. Computing the exact precision of an ER rule R

requires one to examine every link of R. Given the fact that a rule may produce thousands

of links, letting a human user label all these links is not feasible. Computing the exact

recall of an ER rule R is even more difficult, because the search space of false negatives

is much larger (and outside links(R)).

Estimating Precision. One widely accepted method of measuring precision

is to estimate the precision of R on a randomly selected set of pairs from links(R). In

our approach, however, we will estimate the precision of R based on a carefully selected

subset of links of R that have low similarity scores according to our active learning system.

Intuitively, this represents an “adversarial” set of examples; if R has high precision with

respect to this adversarial set, then it would have at least the same precision with respect

to its entire coverage (or with respect to a randomly selected set of links). Thus, we

use a very conservative method to measure the precision of R. See Section 4.3 for more

details on how we obtain the “adversarial” set, and also Section 4.4 where we show

experimentally that our estimation method gives very good results in practice.

A 1−τ
τ -loss Estimation of Recall. Rather surprisingly, it turns out that for

the above ER learning problem, where we need to maximize the recall subject to the

precision constraints, we can estimate the recall of an ER rule R by simply counting the

number of links of R. The following analysis shows, formally, why this is the case. By
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the earlier definition, we have that:

Recall(R) = TP (R)
TP (R)+FN(R) = TP (R)

matches(D1,D2) ,

where matches(D1, D2) is the number of all possible matches over D1 ×D2. Since the

denominator is a constant, to compare the recall of two rules we only need to compare the

numerators (TP (R)). If we now assume that each rule R satisfies the precision constraint,

we have that

τ ≤ Prec(R) = TP (R)
TP (R)+FP (R) = TP (R)

LinkCount(R) ,

where LinkCount(R) is the size of links(R). This implies that:

TP (R)
τ ≥ LinkCount(R) ≥ TP (R) ≥ τ · LinkCount(R),

where the middle inequality follows from the fact that the true positives of R are a subset

of links(R). Thus, we can bound from above and below either TP (R) or LinkCount(R)

using functions of the other, and thus LinkCount(R) is a surrogate of TP (R). In

particular, we have that

TP (R) ∈ [τ · LinkCount(R), LinkCount(R)].

We can now bound the relative loss in recall, given that we estimate Recall via LinkCount

in our optimization problem, as follows. Assume that we have two rules R1 and R2, both

satisfying the precision constraint. Then, we have:

TP (R1)
τ ≥ LinkCount(R1) ≥ TP (R1) ≥ τ · LinkCount(R1)

TP (R2)
τ ≥ LinkCount(R2) ≥ TP (R2) ≥ τ · LinkCount(R2)
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Suppose that the ER learning task estimates that R1 has better recall than R2 because

LinkCount(R1) > LinkCount(R2). Moreover, assume that, in fact, R2 has higher recall

(i.e., TP (R2) > TP (R1)). The loss in recall (given that R1 was chosen over R2) is:

TP (R2)− TP (R1) ≤ LinkCount(R2)− τ · LinkCount(R1) ≤

LinkCount(R1)− τ · LinkCount(R1) = LinkCount(R1)(1− τ).

The relative loss on recall is then bounded as follows:

TP (R2)− TP (R1)

TP (R1)
≤ LinkCount(R1) · (1− τ)

τ · LinkCount(R1)
=

1− τ
τ

,

which is a small number for large τ . Specifically, τ = 0.95 ⇒ loss ≈ 5%; τ = 0.90 ⇒

loss ≈ 11%. Note that one can control the error by changing the precision threshold

τ . Furthermore, the above upper bound on relative loss is obtained by assuming worst

cases. In fact, the ER rules we learn will often have precision that is higher than τ ; thus,

the actual error rate for recall is even lower.

4.3 Detailed System Architecture and Learning Method-

ology

In this section, we describe the design of our active entity resolution learning

system in detail beginning with a high-level description of the general workflow. In

particular, we describe how we iteratively discover and refine a set of ER rules where

each iteration consists of: (1) automatic learning of a new candidate ER rule R together

with active generation of new examples, followed by (2) the user interaction phase to
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Figure 4.8: Automatic Rule Learning and Example Generation

label said examples and whether to accept or reject R.

Automatic Rule Learning and Example Generation

In the first phase, the system learns a single candidate rule R from the current

training data set, and actively searches for both likely false positives of R and likely false

negatives (of R and all rules that were previously accepted). The overall flow of this

phase is illustrated in Figure 4.8.

The workflow can either be invoked with a small training set of pre-labeled

examples (e.g., obtained by some process of exploration of the space of matches by a

human user) or with an initial ER rule (provided by a domain expert). At the beginning

of the first iteration, we also create an empty Rule Repository to be used as a database

for storing the high-precision ER rules that will be accepted by the user. The first step

in the workflow is the Single-Rule Learning Module that generates a single candidate

ER rule based on the current training data. As an example, this module may generate
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Rule1 in Figure 4.1. Note that, in case the system was invoked by an initial rule then

we simply use this as the candidate rule in the first iteration. Once the new candidate

rule is available, the workflow splits into two branches: one for computing likely false

positives with respect to the candidate rule (upper branch in Figure 4.8), and one for

computing likely false negatives with respect to both the candidate rule and all the

high-precision rules in the Rule Repository (lower branch in Figure 4.8).

To compute likely false positives (the upper branch in Figure 4.8), the learning

system applies the candidate rule R on the actual input datasets and sends all the links of

R to the Example Selection Module. To ensure the selection of only those examples that

have high likelihood to be negative (since we are looking for likely false positives in this

branch), the first step in the Example Selection Module (upper branch) is to discard all

those links that are already covered by some rule in the Rule Repository. The underlying

assumption here is that because each previously accepted ER rule in the Rule Repository

is known to be above the precision threshold, any example covered by it is likely to be a

match. The second step in the Example Selection Module is to select a few (e.g., 10) of

the remaining links that have the lowest similarity scores. We use a similarity measure

(defined in Section 4.3.2) to gauge the likelihood that a link is a match. The lower the

similarity score is, the less likely it is that the link is a match, and vice versa. We refer

to the links obtained in this branch as “likely false positive” examples of R because they

satisfy the rule but may be negative given their low similarity scores. These examples

represent good candidates of false positives (to be shown to the user). As an illustration,

the pair in Figure 1.2(b) may be identified as a likely false positive.
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On the other hand, in the branch of computing likely false negatives (the lower

branch in Figure 4.8), the learning system first generates a set of “Rule-Minus” rules from

the candidate rule R. Each Rule-Minus rule is obtained by removing matching predicates

from R. Intuitively, each Rule-Minus rule is a mild generalization of R that enables the

learning system to extend the space of potential matches beyond what is covered by R.

Furthermore, each Rule-Minus rule is applied on the input datasets, and the resulting sets

of links (one for each Rule-Minus rule) are sent to the Example Selection Module. In the

Example Selection Module, the first step is to discard all the links that are covered either

by R or by some already existing rule in the Rule Repository. Intuitively, we want to

explore “new” examples that are not covered by R or by any of the rules in the repository.

