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Abstract

Odorant Detection by Biological Chemosensor Arrays

by

Rudi Carl Schuech

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Mark T. Stacey, Chair

The antennules of many marine crustaceans enable them to rapidly locate sources of odorant
in turbulent environmental flows. The antennules are typically flicked through the water,
causing the animal to take spatially and temporally discrete odorant samples. A substantial
gap in knowledge concerns how the physical interaction between chemosensory appendages
and the chemical filaments forming a turbulent plume affects odorant detection and filters
the information content of the plume. The research presented here is focused on using nu-
merical models to simulate the flow of odorant-laden water around arrays of chemosensory
aesthetascs, and the transport of odorant molecules to their surfaces, during a plume sam-
pling event. The time-varying odorant flux signals generated during these events are of key
interest, since they are the lens through which a plume tracking agent will perceive its odor
environment.

Simulations of infinitely long arrays of sensory hairs indicate that there are likely to be
design tradeoffs between maximizing the sharpness of an odorant flux signal versus the
total amount of odorant mass detected. It is also clear that the duration of odorant flux
during a sampling event similar to a flick downstroke is not long enough to enable detection
of 0.6 mm wide odorant filaments by crustaceans such as lobsters, or by engineered chemical
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sensors currently available. This suggests that the return stroke and interflick pause may
be critical if these animals are to detect fine-scale plume structures.

Models of hair arrays with a finite number of hairs reinforce the above conclusions, but be-
cause this more realistic geometry allows water to flow around the array of hairs in addition
to through, it reveals additional behaviors that the infinite array simplification cannot cap-
ture. Fundamentally different trends in metrics describing the sharpness of the flux signal
are observed for rapidly flicking, sparse arrays of hairs versus slowly moving, densely packed
arrays. These surprising transitions are not well predicted by simple parameters describing
only the fluid velocity field, pointing out the importance of explicitly modeling or observing
odorant transport in addition to the flow of water.

A tomographic scan of a real aesthetasc array morphology, that of the spiny lobster P. argus,
reveals substantial variation and deviation from any simple, idealized geometry, and 3D
effects are likely to be important to its odorant sampling dynamics. Nonetheless, numerical
simulations of an idealized version of P. argus morphology indicate that on average, odor-
laden water is effectively channeled into the aesthetasc array as compared to a simple straight
row of hairs. A simple row, however, still achieves greater odorant flux in most regards,
again emphasizing differences in properties of the flow versus properties of passive scalar
transport. Crustacean antennules might therefore best serve as starting iterations instead
of optimal solutions for the design of engineered chemical sensor arrays for use on plume
tracking robots.
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1. Introduction

1.1. Background and motivation

The sense of smell is essential to many animals in the location of food and suitable habitats,
identification of mates and predators, and communication with conspecifics. While many
animals (e.g., marine crustaceans) are adept at rapidly tracking odors to the source, how
they do this is not well understood. The interaction between an organism’s olfactory or-
gans and the surrounding odor-laden fluid is the animal’s first step in filtering information
contained in its odor environment. These organs are interesting not only from a biological
standpoint, since olfaction mediates many ecologically important activites, but also an en-
gineering standpoint, since they may yield insight into the design of artificial noses. This
chapter introduces the many overlapping aspects of chemical sensing in the fluid environ-
ment, including the fluid dynamics of odorant transport, the morphology and neurobiology
of crustacean olfactory appendages, and the state of current artifical sensing technology.

1.1.1. Turbulent plumes and plume tracking

Overview

Turbulent scalar plumes are ubiquitous in the environment and can consist of many quanti-
ties besides the odorants of interest to animals: chemicals (e.g., pesticides used in confined
aquaculture as in Ernst et al. 2001 or stack emissions in air), pH (e.g., due to dissolved
CO2 resulting from oceanic carbon sequestration as in Huesemann et al. 2002), concen-
trated brine (e.g., from desalination as in Alameddine and El-Fadel 2007), or tempera-
ture (e.g., thermal pollution via power plant cooling as in Wilson and Anderson 1984). In
turbulent flow, these scalars do not smoothly diffuse outward from the source, as would
occur in laminar flow. Instead, regions of high scalar concentration are strained into
wispy, filamentous plumes by the turbulence (Crimaldi and Koseff 2001, Webster et al. 2003,
Crimaldi and Koseff 2006). These plumes fluctuate rapidly in time and space and exhibit
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1.1. BACKGROUND AND MOTIVATION CHAPTER 1. INTRODUCTION

complex instantaneous structure as depicted in Figure 1.1 A. The instantaneous gradient
in the scalar value (e.g., odor concentration) is steep and frequently in a different or even
opposite direction than the source, unlike the smooth monotonic gradients found in laminar
plumes or quiescent, diffusion dominated conditions such as those encountered by microor-
ganisms. Furthermore, turbulent plumes in the natural environment display even more
complex behavior than laboratory studies might suggest, due to heterogenous bed structure
(e.g., coral reefs) and large scale meander due to waves. Orienting in turbulent plumes and
quickly tracking such plumes to their sources are therefore very challenging problems.

If concentration is averaged over a long period of time, a time-averaged plume is indeed
well-behaved, with smooth gradients of increasing concentration toward the source as seen
in Figure 1.1 B (Crimaldi et al. 2002b). Some macroscopic animals (e.g., marine snails
as in Ferner and Weissburg 2005, tsetse flies as in Bursell 1984) may indeed simply travel
up the average chemical gradient to locate the plume source. However, many organisms
(e.g., marine crustaceans such as lobsters and crabs) do not have the luxury of waiting
several minutes for time-averaged statistics to converge while tracking a plume to its source
(Webster and Weissburg 2001). Besides the ephemeral nature of odor sources such as motile
prey, it is important for tracking agents to make navigational decisions on a time scale faster
than any large scale plume meander. Animals are clearly able to do this, but which plume
features they do use is not known.

Orientation and guidance cues

Despite the seemingly chaotic nature of instantaneous turbulent plume structure, several
researchers have found correlations between features of individual odor “filaments” and
position relative to the source location. Researchers first used electrochemical probes to
measure concentration records at several points within the plume (Murlis and Jones 1981,
Moore et al. 1992; 1989; 1994, Finelli et al. 1999), while newer studies (Crimaldi and Koseff
2001, Webster and Weissburg 2001, Koehl 2001b, Crimaldi et al. 2002b, Liao and Cowen
2002, Mead et al. 2003, Crimaldi and Koseff 2006, Dickman et al. 2009) generally utilize
laser induced fluorescence (LIF) (Crimaldi 2008) to capture entire 2D slices or even 3D
volumes (Dickman et al. 2009) of the evolving concentration field. Note that spatial struc-
ture of the plume is captured directly by LIF, while electrochemical probes convert spatial
patterns into temporal patterns. Both methods have yielded similar descriptions of tur-
bulent chemical plumes at a small scale. As a scalar plume is advected downstream and
mixed by turbulence and diffusion, scalar filaments become wider and less concentrated.
Quantitatively, both peak filament concentration and the peak onset slope of odor concen-
tration, a measure of filament sharpness, decrease with distance downstream from the source
(Moore and Atema 1991, Finelli et al. 1999, Webster and Weissburg 2001). Individual odor
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1.1. BACKGROUND AND MOTIVATION CHAPTER 1. INTRODUCTION

Figure 1.1: Laboratory flume experiment (Crimaldi and Koseff 2001) in which dye was re-
leased at the bed and advected to the right by turbulent flow while visualized in a vertical
plane via planar laser induced fluorescence (PLIF). Color corresponds to dye concentra-
tion, where red is more concentrated and blue is less concentrated. (A) illustrates the
instantaneous dye concentration field while (B) shows the time-averaged concentration
field (note different fields of view and scales).
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1.1. BACKGROUND AND MOTIVATION CHAPTER 1. INTRODUCTION

filaments contain fewer molecules (or less odorant mass) available for uptake farther from
the source (Murlis et al. 1992). The odorant signal also becomes increasingly intermittent
as the plume is transported downstream and laterally away from the source, and the dura-
tions of odor bursts and interburst periods are longer (Murlis 1997, Webster and Weissburg
2001). However, it must be noted that many of these fine-scale features still require long
averaging periods (many filament samples) to fully converge statistically, making their
usefulness to rapidly moving plume-tracking agents unclear (Webster and Weissburg 2001,
Liao and Cowen 2002). Page et al (2011a) did recently find that peak filament concentration
was well correlated with crab plume tracking progress, in a simple, binary above-threshold
fashion. In addition, Liao and Cowen (2002) reiterated that intermittency was well corre-
lated with lateral position and that the statistic did converge rapidly, indicating value in
plume-tracking algorithms constrained by short sampling periods.

Plume tracking behavior and algorithms

Critically important animal activities often involve tracking odors to a point source (Atema
1988), but how animals do this is generally poorly understood despite there being many
studies on plume tracking behavior by terrestrial insects and marine crustaceans. An im-
mediate distinction must be made between odor plumes in these two environments: because
of differences in density, viscosity, and molecular diffusivity of odorants, plumes in air are
typically much larger than the insects tracking them, while in water, a crustacean’s two an-
tennules could often span the entire width of the plume (Koehl 2006). The general strategies
employed by animals in the two fluids are likely to be affected by this fundamental differ-
ence. Perhaps the most well studied creature is the moth: when tracking a pheremone
plume in air, male moths fly upstream while they detect the odor, and if the signal is lost
(i.e., they are no longer inside the plume) they employ a series of back and forth turns in the
cross-stream direction (casting) until the trail is picked up again (David et al. 1983). Their
algorithm does not and can not require information about fine-scale plume structure. In
water, blue crabs appear to compare sensory inputs from the legs on either side of their wide
bodies to determine position relative to the plume (Keller et al. 2003), and spiny lobsters
may similarly compare the signals from their two long antennules (Reeder and Ache 1980),
but the exact algorithms used by marine crustaceans are not nearly as well understood as
in the case of the moth. This dissertation focuses on odorant detection in the marine en-
vironment, and thus on animals whose sensory appendages might measure fine-scale plume
structure.

A variety of theories exist that attempt to explain plume tracking by lobsters, crabs, and
other benthic crustaceans. As summarized by Grasso and Basil (2002), at one end of the
spectrum is simple odor gated rheotaxis, in which an animal moves upstream as long as
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1.1. BACKGROUND AND MOTIVATION CHAPTER 1. INTRODUCTION

sufficient odor is detected, and casts back and forth otherwise, as in a moth’s behavior. At
the other extreme lies eddy chemo-rheotaxis (Atema 1996), broadly defined as a method
in which information coming from both fine-scale odor filament structure and the structure
of eddies in the velocity field (i.e., “flavored eddies”) is sampled, combined in some way,
and used to guide navigation toward the source. While odor gated rheotaxis could be
implemented with a single point probe measuring odor concentration and flow direction,
eddy chemo-rheotaxis would require high resolution spatial sampling and complex neural
processing ability. Several in-between algorithms of moderate complexity are reviewed by
Grasso and Basil (2002) but much work needs to be done for a consensus of opinion, even
for a single species under a single flow condtion, to be reached.

Unraveling biological plume-tracking behavior can be directly useful to some applica-
tions, such as maximizing the effectiveness of insect pest management using baited traps
(Cooperband and Carde 2006, Bisignanesi and Borgas 2007) or, in the marine environment
at a large scale, understanding how and where endangered or valuable fish (e.g., salmon)
aggregate within plankton-rich riverine plumes (De Robertis et al. 2005). However, plume
tracking research is much broader than this, as engineers have sought to replicate the
outstanding success of animals by designing plume-sniffing and plume-tracking robots.
Such robots have a wide range of applications, including risk assessment of water and air
pollutant emissions, regulating releases of toxic substances, and finding sources of contam-
inants or unexploded ordnance. Applications of bio-inspired chemical sensing systems to
national security (e.g., bomb sniffing) are particularly timely and are reviewed by Settles
(2005).

Several wheeled robots have been used to test plume tracking algorthims in the terrestrial
environment, albeit under very controlled conditions (Kazadi et al. 2000, Ishida et al. 2005,
Martinez et al. 2006, Pyk et al. 2006, Harvey et al. 2008a;b). There have been fewer studies
with underwater robots, with a “robot lobster” equipped with salinity sensors (Grasso et al.
2000) being one notable example. These robots typically employ either one or two chemical
sensors, along with sensors that detect flow direction. As such, algorithms much simpler
than eddy chemo-rheotaxis (that do not utilize fine-scale plume structure) are tested, and
many do perform reasonably well given limitations such as slow response times. However,
these robots have a long way to go before they achieve the performance of their biolog-
ical counterparts, especially if the robot is not started within the plume or the plume is
completely “lost” during tracking.

One important question not usually addressed by animal or robot studies is how the physical
presence of the sensors affects the structure of the plume being sampled. The interaction
between a chemosensory organ or device and a plume will affect how the plume is percieved,
and what information is actually available to the plume-tracking agent. Physical signal
filtering occurs before and in addition to any further processing by neurons or electronic
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1.1. BACKGROUND AND MOTIVATION CHAPTER 1. INTRODUCTION

circuitry. In the case of marine crustaceans, the morphology of the sensory antennules is
critical in understanding this first step.

1.1.2. Odorant detection by olfactory hair arrays

For macroscopic organisms, chemoreception is commonly thought of in terms of two ac-
tivites: tasting and smelling. While the taste and smell organs are easily distinguished
in humans, the entire bodies of marine crustaceans are adorned with a vast diversity of
chemoreceptors that are all continuously exposed to the ambient fluid. Smelling then refers
to the perception of odors at a distance versus when the animal is in close contact with the
odor source, and is the sense of most interest here.

Aquatic malacostracan crustaceans (e.g., crayfish, crabs, mantis shrimp, lobsters) have a
pair of antennules (not to be confused with the much longer antennae in lobsters) that serve
as sensory appendages. In contrast to the mammalian nose, these organs act as movable ex-
ternal “noses” that are actively flicked through the water, intercepting and sampling patches
of dissolved odorant in the environment. The antennules branch into filaments, and along
one of the filaments are arrays of hair-like structures, the aesthetascs, that contain the den-
drites of hundreds of olfactory neurons enclosed by a thin, permeable cuticle (Gleeson 1982,
Spencer and Linberg 1986, Laverack 1988, Grunert and Ache 1988, Hallberg et al. 1992,
Atema 1995, Mead and Weatherby 2002). Although there are many other chemosensory
structures on the antennules and on the animals in general, the aesthetascs are the most
well studied and play an important, though not crucial, role in olfaction-mediated behaviors
such as plume tracking (Grasso and Basil 2002, Keller et al. 2003, Horner et al. 2004). A
great diversity of aesthetasc array morphologies has evolved, as shown in Figure 1.2: e.g.,
the mantis shrimp Gonodactylaceus falcatus has relatively few, sparsely spaced aesthetascs,
blue crabs (Callinectes sapidus) have toothbrush-like dense tufts of flexible aesthetascs on
short antennules, and the spiny lobster Panulirus argus has a complex zig-zag arrange-
ment of aesthetascs on long antennules. In each case, the entire structure encompasses a
range of length scales, from the supporting antennule (mm’s in diameter) to the individual
aesthetascs (about 20 microns in diameter in P. argus (Goldman and Koehl 2001)).

Importance of fluid dynamics

As an animal flicks its antennules, the “no-slip” condition dictates that the fluid velocity is
zero along the entire surface of the antennule and individual aesthetascs, and the resulting
boundary layers are thick relative to the size of the sensory hairs at the low Reynolds
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1.1. BACKGROUND AND MOTIVATION CHAPTER 1. INTRODUCTION

Figure 1.2: Antennule morphologies of the Florida spiny lobster Panulirus argus (A), man-
tis shrimp Gonodactylus falcatus (B), and blue crab Callinectes sapidus (C) (reprinted
from Koehl 2001b). Diagrams at right are magnified views of the aesthetasc-bearing
regions.
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1.1. BACKGROUND AND MOTIVATION CHAPTER 1. INTRODUCTION

numbers (Re ′s) at which the hairs operate (Koehl 1996). The flow between the aesthetascs is
laminar and transport of odorant molecules across streamlines occurs via molecular diffusion,
though the antennule or aesthetasc array as a whole might enter a transitional flow regime
in which vortex shedding occurs (Leonard 1992, Schuech unpublished).

