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Abstract 

Keywords:  Operations research, budget-based environmental flows, functional flows, hydrologic 

seasonality and interannual variability, river management, Bay-Delta Plan 

 

This thesis introduces the Functional Flows Adaptive Implementation Model (FFAIM), a 

framework for distributing a variable environmental flow budget throughout the year using a 

Functional Flows approach to prioritize key features of the natural flow regime that structure 

hydrologic seasonality for healthy ecosystem self-regulation. This framework provides (1) 

continuous scaling of functional environmental flow schedules by water year percentile and (2) 

an optimization structure for real-time adaptive operation of an annually varying environmental 

flow budget with periodically updated unimpaired flow forecasts. This functional flow 

implementation shows how unimpaired flow forecasts can inform environmental flow operations 

that preserve natural patterns of interannual and seasonal flow variability with a limited 

proportional environmental flow budget. This framework is demonstrated for the Lower 

Tuolumne River to shape and shift flows in accordance with the 2018 Water Quality Control 

Plan for the San Francisco Bay/Sacramento-San Joaquin Delta Estuary or Bay-Delta Plan (Bay-

Delta Plan).  
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Terminology 

Adaptive implementation: A planning process in which decisions are regularly updated as 

improved information becomes available.  

Bulletin 120 (B120): A regular publication by California's Department of Water Resources that 

includes water supply forecasts and other important hydrological data derived from recent 

Sierran snow surveys. 

Environmental flow: The quantity and timing of water flows required to maintain the 

components, functions, processes, and resilience of aquatic ecosystems and sustain the goods and 

services they provide to people. (TNC, 2018). 

• instream flow: the total water retained in channels for a variety of purposes that provides 

ecological benefits 

• ecological flow: interchangeable with environmental flow, emphasizing the focus on 

ecological outcomes of managed flows 

• functional flow: the water retained in a river that supports distinct flow components 

proven to be critical for maintaining baseline ecological functionality, as described in 

Yarnell et al. 2015  

Exceedance probability: The likelihood that a specific condition (e.g., unimpaired flow volume, 

water year percentile) will be exceeded in a given time period. 

Flood control operations: Water management strategy and actions taken to minimize the risk of 

flooding, such as pre-storm reservoir releases to increase storage capacity.  
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Flow budget (also “environmental flow budget”): A water volume made available annually for 

environmental purposes, perhaps set as a percent of unimpaired flow.  Here, this flow volume 

refers to 40% of the unimpaired flow in a river from February through June, as directed in the 

Bay-Delta Plan.  

Flow Regime: The variability of flows, both seasonally and interannually, quantified by 

magnitude, frequency, timing, duration, and rates of change of flows. For managed flows, “flow 

regime” references the range of flow schedules over multiple seasons and years, reflecting 

variability across wet and dry years as well as seasonally. 

Flow Schedule: A time series of regulated daily streamflows, often expressed in an annual or 

seasonal hydrograph.  

Functional Flow Component:  A portion of an annual hydrograph that provides a distinct 

ecologic, geomorphic, or biogeochemical function (Yarnell et al. 2015). In California, five 

functional flow components are well recognized (Yarnell et al. 2020; 

https://ceff.ucdavis.edu/functional-flows-approach; Stein et al. 2021): 

• Fall pulse flow: Coincides with the first or second major storm in the fall 

• Wet season peak flows: Coincides with the most significant flashy winter storms 

• Wet season baseflow: Sustained by overland and shallow subsurface flow in the periods 

between winter storms, computed as the 10th percentile of wet season flows 

• Spring recession flow: Represents the transition from the wet to dry season and is 

characterized by a steady decline in flow from elevated spring flows over weeks to 

months 

https://ceff.ucdavis.edu/functional-flows-approach
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• Dry season baseflow: Sustained by groundwater inputs to rivers, computed as the 50th 

percentile of dry season flows 

Functional Flow Metrics:  Quantitative measures of flow characteristics (timing, duration, 

frequency, magnitude, or rate of change) for each of the five functional flow components. A 

subset of these descriptive metrics can be used to define a functional flow schedule.  

Functional Flow Regime Index (FFRI):  The linear relationship between each magnitude 

metric and the annual flow volume expressed as a percentile over the period of record that 

indicates variation across wet and dry annual conditions. 

Hedging: A strategy used in water management to minimize risks from water scarcity or surplus, 

often by conserving water in the short term to increase water available for potential future 

shortages.  

Holistic environmental flow approach: A broad category of environmental flows in which the 

natural hydrological regime is used to develop a flow strategy that maintains desired, 

ecologically significant features to protect flow benefits for the entire ecosystem, rather than a 

few indicator species (Arthington 1992). 

Operating Year (OY): The operating year for FFAIM decisions is February-January. Example: 

OY2020 is February 2020 – January 2021. Not to be confused with water years (WY), which 

begin on October 1st of the prior year.  

Percentile: A statistical measure indicating the value below which a given percentage of 

observations falls within a group of observations.  
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Unimpaired flow: theoretically available water supply assuming existing river channel 

conditions without storage, diversions, imports, and exports. Daily and monthly unimpaired flow 

estimates are posted on CDEC as “full natural flow” (FNF). 

Water year percentile: The percentile of annual flow volume in a given year, used to provide a 

continuous alternative for discrete water year types (i.e., “critically dry,” “dry,” “below normal,” 

“above normal,” and “wet” in California). Water year percentile is an easily interpretable 

numeric identifier, where higher numbers (>50) indicate wetter years and lower numbers (<50) 

indicate drier years. In the Tuolumne River case study, the water year percentiles are computed 

as the empirical frequency of annual volumes between 1987 and 2021.  

Water year type: A coarse categorical classification of water years based on hydrological 

conditions (e.g., critical dry, dry, below normal, above normal, and wet). In California’s Lower 

San Joaquin River Basin, these conditions are defined using the 60-20-20 index. More 

information can be found here: 

(https://cdec.water.ca.gov/reportapp/javareports?name=WSIHIST)

https://cdec.water.ca.gov/reportapp/javareports?name=WSIHIST
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Introduction 

 

In recent decades, approaches to managing river flows for environmental purposes have changed 

with our deepening understanding of the interplay between streamflow and ecological systems 

(Tharme 2003; Williams et al. 2019; Acreman and Dunbar 2004). Initially, environmental flow 

efforts sought to provide fixed bare minimum flows, presuming that critical low baseflows would 

be enough to support river ecosystems. Although these provided some protection, minimum 

flows alone were usually insufficient to revitalize desired fish populations (Williams et al. 2019). 

Subsequent flow initiatives sought to identify additional flow needs, including seasonal pulse 

flows, corresponding to different life stages of target species (e.g., Trinity River Restoration 

Program). Given the dependencies of target species on broader ecosystem communities of 

organisms, this strategy, while an improvement, is also usually insufficient to support desired 

species and broader ecosystems (Arthington et al. 1992, 2006).  

 

Today, environmental flow strategies are shifting to more holistic, ecosystem-centered 

approaches that factor in the critical roles of flow in regulating physical, chemical, and biological 

feedbacks (Tharme 2003). This evolution has been driven by recognition of sometimes intricate 

feedbacks between the entire flow regime and its seasonal and interannual variability in shaping 

habitat and species composition and populations (Bunn and Arthington, 2002). Understanding 

that native species have co-evolved with seasonal and interannual flow patterns (Bunn & 

Arthington 2002; Gasith & Resh 1999), including intermittent exposure to high and low-flow 

extremes, unimpaired historical hydrology (Lytle & Poff 2004) can provide a starting place for 

environmental flow planning. The native ecosystem evolved into these historical natural flow 

patterns. The progression from rudimentary minimum flow initiatives to more holistic, 
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ecosystem-based approaches reflects both mechanistic and empirical advances in environmental 

understanding and management (Williams et al. 2019). 

 

This thesis introduces the Functional Flows Adaptive Implementation Model (FFAIM), a 

framework for operating a variable environmental flow budget throughout the year using a 

holistic environmental flows approach. The Functional Flows approach (Yarnell et al. 2015) 

prioritizes seasonal features of the natural flow regime known to influence ecogeomorphic 

responses and equips managers with a structure to prioritize flows to these key flow components 

of demonstrated ecological importance. This thesis provides and demonstrates steps to develop a 

functional flow regime for a particular river with an adaptive planning approach that allows 

managers to operate to functional flow schedules using a forecasted environmental flow budget 

based on a percentage of unimpaired flow (%UF) before the budget is thoroughly known. The 

resulting FFAIM framework is quite flexible. Functional flow metrics are estimated from 

available historical flow estimates, which can be adjusted to better fit within highly altered 

channel forms and flood management requirements. As channel structure evolves or new data 

and information become available, these metrics can be adjusted for geomorphology and other 

factors.  

 

The following four chapters are a roadmap for designing and applying an operational functional 

flow regime. The first chapter presents background information on the Functional Flows 

approach employing the California Environmental Flows Framework (CEFF) and introduces an 

environmental flow budget proposed for the Lower San Joaquin tributaries in the Bay-Delta 

Plan. The second chapter outlines a process for designing a continuous, scaled functional flow 
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regime that is flexible enough to be applied across rivers. The third chapter considers how this 

flow regime could inform real-time management, using probabilistic optimization and 

forecasting to support adaptive decision-making as the %UF budget volume evolves. Chapter 

four presents results from a Tuolumne River case study of adaptive functional flow 

implementation. A final chapter on future work and conclusions completes the thesis.  
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1. Background and Project Overview 

 

Flow is fundamental in river regulation. A river’s flow drives its physical structure, provides 

cues for organisms in its ecosystem (e.g., migration and spawning), and creates longitudinal and 

lateral connectivity for food, migration, and suitable habitat (Bunn & Arthington 2002). These 

aspects make environmental flow regulation essential for protecting riverine habitats and 

ecosystems. Environmental flow protections have improved in recent years but typically fail to 

adequately foster ecological health (Arthington 2006). The Natural Flow Paradigm (Poff 1997) 

posits that native ecosystems have co-evolved with local natural flow regimes. Hence, deviations 

from natural flow regimes degrade habitat and impact species composition (Richter et al. 2012). 

Increasingly, the entire range of historical flow variability is being recognized for its integrating 

role and empirical representation of complex intertwined feedbacks in aquatic ecosystems for 

river management (Lytle & Poff 2004; Biggs et al. 2004).  

 

Restoring the historical flow regime is unrealistic in most river systems, where mixed-use 

management constrains the availability of water in the system (Acreman et al. 2014). Competing 

demands for limited water reduce the available water quantity and change the quality (including 

temperature) and timing of river flows (Bunn & Arthington 2002). Naturally, dynamic channel 

geometry has also been reshaped and stabilized by human manipulation, resisting channel-

moving high flows and disrupting pre-development sediment regimes (Meitzen et al. 2013; 

Moyle & Mount 2007). Habitat restoration in these modified systems provides a patchwork of 

high-quality habitat interspersed with heavily impacted reaches that respond differently to flow-

related inputs of water, sediment, and nutrients (Whipple & Viers 2019).  
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In the Fall of 2021, California’s State Water Resources Control Board approached the Center for 

Watershed Sciences at the University of California, Davis with the challenge of developing an 

adaptive planning method to meet flow objectives outlined in the Bay-Delta Plan by allocating 

an environmental flow volume on three tributaries of the Lower San Joaquin River. The goal was 

to improve environmental outcomes by shaping and shifting wet season runoff throughout the 

year. The Functional Flows approach provides a well-documented scientific basis for how to 

preserve vital ecological aspects of flow—seasonality and interannual variability—even with 

diminished flow volume. The following sections provide context for the State’s efforts and the 

Functional Flows approach.  

 

1.1 Flow-budget approach and the Bay Delta Plan 

On December 18, 2018, the State Water Resources Control Board (SWRCB) amended the 2018 

Water Quality Control Plan for the San Francisco Bay/Sacramento-San Joaquin Delta Estuary or 

Bay-Delta Plan (Bay-Delta Plan) to include new environmental flow objectives for the Lower 

San Joaquin River (LSJR) and its three salmon-bearing tributaries (Stanislaus, Tuolumne, and 

Merced Rivers) “for the reasonable protection of fish and wildlife beneficial uses” (SWRCB-

BDO 2018). The SWRCB allocated 40% of unimpaired flows (within an adaptive range of 30 to 

50 percent estimated at the rim reservoir on each tributary) from February through June to meet 

the objectives. Compliance with these flow objectives is measured at the mouth of each tributary, 

near their confluence with the San Joaquin River mainstem.  

 

Many approaches could be chosen to allocate this environmental flow budget operationally. By 

default, the Bay-Delta Plan specifies that sufficient water be bypassed to achieve 40 percent of 
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unimpaired flow (40% UF) at the three compliance stations using a 7-day rolling average 

described in (SWRCB-BDO 2019). This 7-day averaging period seeks a balance between 

faithfulness to the natural flow of that year and operational ease (SWRCB-BDO 2019). The 

averaging period helps operators prepare for the coming week by sacrificing strict adherence to 

daily flow changes (SWRCB-BDO 2018; Gartrell 2023).  

 

The Bay-Delta Plan also allows for shifting and shaping the 40% UF environmental flow budget 

via “adaptive implementation.” This thesis develops and demonstrates an adaptive 

implementation method using an annually varying proportional environmental flow budget. 

Specifically, using a Functional Flow approach, we show how an environmental flow budget can 

be distributed operationally throughout the year. Specific functional flow components, proven to 

support critical ecosystem functions, are prioritized over less impactful flow features.  

 

The Functional Flow approach allows high-flow components to exceed 40% of the estimated 

magnitude and to backstop minimum baseflows throughout the year (40% of the lowest flow 

days, even with a 7-day rolling average applied, might be lower than desirable). The Functional 

Flows Adaptive Implementation Model (FFAIM) is a seasonal operations model that uses 

external unimpaired flow forecasts to predict the 40% UF budget and to recommend functional 

flow schedules, as updated runoff conditions evolve.  

 

The flow objectives in the Bay-Delta Plan are constructed as a system-wide approach rather than 

focusing on a particular piece of infrastructure. The program is structured to use downstream 

compliance points for each tributary and a combined compliance point just below the Stanislaus 
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confluence at Vernalis (Figure 1). While the 40% UF budget is taken from the Bay-Delta Plan, 

FFAIM’s method of shaping and shifting a variable water budget could be applied to any river 

basin where water can be stored across seasons and downstream flow can be controlled.  

 

 
Figure 1: Lower San Joaquin River map with three tributaries: Stanislaus, Tuolumne, and 

Merced Rivers. Flows downstream of three rim dams are regulated for downstream compliance 

points (green circles). Additional requirements exist at Vernalis, downstream of the final major 

tributary confluence (green and yellow circle). (Source: SWRCB-BDO 2018) 

 

1.2 Functional Flows and CEFF 

Policy and management discussions often reduce flow-ecology relationships to highly simplified 

cause-and-effect relationships that inadequately describe population responses to flow (DeFries 

& Nagendra 2017). Aquatic ecosystems are highly variable with dynamic feedbacks (Anderson 

et al. 2006) with physical modifications, sedimentation, water quality, bioenergetic cycles, and 
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other factors interacting to produce ecosystem responses (Yarnell & Thoms 2022). Climate 

change will alter these effects and interactions (Horne et al. 2019). Assessing these 

interdependent factors is costly, data-intensive, time-consuming, and involves many uncertainties 

(Acreman & Dunbar 2004). Instead of focusing on individual species-specific responses to flow, 

it is likely faster to take a holistic, empirical approach that integrates the physical and 

biogeochemical mechanisms by which flow acts on the landscape and produces cascading 

ecological responses.  

 

The Functional Flows approach posits that each river has a characteristic flow pattern that 

provides the foundation of functionality. This pattern varies somewhat from year to year, 

maintaining interannual diversity in these flow-driven functions. This departs from the idea that a 

singular minimum flow can sustain a riverine environment, instead upholding that both seasonal 

and interannual variability regulate ecological feedbacks. If managers have only a reduced 

amount of water in a river, each year’s hydrologic signature must be represented to sustain the 

myriad of regulating functions performed by river flow.  

 

The Functional Flows approach is a holistic method to restore more natural and ecologically 

functional flows by prioritizing seasonal flow-features that regulate ecosystem functions (Yarnell 

2015; Williams et al. 2019). The Functional Flows approach shifts the focus from single-species 

management to flow-regulated ecogeomorphic processes (e.g., sediment movement, water 

quality maintenance, environmental cues for native aquatic species) that support ecosystem 

health (Grantham et al. 2020). Functional flows are discrete aspects of the natural flow regime 

with documented relationships with ecological, geomorphic, or biogeochemical processes in 
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riverine systems (Yarnell et al. 2015). A Functional Flows approach prioritizes preserving 

natural variation in functional flow components relative to other aspects of the flow regime. 