Among the surviving links, the Example Selection Module then selects a few examples

that have highest similarity scores. We refer to the links obtained in this branch as “likely

false negative” examples (with respect to both R and the rules in the repository). As an

illustration, a pair such as the one in Figure 4.4 may be identified as a likely false negative.

Once the likely false positives and likely false negatives are obtained, the

workflow moves to the user interaction phase.

User Interaction

In this phase, a human user is required to label the newly generated examples.

Based on the user labeling, the system also decides whether to accept or reject the

current candidate rule R. The flow of this phase is described in Figure 4.9.

We note that the sets of likely false positives and likely false negatives play

156



Figure 4.9: User Interaction Phase

different roles during the user interaction. On the lower branch of the flow, the likely

false negatives are labeled by the user and then added to the training data as new

augmented examples. Examples that are labeled as positive by the user in this branch

are particularly important, since they may form new candidate rules in the next iterations.

(This will become more apparent in Section 4.3.1.) For example, if the earlier likely false

negative (the pair in Figure 4.4) is confirmed by the user as positive, a new ER rule may

be generated (e.g., Rule2 in Figure 4.5).

On the upper branch of the flow, the likely false positives are also labeled by

the user and then added to the training data as new augmented examples. In addition,

these likely false positives, which we recall are links of R with lowest similarity scores,

are used to estimate the precision of R. In particular, the system determines whether or

not the current candidate rule is high-precision according to the labels of these likely

false positives. We distinguish two cases:

1. the candidate rule R is not good enough, which means its precision is lower than
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the threshold τ on the set of likely false positives. In this case, we discard R.

2. the candidate rule R has precision higher than the threshold τ on the set of likely

false positives. In this case, we add R to the Rule Repository, and then remove all

matches of R from the training data. The last step is to ensure that in the next

learning iteration, the Single-Rule Learning Module is able to produce a candidate

rule other than R. (This is further explained in Section 4.3.4).

As mentioned in Section 4.2.1, the above method uses a conservative estimate of precision,

since it checks the precision of R on an “adversarial” set consisting of links with low

similarity scores. As a result, if R passes the threshold τ , it is likely to have even higher

precision on a random sample of its links.

As an illustration, assume that the system rejects the candidate rule Rule1 in

Figure 4.1 because the likely false positives of Rule1 contain many negative examples

(e.g., the one shown in Figure 4.2(b)). In the next iteration, based on the availability of

the new examples, the Single-Rule Learning Module will produce a different candidate

rule, likely better (possibly a rule such as the earlier Rule1′). If this new candidate rule

is of high-precision, then the system will accept it (and add it to the Rule Repository),

remove all its matches from the training data, and go back to the Single-Rule Learning

Module to learn other rules beyond the already accepted ones.

This learning process is repeated until either the user manually stops the system

or the single-rule learning module does not produce any candidate rule that satisfies the
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precision constraint (to be discussed next).

4.3.1 Single-Rule Learning Module

The goal of the Single-Rule Learning Module is to learn a candidate ER rule

from the available training data. Algorithm LearnRule is inspired by an exact learning

algorithm for monotone DNF formulas introduced by Angluin [5]. In particular, if one

interprets the vector 〈P1, . . . , Pm〉 of available matching predicates as a set of boolean

variables, then our learning task amounts to finding a disjunction of rules, where each

rule corresponds to a conjunction of (non-negated) boolean variables over 〈P1, . . . , Pm〉.

While the classical Angluin algorithm requires an oracle for exact learning of the target

formula, our LearnRule algorithm can be seen as a greedy adaptation that uses the

training data instead of an oracle. Furthermore, different from the Angluin algorithm,

our LearnRule algorithms learns a single “best” conjunction over 〈P1, . . . , Pm〉 that

covers the most positive examples modulo the precision guarantee. The way in which

we learn multiple conjunctions (rules) is via active learning, as part of the overall flow

described earlier: once a rule is accepted, in the next iterations, we will rerun the same

single-rule algorithm to learn the next “best” rule, given the new set of available examples.

A description of our single-rule learning algorithm is given in Algorithm LearnRule.

Concretely, the LearnRule algorithm converts each positive example p in

the training data T into an initial rule R by selecting all the matching predicates that

evaluate to 1 on p. Initially, R is very specialized that possibly satisfies only one pair in

the training data (p itself). The algorithm then simplifies R by systematically removing
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Algorithm LearnRule(T, τ)

Input: T - a set of labeled examples augmented by features;
τ - precision threshold

1: POS ← all positive examples in T
2: NEG← all negative examples in T
3: BestRule← null; MaxContribution← 0
4: BestRule← null
5: for every feature-augmented example F̂ (r, s) ∈ POS do
6: candid← ∅
7: for every vali ∈ F̂ (r, s) do
8: if vali = 1 then //vali corresponds to evaluation Pi(r, s)
9: candid← add {Pi} (the matching predicate)

10: end if
11: end for
12: (candid′, contrib)← Simplify(candid, T, τ)
13: if contrib > MaxContribution then
14: BestRule = candid′; MaxContribution = contrib
15: end if
16: end for
17: return BestRule
18:
19: procedure Simplify(candidRule, T , τ)
20: ruleSet← all possible subsets of candidRule
21: bestRule← null
22: maxContrib← 0
23: for rule ∈ ruleSet do
24: if PrecT (rule) ≥ τ then
25: c← # of matches in T that are also links of rule
26: if c > maxContrib then
27: bestRule = rule; maxContrib = c
28: end if
29: end if
30: end for
31: return (bestRule,maxContrib)
32: end procedure

matching predicates to find a more general rule that produces more links on the train-

ing data (better coverage) possibly at the expense of decreased precision. After each

simplification step, we ensure that the precision constraint is still satisfied by checking

PrecT (R) = |T+ ∩ links(R)|/|T ∩ links(R)| ≥ τ , where T+ denotes the subset of positive

examples of T , and τ is the input precision threshold. At the end, the system returns

a single simplified rule R′ covering the most positive examples in T among all rules

satisfying the precision constraint on T .

Note that both positive and negative examples in the training data are used
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when calculating the precision of a simplified rule. Thus, negative examples play the role

of eliminating low-precision simplified rules, and prevent the algorithm from simplifying

a rule too much. For presentation purposes, the Simplify procedure described in

LearnRule is a naive implementation where we enumerate subsets of the matching

predicates. In our system, we implement an optimized version of Simplify, via a

top-down exploration that stops early whenever we encounter low-precision rules. We

also use dynamic programming techniques (e.g., to avoid recalculating the precision for

a rule already explored).

Example 4.5 Consider a training data set consisting of the two positive examples

(E1, E2) and the two negative examples (E3, E4) in Figure 4.7. Let the precision threshold

τ be 90%. We illustrate Algorithm LearnRule in Figure 4.10.