When moving fluid encounters an array of cylindrical hairs of finite cross-stream width,
some fluid will move through the array and the rest will move around the array. A non-
obvious feature of crustacean aesthetasc arrays is their relatively large resistance to flow, and
the corresponding propensity for water to travel around the structures instead of between
individual microscopic hairs. Because the proportion of flow encountering the aesthetascs
within an array is critical to its sampling performance, Cheer and Koehl (1987b) have
defined a non-dimensional parameter, leakiness, to quantify it. Leakiness is defined as the
volume of fluid that flows in between the elements of an array per unit time divided by
the volume of fluid that would flow through the same area at the freestream velocity if no
cylinders were present. Equivalently, leakiness can be defined as the ratio of the average
fluid velocity in the gap between neighboring hairs to the freestream velocity. Leakiness
summarizes the permeability of a cylinder array to flow as it is moved through the fluid
during a sampling event. Therefore, leakiness determines how much passively transported
odorant mass enters the array and is available for detection.

As mentioned earlier, several species of marine decapod crustacean, such as the man-
tis shrimp (Gonodactylaceous falcatus) and Florida spiny lobster (Panulirus argus), flick
their antennules through the water (reviewed in Koehl 2006). Flicking reduces bound-
ary layer thickness, increases leakiness (Koehl 1992, Mead and Koehl 2000, Koehl 2001b,
Reidenbach et al. 2008), and facilitates odorant penetration into dense arrays of aesthetascs
(Koehl et al. 2001, Mead et al. 2003). Furthermore, the movement is asymmetric: the faster
downstroke or outstroke exhibits high leakiness while the slower return stroke and inter-flick
pause exhibit low leakiness. This transition in flow regimes can critically affect the func-
tioning of an olfactory appendage because odorant penetration into the hair array is greatly
inhibited during times of low leakiness (Koehl et al. 2001). Since there is evidence that a
new water sample is taken during the flick and retained within the aesthetasc array during
the return stroke, antennule flicking seems to result in discrete odor sampling and has been
likened to sniffing by mammals (Koehl 2001b).

Once odorant is inside the hair array, it must diffuse to the surfaces of the aesthetascs in
order to be detected by the animal. However, this diffusion must only act over a short
distance because advection is still usually the dominant mass transport mechanism: even
during the slow return stroke, there is enough fluid movement that the Peclet number,
which describes the relative importance of advection versus diffusion, is still much larger
than 1 (Goldman and Koehl 2001). Only during the stationary pause between flicks is
diffusion likely to dominate advection. Flicking therefore greatly decreases the distance that
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odor molecules must diffuse, but simultaneously reduces the amount of time available for
detection since it causes rapid advection of odorant patches out of the array - an important
limitation discussed in detail in Chapter 2.

Flicking has another important effect on odorant detection. High fluid shear between aes-
thetascs is a necessary product of rapid flicking, since velocity is always constrained to be
zero on each hair surface. Although it has been shown experimentally for P. argus that
fine-scale plume structures can penetrate into an array of aesthetascs during the flick down-
stroke, those structures become distorted inside the array by the end of the flick due to
this shear (Koehl 2001b). Little work has been done to examine this shear distortion, even
though it may affect the information an animal may obtain from the plume. Chapter 2 of
this dissertation focuses on distortion of plume structures as a function of array geometry
and flicking speed.

Neurobiology of odorant detection

Once odor molecules diffuse through the concentration boundary layer (e.g., Moore et al.
1991a) around an aesthetasc, they diffuse through the permeable cuticle into the lumen of
the aesthetasc (e.g., Derby et al. 1997) and finally diffuse to and bind to receptor proteins on
the outer dendritic segment of an olfactory neuron (e.g., Grunert and Ache 1988). Olfactory
neuron response to odorant can be described as lying somewhere between two extremes:
concentration detectors and flux detectors (Kaissling 1998): Concentration detectors are
completely exposed to the fluid environment, and the effective chemical concentration at
the receptor cell membrane is identical to that in the external fluid, while flux detectors are
sheltered inside a perireceptor compartment in which stimulus molecules can accumulate
and must be deactivated by the organism. While taste receptors are likely to be concen-
tration detectors, Kaissling argues that odorant receptors, such as those inside crustacean
aesthetascs, are probably closer in behavior to flux detectors (Kaissling 1998).

The work contained in this dissertation focuses on modeling aesthetascs as heavily simplified
flux detectors. By assuming zero odorant concentration on the aesthetascs, we neglect
any odorant accumulation, imagining that rapid and irreversible degradation of odorant
molecules occurs. This boundary condition results in a time varying flux of odorant into the
aesthetasc as an odor filament is sampled. This is an idealized sensory transduction process,
in which the spatial structure of odorant concentration in the bulk fluid is transformed into
time series of chemical flux to a number of detectors (cylindrical aesthetascs) arrayed in
space. Properties of this transient signal may be important in determining both odorant
quantity (e.g., concentration) and quality (i.e., the specific odor compound being smelled);
such properties are discussed in detail in Chapter 2.
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1.2. Highly relevant previous work

In engineering There is a vast body of engineering literature on scalar (usually heat)
transport to single spheres and cylinders (Friedlander 1957, Acrivos and Taylor 1962)
and arrays of these objects. However, most studies of cylinder arrays are focused on
traditional engineering applications and are not applicable to biological aesthetasc arrays.
Many investigate geometries clearly inappropriate to biological antennae (e.g., arrays
of very long or infinite extent in the streamwise direction (Tamada and Fujikawa 1959,
Stanescu et al. 1996, Yoo et al. 2007), and flow at moderate to high Reynolds number
(Re) (e.g., (Chatterjee et al. 2009, Han et al. 2010)), whereas biological olfactory hairs
operate at Re ′s of 10−1 – 1 (e.g., Loudon and Koehl 2000, Goldman and Patek 2002,
Koehl 2004). Furthermore, engineering studies often focus on physical processes that are
not relevant to odorant detection such as conjugate heat transfer or buoyant effects (e.g.,
Wang and Georgiadis 1996, Lange et al. 1998, Juncu 2008). Finally, nearly all these studies
involve steady state scalar transport, whereas sampling a turbulent plume is an unsteady
process. However, in Chapter 2 we do compare our results to the analytical solution of
steady scalar flux to a single cylinder, given by Friedlander (1957).

In biology There have been a number of studies in the biological literature directly geared
toward understanding the fluid dynamics of hair-bearing appendages such aesthetasc-
bearing antennules. The analytical model of Cheer and Koehl (1987b) was used to solve
for the fluid velocity field around two cylinders in cross flow over a large range of Re
and G/D (gap to diameter ratio). They found that both Re and G/D were important in
determining the leakiness of a two-cylinder array, in a codependent matter (e.g., G/D does
not matter much at high Re). Most importantly, they showed that leakiness varied over
orders of magnitude throughout a biologically relevant parameter space, so that whether a
given appendage behaves as a leaky sieve or solid paddle depends on its morphology and
movement speed. Later studies then expanded on this fundamental concept by including
more cylinders or adding mass transport in addition to fluid flow.

Abdullah and Cheer (unpublished, described in Koehl 1992) numerically investigated the
effects of additional cylinders in a row on leakiness by comparing two cylinders with a row
of four cylinders, with intriguing results: at low Re (< 1), adding hairs reduced leakiness,
but at higher Re (> 1), adding hairs increased leakiness. The reduction in leakiness at
low Re is in agreement with the work of Hansen and Tiselius (1992), who tested up to 12
cylinders and found a decrease in leakiness with additional cylinders at a Re of 0.2. Hansen
and Tiselius also found that the flow around the central cylinders changed little for rows of
four cylinders or more, suggesting that asymptotic behavior is quickly reached. However,
the relatively narrow parameter space investigated in these studies invites further research
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into arrays of many cylinders. Chapter 3 details our results on arrays with many hairs and
includes some comparisons with these studies.

Analytical solutions for flow and scalar transport become increasingly difficult as geometry
becomes more complicated. Hence, Abdullah and Cheer used a numerical model and Hansen
and Tiselius employed dynamically scaled physical models to determine flow patterns around
more than two hairs. The use of the latter has been used extensively to study flow around
hair bearing appendages because models can be made at a convenient size rather than the
microscopic dimensions of the real structures (Koehl 2003). By matching the Reynolds
number of the laboratory setup and the appendage in nature (often by using highly viscous
fluids), the fundamental quality of the flow is preserved. Such physical models can be as
complex as one’s sculpting ability allows. Reidenbach et al (2008) constructed a model
of a section of P. argus antennule, with its complex zig-zag arrangement of hairs, and
measured the velocity field using particle image velocimetry (PIV). There is, however, a
disadvantage to this research approach: because the diffusion of fluid momentum (kinematic
viscosity ≈ 10−6 for water) is so different than that of mass (molecular diffusivity ≈ 10−9

for small molecules in water), it is not possible to dynamically scale both fluid flow and
odorant transport simultaneously. Hence, these studies could only infer odorant sampling
performance based on knowledge of the fluid flow.

In a hybrid approach, Stacey et al (2002) started with measured 2D velocity fields of the
flow around dynamically scaled models of mantis shrimp (G. falcatus) antennules. They
then post-processed the velocity fields to ensure mass conservation, and input the data into
a numerical model of unsteady advection and diffusion of odorant to the aesthetascs. The
overarching theme of this study was a comparison of juvenile to adult odorant sampling
performance, and hypothetical cases of geometry and flicking kinematics based on these
two life stages (e.g., adult geometry moved at the juvenile flicking speed). While directly
showing that flicking greatly enhances exposure of aesthetascs to odorant, this work did not
focus on studying a comprehensive parameter space, and the method employed had coarse
spatial resolution relative to the size of the aesthetascs due to the experimentally measured
velocity fields.

1.3. Overview of approaches

The objective of this dissertation is to quantify the effects of geometry and sampling kine-
matics on the odorant sampling performance of biologically-inspired sensor arrays. Our
general approach uses computational fluid dynamics (CFD) software to solve the Navier
Stokes equations that govern fluid flow around and the advection-diffusion equation that
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governs odorant transport to idealized aesthetascs during an odorant sampling event. By
solving for both velocity fields and odorant concentration fields numerically, spatial resolu-
tion is limited only by computational power, and geometry can be parameterized, quickly
modified, and rerun. There are some disadvantages to this approach, however: creation
of a suitable computational mesh for each major type of geometry is time consuming, and
3D simulations are not possible due to the much higher computational cost that would be
involved. Still, the ability to simulate both flow and odorant transport simultaneously is a
significant advantage of this method as compared to laboratory experiments with dynami-
cally scaled physical models, for example.

This work first focuses on perhaps the simplest type of array possible: a single row of 2D
cylindrical sensory hairs of infinite extent in the cross-stream direction. Since only one
hair must be explicitly modeled with this simplification, computational costs are kept to a
minimum. A very simple odorant plume composed of a single odorant filament, oriented
parallel to the row, is intercepted by the hair array at a constant sampling speed. Aspects of
geometry (i.e., diameter and gap spacing) and sampling speed were varied, and the effects on
odorant flux were quantified. We focus on features of the flux time series that are likely to be
neurobiologically important, as well as parameters that describe distortion of the flux signal
relative to the original odorant filament. By holding leakiness constant, odorant penetration
into the array is always maximal and the physics of odorant transport inside the array can
therefore be isolated. This work, detailed in Chapter 2, provides a basis of fundamental
behaviors with which we can intepret the results of more complicated geometries studied in
later chapters. Chapter 2 is adapted from material that is currently in press.

Then another variable is introduced, the number of hairs, and its effect on the sampling
performance of finite-extent arrays of variable leakiness is examined. This adds computa-
tional cost, but the addition of leakiness is an important step towards accounting for the
complexity of real arrays because it allows an olfactory hair array to take discrete samples,
or “sniff.” Here, the main focus was on the number of hairs (or array width), since little is
known about its effects on leakiness or odorant capture, and it varies widely from tens to
thousands of hairs in different species. While simulations of infinite arrays assume that all
hairs behave identically, models of finite-width arrays can also reveal variability in sampling
performance across the appendage. This work on finite arrays, detailed in Chapter 3, will
form a self-contained publication that is currently in preparation.

Lastly in Chapter 4, an in-depth study of an actual, highly complex morphology, that of the
well-studied spiny lobster P. argus, is conducted. This work takes the form of morphological
measurements of a real antennule specimen via state-of-the-art X-ray microtomography, as
well as numerical simulations of a simplified version of its peculiar zig-zag aesthetasc array.
While the simple geometries discussed above (2D rows of cylinders) can teach us about
the fundamental characteristics of flow and scalar transport to hair-bearing appendages,
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they are a far cry from reality, and it is difficult to guess whether they indeed capture all
the important dynamics that occur in situ. The eventual use of real morphology in 3D
simulations of flow and odorant transport will help answer this question, and to this end,
an algorithm is developed to extract the surface morphology of hair-bearing appendages
from 3D tomographic scan data. However, since 3D simulations of real morphology are
extremely costly, 2D simulations of a V-shaped arrangement of cylinders similiar to the
repeating subunits of the P. argus zig-zag morphology are a reasonable compromise. These
simulations are used to test a hypothesis proposed in the literature that such morphology
channels flow and odorant into the aesthetasc array.

13



2. Infinite Arrays

2.1. Introduction

2.1.1. Background

Scalar transport between small (sub-millimeter scale) cylinders or arrays of cylinders and the
surrounding fluid is important in the modeling of many phenomena in biology and engineer-
ing, such as filters (Rubenstein and Koehl 1977, Kirsch 2007), artificial kidneys and lungs
(Chan et al. 2006), and the hair-bearing appendages many animals use for environmental
sensing (Koehl 1992). The work reported here is motivated by the use of small-scale arrays
of cylindrical chemical sensors, in both engineered systems (i.e., artificial noses) and living
organisms (i.e., olfactory antennules), to sense chemicals dispersed in the fluid environment.

Scalar quantities released into a typical environmental flow of air or water form spatially
and temporally complex plumes. These turbulent plumes consist of concentrated filamen-
tous structures interspersed with clean fluid (Crimaldi and Koseff 2001, Webster et al. 2003,
Crimaldi and Koseff 2006). We focus on the physical design of odor-sensing antennae com-
posed of hair-like chemical sensors, a design inspired by the olfactory antennules of marine
crustaceans, in order to measure microscale chemical plume structure. Many of these ol-
factory antennules bear arrays of chemosensory hairs that might be used to to measure
the spatial details of odorant patches in the environment (Koehl et al. 2001, Koehl 2006).
However, using arrays of sensors to achieve this goal presents an apparent dilemma to both
animals and robots: the size and spacing of sensors must be comparable to the spatial scale
of the plume features of interest, but at small scales, the physical presence of the sensors
distorts the surrounding plume due to viscous effects. Thus, our intent is to quantify how
the physical filtering process of capturing odorant molecules from the ambient fluid filters
the “odorant landscape” (Moore and Crimaldi 2004) observed by a plume-sampling agent.

Measurements of turbulent aquatic chemical plumes in the laboratory and environment
have correlated the fine-scale structure (e.g., properties of individual chemical filaments)

adapted from a manuscript accepted to Bioinspiration and Biomimetics
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of the plume at a point with relative source location (i.e., upstream and lateral dis-
tance) and type of source (e.g., continuous versus pulsed) (Moore and Atema 1991,
Webster and Weissburg 2001, Crimaldi et al. 2002b, Keller and Weissburg 2004). Since
many crustaceans track plumes too rapidly to rely on gradients of mean properties such as
time-averaged concentration (Grasso and Basil 2002, Webster and Weissburg 2009), it has
been suggested that their sensors must sample the instantaneous properties of an odorant
plume (Atema 1985, Moore et al. 1991b, Weissburg and Zimmer-Faust 1993, Gomez et al.
1994, Zimmer-Faust et al. 1995, Koehl 2001a, Moore and Crimaldi 2004, Koehl 2006,
Page et al. 2011a;b). Furthermore, many crustaceans “sniff,” i.e., take discrete samples of
the ambient water each time they flick an antennule. Flume experiments have shown that
dye filaments in a turbulent plume can be captured within crustacean chemosensory hair
arrays during a flick and retained there until the next flick (Koehl et al. 2001, Mead et al.
2003). However, which odorant filament properties (if any) are detected and utilized by an
animal is an exceedingly difficult question to test via laboratory experiments because of
the scale (tens of microns in diameter) of the chemosensory hairs.