Functional flow components can be abstracted from archetypical seasonal patterns derived from 

local climate and geology (Lane et al. 2018). In California, five functional flow components 

critical for supporting ecosystems in rivers and streams have been identified: fall pulse flow, wet-

season peak flows, wet-season baseflow, spring recession flow, and dry-season baseflow 

(Yarnell et al. 2020). Details on ecosystem functions provided by each functional flow 

component are included in Appendix A. These five functional flow components can be described 

by a suite of functional flow metrics relevant to aquatic and riparian communities in California’s 

Mediterranean-climate river systems (Yarnell et al. 2020) (Figure 2).  

 
Figure 2: Functional flow components (boxes) for a mixed rain-snowmelt runoff system in 

California with key flow characteristics for each flow component (table). The blue region 

represents the 50th percentile daily discharge range. Gray shading represents 90th to 10th 

percentile daily discharge ranges for the record. after Yarnell et al. (2020). 
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The California Environmental Flows Framework (CEFF)(ceff.ucdavis.edu) provides guidance 

for developing and implementing a site-specific Functional Flows approach. CEFF was created 

in broad collaboration with resource agencies, academia, and non-governmental organizations in 

2021 as a scientifically defensible environmental flow framework that can be rapidly adopted 

across California (Stein et al. 2021). CEFF provides modeled estimates of functional flow 

metrics for all streams in the state based on observed values of functional flow metrics under 

natural reference conditions (Grantham et al. 2022). These natural reference conditions can be 

used directly as the basis for ecological flow criteria (Section A). Historical and ongoing land use 

and channel activities degrade physical, chemical, and biological conditions in many rivers. In 

such cases, the natural ranges of functional flow metrics may be less effective in supporting 

ecosystem functions. For example, channel incision may reduce the ability of wet-season peak 

flows to inundate the floodplain or maintain geomorphic complexity. In such cases, ecological 

flow criteria may need to be adjusted to support ecological functions in altered channels (Section 

B). CEFF also provides guidance on considering ecological flow criteria in the context of other 

non-ecological management objectives, assessing potential trade-offs between water allocations, 

and determining appropriate environmental flow recommendations and management strategies 

(Section C).  

 

This thesis presents one method to design and operate an environmental flow regime, using 

water year percentile and flow budget availability as the primary drivers of seasonal and 

interannual variability. Using a Functional Flows approach to design the environmental flow 

regime provides considerable flexibility and adaptability. A seasonal operations model, FFAIM, 

employs this approach to guide adaptive seasonal operations during any given year, updating 

/Users/lindsaybean/Downloads/ceff.ucdavis.edu
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operations and environmental budget volumes as the water year develops using probabilistic 

seasonal flow forecasts. At its core, FFAIM’s flow regime design is a hydrologic desktop 

method, using historical hydrologic estimates to understand local flow seasonality and 

interannual variability (Acreman 2004). Within this framework, there are substantial 

opportunities to adjust metrics to account for non-flow deviations from reference conditions that 

may require additional data and periodic modification via adaptive management.  

 

If we wait for the moment when everything, absolutely everything, 

is ready, we shall never begin. 

 

Ivan Turgenev (1877) 

Virgin Soil Ch. 21 
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2. Designing a Functional Flow Regime from Hydrologic Data  

 

2.1 Purpose 

Most environmental flow regulations for the Lower San Joaquin River and its tributaries 

represent interannual variability using a few discrete water year types. These include water rights 

decision 1641 (link) for Vernalis minimum flows, FERC minimum flows on the Merced and 

Tuolumne Rivers, and the 2019 Biological Opinion minimum flows on the Stanislaus River. 

Furthermore, the seasonality represented by these flow prescriptions targets baseflows and 

pulsed flows to support a few target species during particular life stages (Hankin et al. 2010). 

While well-meaning, this coarse representation falls short in three ways: (1) it represents only 

part of the natural variability (especially at the low end), (2) it misses critical flow features of 

natural seasonality, and (3) it tends to focus on flows for particular species of interest and falls 

short of flows that might support interconnected ecosystem processes.  

 

To address these shortcomings, we propose instead continuously scaling environmental flows by 

historical return intervals of flow-driven functions and more comprehensive seasonality (i.e., 

early rain-driven runoff in the wet season, spring snowmelt, and low flows in the dry season). 

This application of the Functional Flows framework better represents and supports the natural 

variability of major functional flow components while allowing some other flow features, such 

as minor rain events, to deviate more from natural conditions. 

 

Figure 3 compares three alternative environmental flow regimes with unimpaired flows. Figure 

3a illustrates a baseflow-only environmental flow approach, which omits major natural flow 

https://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/decision_1641/
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peaks with scientifically demonstrated ecological functions. Figure 3b shows an alternative 

operation as a daily percent of unimpaired flows. This yields a miniaturized hydrograph, which is 

unreliable for providing critical ecological functions of high peak flows and baseflows. Figure 3c 

is a functional flow regime that prioritizes natural flow features, seasonal baseflows, and 

significant peaks nearer to their natural levels at the expense of flows and peaks at other times. 

The functional flow regime offers a compromise that supports the natural magnitudes of critical 

flow features and water diversions commensurate with a %UF approach.  
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Figure 3: (A) Baseflows, (B) 40% FNF, and (C) functional flow hydrographs compared to the 

natural flow in dry (1988) and wet (1998) water years on the Tuolumne River. Functional flows 

preserve the spring and wet season peaks and maintain a baseflow set to the 10th percentile 

magnitude of wet season flows and 50th percentile of dry season flows.  
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Together, the suite of functional flow metrics and their temporal variations can be combined into 

a functional flow regime to represent a broader and more detailed spectrum of water year 

conditions (Figure 4). Functional flow components prioritize the timings and magnitude of 

environmental flows to regulate high-quality habitat. Specifically, baseflows during dry and wet 

seasons ensure year-round habitat connectivity, while the spring pulse/recession mirrors the 

gradual flow decline typical of snowmelt. The fall pulse, simulating the initial runoff event from 

the first autumn storms, is a precursor to seasonal transitions. Wet season peaks in wetter years 

reflect intense wet season storms, disrupting regular flow patterns, mobilizing sediment, and 

fostering structural diversity. The magnitude, timing, and duration of each flow component 

varies across years depending on runoff conditions. The resulting functional flow regime 

includes minimum seasonal flows that vary with the water year percentile, maintaining 

distinctive functional signatures for each year. 

 

 
Figure 4: Illustrative hydrographs showing how functional flow schedules might vary flow 

components by water year percentile, creating a diverse functional flow regime over many years.  
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The following section presents a method to distribute a limited environmental water budget 

across an operating year while preserving seasonality and interannual variability. The range of 

natural functional flow metrics characterizes historical flow variance. We use this historical 

variability to identify functional flow metrics that correlate to water year percentile (representing 

wetter and drier years). We then identify patterns in these metrics useful for designing and 

varying flow schedules to represent the diversity of flows across a broader range of water year 

types.  

 

2.2 Designing Functional Flow Schedules to Represent Interannual Variability 

Figure 5 outlines the general process for developing and assembling a set of annual functional 

flow schedules as inputs to the Functional Flow Adaptive Implementation Model (FFAIM) for a 

particular stream location. Step 1 computes functional flow metrics (FFMs) that quantify the 

variability of flow characteristics of each functional flow component. Step 2 adjusts the FFMs to 

account for factors that may limit the effectiveness of the natural range of FFMs to support 

ecosystem functions, such as physical habitat alterations, competition from non-native species, or 

water quality impairments. Step 3 develops relationships between the functional flow metrics 

and annual flow volumes to reflect variation in flow characteristics across wetter and drier years. 

In Step 4, the resulting relationships are assembled into a range of functional flow schedules. 

Operational environmental flows are chosen by matching functional flow schedules to forecasted 

flow budgets. Chapter 3 will further detail how these flow schedules are used within FFAIM to 

suggest real-time decisions.  
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Figure 5: Process for developing the Functional Flows Adaptive Implementation Model 

(FFAIM) for a stream location. See text for details on each numbered step.  

 

Step 1: Quantify functional flow metrics 

The Functional Flows approach begins with distilling information from the natural flow regime 

(represented by a long period of estimated daily unimpaired flows) to quantify the variability of 

functional flow metrics (CEFF Section A). Functional flow metrics for California rivers can be 

readily computed from historical daily unimpaired flow estimates (such as daily full natural flow 

(daily FNF) data from the California Department of Water Resources (CDEC; 

https://cdec.water.ca.gov/reportapp/javareports?name=FNF) using the Functional Flows 

Calculator API client package (R-based script publicly available via eflows.ucdavis.edu). This 

calculator applies signal processing (Patterson et al. 2020) and streamflow characterizations 

(Lane et al. 2018) to identify interannual distributions of descriptive metrics of the five 

functional flow components. When historical unimpaired flow estimates are unavailable, 

Designing flow 

schedules from 

Functional 

Flow metrics 

Using probabilistic 

optimization to 

suggest immediate 

and longer-term 

decisions 

https://cdec.water.ca.gov/reportapp/javareports?name=FNF
/Users/lindsaybean/Downloads/eflows.ucdavis.edu
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modeled estimates are publicly available on the Natural Flows Database for all of California 

(hosted by The Nature Conservancy at rivers.codefornature.org).  

 

Step 2: Adjust functional flow metrics for physical, regulatory, biological, or water quality 

limitations.  

While the concept of the natural flow regime has contributed significantly to the environmental 

flow assessment, there are various practical and theoretical reasons why natural flows might be 

an imperfect blueprint for planning environmental flows. The flow and form of California’s 

rivers are heavily modified by land and water development and are unlikely to be entirely 

restored to their historical condition. However, opportunities exist to restore a river’s flow-driven 

functions even with these new channel realities.  

 

Functional flow metrics (from Step 1) can be adjusted to account for factors, such as altered 

channel conditions, flood flow regulations, and water quality impairment, that limit the 

effectiveness of the natural range of flow metrics to produce the desired physical, chemical, and 

biological functions (Stein et al. 2021; CEFF Section B). When designing an environmental flow 

regime, there may be justification for deviating from the natural range of functional flow metrics 

and adding additional flow features. Planners should be mindful of the following considerations 

that might warrant metric shifting as they begin to design and revise operational functional flow 

regimes: 

 

Altered channel morphology. Historical and ongoing land and water management have 

often altered physical conditions from pre-development times. For example, large dams 

/Users/lindsaybean/Downloads/rivers.codefornature.org
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modify the geochemical and physical conditions of the downstream channel, often 

changing the shape of the river from a shallow, meandering, and wide channel with flows 

frequently connected to the floodplain to a deep, incised, and narrow channel (Meizan et 

al. 2013). The physical channel form dictates habitat availability, hydraulic suitability, 

floodplain activation thresholds, and transport and deposition dynamics (Meizan et al. 

2013). Any deviation from the most recent flow paradigm will likely alter downstream 

geomorphology such that morphological adjustments should be considered ongoing and 

experimental.  

Sediment availability. Dams interrupt longitudinal sediment transport regimes by 

blocking sediment and enabling the accumulation of fine-grain material (Graf 2006). The 

buildup of these fines, which is detrimental to aquatic habitats (Chapman 1988), can be 

mediated by high flows and restoration practices (e.g., gravel augmentation on the 

Tuolumne River; FERC OEP 2019). The natural timing and magnitude of high-flow 

events might be altered to maximize the effectiveness of sediment projects and promote 

habitat creation.  

Composition of lotic and riparian communities. Whereas native species are adapted to 

the natural flow regime, highly altered flows allow for the establishment of non-native 

species (Bunn and Arthington 2002). Natural flows alone may be insufficient to halt the 

loss of native species; instead, active management will be required to protect critical 

strongholds where natives are likely to bounce back (Propst et al. 2008). Particular 

conditions may be imposed (e.g., maximum rates of change to limit stranding, 

coordinating riparian planting, and over-bank flows) to protect native refugia and give 

natives an advantage over their competitors.  
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Chemical and thermal conditions. Reduced flow magnitudes concentrate solutes, 

possibly impacting the ability of baseflows to meet chemical objectives (Bradley et al. 

1990). Dams influence a river's thermal regime by altering downstream flow magnitudes 

(affecting the river’s heat capacity) and selectively releasing water from the reservoir’s 

temperature-stratified layers. Adjusted flow magnitudes or timing might better mimic the 

historical temperature conditions below the regulating dam, though this would require 

additional understanding of the reservoir’s construction, operation, and limnology (Olden 

& Naiman 2010). 

Channel capacity and human safety concerns. Dams and managed flows have 

encouraged floodplain development and the construction of flood-control structures to 

protect urban and agricultural communities (Auerswald et al. 2019). Public safety 

mandates hard capacities on channel flow, limiting flow magnitudes (e.g., maximum 

flood control operating flows set by the U.S. Army Corps of Engineers). Furthermore, 

levees concentrate flows into artificially narrow channel forms, impeding pulse flow 

attenuation and water storage in the floodplain (Serra-Llobet et al., 2022). 

Reservoir operation and construction. The operation and original design of dams may 

limit the design of environmental flows below a regulating dam. Flood control operations 

might result in early wet season releases to make room in the reservoir to store incoming 

storms, which may result in hastening and capping peaks from storm events. Efforts to 

reintroduce high flows may also be limited by penstock capacity, outlet capacities, and 

the willingness to use spillways (Richter & Thomas 2007). 

Climate non-stationarity. Flow metric adjustments may be required to support native or 

novel ecosystems in a climate-altered future. Higher temperatures, changes in 
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precipitation, and resulting changes in land and water management are likely to change 

the ability of the river to support different mixes of native and non-native species and 

ecosystems. Managers will have to confront difficult decisions, such as the validity of 

historical reference conditions in the face of the new climate normal (Betancourt 2012; 

Horne et al. 2019). 

 

Adjustments made to natural functional flow metrics can reduce environmental effectiveness. It 

is, therefore, prudent to discuss potential tradeoffs and enact monitoring plans and adaptive 

management to limit unintended consequences and improve outcomes over time (Poff et al. 

2018).  

 

Alteration of functional flow metrics also poses practical concerns for flow regime design. Even 

the simple decision to limit flow magnitudes for channel capacity and flood control can introduce 

tradeoffs with other flow metrics. For example, when reducing spring peak magnitudes, flow 

designers must choose between preserving either ramping rates, duration, or both (Figure 6). 

While these decisions will likely have ecological consequences, excessive attention to detail can 

prolong iterative planning cycles and delay substantive methodological and ecological 

improvements.  
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Figure 6: Three examples of spring pulse and recession design in a system with a regulated 

maximum flow.  

 

Step 3: Create Water Year Percentile-Functional Flow Metric curves to create a Functional 

Flow Regime Index (FFRI). 

In most Californian streams, functional flow metric values vary across individual water years 

with climate conditions (Grantham et al. 2022). Wetter years typically have larger flows and 

longer durations of wet season and spring flows, while drier years typically have lower flow 

magnitudes and longer dry season durations. Similarly, wetter years have more annual runoff 

volume, while drier years have less. A functional flow regime index (FFRI) that links particular 

metrics to water year percentiles is used to design flow schedules with different water volume 

requirements.  

 

Replicating natural interannual variability begins by examining how functional flow metrics 

naturally vary with annual flow volume. The FFRI links these two statistics to represent 
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interannual variation in the functional flow regime. By using annual flow volume as a percentile, 

the modeler can easily reference the ideal frequency with which the metrics should occur over a 

span of years. Some functional flow metrics do not correlate with annual flow volume, such as 

those related to individual storm events (e.g., peak frequency, fall pulse timing, etc.). Many of 

these metrics still fall within a range of values in the natural flow regime and modelers should 

consider whether and how to vary these. The reasoning used to vary individual metrics directly 

affects the water volume needed for a functional flow schedule to match target water year 

percentiles.  

 

There are infinite ways to represent relationships between water year percentile and functional 

flow metrics mathematically and graphically. Hydrologic data often has outliers, and the record 

of daily unimpaired flow estimates is relatively short. Some judgment is needed to “fit” these 

relationships, particularly concerning extreme values. All “fits” are approximate. The following 

are a few ways to represent interannual variability of metrics, showing the flexibility in 

developing FFRI relationships and ways to represent annual flow volume-metric relationships: 

 

Linear “fits”. Linear methods offer a straightforward fitting solution, particularly 

suitable for cases with modest historical data or cases where extreme events have less 

significance (e.g., intense high and low-flow events might excessively stress ecosystems). 

One approach to mitigate severe stressors involves managing metrics within the 10th and 

90th percentiles, excluding the less common and more extreme tails (for which little data 

exists). The central portion of a cumulative distribution often can be approximated 

adequately by a straight line, connecting endpoints at the 10th and 90th water year 
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percentiles (refer to Figure 7a). Opting for the 10th and 90th percentiles as endpoints is 

advantageous because they are prominently featured in the Functional Flows Calculator 

API output. Alternatively, the Functional Flow Regime Index (FFRI) could be configured 

to encompass the entire metric range, including edge cases observed within the available 

data (refer to Figure 7b) or a simple regression fit of non-extreme events (however 

defined). 