Figure 4.10: Generating and simplifying rules

The positive example E1 is converted into an initial ER rule with four matching pred-

icates. The algorithm then calls Simplify to generalize the initial rule by removing

matching predicates. In the figure, we show three rules (i.e., R1, R2, and R3) that are

simplifications of the initial rule. Computing the precision of R1, R2, and R3 amounts to

calculating the fraction of the covered examples that are labeled as positive by the user.
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We see that R1, which is obtained from the initial rule by dropping the comparison on

state, still satisfies the precision constraint (≥ 90%). In contrast, R2 and R3 simplify too

much and are discarded because of their low precision.

4.3.2 Finding Likely Misclassifications

We now give details on the computation of likely false positives and negatives for

which we require an appropriately designed similarity measure. We first present the sim-

ilarity measure and then describe how it is used to determine the likely misclassifications

to be subsequently labeled by the user.

Similarity Measure

For the ensuing discussion, it is helpful to recall the notion of a weak learner

or predictor [46]. A weak predictor is essentially a feature that performs barely better

than random chance. Classic learning algorithms such as boosting aim to combine

many weak predictors to produce a strong classifier [63]. Well known examples of

weak predictors include 0-1 binary features and decision stumps [43]. For instance, the

predicates T.lastname = C.lastname and Jaccard Similarity(T.name, C.name) ≥

90% can be seen as such weak predictors (of links).

Our similarity measure does not need to be a perfect measure of how likely a

pair is a duplicate. As we shall see subsequently, we only utilize the similarity measure

to order the set of links returned by a rule. For our purposes, it suffices that some, not
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necessarily all, of the true matches appear at the top of the list obtained by sorting

the links in decreasing order of the similarity measure and, conversely, some of the non

matches appear at the bottom of the list. Note that we do not even need the ordering

of the sorted links to be precise. Thus, we use a fixed combination of the matching

predicates P = 〈P1, . . . , Pm〉 (where each Pi may be interpreted as a decision stump or

binary feature) as our similarity measure applicable on (r, s) ∈ D1 ×D2:

sim (r, s) = |{ Pk | Pk evaluates to 1 on (r, s), where Pk ∈ P}|

Intuitively, given a pair (r, s), sim(r, s) counts the number of matching predicates that

are true for (r, s) and assumes that the higher the count the more likely that it is a match.

This is true if every matching predicate measures goodness of match (rather than its

counter-positive). For instance, as opposed to T.lastname = C.lastname, T.lastname

6= C.lastname does not measure goodness of match and we do not allow the latter.

Finding Likely False Positives

Given a candidate rule R, the goal of computing likely false positives of R is to

find a small subset LFP(R) ⊆ links(R) of size k, where k is a fixed constant, such that

the links in LFP(R) are more likely to be labeled as negatives by a human user than

those in links(R) \ LFP(R). The set LFP(R) is used to falsify a candidate rule R if R is

not high-precision, and it also acts as the adversarial set, mentioned in Section 4.2.1,

used to estimate the precision of R.

Given a candidate rule R and a constant k, we compute LFP(R) as follows. Let

L be the set of links obtained from links(R) by discarding all links that are also links of
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a rule in the repository (as explained earlier, if a pair is covered by a previously accepted

rule, it is very likely a match; however, the goal here is to look for negative examples).

Then, LFP(R) is the subset of k links of L that have lowest similarity scores. The links

in LFP(R) are likely false positives because they are links of R but they have higher

likelihood to be negatives than links(R)\LFP(R), given their low similarity scores.

Note that if many of the links in LFP(R) are actually labeled as negatives by a

user, once these newly labeled examples are added to the training data, the single-rule

learning module will produce an ER rule other than R in the next iteration. This is

because R will have lower precision with respect to the updated training data due to the

existence of the newly added negative examples. Conversely, if at least (τ · k) links of

LFP(R), where τ is the precision threshold, are actually positives, then we conclude that,

with high likelihood, R achieves high precision over its entire coverage.

Finding Likely False Negatives

Let R = { R, R1, . . . , Rn } be a collection of ER rules, where R is the candidate

rule, and R1, . . . , Rn are rules already in the Rule Repository. If U = D1 ×D2, the goal

of computing likely false negatives is to find a small set LFN(R) ⊆ U \ links(R), such that

the links in LFN(R) are more likely to be labeled as positives by a human user than some

arbitrary pairs in U \ links(R). Intuitively, LFN(R) contains pairs that are potentially

useful for discovering new ER rules.

Computing LFN(R) is a challenging task because the search space of LFN(R)

is extremely large. As illustrated in Figure 4.11, the coverage of R (indicated by the
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Figure 4.11: Search space for likely false negatives

ellipse) is typically very small compared to its complement.

When D1 and D2 are small, LFN(R) can be computed by sorting all pairs in U

according to their similarity scores and returning the pairs with highest similarity scores.

However, in realistic cases, the scale of the datasets makes the exhaustive examination

impractical. In order to effectively and efficiently search for likely false negatives, we

introduce a heuristic which we call Rule-Minus. The idea is to generate a set of rules

that are generalizations of the current candidate rule R, in order to extend the space of

potential matches beyond what is covered by the rules in R (but without an exhaustive

search of U) .

We say a rule S is a generalization of a rule R if links(R) ⊆ links(S). A simple

way to generalize a rule is by dropping matching predicates. More precisely, given R

consisting of n matching predicates and jump size s ≥ 1, let R−(s) be a rule obtained

by dropping at most s predicates from R (assuming n ≥ s). It is easy to see that R−(s)

is a generalization of R. Additionally, if R−(s) has at least one blocking predicate then

we refer to it as a Rule-Minus rule of R. As explained in Section 4.1, this is to ensure

that we can efficiently evaluate Rule-Minus rules. We use RM(R, s) to denote the set

of all Rule-Minus rules that can be obtained from R using jump size s.
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Example 4.6 Recall Rule2 from Figure 4.5. Assuming that T.lastname = C.lastname

is the only blocking predicate, the Rule-Minus rules of Rule2 with jump size s = 1 are:

(1) T.lastname = C.lastname AND firstNameMatch(T.firstname, C.firstname)

(2) T.lastname = C.lastname AND sameHandle(T.screen name, C.emailHandle).

However, the following rule will not form a valid Rule-Minus rule because it has no

blocking predicate.

firstNameMatch(T.firstname, C.firstname)

AND sameHandle(T.screen name, C.emailHandle).

Let L denote the links covered by the candidate rule R along with all the rules in

the repository. If R− ∈ RM(R, s), then links(R−) \ L represents, intuitively, a boundary

between known (i.e., the links in L) and unknown (i.e., arbitrary pairs in U). Our goal

is to look for potential matches within the boundary set links(R−) \ L. One may ask

how likely it is that the set links(R−) \ L contains any matches. Recall that R− and R

differ in at most s predicates. Denote by P the set of predicates included in R but not in

R−. Since any l ∈ links(R−) \ L satisfies all predicates in R barring the ones in P, l is far

more likely to be a match than a pair chosen arbitrarily from U that may not satisfy a

single predicate in R. Intuitively, R− is obtained by a minor perturbation of R and a link

resulting from the perturbed rule is more likely to be a match than an arbitrary pair

from the much larger space U .