Although arrays of sensing elements are often employed in the experimental design of artifi-
cial noses and tongues, it is typically in the context of using sensors with different chemical
sensitivities in order to identify the sample, or discern odor quality. Indeed, such an ability
is the contemporary definition of an “electronic nose.” While determining odor quality is
clearly very important (e.g., food engineering), only a few researchers have investigated using
chemical sensor arrays to better characterize the detailed spatial structure of the plume, and
additionally, discern properties of the source such as location or type of release (Kikas et al.
2001a;b, Cantor et al. 2008). For instance, Cantor et al (2008) showed experimentally that
a group of sensors arrayed in space greatly increases the ability to characterize a modulated
plume, such as that formed by a pulsed release or the wake of a nearby obstacle. It is
unknown whether biological chemosensor arrays may be used in a similar fashion.

There is a vast body of engineering literature on flow around and scalar (usually heat)
transport to cylinders and arrays of cylinders. However, most of these studies are focused
on traditional engineering applications and are not very applicable to biological sensor ar-
rays. Many investigate geometries inappropriate to biological antennae (e.g., arrays of
very long or infinite extent in the streamwise direction as in Tamada and Fujikawa 1959,
Stanescu et al. 1996, Yoo et al. 2007), and flow at moderate to high Reynolds number (Re)
(e.g., Chatterjee et al. 2009, Han et al. 2010), whereas biological olfactory hairs operate at
Re ′s of 10−1 – 1 (e.g., Loudon and Koehl (2000), Goldman and Patek (2002), Koehl (2004)).
Other engineering studies often focus on physical processes that are not relevant to odor-
ant detection such as conjugate heat transfer or buoyant effects (e.g., Wang and Georgiadis
1996, Lange et al. 1998, Juncu 2008). One exception is an analytical solution by Friedlan-
der (1957) for scalar transport to a single sphere at low Re, which although steady-state,

15



2.1. INTRODUCTION CHAPTER 2. INFINITE ARRAYS

is compared to our results in Section 2.3.2. It should be noted that dynamically scaled
physical models of olfactory appendages (e.g., Reidenbach et al. 2008) have also proven
useful, but practical requirements dictate that only the flow, not odorant transport, can be
studied this way due to difficulties in scaling up both fluid momentum and scalar transport
simultaneously.

To understand the fluid dynamics of odorant capture by crustacean antennules or biolog-
ically inspired artificial noses with small (tens of microns in diameter) hair-like sensors, a
basic knowledge of the physical processes near the chemosensory hairs must be developed.
This study focuses on perhaps the simplest type of sensor array and plume structure possi-
ble: an infinite row of 2D cylinders in low-Re crossflow, sampling a single odorant filament.
Using numerical methods, we examine odorant transport to the cylindrical flux-detecting
sensors in an effort to describe how sampling performance is determined by array geome-
try and sampling kinematics (i.e., how fast the sensor array is moved through the ambient
fluid). We have three main objectives that will help inform the design of biologically inspired
chemical sensor arrays:

• Quantify the effects of sensor array geometry and plume sampling kinematics on dis-
tortion of the environmental odorant signal (Section 2.3.1)

• Quantify the effects of sensor array geometry and plume sampling kinematics on odor-
ant flux metrics likely to be relevant to a plume sampling agent (Section 2.3.2)

• Apply these results to biological chemosensor arrays and discuss implications for bio-
inspired designs (Section 2.3.3)

2.1.2. Biological sensor arrays and flux metrics

Along one of the filaments of the antennules of many aquatic malacostracan crustaceans
(e.g., crayfish, crabs, mantis shrimp, lobsters) are arrays of hair-like structures, the aes-
thetascs, that contain the dendrites of hundreds of olfactory neurons enclosed by a thin, per-
meable cuticle (Gleeson 1982, Spencer and Linberg 1986, Laverack 1988, Grunert and Ache
1988, Hallberg et al. 1992, Atema 1995, Mead and Weatherby 2002). Although there are
many other chemosensory structures on these animals, the aesthetascs are the most well
studied and play an important, though not crucial, role in olfaction-mediated behaviors
such as plume tracking (Grasso and Basil 2002, Keller et al. 2003, Horner et al. 2004). A
great diversity of aesthetasc array morphologies has evolved: e.g., the mantis shrimp Gon-

odactylaceus falcatus has relatively few, sparsely spaced aesthetascs, blue crabs (Callinectes

sapidus) have toothbrush-like dense tufts of flexible aesthetascs on short antennules, and

16



2.1. INTRODUCTION CHAPTER 2. INFINITE ARRAYS

the spiny lobster Panulirus argus has a complex zig-zag arrangement of aesthetascs on long
antennules. In each case, the entire structure encompasses a range of length scales, from
the supporting antennule (mm’s in diameter) to the individual aesthetascs (20 microns in
diameter in P. argus (Goldman and Koehl 2001)). The “no-slip” condition dictates that the
fluid velocity is zero along the entire surface of the sensory appendage, and the resulting
boundary layers are thick relative to the size of the sensory hairs at the low Re ′s at which
the hairs operate (Koehl 1996). The flow between the aesthetascs is laminar and transport
across streamlines occurs via molecular diffusion.

All of these aesthetasc arrays consist of a finite (though sometimes very large) number of
sensory hairs. Thus, water can flow both between hairs of the array and around the array
as a whole. Cheer and Koehl (1987b) have quantified this flow feature with “leakiness,”
which is the ratio of the volume of fluid that flows between neighboring hairs in a unit of
time to the volume of fluid that would flow through the same area if the hairs were not
there. Equivalently, leakiness can be defined as the ratio of the average fluid velocity in
the gap between neighboring hairs to the freestream velocity. Mathematical and physical
models of flow through a variety of small-scale hair-bearing appendages have revealed that
they often operate in a critical range of Re where leakiness is very sensitive to morphology
and sampling kinematics (Cheer and Koehl 1987a;b, Koehl 1995, Mead and Koehl 2000,
Loudon and Koehl 2000, Koehl 2001a;b). At the lower end of this Re range (Re 10−2),
the boundary layers around each hair are thick and overlapping, and the entire appendage
behaves as a solid paddle of low leakiness. At the higher end (Re 1), the boundary layers are
thinner and the appendage behaves like a leaky sieve. This transition in flow regimes can
critically affect the functioning of an olfactory appendage because it determines odorant ac-
cess into the spaces between sensory hairs of the array (Loudon and Koehl 2000, Koehl et al.
2001, Stacey et al. 2002, Mead et al. 2003).

We modeled sensor arrays of infinite cross-stream extent, thus all the fluid must flow between
the hairs of an infinitely wide row (it is maximally leaky). However, we matched properties of
the flow between hairs of our infinitely wide rows to flow between real crustacean aesthetascs
(see Section 2.2.5) in an effort to minimize errors inherent in an infinite array approximation
to reality.

Crustaceans such as P. argus, G. falcatus, and C. sapidus flick the aesthetasc-bearing branch
of their antennules back and forth through the water. In addition to the effects of sweeping
through and sampling a two-dimensional region of the plume (Crimaldi et al. 2002a), flicking
also increases leakiness (Koehl 1992, Mead and Koehl 2000, Koehl 2001b, Reidenbach et al.
2008) and facilitates odorant penetration into dense arrays of aesthetascs (Koehl et al. 2001,
Mead et al. 2003, Koehl 2006). Furthermore, the movement is asymmetric: the faster down-
stroke or outstroke exhibits high leakiness while the slower return stroke and inter-flick pause
exhibit low leakiness. This has the effect of replacing an old water sample with a new one
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and then holding the new sample within the chemosensory array, a process likened to sniff-
ing in mammals (reviewed in Koehl 2006). We modeled steady flow as a simplification of
this behavior, focusing on the flow that occurs during mid-downstroke and mid-return, but
discuss implications of our simple model on real sniffing behavior in Section 2.3.3.

During an odorant sampling event (a flick of the antennule through an odorant plume, e.g.,
Koehl et al. 2001), odorant molecules are transported via advection to the vicinity of an
aesthetasc, reach the aesthetasc surface via molecular diffusion through the concentration
boundary layer (e.g., Moore et al. 1991a), diffuse through the permeable cuticle into the
lumen of the aesthetasc (e.g., Derby et al. 1997), and finally diffuse to and bind to receptor
proteins on the outer dendritic segment of an olfactory neuron (e.g., Grunert and Ache
1988). We assume that these neurons act as odorant flux detectors such that that the
rate of odorant molecule arrival to the receptors affects the signal that is output from the
neuron, encoded as a series of action potentials or “spikes” (Kaissling 1998, Rospars et al.
2000). Thus, our principle interest is in the time-varying flux of odorant into an aesthetasc,
integrated over the cylindrical aesthetasc surface. For simplicity, hereafter we refer to the
surface-integrated quantity as “odorant flux.” Although it is possible that variations in flux
over a single aesthetasc might be percieved by animals, this seems unlikely due to neural
convergence and we do not investigate such variation here even though engineered sensors
might not have such limitations.

Neurobiological research has linked certain aspects of the time course of odorant molecule
arrival at crustacean olfactory appendages with the firing of action potentials. Such ex-
periments often delivered controlled pulses of odor-laden water to intact antennules or ex-
posed axons of olfactory neurons in devices called “olfactometers” (Gomez and Atema 1994,
Michel and Ache 1994, Hatt and Ache 1996, Gomez and Atema 1996b;a, Zettler and Atema
1999, Gomez et al. 1999). Increasing the concentration of odorant in a pulse increased
the rate of neuron spiking and the number of spikes, and decreased the response latency
(Gomez and Atema 1996a). If odorant arrival to aesthetascs is governed by advection and
molecular diffusion (described by a linear partial differential equation), odorant pulse con-
centration is proportional to the flux to the aesthetascs, all other things being equal. Hence
we take peak odorant flux during a sampling event to be an important metric of the flux time
series. Lobster olfactory neurons also increase their spiking frequency as the rate of increase
of odorant concentration near the aesthetascs (and thus onset slope of flux) is increased
(Zettler and Atema 1999). We must note that the timescales in (Zettler and Atema 1999)
were longer than the actual timescales of flux that we observe in this work, and there is
evidence that onset slope might not be especially useful for plume tracking (Webster et al.
2001). However, we include peak onset slope in our analysis as a simple, representative
aspect of transient sensor response, since it may be useful for odor quality determination
(see below), and because similar quantities have been used successfully in plume tracking
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robots (Ishida et al. 2005). Lastly, the olfactory receptors of crustaceans might need to
interact with a certain number of odorant molecules in order to fire, analogous to the vi-
sual system requiring a certain number of photons (Barlow 1958, Hood and Grover 1974),
although to our knowledge evidence of this has not yet been found in crustacean olfaction
(Gomez and Atema 1996a). We include time-integrated flux, or total flux, in our analysis
in light of this possibility as well as the fact that engineered chemical sensors might be
designed with such properties.

While the ability of biological or electronic noses to measure microscale plume structure is
a debated topic, it is clear that both systems must discriminate among different chemical
compounds to be of great practical use. In electronic noses as well as the olfactory neurons of
several animal species, the time courses of the response signals can be partially determined
by chemical species (through the chemical kinetics occuring on and/or within the sensors)
(Spors et al. 2006, Nakamoto and Ishida 2008, Junek et al. 2010, Su et al. 2011) in addition
to the effects of fluid dynamics that we focus on in this work. Of particular note, mutant
fruit flies with olfactory receptor neurons that express just one functional type of odorant
receptor can still distinguish different odorants, presumably based on temporal response
dynamics alone (DasGupta and Waddell 2008). Likewise, the utility of analyzing transient
aspects of sensor response to help discriminate odors is gaining recognition among electronic
nose and tongue researchers (Amrani et al. 1997, Hines et al. 1999, Nakamoto and Ishida
2008, del Valle 2010). Hence, temporal parameters such as those we investigate here for
flux detectors (peak flux, peak onset slope, total flux) may be important for both plume
tracking and identification of an odor plume’s chemical composition.

2.2. Methods

2.2.1. Numerics

Overview

We used numerical simulations to model the flow of water (viscosity ν ≈ 10−6 m2 s−1) around
arrays of cylinders tens of microns in diameter, as well as the advection and diffusion of
low molecular weight odorant molecules (molecular diffusivity kD ≈ 10−9 m2 s

−1
) to the

cylinders, during a plume sampling event. Although it is possible to numerically model an
array of sensors moving through water containing an odorant plume, it is typically much
simpler to model the equivalent problem of water containing an odorant plume moving past
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a stationary array of sensors. This allows the computational grid to remain fixed in time,
and is the approach employed here.

Figure 2.1: Schematic of geometry and boundary conditions. Items marked with dashed
lines indicate neighboring subunits of the infinite array that are not explicitly modeled.
The velocity profile in the gap is sketched. Domain length not to scale.

The arrays consisted of an infinitely long row of 2D cylinders, with various diameters and
gap spacings. The steady fluid flow field for such geometry is set by a Reynolds number
(we use ReUG,G, based on average gap velocity UG and gap length G) and the gap to
diameter ratio G/D of the array; see Section 2.2.5 for details of our parameter space.
Besides simplifying the interpretation of flux results since there are no array edge effects,
such simple geometry is also computationally easy because an infinite array of cylinders can
be represented numerically with just one cylinder in the computational domain. Figure 2.1
illustrates the computational unit. By using appropriate boundary conditions, symmetry of
the flow and odorant concentration fields on both sides is enforced, thus being equivalent
to that in an array of infinite extent.

Boundary and initial conditions

At the inflow face of the computational domain (see Figure 2.1), we use a Dirichlet condition
for velocity, specifying a constant flow speed equal to the sampling speed of the array through
the water. We use a time-varying Dirichlet condition for odorant concentration to advect a
Gaussian-shaped odorant filament into the domain. We start with the ideal solution for a
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point mass M of odorant released at a point x0 at time t0 (far upstream of the computational
domain) in an unbounded domain with uniform fluid velocity (i.e., sampling speed in the
reference frame of the array) U0 (Fischer et al. 1979):

C(x, t) =
M

√

4πkD(t − t0)
exp

{

− [x − x0 − U0(t − t0)]
2

4kD(t − t0)

}

(2.1)

The parameters x0, t0, and M are determined by enforcing that for every simulation, the
odorant filament has the same width L and peak concentration C0 when its center reaches the
leading edge of the cylinder in the case that it is undisturbed by the cylinder, i.e. equation
2.1. This standardizes the filaments over the varying sampling velocities and domain sizes
we used and accounts for diffusion of the filament before it reaches the array. The peak
concentration of the filament was arbitrarily chosen to be C0 = 1 mg L−1, since the solution
of the linear advection-diffusion equation will simply scale with this value, and the filament
was chosen to be L = 0.56 mm wide (we assume “width” to equal the smallest interval
that contains 95% of the total odorant mass in the filament; this corresponds to a filament
standard deviation σfilament = 0.14 mm). This is in the same range as the 1 mm wide odor
filaments used in a previous study of mantis shrimp odorant capture (Stacey et al. 2002),
although odorant patches in water as small as 0.2 mm have been measured (Moore et al.
1992).