 

  
(a)               (b) 

Figure 7: Two examples of how a linear fit could represent the relationship with water year 

percentile. (a) estimates metric values that more commonly occur (between the 10th and 90th 

water year percentiles), minimizing risk of stress-inducing flows. (b) estimates the entire range 

of metric values, including extremes (>90th and <10th water year percentiles). 

These linear relationships only apply within the endpoints and should not be extrapolated 

beyond those bounds (e.g., linear fit in Figure 7a no longer represents the observed trend 

outside the 10th and 90th water year percentiles). Modelers should be clear about the range 

in which FFRIs are reasonable. Figure 8 shows an extreme case where a linear 

relationship produces an unsatisfactory hydrograph outside the suitable range. In this 

case, the fall pulse, which is usually additive to the dry season baseflow, becomes 

negative for very low FFRIs (in this example, FFRIs less than 5). Figure 8b shows the 
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anti-pulse that takes shape in the annual hydrograph of an extremely dry year if 

extrapolation is used.  

  

  
       (a)       (b) 

 

Figure 8: Flow metrics extrapolated outside of the intended range can produce curious 

hydrographs. (a) shows a linear representation between annual flow volume percentile and fall 

pulse magnitude. Blue highlighted circles are endpoints of a reasonable range of the FFRI-

metric relationship. Red dotted line shows where positive FFRI values produce negative flow 

metric values. (b) shows a hydrograph of an FFRI from this red region. Extrapolating for a 

small positive FFRI causes a negative fall pulse.  

Sigmoidal “fits”. Sigmoidal functions produce S-shaped curves with a single inflection 

point, often used to capture monotonic non-linear relationships. These can be particularly 

useful for representing low-likelihood edge cases. But metric values outside the natural 

range will remain problematic and data-sparse. Logistic, Gompertz, and Weibull 

sigmoidal functions are discussed below: 

 

Logistic functions can help capture edge cases and are intuitively parameterized. The 

logistic function asymptotes are equidistant from the inflection point creating a 

symmetrical curve, making these functions especially good for metrics distributed 

normally between clearly defined upper and lower bounds. Figure 9 gives the equation of 

a logistic function with different parameterizations. Figure 10 shows how the logistic 

Fall pulse magnitude 
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function might fit historical data for a relationship between the water year percentile and 

a functional flow metric. 

 

 
Figure 9: Equation and parametrization of the logistic function. 

 

   
Figure 10: Conceptual example of how a logistic function might be fit to functional flow metric 

data (plotted by water year percentile) to define an FFRI. 

Gompertz functions similarly fit logistic functions but differ in allowing asymmetry 

around the inflection point (Figure 11, Figure 12). Gompertz functions are ideal for 

representing skewed data with a lower limit (such as zero) and gradually decreasing 

frequency toward the upper tail. This is particularly useful in modeling flooding, where 

𝑦 =
𝑎

1 + 𝑒−𝑏(𝑥+𝑐)
+ 𝑑 

 

Where parameters > 0: 

(𝑎 + 𝑑) is the upper asymptote  

𝑏 controls the growth rate 

𝑐 shifts the curve on the x-axis 

𝑑 is the lower asymptote 
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more accurate representations of upper extremes are necessary. Figure 11 gives the 

Gompertz function with example parameterizations. Figure 12 shows how the function 

might fit historical data for a relationship between the water year percentile and a 

functional flow metric.  

 

 
Figure 11: Equation and parametrization of the Gompertz function.  

 
Figure 12: Conceptual example of how a Gompertz function might be fit to functional flow 

metric data (plotted by water year percentile) to define an FFRI. 

 

𝑦 = 𝑎𝑒−𝑏𝑒−𝑘(𝑥−𝑐)
+ 𝑑 

(𝑎 + 𝑑) is the upper asymptote 

𝑏 is the growth rate 

𝑘 shifts the inflection point in the 

x-direction  

𝑐 shifts the curve on the x-axis 

𝑑 shifts the curve on the y-axis 
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Weibull functions have even more versatility because they can be parameterized to 

include both exponential (when 𝑘 = 1) and sigmoidal functions (when 𝑘 > 1). This 

expands the modeler’s ability to fit observed relationships and set hard minima for 

particular metrics. Additional model constraints may be needed to ensure water 

availability for such metric minimums. Figure 13 gives the equation and example 

parameterization for the Weibull function. Figure 14 shows how the function might fit 

historical data for a relationship between the water year percentile and a functional flow 

metric.  

 

 
Figure 13: Equation and parametrization of the Weibull function. 

𝑦 = 𝑎 ∗ 𝑒𝑥𝑝 [− (
𝑥 − 𝑏

𝜆
)

𝑘

] + 𝑐 

(𝑎 + 𝑐) is the upper asymptote 

𝑏 shifts the curve on the x-axis 

𝑘 is shape parameter 

𝜆 is the scale parameter 

influencing the spread  

𝑐 shifts the curve on the y-axis 
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Figure 14: Conceptual example of how a Weibull function might be fit to functional flow metric 

data (plotted by water year percentile) to define an FFRI. 

 

These methods for determining functional flow metric scaling by water year percentile also can 

be applied to metrics not correlated to water year percentile to scale the variability with the flow 

budget. This should be especially considered for flow metrics and flow functions that contribute 

relatively little to the total annual volume. For example, the fall pulse, usually caused by a 

modest storm near the end of the dry season, can be random with respect to total annual volume. 

The modeler may still favor larger fall pulses in wet years (with larger flow budgets) and smaller 

in dry years (with lower flow budgets). Good judgment is imperative when defining the variance 

pattern of such metrics where data fitting is impossible. 

 

Step 4: Assemble functional flow schedules as inputs to FFAIM 

The results from steps 1-3 provide inputs needed for FFAIM to assemble functional flow 

schedules and define a broader functional flow regime across a spectrum of years. The associated 

functional flow metrics can be combined to create a functional flow schedule or annual 

functional flow hydrograph for any operating year for a given annual unimpaired flow volume. 
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Each annual flow volume has a percentile x, generally with a corresponding FFRI 𝑥, with 

corresponding values for the FFRI metrics: m1, m2, m3, such as flow rate, duration, and ramping 

rates, summarized in Equations 1 (𝑔𝑛 is the relationship defined in Step 3). These functions are 

presented mathematically in Appendix B, so each FFRI 𝑥 has a corresponding set of metrics [m1, 

m2, m3] and a resulting water volume for that function.  

 
𝑚1 =  𝑔1(𝐹𝐹𝑅𝐼𝑥)

𝑚2 =  𝑔2(𝐹𝐹𝑅𝐼𝑥)
…

𝑚𝑛 =  𝑔𝑛(𝐹𝐹𝑅𝐼𝑥) (1)

 

�̂�𝐹𝐹𝑅𝐼𝑥
= [𝑚1, 𝑚2 … 𝑚𝑛] 

 

Scaled magnitude metrics (�̂�𝐹𝐹𝑅𝐼𝑥
) are combined with the remaining metrics needed to produce 

a daily flow schedule, q(t) for the corresponding 𝐹𝐹𝑅𝐼𝑥 , in Eqn. 2:  

 

𝑞(𝑡) = 𝑓(�̂�𝐹𝐹𝑅𝐼𝑥
, 𝑡) (2) 

 

The daily flow function specifies the daily flow rate (𝑞(𝑡)) for the vector of magnitude metrics. 

Combining these daily flow rates over an operating year produces a functional flow schedule. 

Figure 15 shows an example of a functional flow regime (i.e., the spectrum of functional flow 

schedules for a range of annual flow volume percentiles) that can be produced with the flow 

metric specifications used for the Tuolumne River example. These flow schedules are input into 

FFAIM’s decision support effort, described in the following section.  
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Figure 15: These hydrographs show a spectrum of designed functional flow schedules with drier 

flow schedules (red) and wetter flow schedules(blue). While similar to Figure 4, this flow regime 

does not show varied timing of flow components due to differing flow design choices.  

 

2.3 Discussion  

The Functional Flows approach provides a flexible, science-based framework for allocating 

limited water to the most functionally essential flow components. The steps outlined above 

present how to design a Functional Flow regime using water year percentile to vary flow features 

from year to year. This method offers a path to implementing budget-based functional flows 

where each flow schedule requires a unique flow budget. CEFF provides a process for 

establishing goals and functional flow criteria but stops short of dictating how functional flows 

should be designed and implemented, leaving flexibility to adjust to the river system of interest. 

The abovementioned steps are one way to design an environmental flow regime for a particular 

river. The resulting flow regime consists of flow schedules that restore variability to the five 

most critical functional environmental flow components within and across years. Because 

historical unimpaired flows are the primary data for flow magnitudes, monitoring and adaptive 

management are needed to restore desired flow-driven functions in existing channels without 
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undue stress on the ecosystem at high and low flows. Specific management objectives may 

require additional flows at particular times. 

 

The approach to designing a functional flow regime outlined above addresses a gap in regulatory 

flow approaches that provide flow schedules for a few discrete year types. Refocusing on annual 

flow percentile (a continuous representation of year types) eliminates coarse gaps in flow 

magnitudes and directly links flow metrics to their desired interannual frequency. This gives 

managers a reference to identify underrepresented flows, which may occur more often in a 

changing climate. Furthermore, the unitless FFRI value can help meaningfully compare flow 

schedules across rivers.   



33 

 

3. FFAIM: Integrating Uncertainty into Environmental Flow Operations 

 

3.1 Purpose  

The prior section described how to build functional flow schedules by water year percentile. To 

apply these flows operationally, managers often must begin to provide water downstream before 

the ultimate flow budget volume is known. Probabilistic optimization methods use estimates of 

likely unimpaired flows to suggest immediate-term decisions, while preparing for a range of 

future scenarios given seasonal flow uncertainties. Monthly unimpaired flow estimates are 

available for a range of exceedance probabilities for the Lower San Joaquin from several sources 

(including DWR’s Bulletin 120 Forecast Breakdowns and the National Weather Service’s 

CNRFC).  

 

FFAIM balances the benefits of decisions needed today against the risk of not having enough 

water for the future using a stochastic two-stage optimization approach implemented in Python 

(using the Pyomo optimization package). There are several ways to frame such an objective, a 

focus of future study. In this example, the primary model objective is to maximize the average 

minimum FFRI of flows across two stages—the current decision period (first stage) and 

probability-weighted potential functional flow schedules for the remainder of the year (second 

stage)—so flow commitments made early in the season do not excessively reduce environmental 

flow functionality later in the year. Precisely, the optimization balances the highest achievable 

flow magnitudes in the first stage (using the FFRI) with the likely flow magnitudes and future 

FFRI for probabilistic unimpaired flow forecasts for the remainder of the year, such that the 

largest average annual functional flow schedule is achieved across the entire year given the likely 
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range of environmental water budgets. The identified potential functional flow schedules use 

magnitude metrics with the same FFRI across flow components and include all metric inputs 

established in Step 3.  

 

As the season progresses with monthly forecast annual flow data, the model subtracts prior 

allocations from the remaining flow budget, adjusts the possible future functional flow schedules 

to match the new forecast expectations, and updates functional flow schedule recommendations 

for the remainder of the operating year. 

 

3.2 Methods: FFAIM formulation, variables, and constraints  

FFAIM makes recommendations across two stages: the immediate operating period decision and 

optimized operations for each forecasted budget for the rest of the operating year based on 

probabilistic future unimpaired flow forecasts. Because the volume of water can be computed 

across any period of interest within a year by summing daily flows for any percentile hydrologic 

condition, the model can quickly compute volumes used in the first (present) and second (future) 

stages, which are re-defined each time the model is re-run with updated forecasts and 

probabilities. Stages are defined by their timing: 𝑡0 is the beginning of the current decision 

period, 𝑡1is the end of this decision period, and 𝑡𝑓is the end of the operating year1, the volume 

used by a two-part flow schedule is given in Eqn. 3: 

 

𝑉𝑘 = ∫ 𝑓
𝑡1

𝑡0

(�̂�𝐹𝐹𝑅𝐼𝑠𝑡𝑎𝑔𝑒1
, 𝑡) 𝑑𝑡 + ∫ 𝑓(�̂�𝐹𝐹𝑅𝐼𝑠𝑡𝑎𝑔𝑒2,𝑘

𝑡𝑓

𝑡1+1

, 𝑡)𝑑𝑡 (3) 

 

 
1 FFAIM’s stage timings are flexible, allowing the user to adjust timings for any forecast availability delays and 

other operational requirements or opportunities (such as a storm). The only exception is the Spring Pulse, which 

must fall entirely into a single stage. FFAIM is constrained to ensure that the maximum duration of the spring pulse 

will fit into a single stage by modifying defined stage timing inputs.  
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or, more concisely:  

𝑉𝑘 =  𝑉𝑠𝑡𝑎𝑔𝑒 1 + 𝑉𝑠𝑡𝑎𝑔𝑒 2,𝑘 (4) 

 

A unique operating year water volume, 𝑉𝑘, exists for each forecast scenario, 𝑘. The volume of 

water in the first and second stages of the operating year sum to the predicted volume of water 

available for the remainder of the operating year. The volume in stage one, when an immediate 

operational decision is made, remains the same for all forecasts, resulting in a single decision 

volume for the immediate period, 𝑉𝑠𝑡𝑎𝑔𝑒 1. However, a range of possible volumes exists for the 

remainder of the year, 𝑉𝑠𝑡𝑎𝑔𝑒 2,𝑘, for each discrete flow forecast provided. 

 

The forecasted flow budgets for the entire operating year, 𝐹𝑙𝑜𝑤 𝑏𝑢𝑑𝑔𝑒𝑡𝑘, for each forecast k, 

are model inputs specifying how much water is available for each event, 𝑉𝑘. Each annual flow 

budget 𝑘, is the sum of water allocated in earlier periods, plus water allocated in the two stages 

(summing to 𝑉𝑘), plus any carryover storage, minus any other contributions, as shown in Eqn. 5:  

 
𝐴𝑛𝑛𝑢𝑎𝑙 𝑓𝑙𝑜𝑤 𝑏𝑢𝑑𝑔𝑒𝑡𝑘 = 𝑝𝑟𝑖𝑜𝑟 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 + 𝑉𝑘 + 𝐶𝑆𝑘 − 𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 (5) 

 

Every time the model is re-run to update the recommended flow schedule, the model considers 

how much of the water budget has already been used for instream flows (𝑝𝑟𝑖𝑜𝑟 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠). 

These prior decisions are combined with the total volume of the recommended flow schedule 

(𝑉𝑘) and excess water that could be stored for future use (𝐶𝑆𝑘). 𝑉𝑘 and 𝐶𝑆𝑘 are solved for by the 

optimization model and vary with different flow budget scenarios k. There may also be other 

sources of water for the flow schedule (𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠), such as borrowed or purchased 

water. For the Tuolumne River, a portion of the February through June flow budget volume is 

added to the minimum required FERC baseflows in July – January. In very wet years, when the 

budget satisfied the largest modeled flow schedule (i.e., where magnitude metrics all have an 
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FFRI of 90), surplus water could be allocated to 𝐶𝑆𝑘. This accounts for all environmental water 

available to the model.  

 

Two terms, 𝐴𝐹𝑘 and 𝑅𝐹𝑘, balance the immediate need for functional flows and the need to use 

some of the February-June flow budget in the remaining months of the operating year. Equation 

6 defines the remaining functional performance, 𝑅𝐹𝑘, for each forecast scenario 𝑘. The 

remaining functional performance is the FFRI for the metrics in stage two, for each forecast 

scenario k.  

𝑅𝐹𝑘 = 𝐹𝐹𝑅𝐼𝑠𝑡𝑎𝑔𝑒2,𝑘  (6)  

 

The annual functional performance, 𝐴𝐹𝑘, describes the minimum FFRI cross both stages 

(immediate decision and future possible flows) for each forecast scenario 𝑘. The annual 

functional performance for scenario k is defined in Eqns. 7 and 8, which is satisfied by the 

minimum FFRI of the two stages: 

 
𝐴𝐹𝑘 ≤ 𝐹𝐹𝑅𝐼𝑠𝑡𝑎𝑔𝑒1 (7) 

𝐴𝐹𝑘 ≤ 𝐹𝐹𝑅𝐼𝑠𝑡𝑎𝑔𝑒2 (8) 

 

These terms, 𝐴𝐹𝑘 and 𝑅𝐹𝑘, are included in FFAIM’s objective function and drive the model to 

maximize and balance allocations within and across both stages.  