Given R = {R, R1, . . . , Rn}, we compute LFN(R) as follows: (1) generate the set
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RM(R, s) of all possible Rule-Minus rules of R, (2) compute |RM(R, s)| sets of links, each

obtained by applying a distinct Rule-Minus rule R− ∈ RM(R, s) on the input datasets,

(3) for each set of links obtained in step (2), eliminate those links that are covered by R,

(4) for each set of surviving links from step (3), select m links with highest similarity

scores (where m is a fixed constant), and (5) output LFN(R) as the union of the sets of

links obtained in step (4).

Note that in step (4), we return the m links with the highest similarity scores,

for each one of the rules in RM(R, s). Alternatively, one may first take the union of all

surviving links in step (3) and then return links with highest similarity scores. However,

the intuition of the Rule-Minus heuristic is to explore different parts of the space outside

of links(R). Thus, taking the union first may destroy the diversity created by the

multiple Rule-Minus rules; instead, we find top-m pairs in each of the individual sets,

before applying the union. It is also interesting to consider the effect of varying the

parameter s. It is easy to see that RM(R, s) ⊆ RM(R, s′) where s ≤ s′ which in turn

implies that:

∪R−∈RM(R,s)links(R
−

) \ L ⊆ ∪R−∈RM(R,s′)links(R
−

) \ L

which clearly illustrates that the space in which we look for likely false negatives increases

as we increase the jump size. This can be an advantage if it leads to the discovery of

more matches however it also implies that the Rule-Minus rules for s′ are more general

and may need more time to run. In Section 4.4, we describe experimental results that

show the effectiveness of the Rule-Minus heuristic and the effect of varying jump size.

167



4.3.3 User Labeling Module

The system forwards each likely false positive and each likely false negative to

the human user one at a time. The user is also provided the option of terminating the

labeling process at any time (e.g., if the user’s label budget has been reached). We also

use specially developed heuristics to further reduce the number of label requests. While

in general it may be necessary to label the whole set LFP(R), in many cases (especially

when R is not high precision), the first few labels may be enough to determine that

PrecLFP(R)(R) < τ . The system counts the number of negative labels identified by the

human and stops making further labeling requests if enough have been accumulated to

ensure that the single-rule learning module will produce a different candidate ER rule in

the next iteration (details provided in the full version of the paper).

4.3.4 Interaction with the Rule Repository

Our system accepts a candidate ER rule only if it satisfies the precision threshold

τ . Such rules are then collected in the Rule Repository. Once no more high precision

rules can be found, the system returns the disjunction of all the rules collected in the

Rule Repository. By forming a disjunction out of all the high precision ER rules, the

final ER algorithm achieves a higher recall than is possible with each individual rule,

while still maintaining precision higher than τ . Not only does the Rule Repository act

as a store for ER rules, it also performs the following crucial functions:

• Filter for labeling requests: Recall that, when computing LFP(R) and LFN(R), in
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both cases a link results in a labeling request only if it is not covered by any rule

in the Rule Repository. As explained in Section 4.3.2, in the case of LFP(R) this

reduces the likelihood of including matches, while in the case of LFN(R) this is

done to explore new links not covered by R or any of the already accepted rules.

• Ensures variety in ER rules: Once a high precision ER rule R is included into the

Rule Repository, we remove all matches covered by R from the training data. This

achieves two things. First, although R was a high precision rule with respect to the

original training data, it is neither high precision nor does it maximize recall with

respect to the modified training data; thus, in the next iteration, the single-rule

learning module will likely produce a candidate distinct from R. Second, all ER

rules added to the Rule Repository after R cover matches from the training data

that are not covered by R. In turn, this ensures that the final disjunction returned

by the system has high recall.

4.4 Experimental Evaluation

In this section, we provide an experimental evaluation of our system, which

we call ERLEARN, and show that it is able to learn complex, high-precision, and

interpretable rules at scale. We will also show that it outperforms a range of existing

state-of-the-art learning methods including: an SVM-based pairwise ER classifier, a

supervised learning method based on Markov Logic Networks (MLNs) [48], and the

active learning method by Arasu et al [6].
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Datasets. We consider two real-world matching scenarios.

Emp-Twitter scenario. In this scenario, the task is to identify matches between a

large collection of user profiles obtained from Twitter and an internal set of company

employee records, denoted as Emp (the name of the company is omitted for anonymity

purposes).While the Emp dataset has a variety of attributes, the ones that are relevant

for matching are: STATE, CITY, COUNTRY, EMAIL ADDRS (a list of emails including personal

emails and work emails), and Name (a combination of first, middle, last). In addition,

we also compute a derived attribute, firstNameVars, which is a list of pre-computed

variations of the first name. From the Twitter profiles, the attributes that we use for

matching are: url, home (a combination of city, state, and country), name (a combi-

nation of first, last, middle, and full name), gender, and occupation mentions (a

combination of category, date, and job type). There are many other attributes in the

Twitter data, such as friend count and user verified, but they are not immediately

relevant for the matching task. The Emp dataset contains 467,761 records, while the

Twitter dataset that we use contains 50 million user profiles. We also note that each

of the datasets is largely free of duplicates (i.e., each record denotes a unique person)

and the goal is to link across the two datasets.

Crystal scenario. In this scenario, we use a single input dataset containing records

about companies, many of which are duplicates, and the task is to identify the pairs of

records that are duplicates. The Crystal data contains several attributes relevant for

matching: country, company id, industry, name, parent, source, and sub-industry.

The Crystal dataset contains 1,334,766 records, collected from multiple external data
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Table 4.1: Statistics of datasets

Size Predicates

Emp-Twitter 50M×470K 68

Crystal 1.3M×1.3M 158

sources (including S&P Capital IQ).

In both scenarios, we considered a relatively large number of matching predi-

cates, 68 (Emp-Twitter scenario) and 158 (Crystal scenario), which are larger than

what is typically considered in previous approaches (e.g., [6]). These predicates are

constructed, as explained in Section 4.1, by combining in various ways all the available

matching functions and unary functions that are applicable on the relevant attributes.

The statistics of our datasets is summarized in Table 4.1.

Methodology. When evaluating ERLEARN, we are interested in understanding: (1)

the number of rules learned for each matching scenario, together with their precision

(the precision of rule R is estimated by evaluating a randomly selected subset of 30 links

in links(R)); (2) the overall recall, which is estimated by the total number of links, as

discussed in Section 4.2.1; (3) the number of labeling requests that are needed to achieve

both high recall and high precision; (4) the differences between ERLEARN and other

approaches with respect to the above aspects; and (5) the impact of varying different

parameter settings. To better understand the trade-off between labeling effort and recall,

we introduce a metric, which we call cost effectiveness, to measure how effectively a

learning algorithm converts user labelings into high-precision links. We define the cost
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effectiveness of a learning method X as

α(X) =
|links(XAlgo)|

# labelings required by X to produce XAlgo
,

where XAlgo is the ER algorithm produced by X. Higher values of α(X) indicate better

performance. In our experiments, all labelings were performed by the authors.