To reduce numerical errors associated with spatial and temporal discontinuities of concen-
tration, we modify the odorant filament specified by equation 2.1 and replace the infinitely
long tails with linear tails that drop off to exactly zero over a finite distance. This hybrid
shape is determined by setting 99.9% of the mass in the odorant filament to be within the
Gaussian core, and the remaining 0.1% to be in the linear tails. Thus, the resulting piecewise
function varies from zero to linear to Gaussian from left to right toward the filament center;
it is not explicitly given here. This “Gaussian-linear” function is evaluated at the inflow
domain face to specify the odorant concentration boundary condition over time. Although
there is a slope discontinuity where the Gaussian core meets the linear tails, this appears
to be insignificant in practice because both the concentration and slope are nearly zero at
these locations.

The outflow face is “open,” with a viscous stress and stream-wise scalar gradient of zero
imposed. Since this boundary condition forces gradients to be zero which may not be zero
in a real unbounded domain, we carefully studied the effect of the proximity of the outflow
face to the cylinder and ensured enough downstream distance was present for the solution
to develop properly (see Section 2.2.3).
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The side faces of the domain are slip walls: no flux of odorant or water is permitted through
the wall, but velocity parallel to the wall is not constrained to be zero as would be the case
with a real wall. Since there are planes of symmetry in the middle of every gap of an infinite
array, the cross-stream gradient of any quantity along such planes is zero, as if there were
slip walls present. Hence, the distance from the edge of the cylinder to the slip wall of our
domain is equal to half the gap distance G of the infinite array we are modeling.

On the cylindrical sensor, we use a no-slip zero velocity condition for flow. This study fo-
cuses on the physical processes governing odorant molecule arrival at the aesthetasc surface,
and consequently we idealize the processes thereafter. Thus, we employ a Dirichlet condi-
tion for odorant at the cylinder surface, and set concentration to zero for all time. This
results in a diffusive flux of odorant into the cylinder, which is recorded as the simulation
progresses. This boundary condition models an ideal flux detector, which immediately and
irrevocably consumes all odorant molecules that arrive on it, perhaps by rapid enzymatic
degradation (Trapido-Rosenthal et al. 1987, Carr et al. 1990). We believe this to be a more
appropriate model of olfactory sensors than the other straightforward alternative, a Neuman
boundary condition, in which concentration would be measured instead of flux (Kaissling
1998, Rospars et al. 2000).

The initial condition for velocity is computed as a potential flow solution, and the initial
condition for concentration is zero everywhere, since initially the odorant filament is lo-
cated far upstream of the computational domain. As the velocity field “spins up” to the
correct viscous, steady state field, the odorant filament hypothetically diffuses and advects
toward the cylinder according to equation 2.1. The parameters of equation 2.1 and the final
Gaussian-linear approximation are chosen such that the leading edge of the incoming linear
tail of the odorant filament reaches the inflow face when the velocity field reaches steady
state. To determine an acceptable velocity steady state, we introduce a second, independent
scalar specifically for this purpose. The boundary and initial conditions for this scalar are
the same as for the odorant, except that the inflow boundary condition is a constant con-
centration equal to 1 mg L−1. Hence, this scalar advects into the empty domain as soon as
the simulation begins, and eventually reaches the vicinity of the cylinder and begins to flux
into it. When this flux stabilizes to two significant digits, the velocity field is assumed to be
sufficiently steady and the odorant filament begins entering the domain. The convenience
scalar is used since it allows a direct estimate of the effects of flow unsteadiness on odorant
flux.

Numerical method

The numerical method we use (Barad et al. 2009) solves the incompressible Navier Stokes
equations for fluid motion and the scalar advection-diffusion equation for scalar transport.
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The method couples the embedded-boundary (or cut-cell) method for complex geometry
with block-structured adaptive mesh refinement (AMR) while maintaining conservation
and second-order accuracy. These features allow us to accurately resolve the scalar flux to
the cylinders while using domains large enough to make boundary effects insignificant. For
our simulations, adaptive mesh refinement over time was not necessary, but local refinement
around the cylinder was used to obtain accurate odorant fluxes (Figure 2.2). To calculate
time-varying odorant flux into the embedded-boundary of the cylinder, the finite-volume
based code computes a mass flow rate across the boundary for each Cartesian-cell cut by
the cylinder (see Barad et al. 2009 for details), and then sums these contributions to obtain
the spatially integrated flux into the cylinder, per unit length in the third dimension.

Figure 2.2: Section of a typical computational grid (ReUG,G = 3, G/D = 2) illustrating
local refinement near the cylinder surface.

2.2.2. Sample output and shape parameters

Velocity field

Figure 2.3 shows a typical steady state velocity field. Note the relatively thick laminar
boundary layer around the cylinder, and maximal velocities at the midpoints between cylin-
ders (at the slip walls). The flow field is slightly asymmetric in the stream-wise direction
due to the non-negligible advective terms in the Navier-Stokes equations, which would be
disregarded in a creeping flow regime. Since the array is of infinite extent, all flow is forced
through the gaps and the peak speed in the gap in this case is about double the inflow
velocity.
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Figure 2.3: Velocity vector field and false color rendering of velocity magnitude (speed) in
the vicinity of a cylinder in the array for ReUG,G = 3, G/D = 2. No smoothing of the
color rendering has been done to show resolution of nested grids. Only a short stream-wise
section of the computational domain is shown for clarity.
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Figure 2.4: Profiles of normalized stream-wise velocity component versus normalized po-
sition in gap for all ReUG,G and G/D studied. Most profiles collapse onto four groups of
curves corresponding to G/D and are independent of ReUG,G, except where noted. dotted
= G/D 1, dashed = G/D 2, dash-dot = G/D 5, solid = G/D 10

Figure 2.4 summarizes velocity profiles of the stream-wise velocity component within the gap
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for the parameter space we investigated. The flow speed is normalized by the inflow velocity
U0 and plotted versus normalized position, which varies from -1 to 1 between the cylinders.
While the normalized velocity profile only depends on G/D at low G/D (curves for different
ReUG,G collapse), at high G/D the shape of the profile becomes dependent on both ReUG,G

and G/D. In the limit of high Re (but still laminar flow), we’d expect boundary layers
to shrink and the interactions between cylinders to disappear. In this limit, normalized
velocity in the gap center would approach unity and the velocity profile would resemble the
superposition of the profiles for two non-interacting cylinders. That is, a peak would occur
near each cylinder surface due to the velocity speedup that occurs even for flow around an
isolated cylinder, forming double-peaked velocity profiles in the gaps of the array. At the
highest G/D we studied, this is beginning to happen as the boundary layers around the
neighboring cylinders become distinct instead of merged. Thus, for this parameter space,
the velocity field between closely spaced cylinders exhibits fully overlapping boundary layers
and velocity profiles proportional to U0, while the flow fields for the highest G/D we studied
entered a different flow regime with a region of nearly constant velocity and low shear in
the middle of the gap, and an increasing dependence on ReUG,G.

Odorant concentration field

A representative series of odorant field snapshots is shown in Figure 2.5, from when the
odorant filament first reaches the array to when the bulk of the filament has advected far
beyond the array. High shear in the velocity field in the gap causes the filament to “bend”
around each cylinder of the array, distorting it significantly and transforming the stream-
wise concentration gradient in the original filament to a cross-stream gradient within the
gap. Concentration profiles in the gap over time are shown in Figure 2.6. As the filament
enters the gap, the profile is single-peaked, but because odorant becomes trapped in the
boundary layers around the cylinders, it develops a double-peaked shape as the bulk of the
filament advects past the array. The peaks near the sensors then diminish due to both
odorant flux and slow but persistent advection within the boundary layer.
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Figure 2.5: False-color renderings of odorant concentration in the vicinity of a cylinder
in the array at consecutive times indicated by values inside circles (milliseconds) for
ReUG,G = 3 (U0 = 2 cm/s), G/D = 2, D/L = 0.089. Spatial scale is the same as Figure
2.3, with D = 50 µm and L = 0.56 mm.

Concentration profiles for several other ReUG,G, G/D, and D/L are shown in Figure 2.7, all
at times near when peak flux occured (concentration field output was not saved exactly when
peak flux occured for all simulations). The profiles are double peaked for all cases except the
lowest ReUG,G tested (ReUG,G = 0.06), in which the gap velocity is slow enough that most
of the odorant filament is still in the gap when peak flux occurs. Concentration boundary
layer thickiness, defined as the distance from the cylinder surface to where concentration
equals 99% of the instantaneous peak value in the gap, reaches 78% to the center of the gap
in this case. This indicates that at very low ReUG,G, such as that of a P. argus return stroke
(Table 2.1), chemical interactions between odorant molecules and the aesthetasc cuticle are
likely to extend significantly into the gaps between hairs.
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Figure 2.6: Odorant concentration profiles over time across the gap for ReUG,G = 3 (U0 =
2 cm/s), G/D = 2, D/L = 0.089. Labeled times (milliseconds) correspond to those in
Figure 2.5.
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Figure 2.7: Odorant concentration profiles across the gap for various ReUG,G, G/D, and
D/L (labeled below each curve) at times near to when peak flux occured, where “near”
is defined as within the smallest time interval that contains 33% of the total flux Ftotal

for each simulation.

The corresponding time series of odorant flux into a cylinder of the array is shown in Figure
2.8. For comparison, a hypothetical time series of odorant concentration at the leading edge
of the array is also shown, determined from equation 2.1 as if the array were not there. In
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Figures 2.5, 2.6, and 2.8, time has been shifted so that t = 0 corresponds to when the leading
edge of the undisturbed odor filament reaches the leading edge of the array. The shape of
the flux time series is very nearly Gaussian like that of the odorant filament being sampled.
However, the flux time series is slightly wider than the concentration time series and there is
a slight amount of asymmetry around the centroid (not present in the undisturbed odorant
filament or hypothetical concentration time series), with slightly more odorant mass under
the right tail than the left. Note too the ~10 ms lag between concentration and flux due to
the slow velocity boundary layer around the cylinder; peak odorant flux (shortly before the
5th pane, 39 ms, in Figure 2.5) occurs long after the concentration peak of the filament has
passed by the cylinder.
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Figure 2.8: Time series of undisturbed odorant concentration at the cylinder’s leading edge
(dashed) and odorant flux into the cylinder (solid) for ReUG,G = 3 (U0 = 2 cm/s), G/D =
2, D/L = 0.089 with marked times (milliseconds) corresponding to frames depicted in
Figure 2.5.

Flux time series shape parameters

The signal filtering characteristics of the sensor array are represented by the differences in
shape of the unaltered incoming odorant filament and the flux time series output by the
array. These shape differences are especially important if one’s goal is to simply measure
microscale plume structure (e.g., with field instrumentation). We focus on three dimen-
sionless shape parameters: normalized duration (or width) wnorm, skewness, and excess
kurtosis, to quantify these differences. The duration of the flux time series w is defined as
the smallest time interval that contains 95% of the total odorant flux (equation 2.2), and
it is normalized to wnorm by using free-stream velocity U0 and filament width wfilament =
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0.56 mm (equation 2.3); this essentially compares the temporal duration of the flux time
series to the equivalent temporal duration of the undisturbed odorant filament as it advects
past in the reference frame of the array. Skewness and kurtosis of the flux time series are
determined by calculating normalized central moments of the flux time series f(t) according
to equations 2.4 and 2.5:

w = min(t2 − t1) |
ˆ t2

t1

f(t)dt = 0.95(Ftotal) (2.2)

wnorm = w/(wfilament/U0) (2.3)

skewness =
µ3

σ3
(2.4)

kurtosis =
µ4

σ4
− 3 − κ0 (2.5)

where

µk =
´

∞

−∞
(t−µ)kf(t) dt
´

∞

−∞
f(t) dt

µ =
´

∞

−∞
t f(t) dt

´

∞

−∞
f(t) dt

σ =
√

µ2

The skewness of the incoming Gaussian-linear odorant filament is zero, since it is symmetric,
and its excess kurtosis κ0 is about 0.01 (above the kurtosis of a pure Gaussian, equal to
3) due to the finite linear tails. We normalize the excess kurtosis (shortened to “kurtosis”
from here on) of the flux time series to that of the incoming filament by subtracting this
preexisting (though very slight) kurtosis.

A simulation is ended when the flux of odorant into the cylinder (the time series in Figure
2.8) has become sufficiently small. In practice, we found that the higher moments of the
flux time series, skewness and kurtosis, were very sensitive to the tails of this curve, and
convergence of these parameters to a maximum of 10% error was the determining factor in
how long a simulation was run for.
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2.2.3. Calculation of flux metrics

In addition to the three time series shape parameters outlined in Section 2.2.2, we examine
three metrics of flux, introduced in Section 2.1.2, that are more directly related to biological
odorant detection: peak flux, peak onset slope (or simply peak slope), and time-integrated
or total flux.

Peak flux is simply taken as the maximum value of the flux time-series (near t = 39 ms for
the simulation in Figures 2.5, 2.6, and 2.8). Peak onset slope is estimated by calculating the
time derivative of the flux time series using central differences, and taking the maximum of
this approximate derivative. Peak onset slope occurs nearest to t = 29 ms for the simulation
in Figures 2.5, 2.6, and 2.8. Total flux is calculated by integrating the flux time-series using
the trapezoidal approximation. In the solver, a CFL condition due to the explicit hyperbolics
limits the timestep to be very small relative to the timescale of flux variation, and flux data
points are very closely spaced (e.g., 45000 data points in Figure 2.8). Hence, the errors due
to the approximations used to calculate flux metrics are small compared to the error in the
flux time series itself.

For the outer values of the parameter space we covered, convergence of the flux metrics
(peak flux, peak onset slope, total flux) was investigated versus grid resolution at the finest
level of local refinement near the cylinder and the number of cells in each dimension was
doubled until a maximum of 10% difference between solutions was achieved. In addition
to grid resolution, the effects of the inflow and outflow boundaries were tested. This is
critical for low Re flows, when boundary effects can be extremely large (Loudon et al. 1994,
Lange et al. 1998). The domain length (in the streamwise direction) was repeatedly doubled
until a maximum of 10% difference between solutions was achieved. Once sufficient grid
resolutions and domain sizes were determined for the corners of the parameter space, the
most conservative values were chosen for all other combinations of parameters.

2.2.4. Dimensionless groups

Here we present a dimensional analysis of this problem. The variables of interest are the
three flux metrics:

Fpeak peak flux (mg m−1 s−1)
Fslope peak onset slope (mg m−1 s−2)
Ftotal time-integrated (total) flux (mg m−1)

Each flux metric depends on the following seven independent variables:
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U0 inflow velocity (m s−1)
D cylinder diameter (m)
G gap between cylinders (m)
ν kinematic viscosity of water (m2 s−1)
kD molecular diffusivity of odorant in water (m2 s−1)
C0 peak concentration of odorant filament (mg m−3)
L width of odorant filament (m)

Here we neglect the effect of approximating the Gaussian tails as linear, and assume the
odorant filament’s shape is determined solely by C0 and L. Since neither C0 or L were
varied in this work, odorant filament shape was constant in all simulations.

As each flux metric plus the seven variables that determine it sum to eight quantities
consisting of three dimensional units (mass, length, time), five dimensionless groups are
required to describe each flux metric. We choose the following normalizations to non-
dimensionalize the flux metrics:

F norm
peak =

Fpeak

C0kD
normalized peak flux

F norm
slope =

FslopeL2

C0k2

D

normalized peak slope

F norm
total = Ftotal

C0L2 normalized time-integrated (total) flux

And the following four dimensionless groups they depend on:

P eUG,G = UGG
kD

gap-based Peclet number

G/D gap to diameter ratio
D/L sampling fraction
ν/kD Schmidt number

The normalizations of the flux metrics are not intuitive, but were chosen for convenience:
because we did not vary C0, kD, or L, the effect of our normalizations is simply to scale
the dimensional flux metrics by the same amount across all simulations. If we had chosen a
more intuitive set of normalizations that utilized parameters we did vary (e.g., D, G, U0),
our results would be framed in a different context as they would represent a comparison to
another dynamically changing system (e.g., a type of virtual sensor) rather than mimicking
the behavior of the dimensional flux metrics. Although comparisons to a virtual sensor can
be useful since they normalize to theoretical limits, here we wanted to examine absolute
performance. However, our normalizations come with the caveat that C0, kD, and L must

be viewed as constants when interpreting trends in F norm
peak , F norm

slope , and F norm
total .
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We use a gap-based Peclet number P eUG,G to describe how much advection dominates
diffusion as odorant is transported within the array. We believe scaling with UG is more
appropriate than U0 since UG more directly describes the fluid dynamics near the sensors
where flux takes place. For the infinite arrays studied here this seems especially appropriate
because of the sometimes large increase in flow speed as fluid is forced through the array
gaps. The choice of G for a length scale is more arbitrary; D may be equally appropriate. In
addition to the relative importance of advection versus diffusion, P eUG,G can also describe
the interactions between cylinders. When P eUG,G is maximized via UG and G, there is fast
flow between distant cylinders, and when P eUG,G is minimized, there is slow flow between
close cylinders. Hence, one would expect boundary layer interactions (concentration and
momentum) between cylinders to be strong at low P eUG,G and weak at high P eUG,G, given
constant ν and kD.