 

FFAIM optimization and objective function 

FFAIM’s main objective is to efficiently allocate water in immediate and later decisions given a 

range of likely flow budgets so that flow commitments made early in the operating season do not 

unreasonably reduce the ability to support functional flows in later months. This objective is 

expressed mathematically in Eqn. 9: 
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐴𝑛𝑛𝑢𝑎𝑙 𝐹𝐹𝑅𝐼 =  𝑀𝑎𝑥 ∑ 𝑝𝑘[𝑤𝑘𝐴𝐹𝑘 + 𝑟𝑅𝐹𝑘  ]

𝑘

 (9) 

with decision variables:  

𝐴𝐹𝑘is the minimum FFRI across the current decision and remaining future periods with 

forecast scenario 𝑘 

𝑅𝐹𝑘is the FFRI of the remaining periods achievable with forecast scenario 𝑘 

 

and constants: 

𝑝𝑘 is the probability of forecast scenario 𝑘  

𝑤𝑘 is a cautionary weighting of extreme forecast scenarios k (average to 1) 

𝑟 is a small constant (<1) to balance the relative importance of 𝐴𝐹𝑘 and 𝑅𝐹𝑘.  

 

FFAIM’s objective function operates on two weighted decision variables: 𝐴𝐹𝑘 and 𝑅𝐹𝑘. The 

main objective is to maximize the worst-performing flow component FFRI averaged across two 

periods for each flow forecast budget. The annual functional performance, AF, maximizes the 

minimum FFRI achievable across two stages (Eqns. 7 and 8). For drier forecast scenarios, the 

remaining stage FFRI limits 𝐴𝐹𝑘. For wetter forecast scenarios, the current decision stage FFRI 

limits 𝐴𝐹𝑘. This objective tends to raise the FFRI for the current decision period and the rest of 

the operating year to a maximum achievable annual FFRI.  

 

The objective is maximized so the annual functional performance will have a more natural 

distribution across years despite having environmental flow budgets that are substantially less 

than unimpaired flows. Larger percent-flow budgets may require that this objective be changed.  
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Where the current decision period limits 𝐴𝐹𝑘, the second objective is to manage the rest of the 

flow budget and to maximize the remaining season FFRI (Eqn. 6). For wetter years, this ensures 

that the additional water is put to good ecological use for the remainder of the year.  

 

The optimization balances achievable FFRI in the immediate decision period among the possible 

FFRI projected by forecasts so high instream flows early in the operating season are less likely to 

harm performance later in the operating season if conditions become dry. Parameters w and r 

allow for expression of risk and operating preferences.  

 

Parameters and operational model tuning 

Four parameters can be set and adjusted by modelers: 𝑝𝑘, 𝑤𝑘, and 𝑟𝑗. The probability weights, 

𝑝𝑘, weigh the range of possible budgets according to their likelihood. Modelers should keep 

these probabilities consistent with forecasted exceedance probabilities. The risk tolerance 

weights, 𝑤𝑘, are cautionary to emphasize any additional concern with performance under 

extreme events beyond their probability weights (low or high flow). 𝑤𝑘 = 1 if probability weight 

is sufficient, 𝑤𝑘> 1 could add additional weight for drier years, 𝑤𝑘 < 1 would reduce weighting 

for less concerning year-types. In this model, 𝑤𝑘 = 1 for every k. The weight 𝑟𝑗 is to be <1 to 

give more weight to annual FFRI but still some weight to the remainder of the operating year in 

case the year becomes wetter. 

 

Using FFAIM for adaptive implementation 

As the year progresses, new (and more accurate) unimpaired flow forecasts become available. 

With each updated seasonal flow forecast (e.g., monthly), FFAIM is re-run for the remainder of 
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the operating year, subtracting water from the budget already allocated and suggesting a flow 

decision for the next period. Over the course of the operating year, the flow budget is allocated 

month-by-month until the budget is finalized and flow decisions are made for the remainder of 

the operating year. These periodic decisions combine to form the final adaptive flow schedule 

(Figure 16).  

 

 
Figure 16: Conceptual figure of the accumulation of flow decisions made from sequential runs 

with updated forecasts. Model run 1 makes an immediate term flow recommendation and 

outlines a range of likely future recommendations (blue dotted region). Run 2, with updated flow 

forecasts, recognizes higher flow forecasts, and recommends a higher flow. Run 3, the final flow 

budget is known and the model recommends for the remainder of the operating year, now 

expecting a drier year. The year’s adaptive flow schedule, in retrospect, is the combination of 

FFAIM’s flow recommendations. The stepwise behavior results from updated forecasts and past 

recommendations.  

Incorporating water borrowing (and associated costs) for the driest scenarios  

The upper and lower ends of the flow forecast (the 0.10 and 0.99 exceedance probabilities) can 

result in extreme flow schedule prospects in the second stage. Suppose the model finds an FFRI 

below ten for the second stage given a 99th percentile predicted flow budget due to extremely dry 
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conditions. In that case, the model suggests a stage one flow magnitude of the 10th percentile to 

avoid extreme adverse ecological impacts, hoping that future forecasts or other sources will 

provide enough water for this requirement. Alternatively, This water “borrowing” might be 

sufficiently discouraged by implementing a penalty or additional weight in the objective function 

weighting that discourages the model from recommending stage one flows that deplete water that 

might be saved for the second stage for extreme scenarios.  

 

Conversely, if more water is available than required for the 90th percentile flow volume, the 

model allocates the additional flow to the future as ‘carryover storage.’ Although simply applied 

here, rules for carryover storage could be adjusted in practice to allow for small carryover 

volumes in wetter years (e.g., 60th to 90th water year percentile) that would help to hedge 

against dry early season conditions in later years (Wu 2023).   

 

3.3 Differing responses to volume in imbalanced stages  

The objective function described above efficiently allocates water to the stage where additional 

water brings the biggest functional flow improvement (i.e., the most significant response in 

FFRI). In practice, this desire to maximize 𝐴𝐹𝑘  may come at the expense of hedging (i.e., 

restraining allocation of the flow budget in preparation for drier possible scenarios) in favor of 

wetter stage 1 recommendations early in the operating season. In each model run, an objective 

function that gives wetter flow schedules greater “value” will allocate the flow budget to the 

stage where it can achieve the wettest water year percentiles with the least volume allocation.  

 



41 

 

To highlight this behavior, a modeling experiment explored how stage-related volume sensitivity 

influences FFAIM’s recommendations. A simplified flow regime consisting only of a wet season 

baseflow was set to vary linearly between 344 cfs (corresponding to an FFRI of 10) and 1534 cfs 

(corresponding to an FFRI of 90). We then consider two-stage duration delineations, using the 

stage duration as a proxy for the stage-related volume sensitivity (where it takes more budget 

volume to increase FFRI in a longer-lasting stage). The first case is a balanced two-month 

model, consisting of a one-month February decision stage (stage 1) and a one-month future stage 

(stage 2). The second is an imbalanced five-month model, consisting of a one-month February 

decision (stage 1) followed by a four-month future stage. These different stage durations affect 

the maximization of the primary objective function (maximizing the weighted average of 𝐴𝐹).  

 

Parameter values were set as described below. 𝑝𝑘, which sets the probability weighting of the 

different exceedance forecasts, is defined as follows: 

 

Table 1: Probability weight (𝑝𝑘) values corresponding to Bulletin 120 forecast exceedance 

probabilities. 

 Forecast Exceedance Probability 

 99th 

percentile 

90th 

percentile 

75th 

percentile 

50th 

percentile 

25th 

percentile 

10th 

percentile 
∑ 𝑝𝑘

𝑘

 

𝑝𝑘 0.10 0.15 0.25 0.25 0.15 0.10 1.0 

 

Some extra weight (0.01) is apportioned to the 0.99 exceedance probability, 𝑝0.99, because this 

forecast is assumed to cover the region between 1 and 0.90 exceedance probabilities. This 

weighting tends to overweight the dry end of expected values, such that the probability-weighted 

average is slightly below the median 0.50 exceedance forecast. The sum of probability weights 

for the six exceedance forecasts is one.  
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On the other hand, the supplemental cautionary weight for different forecasts, 𝑤𝑘, is set as 

follows. 

 

Table 2: Cautionary weight (𝑤𝑘) values are held constant across exceedance probabilities. 

 Forecast Exceedance Probability 

 
99th 

percentile 

90th 

percentile 

75th 

percentile 

50th 

percentile 

25th 

percentile 

10th 

percentile 
𝑎𝑣𝑔(𝑤𝑘) 

𝑤𝑘 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 

The 𝑤𝑘 values equal one across all six exceedance forecasts. No cautionary weighting or water 

borrowing was used to keep flow schedules above an FFRI of 10 for this exploratory exercise.  

 

Using these values, these model runs explore the effects on modeled recommendations. Figure 

17a shows the two-month treatment, where the model recommended stage 1 flows from the 0.75 

exceedance budget. In this example, the duration ratio is 1:1 and the value of additional volume 

(to attain higher FFRI) is the same. Figure 17b shows the results of the 5-month model, where 

the stage duration ratio is 1:4. In this example, the model recommended stage 1 flows from the 

0.25 exceedance probability budget. In this case, the model dismisses presumptions about the 

expected budget, preferring the relative certainty of substantially higher flows in stage 1 versus 

saving the same volume to achieve minimally higher flows in the second stage.  
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                                    (a)                                                                              (b) 

Figure 17: Model results from two wet season baseflow model experiments that differ in stage 2 

duration. When stage 1 and stage 2 have the same duration (a), the model recommends 

immediate flows for the 0.75 exceedance probability budget. When stage 2 is much longer (b), 

the model recommends immediate flows from the 0.25 exceedance probability. 

In practice, the model efficiently maximizes the minimum FFRI across the two stages. In the 5-

month example, the annual minimum FFRI (the minimum between two stages) can be so much 

higher in stage 1 (per additional unit of volume) that gains from increasing the stage 1 FFRI 

outweigh the losses from letting stage 2 dictate the minimum annual FFRI for higher UF budget 

possibilities (recall that 𝐴𝐹𝑘 is the minimum of stage 1 and stage 2 for each 𝑘 from Eqns. 7 and 

8). Table 3 shows the 2-month model’s corner point solutions (“possible outcomes”), given the 

range of forecasted budgets. Table 4 shows all possible outcomes for stage-wise volume 

allocation in the 5-month model, given the forecasted budgets. The 2-month model, where both 

stages are equally balanced, recommends either a 50th or 75th percentile (𝑘) flow decision (both 

produce the same objective value, ∑ 𝑝𝑘𝐴𝐹𝑘𝑘 = 20.9). This makes sense given the 𝑝𝑘-weighting 

scheme sets up either forecast scenario to equal the average. In contrast, the 5-month model 

optimizes to the 0.25 exceedance probability to achieve a higher weighted annual minimum 

FFRI (∑ 𝑝𝑘𝐴𝐹𝑘𝑘 = 23.9). The difference between the two optimization experiments is that the 

Stage 1 Stage 2 Stage 1 Stage 2 
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imbalanced 5-month optimization can increase stage 1 FFRI with less depreciation of stage 2 

FFRIs relative to the perfectly balanced 2-month model.  
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Table 3: The decision space for the 2-month experimental model. The model tends toward six corner solutions that satisfy the budget 

volume constraints (light yellow) and chooses one solution that maximizes objective function (orange). Yellow highlights illustrate 

how FFAIM makes decisions given exceedance probabilities. The 2-month experimental volume maximizes the probability-weighted 

average AF by recommending either the 0.50 or the 0.75 exceedance stage 1 FFRI. An infeasible outcome, in which the model 

decision corresponds to the 0.10 exceedance forecast produced and FFRI <0 for the 0.99 exceedance budget. 

    Infeasible Outcome Possible Outcome 1 Possible Outcome 2 Possible Outcome 3 Possible Outcome 4 Possible Outcome 5 

Exceedance 

probability 
𝑝𝑘 

Stage 1 

FFRI 

Stage 2 

FFRI 

Stage 1 

FFRI 

Stage 2 

FFRI 

Stage 1 

FFRI 

Stage 2 

FFRI 

Stage 1 

FFRI 

Stage 2 

FFRI 

Stage 1 

FFRI 

Stage 2 

FFRI 

Stage 1 

FFRI 

Stage 2 

FFRI 

0.1 0.1 

unfeasible 

  

32 

41 

26 

46 

  

  

  

23 

  

  

50 

20 

53 

17 

60 

0.25 0.15   32 38 41 44 47 

0.5 0.25   20 26 29 32 35 

0.75 0.25   14 20 23 26 29 

0.9 0.15   8 14 17 20 23 

0.99 0.1 <0 2 8 11 14 17 

  

Primary 

Objective 

Value:  

∑ 𝑝𝑘𝐴𝐹𝑘

𝑘

 

NA 17.9 20.9 20.9 19.4 17 

4
5
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Table 4: The decision space for the 5-month experimental model. The model tends toward six corner solutions that satisfy the budget 

volume constraints (light yellow) and chooses one solution that maximizes objective function (orange). Yellow highlights illustrate 

how FFAIM makes decisions given exceedance probabilities. The 5-month experimental volume maximizes the probability-weighted 

average AF by recommending the 0.25 exceedance stage 1 FFRI.  

    Possible Outcome 1 Possible Outcome 2 Possible Outcome 3 Possible Outcome 4 Possible Outcome 5 Possible Outcome 6 

Exceedance 

probability 
𝑝𝑘 

Stage 1 

FFRI 

Stage 2 

FFRI 

Stage 1 

FFRI 

Stage 2 

FFRI 

Stage 1 

FFRI 

Stage 2 

FFRI 

Stage 1 

FFRI 

Stage 2 

FFRI 

Stage 1 

FFRI 

Stage 2 

FFRI 

Stage 1 

FFRI 

Stage 2 

FFRI 

0.1 0.1 

44 

44 

38 

46 

28 

48 

23 

50 

18 

51 

13 

52 

0.25 0.15 36 38 40 41 42 43 

0.5 0.25 24 26 28 29 30 31 

0.75 0.25 18 20 22 23 24 25 

0.9 0.15 12 14 16 17 18 19 

0.99 0.1 6 8 9 11 12 13 

  

Primary 

Objective 

Value:  

∑ 𝑝𝑘𝐴𝐹𝑘

𝑘

 

22.7 23.9 22.8 20.9 17.4 13 

4
6
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Ideally, FFAIM would recommend decisions that match the most likely predicted budget—using 

the given 𝑝𝑘 weighting scheme, this would fall between 0.75 and 0.50 exceedance forecasts. The 

balanced 2-month model makes a reasonable, moderately conservative choice given the limited 

information about the flow budget. The 5-month model is more reckless, recommending a 

decision corresponding to the drier 0.25 budget—increasing the likelihood of having less water 

to release in the second stage. The pattern observed in this experiment proliferates in operational 

models, where FFAIM tends to recommend less prudent high stage 1 flows in early runs, forcing 

the model to compensate and release lower than ideal flows later in the season.  

 

3.4 Using 𝒘𝒌 weights to manage stage-related volume sensitivity  

An imbalance between the two model stages creates a tendency to recommend wetter year flows 

early in the operating year. One way to promote saving in early runs is to modify the 𝑤𝑘values in 

the objective function, adding weight to drier forecast scenarios that counterbalances the 

sensitivity of FFRI to changes in volume. If it takes more water to effect change in stage 1 than 

in stage 2, greater weight would be put onto drier forecast scenarios. To illustrate this, we revisit 

the 5-month experimental model with two 𝑤𝑘 weighting schemes: 

 

Table 5: Moderate and heavy 𝑤𝑘 weighting schemes. Grey highlights indicate large weights 

(>1.0) for dry forecast events (𝑘). 

 𝑤𝑘 by Forecast Exceedance Probability 

 

99th 

percentile 

𝑤0.99 

90th 

percentile 

𝑤0.90 

75th 

percentile 

𝑤0.75 

50th 

percentile 

𝑤0.50 

25th 

percentile 

𝑤0.25 

10th 

percentile 

𝑤0.10 

𝑎𝑣𝑔(𝑤𝑘) 

Moderate 

weighting of 

dry scenarios 

1.90 1.50 1.0 1.0 0.50 0.10 1.0 
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Heavy 

weighting of 

dry scenarios 

1.90 1.75 1.50 0.50 0.25 0.10 1.0 

 

Table 6 shows the optimized stage 1 and 2 FFRI results given the different 𝑤𝑘 weights. With no 

weights, the model optimizes to the 0.25 exceedance probability, recommending a stage 1 FFRI 

of 38. The medium weighting model makes a more conservative decision, an FFRI of 28, 

corresponding to the 0.50 exceedance probability forecast. The heavy-weighting alternative 

results in an FFRI of 23, corresponding to the drier 0.75 exceedance probability event 𝑘. This 

heavy-weighting alternative distributes flows across two stages identically to the 2-month model 

(with a budget scaled up to account for the extended duration). Figure 18 and Figure 19 show the 

5-month experimental results with medium and heavy weighting of dry scenarios.  

 

 

Table 6: FFAIM recommendations for four experiments: the balanced stage 2-month model, the 

5-month model without 𝑤𝑘  weighting, the 5-month model with moderate 𝑤𝑘 weighting, and the 

5-month model with heavy 𝑤𝑘 weighting. With increasing weight on drier forecast scenarios, 5-

month model stage 1 recommendations become drier until recommended flow schedule FFRIs 

match the 2-month model.  