Parameters. Important tunable parameters include: the number of pre-labeled exam-

ples (Prelabels); jump size (JS) for Rule-Minus rules; precision threshold τ used both

in the single-rule learning algorithm and in the estimation of precision of a candidate

rule; the number of likely false positive examples that are produced in each iteration

(parameter k, recall Section 4.3.2); the number of likely false negative examples to be

labeled per Rule-Minus rule in each iteration (parameter m, recall Section 4.3.2). We

set k = 10, m = 2, and τ = 90% for all ERLEARN experiments.

Implementation. The learning system is implemented in Java, while the execution of

the ER rules during active learning is done via HIL [42], running on a Hadoop cluster

with 7 nodes (one master and six slaves), where each node is a 64-bit machine with 6

cores and hyper-threading technology.

4.4.1 Evaluation of ERLEARN: Hightlights

Table 4.2 provides an overview of the results of running ERLEARN on two

matching scenarios. All ER rules generated by ERLEARN have precision higher than

90%, which justifies our conservative estimation method, discussed in Section 4.2.1. For

the Emp-Twitter scenario, ERLEARN learned four (resp. seven) rules that give ∼680
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Table 4.2: A summary of results - ERLEARN

ID Prelabels JS Iters. Rules Links Labels

ET-80-1 80 1 25 4 680 166

ET-30-1 30 1 26 4 683 172

ET-30-2 30 2 48 7 1088 430

Crystal 350 1 24 3 145,516 147

(ID prefix ET denotes Emp-Twitter)

(resp. 1088) links when JS=1 (resp. JS=2), and ERLEARN achieved that by asking

for a reasonable number of user labels (∼170 and 430). For the Crystal scenario,

ERLEARN learned three rules that give about 145K links by asking for only 147 user

labels. For the two scenarios, the number of links produced by ERLEARN differ by

orders of magnitude. This is because the two matching tasks are very different in nature.

The Crystal scenario is a deduplication scenario with a large number of duplicates in

its input dataset, which inherently results in a large number of links. In contrast, in the

Emp-Twitter case, the matching ratio is bounded by the size of the Emp employee

data and also by the fact that many Emp employees may not tweet. Moreover, Twitter

data is very sparse and for many Twitter profiles there is limited information to reveal

the identity of the person. Intuitively, this is a more challenging ER task.

We next give a detailed comparison of ERLEARN with other state-of-the-art

methods on the larger of the two scenarios (Emp-Twitter) since it is more challenging.

Figure 4.12 shows two rules (one from each scenario) learned by ERLEARN. The rule

R1 is a complex rule that consists of five predicates comparing first name (and variations

thereof), last name (taking into account its frequency in census data), and geographic

locations. This rule is easy to understand, looks at richly structured data (firstNameVars
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match Emp i, Twitter t by R1:

firstNameMatch(i.Name.firstNameVars,t.name.first)

AND i.Name.last = t.name.last

AND lastNameFrequencyFilter(t.name.last, 60)

AND upperCase(i.CITY) = upperCase(t.home.city)

AND countryIsInUSA(i.COUNTRY)

match Crystal c1, Crystal c2 by R2:

c1.country = c2.country

AND c1.industry = c2.industry

AND c1.subIndustry = c2.subIndustry

AND Jaccard Similarity(c1.name, c2.name, 90)

Figure 4.12: Two real ER rules learned by ERLEARN

is a list), and relies on multiple attributes to determine links. The ability to learn the

“correct” combination of predicates separates ERLEARN from other approaches. For

instance, consider the filter lastNameFrequencyFilter(x,θ) which returns true only

if x is not in the top θ% most popular last names. If rule R1 did not contain this filter,

then the modified rule would likely return a large number of false positives since many

people living in the same city have similar first and last names. One of the approaches

we compare against, based on Markov logic networks (MLN) [61] (see Section 4.4.2),

produces such a rule without the filter (see MLN-learned rules in Figure 4.13 in Section

4.4.2). Furthermore, even if the frequency filter is included, a crucial challenge is to

learn the appropriate threshold. As an example, another approach we compare against

(ALGPR [6], see Section 4.4.2) learns a version of R1 with θ = 85%. However, when

compared to our R1’s θ = 60%, this results in a more aggressive filtering than necessary,

leading to significantly lower recall. Similar observations apply to the Crystal scenario.
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4.4.2 Comparison with Existing Methods

We compare ERLEARN with the following approaches:

• SVM: a statistical classifier that classifies pairs of records using a support vector

machine.

• MLN: a first-order probabilistic framework using Markov Logic Networks [61], with

known learning methods [47,48].

• ALGPR: a rule-based active learning algorithm for ER [6].

Table 4.3 reports all results on Emp-Twitter scenario where * denotes supervised

learning methods that require fully labeled training data, α denotes cost effectiveness,

bold fonts denote links obtained at high precision (≥ 90%) and X-Y denotes an approach

where we learned rules using method X and performed ER using inference method Y.

SVM. A number of prior works on ER utilized various statistical classifiers [37, 62] and

SVMs are one of the most accurate classifiers available. Our implementation uses the

LIBSVM package [53], and the parameter settings used in our implementation is shown

below (a detailed explanation of the meaning of each parameter can be found at [53]).

java svm train -b 1 s 0 -c 100 -6 0 -e 0.0001 train.data

To train the SVM, which is a supervised classifier, we provided a set of 430 labeled

pairs collected using ERLEARN’s active learning approach. Performing ER using the

out-of-the-box learned SVM would require materializing the underlying feature vectors

for all pairs in the cross product, which is infeasible given Emp-Twitter scenario’s
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Table 4.3: A comparison of all approaches on Emp-Twitter scenario.

Methods γ Labels Links Precision α

SVM∗
0

430
10,849 < 3.3%

0.8 564 6.7%
0.95 21 95.2% 0.049

MLN-PSL∗
0

430
21,575 < 3.3%

0.9 84 90% 0.195

ALGPR n/a 159 181 93.3% 1.14

ERLEARN JS=1 n/a 172 683 93.3% 3.97
-HIL JS=2 n/a 430 1088 93.3% 2.533

ERLEARN-PSL

0
430

1,169 86.7%
0.001 1,090 90% 2.534
0.01 297 100%

data size. Instead, we apply a blocking function (twitter.lastname = Emp.lastname)

to eliminate obvious non-matches and then apply the SVM to pairs within the same

block. Table 4.3 shows that SVM’s precision is extremely poor even though it produces

1000s of links. This is a direct result of the loss function used for training LIBSVM’s

SVM which, like most statistical classifiers, attempts to maximize overall accuracy of

predictions. However, in the ER setting, where non-matches far outnumber matches,

overall accuracy of classification may not be the best indicator (it is far more important

to be correct on the true matches portion of the space). To improve the SVM’s precision,

we took the score (∈ [0, 1]) predicted for each pair and called it a link only when the

score exceeded a certain threshold γ. Table 4.3 shows that SVM produces only 21 links

at high precision (achieved at very high γ = 0.95) and is the least cost effective approach

among all methods tried.