G/D is an aspect ratio describing how sparse the array of sensors is, and like P eUG,G,
describes the interactions between cylinders in the array. Dense arrays are expected to
have overlapping boundary layers between cylinders, and as G/D increases the interactions
between cylinders diminish (see Figure 2.4). It is important to keep in mind that for infinite
arrays, denser arrays sampling at the same speed experience higher fluid velocities in the
gaps due to mass conservation, whereas denser finite arrays often experience lower gap
velocities due to lower leakiness.

D/L describes the size of the sensors compared to the thickness of the odorant filament.
One interpretation of D/L is the ratio of array volume to filament volume, or “sampling
fraction.” A high sampling fraction indicates that much or all of the odorant filament can
fit within the gaps of the array, while a low sampling fraction indicates that only a small
region of the filament is sampled at a given moment.

A similar dimensional analysis can be done for aspects of the fluid flow only, such as velocity
profiles and shear rates. This would yield a Reynolds number ReUG,G instead of P eUG,G,
and G/D as the two governing groups.

Note that because we did not vary the Schmidt number (Sc = 103 for small molecules in
seawater), P eUG,G and ReUG,G always differ by a constant factor of 1000 and Sc is omitted
from the analysis from here on. More data would be needed to understand how the functional
relationships presented in this work would change if the sensor arrays were operated in a
different fluid such as air.
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2.2.5. Parameter space

The objective of this work is to understand the effects of array geometry and sampling speed
on the flux time series generated by the array. To this end, we varied the sampling speed
U0, the gap between sensors G, and the diameter of each sensor D. Parameter ranges we
studied are summarized in Table 2.1 as “min tested” and “max tested,” along with values
known for two crustacean species, the mantis shrimp G. Falcatus (juvenile and adult) and
spiny lobster P. argus (adult).

For an infinite array of cylinders, the average fluid speed in a gap can easily be determined
in terms of the sampling speed from mass conservation:

UG = U0

(

1 + 1
G/D

)

The average gap velocity UG of an infinite array is always higher than the gap velocity of
a corresponding (same inflow velocity U0 and G/D) finite length array. This causes the
leakiness (see Section 2.1.2) of an infinite array, defined as UG/U0 = 1 + 1

G/D
, to always be

greater than unity. Koehl and coworkers noted a parameter range (ReU0,D = 10−2 – 101

and G/D = 1 – 15) in which leakiness of finite length arrays varied strongly from about
0.06 – 0.95 (Koehl 1992; 1996). It is likely that scalar transport also varies strongly in this
flow regime. Although infinite arrays cannot reproduce the low leakiness that finite arrays
can exhibit, both geometries may experience similar local flow in the immediate vicinities
of the cylinders, where flux occurs. To better match this local flow, one can use ReUG,G,
based on flow between cylinders, instead of the traditional ReU0,D. Koehl et al’s results can
be converted by multiplying their reported leakiness, ReU0,D, and G/D values to obtain
ReUG,G. The critical parameter range of finite arrays is then predicted to be ReUG,G = 10−3

– 101. Here, we varied G/D and U0 to achieve ReUG,G of 0.06 – 22 (Table 2.1), which falls
within the predicted critical range of biological importance.

2.2.6. Curve fits

The shape parameters wnorm, skewness, and kurtosis and flux metrics F norm
peak , F norm

slope , and
F norm

total were fit to the following five parameter power law function of P eUG,G, G/D, and D/L
(Sc is not included since it was not varied):

fitted value = M (P eUG,G)a (G/D)b (D/L)c + I (2.6)
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Table 2.1: Parameter ranges of this study and selected morphologies. An odorant filament width of L = 0.56
mm is assumed. Values for G. Falcatus based on measurements by Mead and Koehl (2000); UG calculated
as leakiness · U0. Values for P. argus from measurements by Goldman and Koehl (2001) and Reidenbach et
al. (2008). Parameters that differ between real, finite extent appendages (i.e., measurements) and our infinite
array models are labeled as such.

U0

(cm s−1)
finite

ReU0,D

finite

D
(µm)

G
(µm)

G/D UG

(cm s−1)
ReUG,G U0

(cm s−1)
infinite

ReU0,D

infinite

P eUG,G D/L

min tested - - 10 10 1 0.24 0.06 0.12 0.03 60 0.018

max tested - - 50 500 10 40 22 20 2 22000 0.089

G. Falcatus

juvenile return
1.2 0.12 10 103 10.3 0.3 0.32 0.27 0.027 319 0.018

G. Falcatus

juvenile flick
2.5 0.26 10 103 10.3 1.5 1.6 1.4 0.014 1593 0.018

G. Falcatus

adult return
3.9 0.80 20 96 4.8 0.98 0.96 0.81 0.16 965 0.036

G. Falcatus

adult flick
7.8 1.6 20 96 4.8 3.5 3.5 2.9 0.58 3474 0.036

P. argus

adult return
2 0.5 20 100 5 0.01 0.01 0.0083 0.0017 10 0.036

P. argus

adult flick
9 2 20 100 5 0.24 0.24 0.20 0.040 240 0.036
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The fits were performed in MATLAB (2010a, The Mathworks, Natick, MA) using the non-
linear least-squares optimization function lsqnonlin() in the Optimization Toolbox. Since
the magnitude of the flux metrics was typically about 10−8, to avoid numerical precision
problems, the data were rescaled temporarily when necessary to perform the curve fitting.
Since negative values for F norm

peak , F norm
slope , and F norm

total would be physically impossible, we
constrained I for these fits to be non-negative, but did not constrain I for wnorm, skewness,
or kurtosis.

2.2.7. Predictions for real olfactory appendages

Our model allows us to predict aspects of the signal distortion (i.e., wnorm, skewness, and
kurtosis) introduced by real olfactory antennules. To mitigate the differences between our
infinite array model and real finite arrays, we limited ourselves to species for which the
gap velocity between aesthetascs is known or can be estimated from published data so that
we could calculate the appropriate P eUG,G. Gap velocities for the adult spiny lobster P.

argus were obtained from measurements of velocity fields around the aesthetascs of physical
models (Reidenbach et al. 2008), and for the juvenile and adult mantis shrimp G. falcatus

by multiplying published leakiness and freestream velocity values, also obtained using phys-
ical models (Mead and Koehl 2000). We used these gap velocities together with published
measurements of aesthetasc diameter and gap width (Mead et al. 1999, Goldman and Koehl
2001) to estimate P eUG,G, G/D, and D/L for these real olfactory hair arrays sampling a 0.56
mm odor filament. We then predicted the duration w of the flux into aesthetascs during the
rapid downstroke or outstroke using the power law equation for wnorm described in Section
2.2.6 and the definition of wnorm given in Section 2.2.2. Skewness and kurtosis for P. argus

and G. falcatus inspired infinite arrays were also predicted using our curve fits.

2.3. Results and discussion

2.3.1. Flux time series distortion

The ranges of the flux time series shape parameters over our parameter space give an
overview of the signal filtering properties of the sensor arrays. Normalized durations (wnorm)
of the flux time series range from 1.0 – 1.5 over the parameter space we investigated (Table
2.2). Since the lower limit of wnorm is not very different from unity, the effect of the array
over this parameter range is to either broaden the sampled filament or leave its temporal
width essentially unchanged. All skewness values of the flux time series are positive (range
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2.9E-4 – 1.0, Table 2.2), indicating that the tail of the flux time series is always “heavier”
than the lead-in to some degree. Kurtosis varies from nearly zero (minimum -0.08, Table
2.2) to higher than the nearly Gaussian odorant filament (maximum 2.9) at high P eUG,G,
G/D, and D/L. Thus although these arrays only seem capable of increasing the perceived
width of the sampled filament, they can simultaneously make it appear more “peaked.”

Table 2.2: Power law regressions of flux time series shape parameters and flux metrics.
fitted value = M (P eUG,G)a (G/D)b (D/L)c + I Ranges of predicted values across the pa-
rameter space are also given. kD, C0, and L should be treated as constant due to our
normalization method for the flux metrics.

fitted value a b c M I R2 min max
wnorm 0.30 0.48 1.7 0.54 0.99 0.993 1.0 1.5

skewness 0.52 0.39 1.8 0.20 -0.011 0.982 2.9E-4 1.0
kurtosis 0.93 0.27 2.2 0.033 -0.091 0.984 -0.08 2.9
F norm

peak 0.32 -0.5 -0.068 2.89 2.2E-14 0.992 9.6 52
F norm

slope 1.3 -1.2 -1.1 3.3 2.3E-10 0.997 2.1E4 1.4E7
F norm

total -0.68 0.26 0.99 4.4 2.4E-5 0.996 1.8E-4 0.013

The power laws summarized in Table 2.2 appear to fit the data well, with the lowest R2 value
being 0.982. The curve fits indicate that wnorm, skewness, and kurtosis all display direct
relationships with P eUG,G, G/D, and D/L. All three shape parameters are most sensitive
to the sampling fraction D/L with approximately quadratic dependence, indicating that
for flux time series shape, the interplay between array geometry and filament structure is
more important than parameters only describing the sensor array (P eUG,G and G/D). This
is consistent with the ability of these arrays to sample fine scale plume structure, since a
strong relationship between plume structure and the flux time series would be necessary to
do so, as opposed to the flux time series being mostly determined by the properties of the
array alone.

As an odorant filament is advected through the array, a portion of odorant mass appears
to become trapped in the low-velocity boundary layer around each cylinder of the array
(Figure 2.3) for a relatively long period of time (Figure 2.5). Hold-up of odorant could
cause the delay in peak flux, broad width, and positive skewness we often see in the flux
signal. Our flux time series, which would always be essentially Gaussian if not for the
physical presence of the array, bear some resemblance to concentration time series measured
at a point in many tracer release experiments, in both laminar and turbulent shear flows,
that are designed to test theories of shear (Taylor) dispersion (Young and Jones 1991). In
these studies, the unexpected skewness is often attributed to scalar trapping in the viscous
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sublayer near boundaries or dead-zones in the flow such that insufficient time has occurred
for complete transverse mixing, violating a necessary condition for Taylor’s approximation.
We can make a similar argument here: If the time required for odorant molecules to traverse
the gap via diffusion was very small compared to their residence time within the gap, then
we would expect a Gaussian-shaped flux time series, as the array would act as a rapid and
complete sink for the incoming Gaussian concentration profile. However, if we take the

ratio of odorant residence time D/UG to the diffusion timescale
(

1
2
G

)2
/kD (this ratio is

equivalent to 4 (P eUG,G)−1 (G/D)−1), we find that this quantity is indeed much less than
unity for our entire parameter space (max 0.07). This indicates that transverse mixing via
diffusion in the gap is by no means complete. Instead, a large fraction of odorant mass
appears to pass through the gap un-sensed, while the remainder is trapped in the boundary
layer around and directly behind each cylinder and diffuses inside.

2.3.2. Flux metrics

Table 2.2 summarizes the power law fits of F norm
peak , F norm

slope , and F norm
total to P eUG,G and G/D

and D/L, with excellent fits indicated by the high R2 values. Interestingly, our dependence

of F norm
peak on the Peclet number (∝ P e

1/3
UG,G) is the same as the dependence of steady state

scalar flux on P e for an isolated sphere at Re = 0.1, given by Friedlander (1957). This
suggests that a pseudo-steady state approximation might be valid for the case of unsteady
sampling of an odorant filament, since a 0.56 mm filament is much larger than 10 - 50 µm
aesthetascs.

The exponents in Table 2.2 indicate that F norm
peak and F norm

slope both increase with P eUG,G and
decrease with G/D and D/L, with the strength of the dependencies being higher for F norm

slope

than for F norm
peak . Peak slope is intuitively expected to be more sensitive than peak flux

because it is a property of the derivative of the flux time series versus the time series itself.
F norm

total displays the opposite trends, decreasing with P eUG,G and increasing with G/D and
D/L. The physical interpretations of the non-dimensional groups can help explain these
trends, although we caution that due to our normalization method (Section 2.2.4), kD, C0,
and L should be treated as constants. In particular, D/L should be interpreted as the effect
of varying D only so that trends in F norm

peak , F norm
slope , and F norm

total accurately represent trends in
the absolute performance metrics Fpeak, Fslope, and Ftotal.

The gap Peclet number P eUG,G combines aspects of array geometry (G) and sampling kine-
matics (UG) with scalar diffusivity (kD) to represent the relative importance of advective to
diffusive transport of odorant within the array. Since F norm

peak and F norm
slope occur at instants in

time, to obtain high values it is most important to bring the peak of the filament close to
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the sensor surface, via advection, so that the final diffusive step may occur rapidly. Diffusive
transport decreases peak slope and peak flux by smoothing peaks in the concentration field
before they reach the sensor. This is in agreement with the experimental work by Moore
et al (1991a) on the odorant sampling properties of the various chemosensory appendages
of the clawed lobster H. americanus; slower flow in the immediate vicinity of the sensory
hairs caused lower peak concentrations and larger widths of the odorant pulse they were
exposed to compared to the original free-stream pulse. Oppositely, F norm

total is increased by a
lower P eUG,G transport regime in which diffusion becomes more important. This is because
signal smoothing is inconsequential to total flux, and the effects of diffusion integrated over
the sampling event bring more odorant molecules to the sensor surface than would occur at
high P eUG,G.

G/D represents the sparsity of an array of sensors. As seen in Figure 2.4, denser infinite
arrays with low G/D have generally steeper, more parabolic velocity profiles than sparse
arrays, and achieve higher velocity speed-ups in the gap relative to the freestream velocity.
Arrays at low G/D experience a relatively high shear rate over most of the gap, causing the
odorant filament to undergo more stretching around the sensors compared to arrays at high
G/D. This moves more of the central odorant peak close to the sensor surfaces, resulting
in the higher F norm

peak and F norm
slope that we see at low G/D. However, the higher shear at low

G/D also results in lower F norm
total , a tradeoff for which we do not have a detailed explanation.

D/L, the sampling fraction, represents the ratio of sensor size, or streamwise array width,
to filament width. The sampling fraction describes how much of the filament is sampled
at any instant in time and the extent to which spatial integration over a sensor results in
the loss of information contained in the plume structure. However, increasing D/L via D
also acts to increase the surface area available for flux, allowing more odorant molecules
to be captured. D/L can thus describe a tradeoff between array surface area and signal
smoothing. Consequently, F norm

peak displays only a slightly negative correlation with D/L, the
effects of spatial integration largely offset by increased surface area. On the other hand,
F norm

slope is somewhat decoupled from the magnitude of odorant flux since F norm
slope is a property

of the time series’s temporal derivative. Hence, surface area does not directly affect peak
slope and it is inversely related to sampling fraction due to the signal smoothing effect. In
contrast to the peak metrics, F norm

total increases with D/L (i.e., as D increases) because more
odorant molecules in the filament can be captured at any moment (the filament becomes
narrow relative to the array) and signal smoothing does not adversely impact F norm

total since
it is a time-integrated quantity.
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2.3.3. Application to real olfactory arrays

Signal distortion

Table 2.3 summarizes the predicted flux time series shape parameters for the antennules
of the spiny lobster P. argus and the juvenile and adult stages of the stomatopod G. fal-

catus. The normalized duration of flux wnorm is nearly unity for all cases, indicating that
these chemosensory hair arrays do not distort the observed temporal width of the filament.
Similarly, the flux time series generated by these arrays are predicted to introduce almost
no skewness or kurtosis compared to the original odorant filament shape. Even though the
antennules of spiny lobsters and mantis shrimp distort the spatial structure of an odorant
filament at the scale of the aesthetascs by physically intercepting it, the predicted flux time
series is still an excellent representation of the filament’s original structure. Thus, if low
signal distortion is desired, the antennules of P. argus or G. falcatus seem to be reasonable
starting points for the design of an artificial sensor array tasked with sampling small-scale
turbulent plume structure in water.