 2-mo. model, 

𝑤𝑘 = 1, ∀𝑘 

5-mo. model, 

𝑤𝑘 = 1, ∀𝑘 

5-mo. model, 

moderate weighting 

of dry scenarios 

5-mo. model, 

heavy weighting 

of dry scenarios 

Exceedance 

probability 

Stage 1 

FFRI 

Stage 2 

FFRI 

Stage 1 

FFRI 

Stage 2 

FFRI 

Stage 1 

FFRI 

Stage 2 

FFRI 

Stage 

1 FFRI 

Stage 2 

FFRI 

0.10  

 

 

23 

50  

38 

46  

 

28 

48  

 

 

23 

50 

0.25 41 38 40 41 

0.50 29 26 28 29 

0.75 23 20 22 23 

0.90 17 14 16 17 

0.99 11 8 9 11 
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Figure 18: Hydrograph of the 5-month model flow recommendations using medium 

𝑤𝑘  weighting of dry scenarios  

 

 
Figure 19: Hydrograph of the 5-month model flow recommendations using heavy 𝑤𝑘 weighting 

of dry scenarios  

 

There may be other ways to account for the imbalance in volume sensitivity across two stages 

that promote hedging. One possibility is to calibrate 𝑤𝑘 using historical simulations to promote 

the dispersal of FFRIs across runs to match historical water year percentiles. This method 
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requires that historical forecasts are available and would require re-calibration for each 

determination of stage date ranges and changes to manually-input metrics. Furthermore, because 

the optimization tends toward discrete corner points, several sets of 𝑤𝑘  weights can produce 

similar results. A more convenient option might be to formulate weights at runtime, determined 

mathematically as a function of 
Δ 𝐹𝐹𝑅𝐼

Δ𝑉𝑜𝑙𝑢𝑚𝑒
 of each stage. Other objective functions that reflect the 

expected value of the final flow budget could be considered. These and other alternatives can be 

a focus of future research.  
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4. FFAIM on the Tuolumne River, a Case Study 

 

4.1 Introduction 

The Lower Tuolumne River watershed is a mixed rain-snowmelt-driven system typical of  

Mediterranean-montane rivers in California. Altering the natural hydrology, the Tuolumne River 

has a large lower-elevation reservoir that captures winter runoff and spring snowmelt for later 

release to lowland areas in the dry season (Figure 35). Extensive agriculture and cities in the 

lowlands depend on reservoir releases for their water supply delivered through a network of 

canals. The river through the lowlands also supports a diverse native aquatic community adapted 

to the strongly seasonal climate and streamflow conditions. The Federal Energy Regulatory 

Commission (FERC) requires minimum environmental flow releases to maintain the stream 

perennially for these aquatic communities. These minimum flows are sometimes supplemented 

with modest seasonal flow pulses that vary by water year type (wet, moderate, or dry) to support 

anadromous fish migration.  
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Figure 20: Monthly mean full natural flow rate (blue) and monthly mean observed flow (orange) 

on Tuolumne River at La Grange (‘TLG’). Box plots indicate the historical variability for each 

month. 

 

The 2018 Bay-Delta Plan is a significant expansion and reorientation of existing minimum 

baseflows, committing to keep 40% of February-June unimpaired flow (UF) in the channel. By 

default, this flow prescription would bypass through New Don Pedro on a 7-day rolling average. 

FFAIM proposes an adaptive alternative that prioritizes functional flow components and 

reshapes the 40% UF budget throughout the year.  
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The FFAIM methods presented here are explored for the Lower Tuolumne River, CA. First, a 

functional flow regime—the set of idealized annual environmental flow schedules for each water 

year percentile—is developed using the approach outlined in Chapter 2. The functional flow 

regime developed for the Tuolumne River continuously scales four flow component magnitudes, 

leaving some metrics (e.g., timing, rate of change) constant for operational simplicity and 

flexibility. This flow regime is then tested by exploring how interannual variability is determined 

by the available flow budget and by exploring the sensitivity of these results to small changes in 

functional flow metrics and components.  

 

Next, the optimization formulation described in Chapter 3 is applied to seasonal operation of 

environmental flows using a fixed 40% percent of each year’s February – June runoff. The 

FFAIM model updates decision recommendations monthly, using probabilistic seasonal flow 

forecasts from DWR Bulletin 120. Each month, an allocation is made for the current month 

using newly available forecast information, leaving the remaining environmental water budget 

for the rest of the operating year. Operations for the remainder of the operating year are adjusted 

adaptively using later runoff forecast updates.  

 

 

4.2 Designing an FFRI-indexed functional flow regime for the Tuolumne River 

  

The Tuolumne River Functional flow regime created for this case study was constructed using 

the process outlined in Figure 5. The following subsections illustrate how the general process for 

refining a functional flow regime outlined in Chapter 2 could be applied to a specific reach. The 
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flow regime was designed to fit within a February-January operating year (OY). The resulting 

flow regime illustrates the approach’s flexibility without over-complication. Once the flow 

regime and its appropriate metrics have been identified, we show how the regime relates to the 

environmental flow budget and explore how to (1) choose a %UF budget or (2) evaluate the 

effectiveness of an existing flow budget (i.e., 40% UF February-June, as identified in the Bay-

Delta Plan) to meet interannual functional flow criteria.  

 

Step 1: Quantify Functional Flow Metrics. Functional flow metrics were computed for the 

Tuolumne River using historical (1987-2022) calculated daily full natural flow (FNF) data from 

CDEC (gage ID: TLG-8, estimated by the California Department of Water Resources). The 

calculated daily FNF time series reasonably estimates unimpaired flow, but the calculation 

methods occasionally result in unrealistic values, particularly during the summer (Pulido et al. 

2022). Missing, zero, and negative daily FNF values were replaced with more reasonable values, 

estimated by Kalman Filter Imputation (using the imputeTS package in R: 

http://steffenmoritz.github.io/imputeTS/). The time series was then input to the Functional Flows 

Calculator API client package (R-based script publicly available via eflows.ucdavis.edu) to 

obtain functional flow metrics for each year and a distribution of values for each metric 

(expressed as percentiles) across the available period of record expressed as percentiles. Output 

from running calculated daily FNF data through the Functional Flows Calculator API appears in 

Appendix C. 

 

Step 2: Adjust metrics for physical, regulatory, biological, and water quality limitations. 

The Tuolumne River has changed from its historical condition in numerous ways. Substantial 

http://steffenmoritz.github.io/imputeTS/
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channel incision, riparian development, blocked access to upstream coldwater habitats, shifted 

timing of coldwater flows, and disconnected floodplains provide poor habitat conditions for 

native species. These physical changes limit the effectiveness of the natural range of flow 

magnitudes to provide hydraulic conditions and quality suitable for salmonids, geomorphic 

diversity, or riparian succession.   

 

Furthermore, some regulations limit the maximum of high flows (wet season peaks and spring 

pulse magnitudes). The U.S. Army Corps of Engineers limits high flow releases from New Don 

Pedro Project to 9,000 cfs below Dry Creek (Ch. 6, Bay Delta Plan). We thus chose to apply a 

500 cfs cushion and limit high flow magnitudes to 8,500 cfs. Figure 21 compares historical 

unimpaired flow frequency with regulated historical reservoir outflows. These flows would 

provide useful geomorphic functions (e.g., deep scour and floodplain resetting) but are often 

incompatible with human activities. So, we scaled down spring peak magnitudes, as shown in 

Figure 22. 
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Figure 21: Annual maximum flow return intervals for full natural flow and observed Tuolumne 

River flow near La Grange.  

 
Figure 22: Adjusted range of the maximum magnitude of spring peak and recession to account 

for channel capacity limits. Percentiles of the metric value over the period of record are on the 

X-axis. Blue line is spring peak magnitude values calculated from daily full natural flow. Red 

line is adjusted for today’s incised channel.  
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Step 3: Create Water Year Percentile-Functional Flow Metric curves to form a Functional 

Flow Regime Index (FFRI). In the Tuolumne example, we scale four magnitude functional 

flow metrics (wet season baseflow, spring recession, dry season baseflow, and fall pulse 

magnitudes) using only linear FFRI relationships. The wet season peak magnitude is not 

considered for continuous scaling because the natural ranges of 2-, 5-, and 10-year flood events 

were outside the channel capacity limit. We focus on representing flows between the 10th and 

90th water year percentiles to not reproduce years likely to stress the native ecosystems, 

particularly in a system already pressured by drought and depleted instream flows. High flow 

years (>90th water percentile) have a high likelihood that operations will be driven by flood 

control and not require scarcity-driven functional flow shaping.  

 

Three functional flow magnitude metrics (wet season baseflow, spring pulse, and dry season 

baseflow) (Figure 23, Figure 24, and Figure 25) had clear correlations to the water year 

percentile because each contributes significantly to annual flow volume. Fall pulse magnitude 

data lack a clear correlation with water year percentile; however, we also used an FFRI-style 

relationship to continuously scale fall pulse magnitudes within the 10 to 90 range (Figure 26). 

This allows FFAIM to recommend larger fall pulses in years with a larger environmental flow 

budget.  

 



 

58 
 

 
Figure 23: Functional Flow Regime Index (FFRI) values for wet season baseflow magnitude 

metric, as a water year percentile over the period of record, limited to 10th-90th percentiles.  

 
Figure 24: Functional Flow Regime Index (FFRI) values for spring pulse flow magnitude, as a 

water year percentile over the period of ,  to 10th-90th percentiles. Spring magnitudes shown are 

adjusted down to fit channel capacity limits in Figure 22. 
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Figure 25: Functional Flow Regime Index (FFRI) values for dry season baseflow magnitude, as 

a water year percentile over the period of record, limited to 10th-90th percentiles.  

 
Figure 26: Functional Flow Regime Index (FFRI) values for fall pulse magnitude, as a water 

year percentile over the period of record, limited to 10th-90th percentiles. The relationship a 

poor fit, but shows how fall pulse magnitudes are scaled in FFAIM so the central range is 

included across FFAIM’s flow schedules.  
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The wet season peak also varies from year to year but is not determined by an FFRI. The wet 

season peak magnitude was set to the maximum allowable flow in the channel for public safety 

(Bay-Delta Plan, Ch. 6). The wet season peak duration varies between 0, 3, 5, and 10 days based 

on budget volume (or expected budget volume in the decision stage) according to the distribution 

of cumulative February-June volumes in the historical record (Figure 27). The total duration of 

the wet season peak can be divided into multiple peak events in post-processing if desired. 

Operational limitations likely will determine peak flow ramping rates and can be added in post-

processing (outside the scope of this example). 

 

 
Figure 27: Peak flow durations vary with historical distribution of wet season flow volumes. 

Highlighted regions represent 34-50th percentile water years, 50th-66th percentile water years, 

and 66th-100th percentile water years. Durations are decided based on expected value of 

February-June flow (from forecasts)  

The remaining metrics are either manually input into the model at runtime (such as timing 

metrics for each flow component and rate of change metrics) or result from combinations of 

other flow components (e.g., duration metrics can be computed from timing metrics). These 

remaining metrics were held constant at reasonable values for the natural system and operational 

constraints. Further explanation for the Tuolumne River application is in the FFAIM Technical 

Report (Yarnell et al. 2024).  
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Step 4: Assemble functional flow schedules as inputs to FFAIM. For the Tuolumne River 

case study, four magnitude metrics were used in the FFRI functions described in Eqn. 1, and 12 

functional flow metrics were set manually or calculated (Table 7).  

  



 

62 
 

Table 7: Summary of how function flow metric values are determined in the Tuolumne FFAIM 

model case study. 

Flow component Metric Relation-type  Description  

Wet season baseflow  Magnitude Scaled with annual 

flow volume (FFRI) 

Varies within adjusted 

range, following 

patterns identified in 

the natural flow regime 

 Timing Manual input February 1, start of OY 

 Duration Calculated from 

timing metrics 

Until start of Spring 

Recession 

Wet season peak Magnitude Manual input 8,500 cfs, the 

maximum channel flow 

 Timing Manual input February 17, easily 

shifted 

 Duration Ruleset 0, 3, 5, or 10 days 

 Frequency Ruleset 0 or 1 event 

Spring peak/recession Magnitude (at peak 

and start of recession) 

Scaled with annual 

flow volume (FFRI) 

Varies within adjusted 

range, following 

patterns identified in 

the natural flow regime 

 Timing (at start of 

recession) 

Manual input May 4 

 Duration Calculated from 

timing and rate of 

change metrics 

Until start of Dry 

Season 

 Rate of Change Manual input 13% per day up-ramp 

7% per day down-ramp 

Dry season baseflow Magnitude Scaled with annual 

flow volume (FFRI) 

Varies within adjusted 

range, following 

patterns identified in 

the natural flow regime 

 Timing Calculated from 

timing and rate of 

change metrics 

When spring recession 

equals baseflow 

magnitude 

 Duration Calculated from 

timing metrics 

Until start of Wet 

Season baseflow 

Fall pulse  Rate of Change Manual input Held constant 

 Magnitude Scaled with annual 

flow volume (FFRI) 

Varies within adjusted 

range 

 Timing Manual input October 15th, consistent 

with FERC-mandated 

fall pulses 
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Figure 28: The functional flow regime considered by FFAIM for the Tuolumne River. 11 

hydrographs represent functional flow schedules for 10th to 90th water year percentiles.  

 

4.3 Tuolumne River Functional Flow Regime: Results and Discussion 

Before implementing the functional flow regime operationally, clear connections are needed with 

the flow budget. A functional flow regime should reflect natural seasonal and interannual 

variability by accurately representing the historical variation of water year percentiles across 

years. Although some metrics prescribed by FFAIM might not align with the natural metrics in a 

single year, prioritizing consistency in interannual variability seems more critical ecologically 

than strict alignment in a specific year. 

 

The few decades of available hydrologic data constrain our assessment of interannual flow 

variability in the Tuolumne River. Generally, shorter periods of data provide a less 

comprehensive picture of historical variability and especially diminish the ability to represent 

extreme events. Paradoxically, climate change in California is tending to exacerbate hydrologic 

extremes, decreasing the frequency of "normal" water years. Figure 29 highlights the temporal 
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availability of different data sources for the Tuolumne River. Recent years tend to over-represent 

dry years compared to the longest records of unimpaired flow volume (1901-present). The FFRI 

values are developed from annual volume percentiles from 1987-2021. Results would differ if 

daily unimpaired flow estimates were available over another period.  

 

 
Figure 29: Durations of data for different hydrologic data sources used in Tuolumne River 

FFAIM simulations. (Monthly and daily FNF data are available via ‘TLG’ station query on 

CDEC (https://cdec.water.ca.gov/dynamicapp/selectQuery). Historical Bulletin 120 LSJR 

Forecast Breakdowns and 60-20-20 Indices are also posted on CDEC with Bulletin 120 

resources (https://cdec.water.ca.gov/snow/bulletin120/).) 

 

Given limitations in our understanding of historical (and future) flow variability, we can begin to 

explore how the flow budget controls FFAIM’s functional flow recommendations. Monthly 

unimpaired flow estimates from 1901 allow us to simulate flow budgets for 123 years. We term 

https://cdec.water.ca.gov/dynamicapp/selectQuery
https://cdec.water.ca.gov/snow/bulletin120/
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these “perfect foresight” schedules because they represent what might be implemented if the 

total flow budget could be known in February, at the beginning of the operating season. Using 

these data, we can explore different flow budgets, the influence of additional flows, and the 

sensitivity of the functional flow regime to changes in input values. All of this, of course, is 

subject to the usual concerns about climate change, another topic for further research. 

 

Identifying and evaluating different flow budgets. The flow budget is used to select a 

particular operational flow schedule from the functional flow regime. Over time, environmental 

flow recommendations should be managed to provide functional flow distributions statistically 

similar to natural flows. This requires suitable total environmental flow budgets. The Bay Delta 

Plan specifies an annual flow budget: 40% of unimpaired flow from February to June. Figure 30 

shows FFRI distributions for a variety of February-June %UF with perfect foresight, compared 

to a hypothetical uniform distribution – the hypothetical distribution by which each FFRI occurs 

at roughly the same frequency as its corresponding water year percentile.  
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Figure 30: 1901-2022 Perfect foresight simulation FFRIs for different % UF flow budgets, based 

on historical February-June monthly FNF. The uniform distribution (yellow) indicates an ideal 

uniform interannual distribution of FFRI schedules.  

 

Budgets below 40% seem insufficient to meet the desired range of frequencies in the functional 

flow regime. The 20% UF budget consistently falls below the uniform distribution, resulting in 

lower-than-desired FFRIs across all years. For this budget, 25% of years will need more water to 

meet the minimum functional flow regime. Functional flow schedules are designed to 

recommend flow schedules that we are reasonably confident will not pose undue stress to 

impacted ecosystems. For this reason, we focus on managing within the 10-90th percentiles of the 

natural range of metrics.  