MLN. MLNs are a sophisticated class of statistical models that can make joint decisions

and have been used to perform ER [65]. An MLN model consists of weighted rules
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that can be either given or learned using various learning algorithms [47, 48]. While

MLNs can also perform inference using the set of rules, Probabilistic Soft Logic (PSL),

which is another first-order statistical inference framework, is more efficient and has

been demonstrated to produce more accurate results [11]3. For our implementation, we

first learn MLN rules by learning structured motifs [48, 54], followed by learning weights

for the rules using PSL [59], which also performs the actual inference of the matches.

We use the same training data that we used for training SVMs, and the same blocking

function to scale inference in the Emp-Twitter scenario. MLN-PSL learned three rules,

and two of them are shown in Figure 4.13.

match Emp i, Twitter t by R1:

firstNameMatch(i.Name.firstNameVars,t.name.first)

AND i.Name.last = t.name.last

AND upperCase(i.CITY) = upperCase(t.home.city)

match Emp i, Twitter t by R2:

firstNameMatch(i.Name.firstNameVars,t.name.first)

AND i.Name.last = t.name.last

AND i.emailHandler = t.screen name

AND upperCase(i.CITY) = upperCase(t.home.city)

Figure 4.13: Two real ER rules learned by MLN

As in the case of SVM, since MLNs are not constrained by a high-precision

threshold during training, they return a large number of links but at very poor precision

(see Table 4.3). If we use a threshold and select pairs with high scores, then precision

can be improved but that leaves us with only 84 links. While recall is low, PSL scores

are reliable indicators of true matches. More precisely, scores for true matches exceeded

3Note that PSL does not automatically learn rules.
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0.9 which was much greater than scores for other links. Despite this, MLN-PSL’s poor

quality rules make it a not so ideal choice for ER.

ALGPR. In contrast to the two previous supervised learning approaches, The work that

is most similar to ours is by Arasu et al [6], which introduced an active learning algorithm

ALGPR whose goal is also to maximize recall under a precision constraint. In [6], textual

similarity measures between two records are used to decide if they are a match or not.

Thus, given a collection of d similarity measures, they consider a d-dimensional feature

space where each dimension represents a similarity measure. More concretely, in this

d-dimensional space, each point (θ1, . . . , θd), where θi ∈ [0, 1], represents an ER rule

sim1(r, s) ≥ θ1∧· · ·∧simd(r, s) ≥ θd, where (r, s) is a pair of records. The goal is to learn

the optimal thresholds θi’s such that the resulting ER rule achieves high recall while still

satisfying a predefined precision constraint. Like us, Arasu et al also discretize the space

of possible values of θi’s by using fixed increments (e.g., 0.1). To learn the thresholds,

ALGPR starts with an ER rule R(1,...,1) which is the most conservative rule (high-precision,

low recall) with all θi’s set to 1. The algorithm then searches for the optimal thresholds

essentially through a binary search along each dimension, in an attempt to increase

the recall while keeping precision above a threshold τ . For each search point along

each dimension, the algorithm has to evaluate the precision of the corresponding rule

by issuing labeling requests to a user. Arasu et al then extend their algorithm to a

simple greedy algorithm that is able to generate an s-term DNF formula (see [6] for

more details). In our evaluation, we implemented the extended version of ALGPR that
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generates an s-term DNF formula 4. For ALGPR, in our experiment, we set the precision

threshold at 90%, and use 0.1 as the increment when searching for the values for θi’s.

Figure 4.14 shows the two rules learned by ALGPR. Table 4.3 shows that,

ALGPR produces high precision rules while requiring fewer labels. ALGPR is about 23.2

(resp. 5.8) times more cost effective than SVM (resp. MLN-PSL) on Emp-Twitter

scenario. However, only the first ALGPR rule provides significant recall. This implies

that, not looking for false negatives while learning (a la Rule-Minus heuristic) may result

in sub-optimal recall.

match Emp i, Twitter t by R3:

upperCase(i.CITY) = upperCase(t.home.city)

AND i.emailHandler = t.screen name

AND i.Name.last = t.name.last

AND lastNameFrequencyFilter(i.last, 85)

match Emp i, Twitter t by R4:

upperCase(i.CITY) = upperCase(t.home.city)

AND i.Name.last = t.name.last

AND lastNameFrequencyFilter(i.last, 80)

AND i.emailHandler = t.screen name

AND upperCase(i.STATE) = upperCase(t.home.state)

Figure 4.14: Two real ER rules learned by ALGPR

ERLEARN. Among all the approaches, ERLEARN provides the best trade-off be-

tween labeling effort and recall since Table 4.3 shows that all three results involving

ERLEARN produce much higher cost effectiveness than SVM, MLN-PSL and ALGPR.

For ERLEARN-HIL (ERLEARN using HIL for evaluation of rules), we report results

with 2 settings of jump size. While JS=1 produces the best cost effectiveness, JS=2

4Our implementation also fixes a minor mistake which the authors shared with us in private
communication.
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produces significantly better recall (405 additional links) although this comes at the cost

of increased labeling effort (258 more). This shows that more general Rule-Minus rules

lead to more false negatives. Note that it does not make sense to increase JS beyond 2

because more often than not, after dropping 2 predicates the only predicate remaining

in the Rule-Minus rule is the blocking predicate. Besides executing the rules using

HIL, we also report results with ERLEARN-PSL wherein we used PSL as an alternative

way of inferring matches given ERLEARN’s rules (learned with JS=2). Note that PSL

inference automatically learns weights for the rules, to possibly differentiate among them.

Table 4.3 shows that ERLEARN-PSL and ERLEARN-HIL give similar number of links

at high precision. This implies that the extra step of learning weights when rules are

already of high precision does not provide extra benefit. It also shows that ERLEARN’s

rules are robust enough to be used with deterministic or probabilistic evaluation engines.

In summary, ERLEARN provides not only the best cost effectiveness among all

approaches but also the highest recall (at high precision), with ALGPR being a distant

second. We take a closer look at these two approaches next.

4.4.3 Quality of Rules Learned by ERLEARN

Figure 4.15(a) shows the number of new links given by each ER rule in the two

methods (the bar for Rule i, where i = {2, . . . , 7}, counts links produced by Rule i that

are not already covered by Rule 1 through i− 1). Figure 4.15(b) shows a breakdown of

the labeling requests (required to learn each rule). For ALGPR, the first rule yields 156

links by labeling 69 examples. In contrast, the first rule of ERLEARN yields significantly
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Figure 4.15: A detailed comparison of ERLEARN and ALGPR

more links (412 for JS=1 or 729 for JS=2) than ALGPR’s first rule by requesting even

fewer labels. The second rule of ALGPR gives 25 new links by labeling 52 examples,

while ERLEARN’s second rule gives 162 (resp. 155) new links by requesting 50 (resp.