The strongest predictor of signal distortion is D/L (Section 2.3.1). Therefore, using very
small sensors is expected, not surprisingly, to greatly enhance the ability of an artificial nose
to measure fine-scale plume structure. Individual sensors as small as the Batchelor scale (the
spatial scale of the smallest chemical fluctuations, O(10 µm) in typical benthic boundary
layer flows) are within reach given current technological trends (James et al. 2005).

Flux metrics

To summarize the trends in Section 2.3.2, a high P eUG,G, low G/D, low D/L array will
generate a sharp (high onset slope) time series with a high peak flux, but will detect fewer
odorant molecules in total. This trade-off may have important neurobiological consequences,
since olfactory neurons respond more strongly (i.e., exhibit higher spiking frequency) to more
concentrated odorant pulses (Gomez and Atema 1996a) but likely also require a certain
threshold Ftotal to respond at all, though the threshold might be quite low. Similarly, Liao
and Cowen (2002) suggest that the sensors of an engineered plume-tracing agent should be
capable of sampling both sharp gradients and very low concentrations; our results suggest
that these properties may be mutually exclusive.

Recently, Page et al (2011a) found that upstream movement by plume-tracking crabs is
well predicted, in a binary fashion, by antennular encounters with peak odorant filament
concentrations above a certain threshold. In our model of crustacean aesthetasc arrays, peak
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flux of odorant into aesthetascs is proportional to peak concentration; hence, a high peak flux
might be required for upstream movement. Although odorant flux is affected by both plume
structure and how the plume is sampled, F norm

peak varies over less than an order of magnitude
over our entire parameter space (Table 2.2) of array geometries and sampling speeds. The
greater dependence of peak flux on C0 (linear) than on array properties is echoed by the
power law exponents for F norm

peak in Table 2.2, whose absolute values are all substantially less
than unity. Furthermore, the minimum concentration in a turbulent plume is essentially
zero, resulting in a huge dynamic range of sampled concentrations as an animal flicks its
antennules. Peak flux may therefore be mostly determined by plume structure, and if it is
only important in a binary fashion, an organism’s (or robot’s) plume tracking performance
might not be sensitive to its precise morphology and sampling kinematics.

Flux time series duration

The duration of the flux time series is an important quantity because it determines approx-
imately how long olfactory neurons or chemical sensors are exposed to odorant during a
sampling event. Here we focus on the biological implications with some concluding remarks
on artificial systems.

Olfactory neurons require a certain period of stimulation to detect and quantify an odorant.
For example, antennule olfactory neurons of Homarus americanus, the clawed lobster, need
50 ms of exposure to an odorant to detect it and 200 ms to measure its concentration
(Gomez and Atema 1996a). On the other hand, adaptation (decreased response to the
odorant) acts to diminish the effect of odorant flux at long exposure time; H. americanus

olfactory neurons begin adapting to a stimulus in as little as 300 ms (Gomez and Atema
1996a). The relatively narrow range between the stimulus integration time of 200 ms and
the beginning of adaptation at 300 ms means that lobster olfactory neurons may be tuned
to a fairly precise duration of stimulation. Indeed, this time window matches the flicking
frequency of H. americanus antennules, 4 – 5 Hz (Gomez and Atema 1996b).

Koehl et al showed that for a real P. argus antennule sampling a real turbulent dye plume,
the spatial pattern of the chemical filaments in the aesthetasc array at the end of a flick
is retained during the return stroke and inter-flick pause (Koehl 2001b). It has been hy-
pothesized that in antennule-flicking crustaceans like lobsters, the slow return stroke and
inter-flick pause enhance odorant flux by trapping odorant within the array and allowing
more time for diffusion, and presumably stimulation of neurons, to occur (Mead et al. 1999,
Mead and Koehl 2000, Goldman and Koehl 2001, Reidenbach et al. 2008). To investigate
this idea, we predicted (see Section 2.2.7 for details) the durations of odorant flux, and
thus neural stimulation, during the outstroke and downstroke of G. falcatus and P. argus,
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respectively (Table 2.3). Note that predictions for P. argus are extrapolated outside the
convex hull of our parameter space (P. argus was originally an end member of a parameter
space based on ReU0,D). Also included in Table 2.3 are w and wnorm predicted by Stacey et
al (2002), using velocity profiles measured around aesthetascs of dynamically-scaled phys-
ical models of antennules of G. falcatus. Values in Table 2.3 were visually estimated from
plots of their flux time series. The differences between the predictions of Stacey et al and
this study may be due to substantially different modeling approaches as well as our infinite
array approximation. Although we define our G. falcatus and P. argus cases using ReUG,G

based on measurements in an attempt to account for differences in how infinite versus finite
arrays operate (see Section 2.2.5), we are currently exploring these differences further with
simulations of sensor arrays of finite extent.

Table 2.3: Predicted durations and shape parameters of flux time series for P. argus and
G. falcatus during the rapid downstroke or outstroke, respectively, for both this study
and the work of Stacey et al. (2002). Italicized values are extrapolated.

w (ms) wnorm skewness kurtosis

Stacey et al

juvenile
G. falcatus

40 1.00 NA NA

adult
G. falcatus

12 0.94 NA NA

this study

juvenile
G. falcatus

41 1.0 0.0054 -0.083

adult
G. falcatus

20 1.0 0.053 -0.026

adult
P. argus

6.3 1.0 0.0091 -0.0864

Our results indicate that for a 0.56 mm odorant filament, it only takes about 6 ms for
P. argus chemosensors sampling at the downstroke velocity to achieve maximum total flux
(Table 2.3). For mantis shrimp we predict maximum total flux in 41 and 20 ms for juvenile
and adult stages, respectively, while Stacey et al predict 40 and 12 ms. These flux durations
are worth comparing to both the duration of the actual downstroke or outstroke movement,
since this study and Stacey et al effectively assume an infinitely long sweep through the
water but real flicks do not continue forever, and the stimulus integration times of olfactory
neurons, as discussed above.
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In reality, P. argus takes approximately 150 to 200 ms to complete the flick downstroke
(Goldman and Koehl 2001), and G. falcatus (juvenile and adult) takes about 33 ms for the
outstroke (Mead et al. 1999). Therefore, P. argus can certainly completely sample a 0.56
mm odorant filament during the downstroke, but in the case of G. falcatus the length of
the downstroke may be limiting, especially for juveniles. Failure to intercept an entire odor
filament would decrease total flux but not necessarily affect the ability to capture peak slope
or peak flux.

Unfortunately there are no data on the stimulus integration times of P. argus or G. falcatus

olfactory neurons, so we refer to the values for H. americanus here (i.e., 50 ms of stimulation
needed for detection and 200 ms for quantification). These neural processing timescales are
generally longer than the predicted flux durations for G. falcatus and especially P. argus.
Therefore, the return stroke and inter-flick pause are indeed likely to be important to these
animals by allowing ample time for neural stimulation to occur, as long as some odorant
remains trapped in the array during these phases. The rapid advection of odor filaments
through the aesthetasc arrays of P. argus and G. falcatus means that the width of a 0.56
mm odorant filament is unlikely to be measured via the duration of flux.

Over our entire parameter space, we observed flux durations (w) from 3 to 470 ms. Although
the upper end is within the detection limits of crustacean olfactory neurons, we cannot
predict leakiness with our infinite array model, and this is likely to be a critical factor in the
performance of real sensor arrays as it determines how much of an odorant patch can enter
a finite array. Since our arrays could only stretch the temporal width of the original odorant
filament by a maximum factor of 1.5 (max wnorm, Table 2.2), the longer flux durations we
observed were mainly due to slower sampling speeds than are the case for P. argus or G.

falcatus flicks (e.g., 470 ms corresponds to the P. argus return stroke). We suspect that in
reality, the cost of dramatically decreased odorant access at these sampling speeds would
outweigh any advantage of increased flux duration.

It is useful to examine these flux durations in the context of diffusion of odorant through
the aesthetasc cuticle. Although we assume a constant surface concentration of zero on each
aesthetasc, it is likely that diffusion and/or consumption of odorant inside the aesthetasc
will continue for some finite time. The diffusion depth for odorant into an aesthetasc is
on the order of

√
2kDt, assuming a diffusivity equal to that of odrant in water; diffusion

through aesthetasc cuticle is likely to be slower than this estimate, and dependent on the
molecular weight of the odorant (Derby et al. 1997). A flux duration of 3 ms (lowest across
our parameter space) thus corresponds to a diffusion depth of about 2.4 µm while a flux
duration of 470 ms (highest across our parameter space) corresponds to a diffusion depth
of about 31 µm. Hence, since the cuticle is typically 0.5 - 1 µm thick (Grunert and Ache
1988, Mead and Weatherby 2002), odorant / dentritic receptor interactions don’t seem to
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be confined to either being purely surface phenomenon or volumetric phenomenon over a
biologically relevant parameter space.

We focus on the information a plume tracking agent receives via the flux time series gen-
erated by the sensor array as a whole. However, odorant filament structure could also be
inferred via spatial differences in flux throughout the array. For example, a filament’s width
could be estimated this way if it were oriented perpendicularly to the row of sensors. It is
not known whether lobsters or mantis shrimp can use the spatial concentration distribution
along an antennule to measure filament width; this depends in part on how signals from
individual aesthetascs are aggregated via neural convergence. Nonetheless, in principle, a
bio-inspired olfactory antennule could measure filament structure using both spatial and
temporal information from its array of sensors.

The response times of most engineered chemical sensors currently in use are also too
slow to resolve brief odorant bursts in either air or water (Ishida and Moriizumi 2004,
Nakamoto and Ishida 2008, Vlasov et al. 2010). Hence, we face a similiar problem as crus-
taceans in translating temporal flux signals to high resolution odorant concentration maps,
and analysis of spatial response data seems the more promising route if such maps are
desired. The external location and morphology of olfactory antennules seems to facilitate
spatial sampling, but artifical noses generally have a long way to go for this to be possible.
The sampling systems of most electronic noses are quite ungainly, often employing separate
“preconcentrators” that collect odorant mass from a bulk fluid sample and then relay it to
the actual sensors (e.g., via adsorption and subsequent desorption) (Settles 2005). Not only
are such sampling methods slow, but they obliterate any fine-scale plume structure. Crus-
tacean aesthetasc arrays might be an elegant solution, as the sampling kinematics and dense
hair spacing may faciliate odorant detection by slowly-responding sensors (via odorant trap-
ping during the return stroke and pause), while the array-like morphology simultaneously
may allow for direct spatial sampling.

2.4. Summary

To sample fine-scale turbulent plume structure using physical contact sensors, an array of
closely spaced, small sensors is needed. However, as a small-scale sensor array samples a
plume, the physical presence of the sensors necessarily results in distortion of the original
plume structure. We found that signal distortion increases with each of the three dimen-
sionless groups that characterize this problem (P eUG,G, G/D, and D/L).

Flux-detecting olfactory sensors transduce spatial properties of odorant filaments into tem-
poral properties of flux time series. We found that peak properties (peak flux, peak onset
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slope) of the flux time series are maximized by advection-dominated transport (high P eUG,G)
between densely spaced (low G/D), thin (low D/L) sensors, while total flux is minimized
by this sampling regime.

Since signal distortion is most sensitive to the sampling fraction D/L, flux-detecting chem-
ical sensor arrays for use underwater should incorporate the smallest sensors possible if
distortion is to be minimized. However, our analysis of trends in peak flux metrics and total
flux indicates that preservation of odorant filament “sharpness” and the ability to measure
very low concentrations may be mutually exclusive design goals.

For chemical sensor arrays inspired by the specific morphologies and sampling kinematics
of the spiny lobster P. argus and the mantis shrimp G. falcatus, the shape of a sampled
odorant filament appears to be preserved quite well in the flux time series. However, our
results also imply that the olfactory neurons of these species probably cannot detect the
brief flux event resulting from interception of a single 0.56 mm odorant filament arriving
parallel to the antennule. Current chemical sensing technology is similarly constrained.
This suggests either that spatial differences in flux across the aesthetasc array are utilized
by animals, or that malacostracan crustaceans (and bio-inspired robots) simply might not
require such highly detailed information to track turbulent odorant plumes.
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3. Finite Arrays

3.1. Introduction

Many animals have small-scale hair-bearing appendages that are used for locomotion, feed-
ing, and chemical sensing. A common feature of such appendages is that they operate in
a relatively low-Reynolds number (Re) flow regime. At the fluid velocities and geometric
scales of these organs, fluid inertia is either balanced or exceeded by viscous forces. In
such flow regimes, non-intuitive behavior can be commonplace; for example, the feeding
appendages of copepods were once thought to act as particle filters due to their morphol-
ogy, but observations have shown that they sometimes act as paddles, pushing the water
surrounding food particles and resulting in other mechanisms of food capture (Koehl 1995).
The primary motivation of this work is the capture of scent molecules from the ambient fluid
by the antennules of marine crustaceans, which also typically occurs in such transitory flow
regimes. While previous studies have focused on only the flow of water through olfactory
appendages, this work seeks to directly quantify odorant detection over a comprehensive
parameter space for both an entire appendage as well as locally within an array of sensory
hairs.

In the environmental conditions commonly encountered by marine crustaceans, odor com-
pounds released into the water form spatially and temporally complex plumes. These tur-
bulent plumes consist of concentrated filamentous structures interspersed with clean fluid
(Crimaldi and Koseff 2001, Webster et al. 2003, Crimaldi and Koseff 2006). Sampling such
odor filaments is critical to many marine crustaceans in the location of food, suitable habi-
tats, and conspecifics. How animals perceive their odor landscape, however, is mediated by
the small-scale fluid dynamics near their olfactory appendages.

This work focuses on arrays of hair-like structures called aesthetascs that are borne on
one of the filaments of the antennules of many aquatic malacostracan crustaceans (e.g.,
crayfish, crabs, mantis shrimp, lobsters). The aesthetascs are tens of microns in diameter
and contain the dendrites of hundreds of olfactory neurons enclosed by a thin, permeable
cuticle (Gleeson 1982, Spencer and Linberg 1986, Laverack 1988, Grunert and Ache 1988,
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Hallberg et al. 1992, Atema 1995, Mead and Weatherby 2002). Although there are many
other chemosensory structures on these animals, the aesthetascs are the most well studied
and play an important, though not crucial, role in olfaction-mediated behaviors such as
plume tracking (Grasso and Basil 2002, Keller et al. 2003, Horner et al. 2004).

The aesthetasc-bearing branches of the antennules are typically flicked back and forth
through the water as an active sampling mechanism. Since the “no-slip” condition dictates
that the relative fluid velocity is zero along the entire surface of the sensory appendage, rela-
tively thick boundary layers are always present around the aesthetascs due to their small size
(Koehl 1996). The thickness of the boundary layers around each hair determines how much
fluid moves through the gaps between hairs, versus around the array as a whole. Cheer and
Koehl (1987b) have quantified this flow feature with “leakiness,” which is the ratio of the
volume of fluid that flows between neighboring hairs in a unit of time to the volume of fluid
that would flow through the same area if the hairs were not there. Equivalently, leakiness
can be defined as the ratio of the average fluid velocity in the gap between neighboring hairs
to the freestream velocity.