 

Figure 30 shows the 45% UF budget results in appropriate wetter year FFRIs (or water year 

percentile), and 35-40% UF budgets do the same for drier year flows. This moderation of flows 

also provides a cushion for effects of adaptive operation, explored in later sections. Because 
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FFRIs poorly describe flow schedules outside of the 10-90 range, results in the driest probability 

range are not included. The first instance of an FFRI 10 indicates the percentage of years where 

the flow budget is expected to be insufficient for minimum dry-year functional flows. In the 40% 

UF example, we expect that 3%-4% of years might have insufficient flow to meet the minimum 

functional flow schedule (with an FFRI of 10).  

 

Increasing the environmental flow budget percentage decreases the risk of having insufficient 

water in the driest years. However, too much water in the budget results in FFRIs consistently 

above the uniform distribution (50-100% UF), mainly because the model tries to maximize 

FFRIs. This does not mean these budgets are inferior to alternatives closer to the uniform 

distribution, only that flows might be overallocated to the major functional flow components 

considered here. The functional flows approach helps managers assess the bare minimum 

recommended seasonal distribution of flows throughout the year and maintain some semblance 

of a particular year’s seasonality. If a particular budget produces FFRIs greater than the water 

year percentile, it might be an opportunity to introduce additional flow features into the 

functional flow regime (e.g., additional peaks in the wet season, flashier escalating wet season 

flows leading up to the spring pulse, banking some environmental water for drier years, etc.).  

 

Flow schedules in the 40-50% UF range seem a reasonable fit for our functional flow regime. 

The 40-50% UF budgets reduce the risk of insufficient water in dry years and provide close to 

the appropriate frequency of functional flow magnitudes across years. Areas where these curves 

fall below the uniform distribution, are opportunities for tweaks that could be addressed by 

additional flows or metric adjustments described below.  
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Assessing the value of additional flow contributions. While not considered in the results 

presented here, the Bay Delta Plan offers the opportunity to consider the additive benefit of 

existing environmental flows during the July-January period. On the Tuolumne, the Federal 

Energy Regulatory Commission sets existing minimum instream flows that vary by 60-20-20 

water year type index (see detailed description in Yarnell et al. 2024, FERC-OEP 2019). Figure 

31 shows the shift in the non-exceedance curve of the perfect foresight FFRIs when these 

additional environmental flows are added. With additional FERC flows added, the 40% UF 

curve provides a much better match to the uniform distribution while still boosting flows in the 

driest years.  

 

 
Figure 31: Non-exceedance probabilities of 40% Feb-Jun UF budget with and without FERC 

contributions from Jul-Jan added by water year type, based on 1987-2022 budget estimates.   
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Modifying functional flow metric input values. One advantage of this approach is its structural 

flexibility. The functional flow regime created for the Tuolumne contains many functional flow 

metrics assigned a reasonable value at runtime. FFAIM is designed to employ manually input 

metrics for operational flexibility (e.g., if a forecast update is delayed, to coordinate timings with 

observed climate and hydrology, etc.). Figure 32 shows how changing metric inputs might alter 

the frequency of FFRIs, holding the budget percentage constant. Increasing the duration of the 

wet season baseflow component by one month decreases FFRI for all non-exceedance 

probabilities. This is an example of how changes to individual metric inputs can alter how 

FFAIM replicates natural interannual variability.  

 

 
Figure 32: Non-exceedance probabilities of FFRI for 40% Feb-Jun UF budget with 3-month and 

4-month wet season baseflows, based on 1901-2022 budget estimates.   
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4.4 Use of FFAIM for Adaptive Implementation on the Tuolumne River  

 

FFAIM is an adaptive operation model that uses flow budget forecasts to predict the year’s 

environmental flow budget and recommends immediate-term flows that maximize the minimum 

annual FFRI across two stages, considering consequences on the rest of the operating year. For 

the Tuolumne River case study, the beginning of the operating year is set to begin February 1st, 

corresponding with the first sufficiently accurate flow forecast. FFAIM is run each month, from 

February to May, with updated Bulletin 120 unimpaired flow forecasts and known past monthly 

streamflow decisions to make a current month flow recommendation and update the range of 

future functional flow schedules for the remainder of the operating year. Historical Bulletin 120 

forecast updates are documented online and available for 2011-present 

(https://cdec.water.ca.gov/snow/bulletin120/). Results presented here document OY 2011 to OY 

2022, without additional weighting parameters (𝑤𝑘 = 1 for each k) and without supplemental 

flows in the dry season (i.e., no calibration or budget contributions from FERC that are included 

in Yarnell et al. 2024).  

 

https://cdec.water.ca.gov/snow/bulletin120/
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Monthly flow forecasts. To estimate the environmental flow budget for the Tuolumne River, 

FFAIM uses publicly available historical unimpaired flow forecast breakdowns from Bulletin 

120 (accessed at: https://cdec.water.ca.gov/cgi-progs/prev_forecat_discussion_ss/SJWSI.pdf). 

Alternative probabilistic seasonal unimpaired flow forecasts could come from the National 

Weather Service California-Nevada River Forecast Center (CNRFC) or other sources. However, 

the DWR Bulletin 120 forecasts are California's most commonly used seasonal flow forecasts. 

The Bulletin 120 “San Joaquin Water Year Forecast Breakdown” provides a range of forecast 

annual unimpaired flows discretized into six potential outcomes, based on exceedance 

probability, for each month. The exceedance probability of a particular unimpaired flow volume 

is the percent likelihood that the volume will be equaled or exceeded (e.g., a 0.90 exceedance 

probability has a 90% chance of being equaled or exceeded). Six exceedance probabilities are 

included in Bulletin 120’s forecast breakdowns: 0.99 (driest), 0.90, 0.75, 0.50, 0.25, and 0.10 

(wettest). 

 

Table 8 shows an example Bulletin 120 February 1st forecast breakdown for the Tuolumne River 

for 2021. Forecast flow volumes for February through June for each exceedance probability were 

totaled, multiplied by 40%, and input to FFAIM as the range of potential environmental flow 

budgets (Table 9). Each month, a new Bulletin 120 supplied updated flow forecasts and the prior 

month’s unimpaired flow volume became known, providing updated inputs for FFAIM. Over 

time, the environmental flow budget became less uncertain and narrowed towards the actual 

budget amount, known on July 1st (Figure 33). In practice, Bulletin 120 is released several days 

into the month.  However, to simplify the demonstration simulations in this report, we assumed 

forecasts were available on the 1st of the month, and FFAIM was run accordingly. 

https://cdec.water.ca.gov/cgi-progs/prev_forecat_discussion_ss/SJWSI.pdf
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Table 8: February 1, 2021 San Joaquin Water Year Forecast Breakdown, predicting monthly 

unimpaired flow for the Tuolumne River below La Grange. 

 
 

Table 9: Tuolumne River monthly flow forecast distributions for February 1, 2021 (see Table 8 

above) used to predict the environmental flow budget and associated functional flow schedules 

in FFAIM during the February, 2021 model run. 

Exceedance 

probabilities 

Feb UF 

(TAF)  

Mar UF 

(TAF) 

Apr UF 

(TAF) 

May UF 

(TAF) 

Jun UF 

(TAF) 

Total Feb-

Jun UF 

(TAF) 

Flow budget 

(40% of 

Feb-Jun UF) 

(TAF) 

0.10 151 224 363 535 362 1,635 654 

0.25 125 180 306 463 306 1,380 552 

0.50 104 153 250 380 250 1,137 454.8 

0.75 85 125 219 338 219 986 394.4 

0.90 67 105 188 286 188 834 333.6 

0.99 55 81 132 199 132 599 239.6 



 

73 
 

 

 
Figure 33: 2021 Environmental flow budget forecasts updated monthly for the Tuolumne River. 

Estimated flow budgets becomes more certain with each month, until the final known flow budget 

on July 1. February 1 Update budget volumes are those calculated in Table 8. 

To better understand Bulletin 120’s accuracy, we can consider how well early flow budget 

forecasts predict the final flow budget across years. Figure 34 shows the median predicted flow 

budgets across four updates compared to the final flow budget. Forecasts become more accurate 

as the wet season progresses, except for one March forecast update in 2017 – an already difficult 

year to predict because it was very wet. Figure 35 shows the forecast error more explicitly, 

confirming that forecasts consistently overpredict the budget in drier years and underpredict in 

wetter years (as one would expect) (Harrison & Bales 2016), apparent in critical dry (‘C’) and 

wet (‘W’) years.  

 

For FFAIM, this offers little hope of using weights to improve the reliability of forecasts. In 

February of dry years, the flow budget might be overestimated by more than 200 TAF (Figure 

35), increasing the likelihood of FFAIM over-releasing flows early in the season (beyond the 
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potential to release more when stages 1 and 2 are volumetrically imbalanced, discussed in 

Chapter 3.3). All environmental flow budgets determined from B120 forecast breakdowns are 

included in Appendix D.  

 
Figure 34: Annual forecasted budget volume by Bulletin 120 Update. The median forecast 

becomes more accurate each month.  
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Figure 35: Median error in budget volume by Bulletin 120 Update.  

Stitching together an adaptive Operating Year budget: OY 2022 Walkthrough. This section 

describes a simulation of monthly FFAIM recommendations over the 2022 operating year. These 

results show how the model responds to forecasts in a below-normal runoff year. The WY 2022 

was in the 33rd percentile by annual unimpaired flow volume.  

 

FFAIM incorporates limited predictions about future runoff to inform flow recommendations 

before the final environmental flow budget can be determined. FFAIM uses Bulletin 120’s 

Forecast breakdown to estimate the flow budget. Table 10 shows the development of OY 2022 

flow budget predictions input to FFAIM, which are used to simulate adaptive operations 

planning. Initial February flow budget predictions vary from 226 to 843 TAF, reflecting 

considerable early uncertainty in future precipitation. As the wet season progressed, more of that 

year’s flow budget accumulated and forecasts tended to converge. Table 10 shows how forecasts 
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narrowed as they approached the final flow budget of 276 TAF. The final flow budget fell on the 

low end of February’s prediction, outside of the 80% confidence range (i.e., between 0.90 and 

0.10 exceedance probabilities), but within the middle of the range predicted in May. Monthly 

DWR Bulletin 120 “forecast breakdowns” are combined into a range of predicted February-June 

volumes to compute 40% flow budget predictions. On July 1, February-June runoff is known, 

giving the final flow budget.  
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Table 10: 2022 environmental flow budgets computed from DWR’s Bulletin 120 “Forecast Breakdowns” (by update month)  

 February 1 Update March 1 Update April 1 Update May 1 Update July 1 

Exceedance 

probabilities 

Predicted 

Feb - Jun 

volume 

(TAF) 

Predicted 

OY flow 

budget* 

(TAF) 

Predicted 

Feb - Jun 

volume 

(TAF) 

Predicted 

OY flow 

budget 

(TAF) 

Predicted 

Feb - Jun 

volume 

(TAF) 

Predicted 

OY flow 

budget 

(TAF) 

Predicted 

Feb - Jun 

volume 

(TAF) 

Predicted 

OY flow 

budget 

(TAF) 

Final OY 

flow budget 

(TAF) 

0.10 2,108 843 1,460 584 1,063 425 883 353 

276 

0.25 1,650 660 1,178 471 908 363 785 314 

0.50 1,308 523 895 358 725 290 715 286 

0.75 985 394 723 289 625 250 670 268 

0.90 785 314 550 220 543 217 640 256 

0.99 565 226 363 145 430 172 610 244 

Budget 

range 
1,543  1,097  633  273  0 

 

*40% of February-June unimpaired flow

7
7
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Figure 36: OY 2022 evolution of probable environmental flow budgets based on forecasted 40% 

of February-June UF for the Tuolumne River, updated monthly from February-May. 

The first flow decision was made in early February using the February 1 Bulletin 120 Update 

(Figure 37). FFAIM’s first decision was to release a wet season baseflow of 1,458 cfs (an FFRI 

of 85), requiring 123 TAF of the total flow budget. This flow decision corresponded to the 0.10 

exceedance probability forecast, the highest flow suggested by the forecasts. The model allocates 

water into the February decision due to the certainty of achieving an exceptionally high FFRI 

(rather than saving this water for a slight increase later in the year). FFAIM recommended a 3-

day wet season peak flow of 8,500 cfs in early February, requiring 42 TAF of the 123 TAF total. 

The peak flow was released for three days because the expected value of the February forecasts 

exceeded the 50th percentile (see step 3 text for the ruleset). Figure 37 also shows possible flow 

schedules corresponding to the predicted flow budgets. The highest predicted flow budget (based 

on the 0.10 exceedance forecast) would match the 85th water year percentile wet season baseflow 

magnitudes (FFRI=85). There was also a 1%-10% chance that FFAIM would have to borrow 

water to meet the minimum functional flow schedule, as shown by the 99th percentile schedule 

for March-January, which fell below the minimum FFAIM-recommended schedule. Water 
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borrowing is permitted at no cost in this particular case study. Adding a penalty or cost for 

borrowing water would reduce the stage 1 FFRI.  

 
Figure 37: Hydrograph showing adaptive functional flow decisions from FFAIM in February 

2022, with possible flow schedules for the remaining budget beginning March 1st. 

 

In March and April 2022, new Bulletin 120 Updates provided new forecast distributions for 

FFAIM. Figure 38 and Figure 39 show FFAIM’s updated flow decisions for March and April. 

As forecast expectations narrowed and trended drier in March, the chance of needing to borrow 

water grew to 25-50%. The immediate flow decision decreased dramatically to 711 cfs (an FFRI 

of 35), consuming 44 TAF of the environmental flow budget. In April, there was again a 25-50% 

likelihood of needing to borrow water to meet the minimum FFRI. The optimal wet season 

baseflow in April decreased again from 711 cfs to 462 cfs (an FFRI of 18), consuming an 

additional 28 TAF of the flow budget.  

 



 

80 
 

 
Figure 38: Hydrograph showing adaptive functional flow decisions from FFAIM in March 2022, 

with possible flow schedules for the remaining budget beginning April 1st. 

 

 
Figure 39: Hydrograph showing adaptive functional flow decisions from FFAIM in April 2022, 

with possible flow schedules for the remaining budget beginning May 1st. 

 

The May 1, 2022 Bulletin 120 is the final DWR forecast before July 1 and, importantly, decides 

the peak magnitude of the Spring Pulse/Recession. Figure 40 shows flow decisions for May and 

June, which became drier in response to the still drier forecast. The flow schedule increased to 

the spring pulse peak at 13% per day, peaked on May 19th at 1,220 cfs (the minimum FFRI of 
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10), and ramped down for the spring recession at 7% per day to a July 2nd dry season start date. 

The May-June decision consumed 56 TAF of the environmental flow budget.  

 

 
Figure 40: Hydrograph showing adaptive functional flow decisions from FFAIM beginning in 

May 2022, with possible flow schedules for the remaining budget beginning in July. 

 

On July 1, the final environmental flow budget becomes known and flow recommendations can 

be made with near certainty for the rest of the operating year. Figure 41 shows the combined 

flow schedule for the entire operating year. The remaining flow recommendations included a 161 

cfs dry season baseflow and a 268 cfs fall pulse, corresponding to an FFRI of 10, borrowing 42 

TAF to meet the remaining 70 TAF of the final flow budget (297 TAF). This composite adaptive 

flow schedule is shown alongside the (dashed) perfect foresight schedule, which provides the 

most efficient distribution of flows across the five flow components, given the final flow budget.  
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Figure 41: Hydrograph showing adaptive functional flow decisions made in July 2022 for the 

dry season when the adaptive flow budget was known. 

 

Table 11 shows the predicted and final borrowed water volumes needed to achieve the minimum 

FFRI. With each Bulletin 120 Update, the model can borrow water to meet the 10th water year 

percentile functional flow schedule at no cost. In July, when the February-June decisions have 

been made and the OY environmental flow budget volume is known, the water borrowing is no 

longer hypothetical. In OY 2022, 42 TAF of additional water was needed to release the 

minimum functional flow (which has an FFRI of 10) from July through January. Table 12 shows 

how the model’s decision-making evolves across updates, ultimately requiring water-borrowing.  

 

Table 11: Predicted borrowed water volumes required to meet minimum functional flow regime 

for February-May FFAIM updates. In July, when the February-June decisions have been made 

and the budget is known, the final borrowed water volume is 42 TAF. 

 
Predicted borrowed water volume (TAF)  Borrowed volume (TAF) 

Exceedance 

probabilities 

February 1 

Update 

March 1 

Update 

April 1 

Update 

May 1 

Update 
July 1 (Final Decision) 

0.10 - - - - 

42 
0.25 - - - 3 

0.50 - - 21 31 

0.75 - - 60 50 
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0.90 - 68 93 61 

0.99 6 143 139 73 
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Table 12: Annual Minimum (AF) and Remaining (RF) FFRIs values (from Equation 6-9) for each updated FFAIM rerun. Stage 1 

FFRIs are boxed within the AF columns, showing decisions made along the 0.25 exceedance forecast or wetter. RF values that might 

require borrowed water are noted in parentheses. At the bottom, the likelihood of water borrowing for the remainder of the year is 

shown, increasing with each update. 