74) user labels when JS=1 (resp. JS=2). We noticed that ALGPR required the user

to label 75% more examples to get a second ER rule, but the new rule yields about 16%

more links. This result is comparable with the observations in [6], where the authors

reported that the second rule generated by their system improves the overall recall by

about 2%-5%, while asking the user to label about 50% more examples. In contrast,

ERLEARN’s subsequent rules give much higher recall. Specifically, the 2nd (resp. 3rd,

4th) rule generated by ERLEARN (JS=1) gives 39% (resp. 13.4%, 4.9%) new links with

respect to all earlier rules combined, while ALGPR cannot find any more rules after

generating two rules. When the jump size is set to two, ERLEARN can find three more

rules, and the overall recall was significantly increased.
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Figure 4.15(b) gives a detailed look at the number of labeling requests required

by the two methods. We can see that the labeling effort in ERLEARN stays at about

the same (relatively small) level for each of the four ER rules in the JS=1 case while ex-

hibiting a graceful degradation in terms of links obtained (similarly, for the first five rules

in the JS=2 case). Compared to ALGPR in terms of cost effectiveness, ERLEARN with

jump size one (resp. two) can find 2.8 (resp. 1.4) more links than ALGPR by requesting

one user labeling. We noticed that, in the JS=2 case, ERLEARN asked a fair amount of

user labelings (113 requests) so as to produce Rule6 and Rule7, which are low-recall (15

links combined). In our experiments, we pushed ERLEARN to its limit, so it terminated

when single-rule learning module does not produce any rule that satisfies the precision

threshold. ERLEARN can also report the number of links covered by the newly accepted

high-precision rule, and the user may use that information to terminate the system if the

user believes no more useful rules (with significant recall) can be found. Stopping the

system automatically at an optimal point is a subject for future system optimization.

4.4.4 Rule-Minus Heuristic and Other Aspects

Effectiveness of Rule-Minus. The superiority of ERLEARN over other solutions is,

in part, due to the Rule-Minus heuristic, which is quite effective in finding false negative

examples. Table 4.4 shows the number of likely false negatives labeled by the user and

how many of them turned out to be matches. The Rule-Minus heuristic is very productive

because, in both scenarios, a significant portion (78% when JS=1 and 42.8% when JS=2)

of likely false negatives selected by the Rule-Minus heuristic were identified as true

182



matches. As a result, the high conversion rate leads to new rules thus improving the

overall recall. To further show the impact of the Rule-Minus heuristic, we reran ET-30-1

(Table 4.2) with the Rule-Minus heuristic disabled. This experiment resulted in one rule

with 162 links (at precision > 90%) in seven iterations which is significantly worse than

the recall (i.e., 683 links) obtained when the Rule-Minus heuristic was enabled.

Table 4.4: # False negatives found by Rule-Minus rules

ID Likely false negatives Matches

ET-30-1 106 82

ET-30-2 238 102

Crystal 94 74

Runtime efficiency. Each iteration of ERLEARN can be divided into three phases:

single-rule learning, rule evaluation, and user interaction. Among the three, the rule eval-

uation and user interaction phases constitute more than 95% of the overall runtime. The

Rule-Minus heuristic has a substantial impact on both of these phases. Specifically, if the

candidate rule consists of n predicates (typically, n ∈ [3, 5]), ERLEARN would execute 1

candidate and at most
(
n
JS

)
Rule-Minus rules, and the user would have to label at most k

likely false positive and m
(
n
JS

)
likely false negative examples, where JS denotes the jump

size. Due to our efforts to reduce the number of required user labels (Section 4.3.3), the im-

pact of increasing JS is less pronounced than the above analysis suggests. Table 4.2 shows

that on average ERLEARN incurs 6-7 labels per iteration with JS = 1 (in both scenarios)

which increases to 8.9 at JS = 2. The time required to perform these labelings depends

on the human user as well as on the scenario; in our experiments we spent one minute per

label on average, which leads to about 6-9 minutes of user time per iteration. In contrast,
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since HIL needs to invoke MapReduce jobs to evaluate each rule (recall that, Emp-

Twitter scenario consists of more than 1013 pairs), the impact of JS on rule evaluation

time is more clearly evident. Concretely, to evaluate the rules ERLEARN required about

5 to 8 minutes (resp. 35 to 45 minutes) per iteration on average when JS=1 (resp. JS=2)

in the Emp-Twitter scenario. Therefore, while increasing the jump size results in better

recall, it comes at the cost of increased runtime required to evaluate rules. One immediate

way to reduce the rule evaluation time is to add more nodes to the cluster and/or to deploy

the system on a more efficient platform such as Apache Spark. More generally, automati-

cally determining a jump size that strikes the optimal balance between runtime efficiency

and quality of learning, given the available resources, is a direction for future work.

Impact of prelabels. As shown by the two experiments ET-80-1 and ET-30-1 (Ta-

ble 4.2), the initial number of pre-labeled examples (i.e., 80 vs. 30) does not have much

impact on the final outcome. As discussed above, this is because the Rule-Minus heuristic

can find enough additional examples during its active learning iterations to compensate

for the lack of pre-labeled examples in the second case. In fact, we expect the system to

produce similar results by using even less (or even an empty set of) pre-labeled examples.

Label budget. Figure 4.16 shows that ERLEARN produces better recall than AL-

GPR at all label budgets (in each plot, each step denotes the labels required to learn

the next rule). If we have a large budget, e.g., 200, then ERLEARN can produce 683

links (or ∼900 when JS=2) while ALGPR produces less than 200 links. ERLEARN

outperforms ALGPR even in the case of a tighter label budget, e.g., 100, with the former

producing 574 or 729 links (depending on JS) vs. the latter’s 156 links.
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Figure 4.16: Trade-off between label budget and links.

4.5 Related Work

For a general overview of various ER approaches and algorithms, we refer the

interested reader to excellent surveys and tutorials [31, 35, 36]. In what follows, we

describe work that is closely related to our approach, which is focused on learning of the

ER algorithms in a target language.

While we propose an active learning approach, other approaches to ER learning

include unsupervised and supervised learning methods [36], the latter usually leading to

more accurate results. To apply supervised learning one requires labeled training data.

For ER, this usually implies labeling a large number of examples since the non-matches

far outnumber matches and a substantial amount of human effort needs to be invested up

front so that the training data consists of more than just a handful of matches. Markov

Logic Networks (MLN) [61] represent a sophisticated class of supervised learning models

that aim to unify logic and uncertainty. While ERLEARN aims to learn monotone DNF
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formulas, which is tractable in a precise sense (see [5]), learning general MLN rules is

intractable. However, efficient heuristics are available; in particular, LSM [48] is capable

of learning longer MLN rules than other approaches (e.g., [47]), which is why we chose it

for our MLN comparison. Active learning for MLNs has been attempted in [33]; however,

that approach does not use the full power of MLNs and, moreover, it expects a user to

manually write the rule every time a misclassification happens.