Flicking reduces boundary layer thickness, increases leakiness (Koehl 1992, Mead and Koehl
2000, Koehl 2001b, Reidenbach et al. 2008), and facilitates odorant penetration into dense
arrays of aesthetascs (Koehl et al. 2001, Mead et al. 2003, Koehl 2006). Furthermore, the
movement is asymmetric: the faster downstroke or outstroke exhibits high leakiness while
the slower return stroke and inter-flick pause exhibit low leakiness. This transition in flow
regimes can critically affect the functioning of an olfactory appendage because it deter-
mines odorant access into the spaces between sensory hairs of the array (Koehl et al. 2001).
However, few studies (Stacey et al. 2002) have explicitly quantified odorant transport to
olfactory hair arrays; most have relied on leakiness and other fluid-based surrogates to infer
odorant sampling performance. Although odorant acts as a passive scalar whose behavior is
determined by the velocity field, the relationship between the two can be complex, especially
for unsteady processes such as plume sampling.

During an odorant sampling event (a flick of the antennule through an odorant plume, e.g.,
Koehl et al. 2001), odorant molecules are transported via advection to the vicinity of an
aesthetasc, reach the aesthetasc surface via molecular diffusion through the concentration
boundary layer (e.g., Moore et al. 1991a), diffuse through the permeable cuticle into the
lumen of the aesthetasc (e.g., Derby et al. 1997), and finally diffuse to and bind to receptor
proteins on the outer dendritic segment of an olfactory neuron (e.g., Grunert and Ache
1988). We assume that these neurons act as odorant flux detectors such that that the
rate of odorant molecule arrival to the receptors affects the signal that is output from the
neuron, encoded as a series of action potentials or “spikes” (Kaissling 1998, Rospars et al.
2000). Thus, our principle interest is in the time-varying flux of odorant into an aesthetasc,
integrated over the cylindrical aesthetasc surface. For simplicity, hereafter we refer to the
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surface-integrated quantity as “odorant flux.” We computed odorant flux for both individual
hairs as well as summed over the entire array of hairs, which we refer to as “aggregate flux.”

Here, we model flow around and odorant transport to simple rows of finite numbers of
olfactory hairs, oriented in crossflow, as they intercept single odorant filaments. We build
on the model of Cheer and Koehl (1987b), which included fluid flow around a pair of
cylinders, the experimental work of Hansen and Tiselius (1992) on flow around more than
two cylinders, and the model used in Chapter 2 of this work, which examined both flow
and odorant transport to infinite arrays of cylinders but did not account for variations in
leakiness or number of hairs. Accounting for variations in number of hairs is important
because of the large range found in nature, from less than ten along the antennule of the
juvenile mantis shrimp G. falcatus (Mead 2002) to a few thousand in the spiny lobster P.

argus (Gleeson et al. 1993). The present work covers a detailed range of array widths from 2
to 15 hairs, and quantifies aspects of odorant flux that may be neurobiologically important
(as detailed in Chapter 2). We focus on the following objectives:

• assess how well leakiness predicts odorant flux

• quantify variations in leakiness and aggregate flux to the entire array as sampling
speed and geometry vary, particularly number of hairs

• quantify variations in leakiness and odorant flux locally within the arrays

3.2. Methods

3.2.1. Overview

We used numerical simulations to model the flow of seawater (kinematic viscosity ν ≈
9.4·10−6 m2 s−1) around rows of cylinders D = 25 µm in diameter, as well as the advec-
tion and diffusion of low molecular weight odorant molecules (molecular diffusivity kD ≈
10−9 m2 s

−1
) to the cylinders, at biologically relevant flow speeds (e.g., similar to the flick

and return speeds of crustacean olfactory antennules, modeled as steady flow as an approxi-
mation to real flicking behavior). Our simplified odorant plume consists of a single filament,
Gaussian in streamwise cross section, oriented parallel to the array. Although it is possible
to numerically model an array of sensors moving through water containing an odorant fila-
ment, it is typically much simpler to model the equivalent problem of water containing an
odorant filament moving past a stationary array of sensors. This allows the computational
grid to remain fixed in time, and is the approach employed here.
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Figure 3.1: Computational domain for N = 4. Dashed circles represent the other half of
the array which is not explicitly modeled due to symmetry. Distances are not to scale;
actual odor filament is about 1 mm wide (streamwise) and initialized far ahead of the
array, and actual domains are extremely large relative to the scale of the arrays. Circled
letters correspond to important sources of error discussed in Section 3.2.4.

The steady fluid flow field for such geometry is set by three dimensionless numbers: a
Reynolds number (Re = U0D/ν) based on inflow velocity U0 and cylinder diameter D, the
gap to diameter ratio G/D of the array, and the number of cylinders N . Since in the case
of laminar flow, the flow is symmetric about the center of the row, we explicitly modeled
half the row and used the appropriate boundary conditions to enforce symmetry. A sketch
of the computational domain for N = 4 is shown in Figure 3.1; for odd N , only half of the
center cylinder was explicitly modeled. We varied three parameters: U0 (from 0.375 - 15.0
cm/s), G (from 25 - 250 µm), and N (from 2 - 15), concentrating the most effort in resolving
variation versus N , as of the three, this parameter has received the least attention in the
literature thus far. Not every possible combination of the three parameters was tested;
instead, we focused more simulations on regions of the parameter space that exhibited
interesting (non-monotonic or transitory) behavior.

We present our results primarily in terms of U0 and G but often list the corresponding
dimensionless Re and G/D to simplify interpretation. Although the two could indeed be
interchanged without error when discussing trends in non-dimensional leakiness, one cannot
do the same (i.e., generalize observed trends versus U0 and G to trends versus Re and G/D)
with the dimensional metrics of odorant flux introduced in Section 3.2.3. Table 3.1 lists the
correspondences between the dimensional and dimensionless parameters.
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Table 3.1: Correspondences between varied parameters and Re and G/D.

U0 (cm/s) Re

0.375 0.1
0.749 0.2
1.87 0.5
3.75 1
7.49 2
15.0 4

G (µm) G/D

25 1
80 3.2
125 5
250 10

3.2.2. Numerics

Initial and boundary conditions

Before starting the simulation of unsteady odorant advection and diffusion, we first solve
for the steady fluid flow field around the array of hairs. The flow is forced by a uniform
speed of U0 at the inflow face; this is equivalent to the array steadily moving through still
fluid at U0. A no-slip condition was imposed on the surfaces of each hair. The fluid leaves
via an open boundary condition on the right domain face. The top and bottom faces are
free-slip solid walls. The bottom wall simply maintains symmetry of the flow between the
two halves of the array. Although we wish to model flow in an unbounded domain, a top
wall is needed to compute a numerical solution. We therefore increased the domain height
until the solution converged to within reasonable accuracy; see Section 3.2.4 for details.

Once the steady velocity field was determined, the odorant concentration field was initial-
ized. We introduced a simple filament-like region of odorant some distance ahead of the
array, where the flow was nearly uniform. The filament is a 1D Gaussian in the stream-wise
direction except near the end, where it smoothly transitions to a 2D Gaussian that decays
in both the stream-wise and cross-stream directions (Figure 3.1). We cut off the filament in
this way because it could not be represented on the coarsest mesh in the far-field (Section
3.2.2), and to avoid sharp discontinuities that pose numerical problems. Since we wish to
model an infinitely long odorant filament that already exists in the bulk fluid as it is inter-
cepted by the array, both the vertical height of the filament and the distance between the
initialized filament and the array were tested to ensure that the solution was unaffected by
these values; see Section 3.2.4 for details. The filament was chosen to be L = 0.56 mm wide
(we assume “width” to equal the smallest interval that contains 95% of the total odorant
mass in the filament; this corresponds to a filament standard deviation σf of 0.14 mm). This
is the same as in the simulations of Chapter 2 and in the same range as the 1 mm wide odor
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filaments used in a previous study of mantis shrimp odorant capture (Stacey et al. 2002),
although odorant patches in water as small as 0.2 mm have been measured (Moore et al.
1992). A peak concentration of 1 mg/L was chosen arbitrarily, as the solution to the linear
advection-diffusion equation will simply scale with this value.

Molecular diffusion causes the peak concentration of the odorant filament to decrease and
its width to increase as it advects toward the array. Since the filament moves at different
speeds depending on U0 and needs to be initialized further ahead of the array at low Re
versus high Re due to larger flow disturbances, we normalized the filaments such that they
would all be identical (0.56 mm wide and 1 mg/L peak) by the time they reached the arrays,
neglecting physical interactions with the arrays. This was done by initializing the stream-

wise standard deviation as σ0 =
√

σ2
f − 2kD∆t, where σf = 0.14 mm and ∆t is the time

it takes for the filament to advect from its starting position to the center of the array, and
initializing the peak concentration as C0 = Cf · σf /σ0, where Cf = 1 mg/L.

Boundary conditions for odorant are similar to those for velocity. Odorant-free water is
introduced at the inflow face, and the outflow face is “open,” with a stream-wise gradient in
odorant concentration of zero imposed. The insulated wall bisecting the array again enforces
symmetry in the odorant concentration field, while the top wall is a practical requirement
whose spurious effects must be minimized (Section 3.2.4).

This study focuses on the physical processes governing odorant molecule arrival at the
aesthetasc surface, and consequently we idealize the processes thereafter. Thus, we employ
a simple Dirichlet condition for odorant at the cylinder surface, and set concentration to zero
for all time. This results in a diffusive flux of odorant into the cylinder, which is recorded
as the simulation progresses. This boundary condition models an ideal flux detector, which
immediately and irrevocably consumes all odorant molecules that arrive on it, perhaps by
rapid enzymatic degradation (Trapido-Rosenthal et al. 1987, Carr et al. 1990). We believe
this to be a more appropriate model of olfactory sensors than the other straightforward
alternative, a Neumann boundary condition, in which concentration would be measured
instead of flux (Kaissling 1998, Rospars et al. 2000).

Software and computational mesh

The commerical software COMSOL Multiphysics 4.2 was used to numerically solve the
Navier Stokes equations and advection-diffusion equation for steady fluid flow and unsteady
odorant transport, respectively. COMSOL employs the finite element method (FEM) and
implicit timestepping for time-dependent problems; we used a combination of triangular
and quadrilateral elements with linear discretizations for odorant concentration, and the
generalized alpha timestepping scheme.
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Generating the computational mesh was not trivial, as the goal was to advect a relatively
sharp Gaussian pulse a relatively large distance through the domain (i.e., a moving-front
problem) while representing molecular diffusion accurately, as well as capturing the even
sharper concentration gradients that form as the odorant filament passes through the gaps
in the array. Simultaneously, an extremely large domain is needed relative to the size of the
array because of the large effects of boundaries that occur at low Re (Loudon et al. 1994,
Lange et al. 1998).
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Figure 3.2: Sketch of different mesh regions. A) Entire domain; dashed ellipse indicates
zoom-in on rectangular region B. B) Refined rectangular region designed to resolve ve-
locity boundary layer around array. Lines are not walls in the model, but only serve to
demarcate different mesh regions. Dashed ellipse indicates zoom-in on near-field region
C. C) Sub-divided refined regions near array; again, straight lines show different mesh
regions and are not walls.

Since gradients in the velocity field are small far from the array, we employed a very coarse
triangular mesh (0.75 mm elements) in the far field (Figure 3.2 A). Note that the array
of cylinders is too small to be visible here – such a the vast domain size is needed to
make the unwanted effects of the domain edges insignificant at low Re. The domain region
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near the array was refined throughout a small rectangular region (25 µm elements) that
enclosed much of the velocity boundary layer around the array (Figure 3.2 B, Figure 3.3 A).
Within this, another rectangular region encompasses the array and extends far ahead of it
(Figure 3.2 B); the odorant filament is initialized near the upstream edge of this region. It
is within this long rectangular area that we wish to fully resolve odorant transport as the
filament advects toward and into the array. In the left-hand side of the region, we employed
anisotropic structured rectangular meshes: because the flow ahead of the array is mostly
unidirectional, coarse resolution could be used in the cross-stream direction (parallel to the
filament) while fine resolution could be used in the stream-wise direction to ensure accurate
advection. We used several domain sub-divisions to fine tune mesh resolution, increasing
it from bottom to top and left to right, to resolve the sharpening gradients as the filament
approaches and bends around the array; mesh size decreases from 25 to 2 µm in these
regions (Figure 3.2 C, Figure 3.3 A). Finally, a very fine unstructured triangular mesh was
used in the immediate vicinity of the cylinders (boxes containing cylinders in Figure 3.2 C,
Figure 3.3 A) with a “boundary layer mesh” around each cylinder. The latter consists of
layers of thin quadrilateral elements designed to resolve sharp gradients normal to surfaces,
such as we expect as odorant fluxes into each hair. The mesh in the immediate vicinity of
a cylinder is shown in Figure 3.3 B, where the maximum size of the triangles is 1.25 µm;
this region appears black in Figure 3.3 A because of the high density of elements.
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Figure 3.3: Computational mesh in A) near-field of array, corresponding to regions shown
in Figure 3.2, and B) in immediate vicinity of a cylinder.

Mesh size varied with the number of cylinders from about 300,000 elements for a two-
cylinder array to about a million elements for a 15-cylinder array. Likewise, computation
time varied from about 12 hours to 60 hours, with higher Re simulations taking longer.
The simulations were generally run on a single CPU core, though up to four cores were
sometimes used on a desktop workstation for a parallel speedup of about 2.8.

3.2.3. Sample output and calculation of performance metrics

Figure 3.4 shows a representation of the steady velocity field for U0 = 3.75 cm/s [Re = 1], G
= 25 µm [G/D = 1], N = 6; the simulation data has been mirrored across the array center to
simplify interpretation. The velocity vectors only indicate flow direction, not speed, as there
is actually very little movement behind the array compared to in front of it and around the
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edges. However, normalizing velocity in this way allows one to see the two (slowly moving)
standing vortices in the wake, similar to those that would form behind a flat plate without
any gaps. We quantified the flow reduction through the array using leakiness, introduced
in Section 3.1. For each gap of every array, we computed (within COMSOL) an individual
leakiness equal to the average u-velocity in the gap divided by the freestream velocity U0.
This is equivalent to the flow rate through the gap divided by how much flow there would be
if the hairs were not present. The leakiness of the entire array is simply equal to the mean
of these individual leakiness values; we call the whole-array quantity “aggregate leakiness.”
Note that for leakiness, “average” leakiness is identical to “aggregate” leakiness - this differs
from how flux is treated (below). For the case in Figure 3.4, the leakiness values are about
0.09, meaning the average velocity in the gaps is about 9% of the freestream (sampling)
speed.

Figure 3.4: Velocity field vectors and odorant concentration field at an instant in time for
U0 = 3.75 cm/s (Re = 1), G = 25 µm (G/D = 1), N = 6. Colorbar indicates odorant
concentration (mg/L).

Also shown in Figure 3.4 is the odorant concentration field at a single point in time, as
odorant advects through the gaps in the array. As the structure of the odorant filament
enters the gaps, it is heavily strained such that gradients that were intially parallel to the
flow become normal to the flow. The zero-concentration boundary condtion on each hair
preserves a region of depleted odorant around each hair and leads to a time-varying flux of
odorant molecules into the hairs via molecular diffusion. The low leakiness of the array also
causes a lag between concentration and flux, and in Figure 3.4, the peak concentration in
the far-field odorant filament has already passed the array. Once the filament advects past
the hairs, its fine-scale structure is obliterated by the coarse outer mesh visible in the right
part of the figure. However, this does not appear to propagate upstream and affect odorant
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Figure 3.5: Time series of odorant flux into the array. Aggregate curve is for the entire
array of N = 6 hairs. t = 0 is arbitrary.

flux into the cylinders results since various aspects of this flux changed little if outer mesh
element size was halved (see Section 3.2.4).

The time series of odorant flux into the hairs is shown in Figure 3.5; the fluxes into the
bottom three hairs are identical to those for the top three so only one set is shown. Also
plotted is the aggregate flux time series generated by the entire 6-hair array, created by
summing the fluxes into all 6 hairs. The flux to the outer hairs always occurs first by an
often substantial amount of time, followed by each hair in turn moving toward the center.
The outermost hairs also always experience the highest peak odorant flux, again with a
monotonic decrease toward the center hair(s).