 

Annual Minimum and Remaining FFRIs 

𝐴𝐹𝑘 is the minimum of stage 1 and stage 2 FFRIs for each exceedance forecast, k 

𝑅𝐹𝑘  is the stage 2 FFRI for each exceedance forecast, k 

 February 1 Update March 1 Update April 1 Update May 1 Update 
July 1  

(Final Decision) 

Exceedance 

probabilities 

(k) 

𝐴𝐹𝑘 𝑅𝐹𝑘 𝐴𝐹𝑘 𝑅𝐹𝑘 𝐴𝐹𝑘 𝑅𝐹𝑘 𝐴𝐹𝑘 𝑅𝐹𝑘 𝐴𝐹𝑘 𝑅𝐹𝑘 

0.10 85 85 35 52 18 29 10 31 

(10) 

- 

0.25 60 60 35 35 18 18 10 (10) - 

0.50 42 42 17 17 8 (8) 10 (10) - 

0.75 24 24 6 (6) 8 (8) 10 (10) - 

0.90 13 13 6 (6) 8 (8) 10 (10) - 

0.99 2 (2) 6 (6) 8 (8) 10 (10) - 

Likelihood 

of water-

borrowing 

1-10% 25-50% 50-75% 75-90% 100% 

8
4

 



 

85 

OY 2022 is a near-worst-case scenario, where early budgets over-estimate the true budget, 

causing FFAIM to release larger flows early in the season. This problem is exacerbated by 

FFAIM’s unweighted objective function and lack of penalty for borrowing water if the budget is 

over-spent, which causes FFAIM to increase FFRI in the stage where this can be achieved most 

cheaply (usually in the stage with a shorter duration).  

 

There is a need not only to maximize the annual minimum FFRI but also to hedge and save water 

for future periods, but there remains a possibility of being caught short. Early in the year, a 

mismatch in the response of FFRI to additional volume across stages leads to excessively high 

FFRIs. This exacerbates the already low margin of error for early decisions to release wet season 

peak flows in February, using the least accurate forecasts of the operating year. Furthermore, the 

ability of the model to borrow water at no cost to meet minimum required flows encourages the 

model to make increasingly riskier decisions across the operating year. The monthly decision, 

composite adaptive, and perfect foresight hydrographs are included in Appendix E.  

 

4.5 Discussion: Opportunities to Improve Forecast-informed Operations 

 

An important measure of FFAIM’s success in providing adaptive functional flows is the model's 

ability to recommend flows that reflect the full range of flows expressed in the natural flow 

regime. Section 4.2 shows how FFAIM’s functional flow regime meets (or has capacity to meet) 

interannual variability of flow component magnitude metrics. This section examines how well an 

unweighted FFAIM model using the objective function described in Section 3.2 enables us to 

achieve desired interannual variability in a real-time operational context complete with forecast 
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uncertainties. Here, we compare adaptive and perfect foresight results and consider how well 

FFAIM embodies natural interannual variability of flow components in an operational context.  

 

Figure 42 shows the FFRIs of the adaptive flow schedules by update month for the 12 years 

simulated. Because adaptive flow schedules consist of multiple decisions, they can have different 

FFRIs over the operating year, particularly given evolving water budget uncertainty over the 

operating year. Therefore, it is useful to consider how well each decision period embodies the 

range of water year percentiles over the period of interest, approximated by the perfect foresight 

FFRIs.  

 

Figure 42a shows a downward trend in average FFRIs over the operating year, with a notable 

tendency to recommend wetter-than-ideal environmental flows in February. In 12 years, not a 

single February would have been drier than an FFRI 45, nor drier than an FFRI 25 in March. A 

significant proportion of 2011-2022 were drought years. Because flow forecasts in dry years tend 

to overestimate flows (Figure 35), it is tempting to dismiss February releases due to inherent 

forecast inaccuracies. Figure 42b highlights the hypothetical distribution of FFRIs if FFAIM 

were forced to only release according to the 0.50 exceedance probability (i.e., the median) flow 

budget, the median estimate of the final flow budget in each forecast update. The 0.50 

exceedance results remove the influence of the objective function and consider only the 

variability in FFRIs presented by forecast inaccuracies. These results show that forecasts account 

for some, but not all, of the variability in the fall forecast.  
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Boxplots in Figure 42 are strongly influenced by three wet years (where carryover was 

produced). These wet years are also when FFAIM’s adaptive flow schedules are most likely to 

be supplanted by flood operations. Figure 43 shows these same boxplots excluding the wettest 

three years, each with an FFRI of 90: 2011, 2017, and 2019. In these plots, it is easier to 

visualize the tradeoff between elevated releases early in the operating season and their 

consequences on later decisions. Functional flows in later months are reduced, often to the 

minimum functional flow schedule. Figure 44 shows the average error of the adaptive FFAIM at 

estimating the most efficient distribution of flows for the final flow budget. This is another tool 

to visualize the inaccuracy of the unweighted FFAIM model in early model runs.  
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(a)          (b) 

Figure 42: Boxplots of FFRIs by Bulletin 120 Update Month. Perfect foresight FFRIs (yellow) represent the ideal distribution of FFRIs, if 

forecasts were perfect. On the left (a), the spread of FFAIM results are shown using default weighting of six Bulletin 120 exceedance 

probabilities. On the right (b), only the median forecasts are used to inform flow decisions, ignoring the tails of the forecast distribution. In 

the FFAIM results (a), early model runs are likely to overestimate the perfect foresight distribution, resulting in higher than expected low 

FFRIs in May and July.  

 

8
8
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(a)          (b) 

Figure 43: Boxplots of FFRIs by Bulletin 120 Update Month, excluding the three wettest years (2011, 2017, and 2019) and limiting analysis 

to years when the budgets were over-estimated by forecasts. Perfect foresight FFRIs (yellow) represent the ideal distribution of FFRIs, if 

forecasts were perfectly accurate. On the left (a), the spread of FFAIM results are shown using default weighting of six Bulletin 120 

exceedance probabilities. On the right (b), only the median forecasts are used to inform flow decisions, ignoring the tails of the forecast 

distribution. Similarly to Figure 42 but more exaggerated, early FFAIM runs (a) are likely to overestimate the perfect foresight distribution, 

resulting in low FFRIs in May and July.  
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Figure 44: Monthly error of adaptive FFAIM FFRIs by forecast update, compared to the perfect 

foresight ideal.  

Differences between monthly results produce water year percentile inconsistencies among 

seasonal flow components, seen in their FFRIs. The wet season baseflow magnitude, which is 

the minimum of the three flows decided in February-April, is reasonably representative of the 

distribution of perfect foresight (usually, April is the limiting month in determining wet season 

baseflow FFRI). The spring recession magnitude is frequently set to the minimum allowable 

magnitude and tends closer to the extremes than perfect foresight. The dry season baseflow and 

fall pulse are determined once the flow budget is known on July 1st. Over-allocating water early 

in the operating year creates higher wet season baseflows at the expense of spring peak 

magnitudes and dry season baseflows. This imbalance hampers FFAIM’s ability to express each 

flow component's full interannual range and frequency.  

 

The imbalanced response of FFRI to changes in volume across stages upstages the hedging of 

flows for later in the operating year. These patterns mirror the patterns of the stage-related 

volume sensitivity discussed in Section 3.4. Similarly, calibrated 𝑤𝑘 values may help promote 
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hedging without abandoning the straightforward objective—to maximize the minimum annual 

FFRI. This method will require the calibration of 𝑤𝑘 values to match adaptive results more 

closely (Bellido-Leiva 2024).  

 

The case study presented here shows the unweighted adaptive FFAIM results on the Tuolumne, 

which remain preliminary, but clearly show that environmental water budgets can be operated 

adaptively with great promise, relative to perfect foresight results. FFAIM results using 

calibrated 𝑤𝑘  values are featured in Yarnell et al. 2024 and resolve some issues raised in this 

study. Future explorations will revisit this hedging issue. Because the optimization tends to 

converge at discrete corner points, multiple sets of 𝑤𝑘  weights will produce similar results, 

making it challenging to identify a single set of appropriate values. There also may be a way to 

derive an approximate empirical formula to establish 𝑤𝑘 values as a function of the sensitivity of 

stage-FFRI to changes in volume (
Δ 𝐹𝐹𝑅𝐼

Δ𝑉𝑜𝑙𝑢𝑚𝑒
). Other potential objective functions also might 

effectively promote hedging without calibration or weights. Tradeoffs for other objectives also 

should eventually be considered.  
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5. Conclusions 

 

5.1 Future Work  

This thesis develops scalable functional flow regimes that vary continuously by water year 

percentiles as a foundation for modeled adaptive environmental flow operations. There are many 

ways to further explore these FFAIM and its operation, particularly in several key areas:  

 

Method Improvements and Applications. Initial results are quite promising, this thesis 

presents many opportunities for further refining budget-based environmental flow operations. 

Future work can: 

• expand seasonal flow variability,  

• experiment with non-linear FFRI-metric relationships,  

• consider FFRIs for non-magnitude metrics (such as timing and rate of change metrics),  

• incorporate and tune weights to reflect cost of water borrowing for dry scenarios, 

• investigate 𝑤𝑘 calibration,  

• employ alternative objective function formulations, and 

• explore use of this modeling approach in larger institutional operations decision-making.  

 

Additional improvements can align the model with other regulatory flow, ecological, and 

implementation requirements, such as: 

• temperature and water quality requirements,  

• reservoir storage, and  

• combined flow requirements beyond the confluence with the Lower San Joaquin River, 
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and explore the expansion of regulatory tools, such as: 

• over-year water banking of surplus water,  

• water trading, and  

• flow adjustment tradeoffs.  

 

FFAIM also could integrate other forecasting information to expand the possibilities for adaptive 

operations updates (i.e., CNRFC unimpaired flow forecast breakdowns that are updated daily 

and short-term weather forecasts for deciding the timing of wet season peak events).  

 

Approach and Exploration. A significant challenge in implementing environmental flows is 

demonstrating the comparative desirability of different approaches and implementations. Future 

work will compare environmental flow strategies and develop tradeoff curves to help decision-

makers balance tradeoffs among approaches. In early phases, FFAIM is a desktop-based method 

that helps design flow regimes using limited, readily available daily unimpaired flow estimates. 

Further work should involve a multidisciplinary, expert panel to test the initial functional flow 

regime, make refinements, and conduct field flow experiments. In convening these experts, there 

will be opportunities to add mechanistic criteria to fill gaps in the empirically-based model.  

 

Climate considerations. Climate change will affect the seasonal and interannual distribution of 

%UF flow budgets and flows. Budget-based environmental flow approaches will face more 

frequent extreme years and fewer years within the “normal” range. Because FFAIM aims to 

uphold the natural interannual frequency of flow components, future work will consider the 

feasibility of modeling multi-year operation and interannual storage capabilities to redistribute 
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flows from wet to dry years. This will likely conflict with other reservoir operating priorities, but 

the possibility remains worth exploring. 

 

Policy Implementations and Exploration. The benefits of holistic environmental flows are 

theoretical until they are tested in the field. Effective functional flow operation warrants adaptive 

management to ensure flows produce the expected results. Monitoring programs must be 

designed to assess the return of flow-driven functions to the system and not focus exclusively on 

species-specific responses (which are sensitive to various non-flow-mediated factors) (Whipple 

& Viers 2019). Additional work will also involve outreach and education to inform practitioners 

about the objectives and rationale for holistic environmental flows and how FFAIM could be 

used and adapted in an operational context.  

 

5.2 Conclusions 

We cannot fully reproduce the benefits of natural flows with only a portion of the natural 

volume. Still, the Functional Flows approach provides a framework to distribute a limited and 

varying environmental flow budget in an ecologically responsible way—maintaining signatures 

of both seasonality and interannual variability. The continuously scaling functional flow regimes 

explored in this paper improve on coarse water year type designations used today for 

environmental flows. This scaling enhances the diversity of flow magnitude and timing and ties 

environmental flows more directly to current and evolving environmental science and 

management. FFAIM operationalizes functional flows using a flow budget based on a percentage 

of unimpaired flow. These quantitative methods are rooted in natural flows and provide a 

promising method for dealing with seasonal hydrologic uncertainty.  
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This thesis shows how one might adapt a Functional Flows approach to a budget-based 

environmental flow policy. Further, it explores one way to explicitly employ probabilistic 

optimization to incorporate hydrologic uncertainty. To clarify adaptive operation under FFAIM, 

model results (without cautionary weights or costs to borrow water) were presented for 2011-

2021 on the Tuolumne River. FFAIM efficiently maximizes the annual minimum FFRI (i.e., 

water year percentile as represented by functional flows) across two stages in each run by 

allocating water to the stage where it can achieve greater water year percentiles for its 

investment. In practice, this results in FFAIM allocating more water to the shorter first stage, the 

limited duration of which increases FFRI at a relatively low cost, boosting the annual minimum. 

The desirability of ensuring wet year flows in short periods at the expense of flows later in the 

operating year is debatable.  

 

This thesis demonstrates how FFAIM allocates water in the absence of additional features to 

promote hedging. There is promise that challenges explored here will be alleviated by weighting 

dry scenarios for model runs with an imbalance in incremental response to volume between 

stages 1 and 2. Furthermore, discouraging water borrowing using a cost function will improve 

the model’s ability to exert extra caution in years like OY 2022, when there is a significant 

chance that the budget is insufficient to meet remaining flow needs.  

 

Transitioning from theory to implementation is a significant challenge for any environmental 

flow strategy. Uncertainty and knowledge gaps must not become roadblocks to urgent ecosystem 

crises but challenges to overcome technically and institutionally. Managing environmental flows 
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will require changes in technical methods and institutional arrangements. FFAIM and the 

Functional Flows approach have the flexibility and adaptability to set the foundation for effective 

budget-based environmental flow policies and operations. With proper maintenance and 

adjustments, this method provides a framework for timely environmental flow operations, trade-

off analyses, and negotiations for California’s major rivers, which can be adjusted for scientific 

advances and changes in landscapes, hydrology, policy, and understanding over time. 
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Appendix A. Ecosystem functions provided by Functional Flow components  

(Table 2.1 from CEFWG 2021) 
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Table 1.2. Descriptions of the ecosystem functions that are supported by each of the five 
components of functional flows and the corresponding references in the scientific literature. 
References listed specifically link the associated flow characteristic with the ecosystem function.  

Functional 

Flow 

Component 

Type of 

Ecosystem 

Function 

Supported Ecosystem Function 

Associated 

Flow 

Characteristic 

References 

Fall Pulse 

Flow 

Physical 

Flush fine sediment and organic 

material from substrate 

magnitude Postel and Richter 

2003; Kemp et al. 

2011 

Increase longitudinal connectivity magnitude, 

duration 

Grantham 2013 

Increase riparian soil moisture magnitude, 

duration 

Stubbington 2012 

Biogeochemical 

Flush organic material downstream 

and increase nutrient cycling 

magnitude, 

duration 

Ahearn et al. 2006 

Modify salinity conditions in 

estuaries 

magnitude, 

duration 

Postel and Richter 

2003 

Reactivate exchanges/connectivity 

with hyporheic zone 

magnitude, 

duration 

Stubbington 2012 

Decrease water temperature and 

increase dissolved oxygen 

magnitude, 

duration 

Yarnell et al. 2015 

Biological 

Support fish migration to spawning 

areas 

magnitude, 

timing, rate of 

change 

Sommer et al. 

2011; Kiernan et 

al. 2012 

Wet-season 

Baseflow 

Physical 

Increase longitudinal connectivity magnitude, 

duration 

Grantham 2013; 

Yarnell et al. 2020 

Increase shallow groundwater 

(riparian) 

magnitude, 

duration 

Vidon et al. 2010 

Biogeochemical 
Support hyporheic exchange magnitude, 

duration 

Stubbington 2012 

Biological 

Support migration, spawning, and 

residency of aquatic organisms 

magnitude Grantham 2013 

Support channel margin riparian 

habitat 

magnitude Vidon et al. 2010 

Wet-season 

Peak Flows 
Physical 

Scour and deposit sediments and 

large wood in channel and 

floodplains and overbank areas. 

magnitude, 

duration, 

frequency 

Ward 1998; 

Florsheim and 

Mount 2002; 

Escobar-Arias and 
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Encompasses maintenance and 

rejuvenation of physical habitat. 

Pasternack 2010; 

Wheaton et al. 

2010; Senter et al. 

2017 

Increase lateral connectivity magnitude, 

duration 

Ward 1998, 

Cienciala and 

Pasternack 2017 

Recharge groundwater 

(floodplains) 

magnitude, 

duration 

Opperman et al. 

2017 

Biogeochemical 

Increase nutrient cycling on 

floodplains 

magnitude, 

duration 

Ahearn et al. 2006 

Increase exchange of nutrients and 

organic matter between floodplains 

and channel 

magnitude, 

duration 

Ahearn et al. 2006 

Biological 

Support fish spawning and rearing 

in floodplains and overbank areas 

magnitude, 

duration, timing 

Jeffres et al. 2008; 

Opperman et al. 