Supervised learning attempts to minimize 0-1 misclassification loss or the

number of incorrect predictions. However, due to the extreme imbalance of non-matches

and matches, a trivial classifier that always predicts a pair to be a non-match will incur

a very low misclassification loss, but would be useless for ER purposes. The method

in [12] learns a high precision classifier by making multiple calls to a misclassification

loss minimizing learner. However, the cumulative labeling complexity may far exceed

the labeling effort incurred by a direct approach (e.g., ERLEARN) that avoids calls to

an intermediary, especially for large data.

Active learning is a systematic way to learn accurate models while requiring far

fewer labels than supervised learning, which is why it has been used with some degree of

success for ER [6,62,66]. A core component in active learning is the strategy for choosing

examples to request labels for. Previous approaches have used uncertainty [62, 66] and

non-redundancy [13, 71]. [62] measures uncertainty of an example by counting how many

statistical models in a committee disagree on its label. On the other hand, [71] uses

clustering algorithms to determine examples that are far apart in the feature space

to forward to the labeler. [13] goes a step further to ensure that the examples are
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representative of a significant portion of the data. ALGPR [6] chooses examples by

randomly sampling from the links returned by a rule. In contrast, our strategy is guided

by both likely false positives and likely false negatives which is arguably a better fit with

the objective of maximizing recall while maintaining high precision.

The Emp-Twitter scenario bears a passing resemblance to user profile match-

ing [57, 72] whose goal is to match users across social networks. Due to the difficulty

of gaining access to social network data, most user profile matching experiments are

performed on only a subset of the network. As [37] shows, the characteristics of these

subsets are very different from the characteristics of the real world data and their ER

results no longer apply to real world social networks. In contrast, we performed our

experiments on the entirety of Emp-Twitter scenario and Crystal scenario, both

of which contain real world data. In other works, crowdsourcing has also been used

to identify record pairs that represent the same entity [55, 70]. However, besides not

producing an ER algorithm that can be interpreted and maintained, in the big data

setting there may be too many tasks issued to the crowd thus drastically increasing the

costs associated with such approaches.

4.6 Conclusions

We introduced a new active learning system, ERLEARN, that can scalably

learn high-quality ER algorithms on big data. The main feature of ERLEARN is the

ability to learn multiple high-quality ER rules that are significantly different from each

187



other by actively exploring both likely false positives and likely false negatives. In a

comprehensive experimental evaluation, on two real-world big data matching scenarios,

we showed the scalability and effectiveness of ERLEARN. When compared to previous

methods, ERLEARN gives the best trade-off between quality of results and labeling

effort. In the future, we intend to evaluate ERLEARN on more datasets, study the effect

of varying parameters, and design improved convergence criteria.

188



Chapter 5

Concluding Remarks

In this dissertation, we described our work on developing example-driven

approaches to designing high-level schema mapping specifications and high-level rule-

based entity resolution algorithms. Here, we briefly summarize the main contributions

made and list a few possible directions for future work.

A Summary of Contributions. We embarked on research that extends,

refines, and investigates two example-driven schema-mapping discovery frameworks,

namely, the Gottlob-Senellart framework and the learning framework. In particular, for

the Gottlob-Senellart framework, we investigated the derivation of an optimal schema

mapping from a set of data examples and focused on the approximation properties of

this optimization problem. We considered several different sublanguages of the language

of GLAV schema mappings and delineated the boundary as regards good approximation

properties. We established negative results about the existence of approximation algo-

rithms for GAV and GLAV schema mappings, but also showed that the class of SH-LAV
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schema mappings is the largest subclass of GLAV mappings for which we can obtain a

positive approximation result. In addition to the complexity-theoretic study, we also

implemented the proposed log (n)-approximation algorithm for SH-LAV schema mapping

and evaluated it on a real-world mapping scenario. It is the first concrete algorithm, to

the best of our knowledge, that derives schema mappings under the Gottlob-Senellart

framework.

Regarding the learning framework, we proposed the GAVLearn algorithm that

is a PAC learning algorithm for the class of GAV schema mappings. We also showed

that if GAVLearn is provided with an oracle for NP then GAVLearn is an efficient PAC

learning algorithm. We implemented the GAVLearn algorithm and evaluated it using

mapping scenarios created by iBench. As a byproduct of the experimental evaluation,

we also introduced a new measure, namely, the F-score measure, to evaluate the quality

of a schema mapping with respect to a set of data examples. By a comparison with two

existing methods, we showed that the GAVLearn algorithm was able to produce schema

mappings that were better (in terms of F-scores) than the mappings produced by the

other two methods with respect to mapping scenarios created by iBench.

Regarding learning rule-based ER algorithms, we presented a new active learn-

ing system, namely, ERLEARN, that learns high-quality rule-based entity resolution

algorithms at scale. The ERLEARN system actively searches for two types of data

examples: false positives and false negatives. The former are used to improve the

precision of a candidate rule. The latter are used to learn more high-precision rules

that are different from previously learned high-precision rules, which in turn would
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improve the overall recall of the learned ER algorithm. We experimentally compared

ERLEARN with existing methods (including a state-of-the-art active learning algorithm

and a number of supervised learning methods) on two real-world big data matching

scenarios. The experimental evaluation showed that ERLEARN gave the best trade-off

between labeling efforts and quality of results.

Open Questions and Future Work. We designed and implemented the

log (n)-approximation algorithm for SH-LAV schema mappings, under the Gottlob-

Senellart framework, with respect to the SH-LAV=-repair language. Two important ques-

tions that remain to answer are the existences of polynomial time log (n)-approximation

algorithms for computing near-optimal LAV=,6= and SH-LAV=,6= schema mappings. As

regards the learning framework, the learnability of the class of LAV schema mappings

was left open, likewise for the class of GLAV schema mappings. Pursuing the answers to

these questions is our future work.

Although the fitting framework was not investigated in this dissertation, there

is still room for extending the fitting framework. Note that the fitting framework focuses

on the fitting decision problem, namely, determining whether there is a fitting GLAV

schema mapping for a finite set of data examples. It follows that if the answer is no, the

current fitting GLAV generation algorithm would simple terminate and return “none

exists”. An important open question is that: is there a way to modify the provided set

of data examples such that the resulting set of data examples admits a fitting GLAV

schema mapping? This problem can be cast as an optimization problem, in which the

191



goal is to minimize the “modifications” needed.

Currently, the ERLEARN system runs on command line. The next step is

to built a graphic user interface upon the system. There are also several ways to

improve the user experience, such as (1) developing an improved convergence criteria.

For instance, the system may automatically terminate when the recall gain of a newly

accepted high-precision rule is low; (2) developing techniques that further reduce the user

labels. For instance, before asking for user labels, the system may first automatically

reject pairs that are obvious non-matches (e.g., a Twitter profile and a customer record

that have different country values). Moreover, we also plan to execute ERLEARN in a

mapping scenario, in which ground truth is available, so that we can test the true recall

of the ER algorithms learned by ERLEARN.
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