2017 

Support plant biodiversity via 

disturbance, riparian succession, 

and extended inundation in 

floodplains and overbank areas 

magnitude, 

duration, 

frequency 

Ward 1998; 

Shafroth et al. 

1998; Opperman 

et al. 2017  

Limit vegetation encroachment and 

non-native aquatic species via 

disturbance 

magnitude, 

frequency 

Petts and Gurnell 

2013; Kiernan and 

Moyle 2012; Poole 

and Berman 2001 

Spring 

Recession 

Flow 

Physical 

Sorting of sediments via increased 

sediment transport and size 

selective deposition 

magnitude, rate 

of change 

Hassan et al. 

2006; Ashworth 

1996; Madej 1999 

Recharge groundwater 

(floodplains) 

magnitude, 

duration 

Opperman et al. 

2017 

Increase lateral and longitudinal 

connectivity 

magnitude, 

duration 

Ward and 

Stanford 1995 

Biogeochemical 

Decrease water temperatures and 

increase turbidity 

duration, rate of 

change 

Leland 2003 

Increase export of nutrients and 

primary producers from floodplain 

to channel 

magnitude, 

duration, rate of 

change 

Bowen et al. 2003; 

Ward and 

Stanford 1995 
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Biological 

Provide hydrologic cues for fish 

outmigration and amphibian 

spawning; support juvenile fish 

rearing 

magnitude, 

timing, rate of 

change 

Freeman et al. 

2001; Medley and 

Shirey 2013; 

Yarnell et al. 2010 

Increase hydraulic habitat diversity 

and habitat availability resulting in 

increased algal productivity, 

macroinvertebrate diversity, 

arthropod diversity, fish diversity, 

and general biodiversity 

magnitude, 

timing, rate of 

change, duration 

Lambeets et al. 

2008, Pastuchova 

et al. 2008; 

Peterson et al. 

2001; Propst and 

Gido 2004 

Provide hydrologic conditions for 

riparian species recruitment (e.g. 

cottonwood) 

magnitude, 

timing, rate of 

change, duration 

Shafroth et al. 

1998; Rood et al. 

2005; Stella et al. 

2006; Mahoney 

and Rood 1998 

Limit riparian vegetation 

encroachment into channel 

magnitude, rate 

of change 

Lind et al. 1996; 

Shafroth et al. 

2002 

Dry-season 

Baseflow 

Physical 

Maintain riparian soil moisture magnitude, 

duration 

Postel and Richter 

2003 

Limit longitudinal connectivity in 

ephemeral streams; limit lateral 

connectivity to disconnect 

floodplains 

magnitude, 

duration, timing 

Lee and Suen 

2012; Beller et al. 

2011 

Maintain longitudinal connectivity in 

perennial streams 

magnitude Kiernan and Moyle 

2012 

Biogeochemical 
Maintain water temperature and 

dissolved oxygen 

magnitude, 

duration 

Yarnell et al. 2015 

Biological 

Maintain habitat availability for 

native aquatic species (broadly) 

magnitude, 

timing, duration 

Postel and Richter 

2003; Yarnell et al. 

2016; Kupferberg 

et al. 2012 

Condense aquatic habitat to limit 

non-native species and support 

native predators 

magnitude, 

duration 

Lee and Suen 

2012; Kiernan and 

Moyle 2012; 

Postel and Richter 

2003 

Support primary and secondary 

producers 

magnitude Power et al. 2008; 

Yarnell et al. 2015 
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Appendix B. FFRI Functions: Relating Functional Flow Metrics to Water Year Percentile 

 

All FFRI Functions are in the following format: 

𝐹𝐹𝑅𝐼 = 𝑚 (𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐹𝑙𝑜𝑤 𝑀𝑒𝑡𝑟𝑖𝑐 𝑣𝑎𝑙𝑢𝑒) + 𝑏 

 

Wet season Base Flow Magnitude: 

WetBFL_mag_cfs, m:0.06722689075630253 b:-13.126050420168083 

 

Spring Base Flow Magnitude: 

SP_mag_cfs, m:0.011034482758620689 b:-3.7931034482758594 

 

Dry Season Base Flow Magnitude: 

DS_mag_cfs, m:0.2787456445993031 b:-34.59930313588847 

 

Fall Pulse Magnitude: 

FA_mag_cfs, m:0.04597701149425285 b:-1.954022988505714 

 

Peak flow duration computed in February based on expected budget volume: 
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Appendix C. Tuolumne River 1987-2021 Functional Flows Calculator API Output  

(Abridged) 

Table C1: Calculator API Metric results by metric percentile   
p10 p25 p50 p75 p90 

DS_Dur_WS 101 122 164 182 196 

DS_Tim 285 293 302 314 329 

DS_Mag_50 172 262 356 393 466 

DS_Mag_90 461 667 864 1126 1532 

FA_Dur 2 2 2 4 4 

FA_Mag 437 572 885 1318 2729 

FA_Tim 1 3 7 18 36 

SP_ROC 0.11 0.14 0.18 0.25 0.29 

SP_Dur 43 52 61 69 75 

SP_Mag 4743 5909 9433 16049 20416 

SP_Tim 224 232 244 254 265 

Wet_BFL_Dur 92 110 138 183 210 

Wet_BFL_Mag_10 413 635 955 1251 1559 

Wet_BFL_Mag_50 1484 2310 3196 4497 5588 

Wet_Tim 45 76 95 131 139 

Peak_Tim_10 91 92 104 127 147 

Peak_Tim_2 118 171 213 236 249 

Peak_Tim_5 80 117 149 186 227 

Peak_Dur_10 1.0 1.0 1.5 2.3 2.7 

Peak_Dur_2 1.0 2.5 5.0 17.3 23.4 

Peak_Dur_5 1.0 1.0 1.5 2.5 5.2 

Peak_10 42849 42849 42849 42849 42849 

Peak_2 14749 14749 14749 14749 14749 

Peak_5 29668 29668 29668 29668 29668 

Peak_Fre_10 1.0 1.0 1.0 1.3 1.7 

Peak_Fre_2 1.0 2.0 3.5 5.8 9.0 

Peak_Fre_5 1.0 1.0 1.0 2.0 2.6 



 

106 

Y
ea

r 

D
S

_
D

u
r 

D
S

_
T

im
 

D
S

_
M

a
g
_

5
0
 

D
S

_
M

a
g
_

9
0
 

F
A

_
D

u
r 

F
A

_
M

a
g

 

F
A

_
T

im
 

S
P

_
R

O
C

 

S
P

_
D

u
r 

S
P

_
M

a
g

 

S
P

_
T

im
 

W
et

_
B

F
L

_
D

u
r 

W
et

_
B

F
L

_
M

a
g
_
1
0

 

W
et

_
B

F
L

_
M

a
g
_
5
0

 

W
et

_
T

im
 

1987 165 281 308 822 2 711 1 0.29 55 5718 226 90 555 2114 136 

1988 175 310 276 668 2 455 23 0.29 72 4484 238 158 718 1501 80 

1989 197 301 397 1070 4 425 3 0.22 65 5924 236 117 799 3782 119 

1990 195 305 233 543 2 1134 0 0.34 62 5002 243 111 1054 2554 132 

1991 181 302 354 664 2 490 0 0.15 52 9168 250 116 243 3101 134 

1992 117 329 219 672 5 2850 25 0.25 105 5822 224 107 489 2325 117 

1993 184 320 392 855 2 529 0 0.18 58 11102 262 182 1455 5085 80 

1994 157 288 375 1035 3 1118 4 0.28 42 6316 246 108 1182 2318 138 

1995 114 345 325 1178 3 774 4 0.11 60 17980 285 206 1985 6851 79 

1996 88 309 363 717 2 625 1 0.10 77 37270 232 139 1270 4491 93 

1997 136 314 405 913 3 638 7 0.22 68 11059 246 215 1091 4374 31 

1998 130 328 642 1421 1 6000 6 0.07 61 15740 267 183 1645 5635 84 

1999 156 302 358 689 2 1289 37 0.18 42 10061 260 168 1197 3586 92 

2000 186 300 407 834 4 561 15 0.20 37 6876 263 171 1091 4515 92 

2001 168 270 365 910 3 885 15 0.16 46 10379 224 104 746 2340 120 

2002 223 293 443 1570 2 547 17 0.22 47 9698 246 174 903 2300 72 

2003 198 288 494 1611 1 1347 36 0.17 44 16889 244 94 1116 3379 150 

2004 146 297 446 1377 2 1003 36 0.26 52 7171 245 125 1050 3930 120 

2005 122 313 364 873 4 3017 18 0.11 72 22172 241 164 1578 4627 77 

2006 163 315 390 757 2 931 26 0.11 62 15883 253 184 1512 5542 69 

2007 190 283 295 607 2 1818 44 0.25 56 6034 227 115 474 2313 112 

2008 158 304 253 935 2 1151 1 0.19 71 11210 233 126 945 2140 107 

2009 189 308 337 1667 1 400 2 0.18 75 13322 233 137 965 3002 96 

2010 98 314 332 1354 4 1426 11 0.16 59 16546 255 124 1527 3941 131 

1
0
6
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2011 174 337 391 964 2 1154 4 0.14 62 20682 275 229 1758 5367 46 

2012 121 278 169 380 3 1603 5 0.10 60 8084 218 73 699 2167 145 

2013 173 299 173 372 4 406 12 0.25 70 6969 229 196 567 1467 33 

2014 117 292 91 230 2 268 5 0.13 60 4221 232 126 299 1424 106 

2015 128 299 171 600 4 639 2 0.20 60 3744 239 196 240 932 43 

2016 103 316 153 1849 6 584 17 0.14 68 8977 248 187 849 3360 61 

2017 164 341 530 1494 8 14942 16 0.15 75 20149 266 213 1540 7598 53 

2018 168 286 378 929 3 2548 45 0.15 93 29237 193 54 486 3291 139 

2019 181 321 485 1108 2 608 3 0.12 62 17784 259 171 1244 5737 88 

2020 222 293 265 745 2 973 8 0.44 49 5498 244 108 752 2964 136 

2021 79 289 213 402 2 716 4 0.24 68 5862 221 72 657 2442 149 

 

Additional Functional Flows Calculator API Documentation is available at https://eflows.ucdavis.edu and on GitHub 

https://github.com/ceff-tech/ffc_api_client  

 

1
0
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https://eflows.ucdavis.edu/
https://github.com/ceff-tech/ffc_api_client
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Appendix D. Forecasted environmental flow budgets for the Tuolumne River  

for February, March, April, and May B120 updates, by year 

 

Year Final Environmental 

Flow Budget 

2011 912 

2012 295 

2013 306 

2014 223 

2015 209 

2016 585 

2017 1332 

2018 547 

2019 982 

2020 315 

2021 253 

2022 297 

 

  
February B120 Volumes (TAF) 

year 10% Exc. 25% Exc. 50% Exc. 75% Exc. 90% Exc. 99% Exc. Expected Value 

2011 972 821 696 601 516 446 666 

2012 656 509 356 272 194 194 347 

2013 813 666 552 426 328 241 499 

2014 598 435 275 198 193 193 291 

2015 668 500 335 231 193 193 331 

2016 911 770 628 526 425 350 594 

2017 1185 1031 908 806 697 526 859 

2018 503 445 383 349 314 276 375 

2019 698 638 568 518 455 382 544 

2020 554 489 424 383 343 314 413 

2021 654 552 455 394 334 240 435 

2022 843 660 523 394 314 226 482 

 

 

 March B120 Volumes  

year 10% Exc. 25% Exc. 50% Exc. 75% Exc. 90% Exc. 99% Exc. Expected Value 

2011 865 759 678 612 573 502 659 

2012 452 314 239 202 202 202 253 
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2013 628 504 398 334 285 285 393 

2014 510 399 279 228 193 193 286 

2015 482 370 276 215 199 199 276 

2016 762 640 550 480 428 354 529 

2017 861 779 703 663 625 559 694 

2018 333 298 383 227 210 210 283 

2019 1068 964 858 766 672 596 817 

2020 338 308 276 240 216 216 263 

2021 490 416 339 290 237 221 326 

2022 584 471 358 289 288 288 363 

 

 March B120 Volumes (TAF) 

year 10% Exc. 25% Exc. 50% Exc. 75% Exc. 90% Exc. 99% Exc. Expected Value 

2011 865 759 678 612 573 502 659 

2012 452 314 239 202 202 202 253 

2013 628 504 398 334 285 285 393 

2014 510 399 279 228 193 193 286 

2015 482 370 276 215 199 199 276 

2016 762 640 550 480 428 354 529 

2017 861 779 703 663 625 559 694 

2018 333 298 383 227 210 210 283 

2019 1068 964 858 766 672 596 817 

2020 338 308 276 240 216 216 263 

2021 490 416 339 290 237 221 326 

2022 584 471 358 289 288 288 363 

 

 April B120 Volumes (TAF) 

year 10% Exc. 25% Exc. 50% Exc. 75% Exc. 90% Exc. 99% Exc. Expected Value 

2011 1082 1005 937 906 879 820 933 

2012 412 346 276 246 217 207 277 

2013 482 419 354 322 299 299 355 

2014 390 325 270 232 206 204 265 

2015 255 217 209 209 209 209 214 

2016 740 677 618 588 560 530 614 

2017 1199 1151 1103 1077 1051 1013 1097 

2018 580 546 512 482 448 418 498 

2019 1052 994 932 882 830 764 908 

2020 328 310 290 272 252 224 280 

2021 395 347 295 261 245 245 292 
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2022 425 363 296 296 296 296 319 

 

 May B120 Volumes  

year 10% Exc. 25% Exc. 50% Exc. 75% Exc. 90% Exc. 99% Exc. Expected Value 

2011 977 951 927 911 895 863 920 

2012 372 342 312 296 285 268 310 

2013 377 350 321 307 307 307 324 

2014 286 255 226 213 213 213 230 

2015 209 209 209 209 209 209 209 

2016 681 653 628 612 594 560 621 

2017 1254 1212 1170 1142 1114 1084 1160 

2018 573 549 525 501 477 454 513 

2019 1004 958 912 878 844 814 899 

2020 327 312 295 285 268 234 288 

2021 294 270 252 252 252 252 259 

2022 353 314 296 296 296 296 305 
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Appendix E. Results from FFAIM for all modeled years (2011-2022)  

 
Figure 1: FFAIM recommended flows at each decision period, February to May, with expected 

releases for each forecasted scenario (10-99th percentiles). The last decision period also includes 

Perfect Foresight as the final flow-budget is known. 
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Figure 2: FFAIM recommended flows at each decision period, February to May, with expected 

releases for each forecasted scenario (10-99th percentiles). The last decision period also includes 

Perfect Foresight as the final flow-budget is known. 



 

113 
 

 
Figure 3: FFAIM recommended flows at each decision period, February to May, with expected 

releases for each forecasted scenario (10-99th percentiles). The last decision period also includes 

Perfect Foresight as the final flow-budget is known. 
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Figure 4: FFAIM recommended flows at each decision period, February to May, with expected 

releases for each forecasted scenario (10-99th percentiles). The last decision period also includes 

Perfect Foresight as the final flow-budget is known. 
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Figure 5: FFAIM recommended flows at each decision period, February to May, with expected 

releases for each forecasted scenario (10-99th percentiles). The last decision period also includes 

Perfect Foresight as the final flow-budget is known. 
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Figure 6: FFAIM recommended flows at each decision period, February to May, with expected 

releases for each forecasted scenario (10-99th percentiles). The last decision period also includes 

Perfect Foresight as the final flow-budget is known. 
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Figure 7: FFAIM recommended flows at each decision period, February to May, with expected 

releases for each forecasted scenario (10-99th percentiles). The last decision period also includes 

Perfect Foresight as the final flow-budget is known. 
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Figure 8: FFAIM recommended flows at each decision period, February to May, with expected 

releases for each forecasted scenario (10-99th percentiles). The last decision period also includes 

Perfect Foresight as the final flow-budget is known. 
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Figure 9: FFAIM recommended flows at each decision period, February to May, with expected 

releases for each forecasted scenario (10-99th percentiles). The last decision period also includes 

Perfect Foresight as the final flow-budget is known. 
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Figure 10: FFAIM recommended flows at each decision period, February to May, with expected 

releases for each forecasted scenario (10-99th percentiles). The last decision period also includes 

Perfect Foresight as the final flow-budget is known. 
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Figure 11: FFAIM recommended flows at each decision period, February to May, with expected 

releases for each forecasted scenario (10-99th percentiles). The last decision period also includes 

Perfect Foresight as the final flow-budget is known. 
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Figure 12: FFAIM recommended flows at each decision period, February to May, with expected 

releases for each forecasted scenario (10-99th percentiles). The last decision period also includes 

Perfect Foresight as the final flow-budget is known. 
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