Little is known about how animals process the signals generated by each aesthetasc on
an antennule. Neural convergence, or the aggregation of many neurons to fewer neurons,
means that it is unlikely that each aesthetasc’s output is represented separately in the
brain. However, differences in neural stimulation across the array resulting from purely
physical transport processes could conceivably affect the signals received in the brain. Thus,
we examined properties of both the aggregate flux signal and the individual flux signals
generated by each hair. Given a flux time series f(t), these metrics are:
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peak flux maximum value of f(t)

peak onset slope (or peak slope) maximum value of d

dt
(f(t))

time-integrated flux (or total flux)
´

∞

0
f(t)dt

flux duration minimum value of t2 − t1 such that
´ t2

t1

f(t)dt = 0.95(total flux)

These flux metrics were chosen to match those of previous study of odorant detection by
mantis shrimp (Stacey et al. 2002) as well as a study of infinite olfactory hair arrays (Chap-
ter 2 of this work). The reader is referred to Chapter 2 for a detailed discussion of why
these properties may be neurobiologically important.

Storage space limitations meant that highly resolved simulation output could not always be
saved. Therefore, to enable accurate calculation of the flux metrics (especially peak slope),
cubic splines were fitted to the saved flux time series. Since most time series consisted of
long regions of zero flux and a relatively brief pulse, the pulse region was first bounded by
locating the closest points to the maximum point that were at least 10,000 times smaller
than it. Then 20 uniformly spaced knots were placed in each “tail” region, and 40 uniformly
spaced knots were placed in the pulse region. Cubic splines were fit using this set of knots
and the Shape Language Modeling package for MATLAB (D’Errico 2010). This choice of
knots resulted in excellent fits for all time series, verified by visual inspection. All flux
metrics were then calculated analytically from the fitted splines using functions such as
fnmin(), fnder(), and fnint() in the Curve Fitting Toolbox for MATLAB 2011a.

Since the aggregate flux metrics are obtained after summing the responses from all the
hairs, if all the hairs experienced exactly the same flux, the first three aggregate flux metrics
would simply increase proportionally with N (i.e., doubling N would double peak flux, peak
slope, and total flux), while aggregate duration would remain constant. However, non-linear
effects such as lag between the fluxes into each hair often result in diminishing returns in
aggregate flux. We therefore computed average peak flux, peak slope, and time integrated
flux by dividing the aggregate quantities by N. By examining trends in the average quantities
versus number of hairs, any deviation from proportionality becomes clear. Since there is
large variation in the flux metrics across U0 and G and because we are mainly interested
in trends in the average metrics only with N , we normalized these values by the values for
N = 2 in Figure 3.6. Thus, the normalized average metrics should not be compared across
arrays with different U0 or G.

3.2.4. Convergence testing

Careful attention was paid to the following sources of error (letters correspond to labeled
distances in Figure 3.1, but they are not drawn to scale):
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• mesh size in each region of refinement

• time stepping relative error tolerance

• vertical length of odorant filament (a)

• distance from initialized odorant filament to array (b)

• distance from inflow face to array (c)

• distance from outflow face to array (d)

• height of domain (e)

We tested each of these factors at the four cases defined by the combinations of U0 = 7.49
cm/s, U0 = 0.375 cm/s, G = 25 µm, and G = 250 µm, with N held constant at 10 hairs.
Convergence of peak flux, peak onset slope, and total flux was tested by repeatedly halving
(in the case of mesh size and time step error tolerance) or doubling (in the case of distances)
each factor until each of these metrics changed by less than 5%. The limiting values of each
factor were then conservatively used for most simulations, with these exceptions: because
much of the computation time of each simulation is spent advecting the odor filament from
its starting position to the vicinity of the array, we halved this distance for U0 = 3.75 cm/s
and U0 = 7.49 cm/s after testing its effect at each U0. Secondly, since we later expanded the
parameter space by including U0 = 15 cm/s, and N > 10, those simulations may contain
larger errors. However, we did not observe any strange behavior in trends across U0 or N
that would be indicative of high error for these simulations in particular.

3.3. Results

3.3.1. Aggregate metrics

Leakiness

The range in total leakiness values spans a large range, from 0.02 – 0.88 (Figure 3.6 A).
The lower end of this range represents non-porous paddle like behavior, while the upper end
represents sieve or rake-like behavior.

Aggregate leakiness intuitively increases monotonically with U0 and G for all values of N
(Tables 3.2 and 3.3). Increasing the sampling speed or spacing between hairs both act
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Table 3.2: Ratio of aggregate parameter value at U0 = 7.49 cm/s [Re = 2] to value at U0

= 0.375 [Re = 0.1] for N = 10.

G = 25 µm G = 125 µm G = 250 µm

leakiness 6.1 7.0 4.7
peak flux 53 22 14
peak slope 5400 2000 1100
total flux 0.43 0.23 0.21

flux duration 0.0075 0.011 0.015

Table 3.3: Ratio of aggregate parameter value at G = 250 µm [G/D = 10] to value at G
= 25 µm [G/D = 1] for N = 10.

U0 = 0.375 cm/s U0 = 3.75 cm/s U0 = 15.0 cm/s

leakiness 9.5 10 7.3
peak flux 7.7 2.8 2.1
peak slope 14 4.5 2.7
total flux 2.8 1.5 1.4

flux duration 0.31 0.50 0.63

to increase permeability to flow. This is in agreement with the work of Cheer and Koehl
(1987b) on a pair of cylinders.

Aggregate leakiness decreases asymptotically with number of hairs, in agreement with the
work of Hansen and Tiselius (1992). Contrary to intuition, more fluid is not forced through
the array as it gets wider (via N) and obstructs more of the flow; instead, the boundary
layer around the array simply grows larger and deflects ever larger quantities of fluid off to
the sides. It is therefore critical to note that as N approaches infinity, behavior does not

approach that of an infinite array - the two are fundamentally different in this regard.

The importance of all three quantities (U0, G, and N) on leakiness is especially apparent in
the intersections of some curves (e.g., U0 = 15 cm/s, G = 25 µm and U0 = 0.375 cm/s, G =
250 µm): which case has higher leakiness depends on N , and an array of 4 hairs has about
the same leakiness for both cases. However, the dependence of leakiness on N is nonetheless
relatively small compared to the effects of U0 and G. Since changing N never drastically
changes leakiness in an absolute sense (from zero to one), whether an appendage behaves
as a sieve or a paddle is primarily determined by U0 and G.
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Figure 3.6: Aggregate sampling performance metrics vs number of hairs N . Marker symbols indicate U0 (cm/s),
with corresponding Re in [ ]: # = 0.375 [0.1], △= 0.749 [0.2], � = 1.87 [0.5], ⋄ = 3.75 [1], ▽ = 7.49 [2], ⋆ =
15.0 [4]. Lines indicate gap spacing (µm) with corresponding G/D in [ ]: solid = 25 [1], dash-dot = 80 [3.2],
dashed = 125 [5], dotted = 250 [10]. Trends across markers and lines are summarized in inset of A. Marker
color (where present) indicates normalized average value as discussed in Section 3.2.3. Blue line in A = physical
models of Hansen and Tiselius (1992) (Re = 0.2, G/D = 3.2). Note logarithmic scaling on several y-axes and
colorbars.
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Peak metrics

As shown in Table 3.3, peak flux and peak slope increase with G, indicating that hairs
placed infinitely far apart would maximize these aspects of odorant capture. The increase
becomes larger at smaller U0, when interactions between hairs are more significant. The
peak metrics also increase with U0, with peak slope being especially sensitive, increasing
thousands of times from U0 = 0.375 cm/s [Re = 0.1] to U0 = 7.49 cm/s [Re = 2] (Table
3.2).

Peak flux and peak slope display intriguing behavior versus N . They increase with N at
high U0, but decrease with N at low U0 (Figure 3.6 B and C). Increasing G also tends to
increase the slope of the curves but it is not entirely clear whether gap size can determine
whether the peak metrics increase or decrease with N . At low U0, changes in G do seem to
cause transitional behavior in sparse arrays, marked by inflection points in the curves. The
data suggest the existence of certain Re and G/D for which there is no change in peak flux
or peak slope as N increases.

The change in marker color from warm to cold along the curves in Figure 3.6 B and C
indicates that the average peak metrics (both flux and slope) decrease with N for all U0

and G we tested. As the number of hairs increases, decreasing leakiness coupled with larger
array width causes more stretching of the odorant filament as it bends around the array
(Figure 3.4), and this stretching accelerates diffusion of the filament before it enters the
array. Since this effect is very slight at high U0 and high G, the aggregate quantities still
increase with N in those cases, as the added surface area of additional hairs outweighs the
slight decrease in flux to preexisting hairs. At low U0 and low G, however, the decrease
in flux into the preexisting hairs is so large that even the aggregate peak metrics, summed
over all hairs, decrease as hairs are added.

As with leakiness, there are conspicuous intersections for peak flux versus N in Figure 3.6
B. The existence of these intersections emphasizes that different combinations of N , Re,
and G/D may achieve similar odorant detection dynamics.

Total flux

Aggregate total flux increases with G (Table 3.3), so isolated hairs would be expected to
achieve maximum peak metrics as well as total molecules captured. However, unlike the
peak metrics, total flux decreases with U0 (Table 3.2); this tradeoff between peak metrics
and total odorant mass captured was also found to occur with infinite arrays (Chapter 2 of
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this work). Again, the changes are largest at low G when cylinders can “feel” each other
the most.

Unlike the peak metrics, aggregate total flux always increases with number of hairs (Figure
3.6 D, even though average total flux always decreases to some extent as hairs are added.
The decrease in average total flux is largest at low U0 and low G, and manifests as a
nonlinear relationship between aggregate total flux and N . Nonetheless, since aggregate
total flux always increases with N , the decrease in leakiness is not enough to overcome the
increased surface area of more hairs. In other words, even though the odorant filament is
less sharp as it enters a wider array and concentration gradients less steep, more odorant
molecules in total are captured.

Again, intersections of curves in Figure 3.6 D indicate the interdependence of sampling
speed, gap size, and number of hairs. U0 = 0.375 cm/s, G = 25 µm provides an interesting
example: With 4 hairs, an array with this combination of sampling speed and gap size will
capture the same number of odorant molecules as another 4-hair array with U0 = 0.749
cm/s, G = 80 µm (higher speed and larger gap size). With about 14 hairs, this array
achieves the same total flux as another array with U0 = 3.75 cm/s, G = 125 µm (further
increases in both speed and gap size).

Flux duration

The approximate duration of odorant stimulation (flux) decreases dramatically with U0

and, to a lesser extent, G (Tables 3.2 and 3.3). Like with the other flux metrics, the largest
changes occur at low U0 and low G. As seen in Figure 3.6, the global range of values is
huge, from 5.0 ms to 2.9 s. The sampling speed and geometry of an olfactory appendage
can therefore be critical in controlling how long neurons are stimulated for when an odorant
filament is encountered.

Duration increases with N (Figure 3.6 E). This is partly because as the array becomes wider,
there is an increasingly large lag between the flux occurring at the outer edge of the array
versus in the center (Figure 3.5), but also because the flux durations for each individual
hair increase, as indicated by increasing average durations and the data presented in Section
3.3.2. The increase in duration with N is far greater at low U0, and to a lesser extent, low
G. Presumably aggregate duration eventually asymptotes as N increases, even at low U0,
but we did not study large enough N to observe this for all cases.
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3.3.2. Intra-array variability

Leakiness

The central part of the array is least leaky in most cases, with a jump at the outermost hairs
at low U0 (Figure 3.7 A). At high U0 and high G, there is very little variation in leakiness,
or any other parameters, across the array (Table 3.4). Interestingly, at high U0, small G,
and large enough N , the central part does become the most leaky section. The transition is
clearly visible near N = 6 for U0 = 7.49 cm/s [Re = 2] in Figure 3.7 B, and at even higher
speeds, leakiness is highest in the center for all N (Figure 3.7 C). This trend seems the more
intuitive pattern - relatively more fluid is forced through the center region versus the outer
region as hairs are added, though leakiness at a given location in the array still generally
decreases with U0.
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Figure 3.7: Intra-array variability in individual-gap leakiness. Each curve corresponds to
an array with the labeled number of hairs. G = 25 µm [G/D = 1] in each case. Quali-
tatively different behavior is observed at A) U0 = 1.87 cm/s [Re = 0.5], (representative
shape for most of parameter space) versus B) U0 = 7.49 cm/s [Re = 2] (higher U0, small
G) versus C) U0 = 15.0 cm/s [Re = 4] (highest U0 tested, small G). Note different y-axis
scales.
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Table 3.4: Summary of intra-array variability across U0 and G, tabulated as (value at
outermost hair) / (value at innermost hair), for N = 10. high U0 = 7.49 cm/s [Re = 2],
low U0 = 0.375 cm/s [Re = 0.1], high G = 250 µm [G/D = 10], low G = 25 µm [G/D =
1]

low U0 low G high U0 low G low U0 high G high U0 high G

leakiness 1.7 0.9 1.3 1.0
peak flux 3.2 1.5 1.5 1.0
peak slope 4.4 1.7 1.9 1.0
total flux 2.5 1.2 1.2 1.0

flux duration 0.82 0.86 0.75 1.0

Peak metrics and total flux

The peak flux, peak slope, and total flux values occur on the outside ends of the array, with
large jumps at the outermost cylinders (Figure 3.8 A, B, and C). This spatial pattern is
expected for peak flux and peak slope (panels A and B) due to the high shear at the outer
hairs, and the sharp instantaneous concentration gradients it creates. Less obvious is why
total flux (panel C) also would increase from center to edge. It is possible that the thinner
concentration boundary layers at the outer parts of the array more than make up for the
decreased time available for molecule capture to occur (see next section).

Of additional note, there is little variation in total flux to the outermost hairs as compared
with variation in the peak metrics to those hairs as N increases (panel C). In contrast,
variation across a given array diminishes as N increases for the peak metrics, while the
difference between innermost and outermost total flux gets larger with additional hairs.
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Figure 3.8: Intra-array variability in individual-hair A) peak flux, B) peak slope, and C)
total flux. Each curve corresponds to an array with the labeled number of hairs. U0 =
1.87 cm/s [Re = 0.5], G = 25 µm [G/D = 1] for A), B), and C); these same qualitative
shapes were observed over the entire parameter space.

Flux duration

In contrast to leakiness and flux, the longest duration of odorant flux occurs in the center of
the array for most sampling speeds and gap sizes studied (Table 3.4, Figure 3.9 A and B),
with variability diminishing at high U0 and high G (Table 3.4). At low U0, the difference
between innermost and outermost durations can be more than 100 ms at U0 = 0.375 cm/s
[Re = 0.1] (not shown) and about 40 ms at U0 = 1.87 cm/s [Re = 0.5] (Figure 3.9 A). This
is a substantial variation, on the order of crustacean neural timescales (the clawed lobster
H. americanus requires 50 ms to detect an odor and 200 ms to distinguish its concentration
(Gomez and Atema 1996a)).

We also note that there is a qualitative change in the spatial varation of flux duration as N
changes at high U0 and low G. As hairs are added in this regime, the decrease in duration
at the outer hairs diminishes and eventually the profile shape across the array reverses, with
the outermost hairs experiencing longer odorant stimulation than their neighbors (Figure
3.9 C). This change does not seem to be directly associated with the change in intra-array
leakiness structure described above since the change in leakiness profile shape occurs at N =
6 in Figure 3.7 B while the change flux duration profile shape requires larger N to develop
in Figure 3.9 B. The higher flux duration at the outermost hairs in Figure 3.9 C (the highest
U0 we tested) is probably not neurobiologically significant, however, since the variation is
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only on the order of a few milliseconds; for practical purposes, the profiles in this case are
probably flat.
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Figure 3.9: Intra-array variability in individual-hair flux duration. Each curve corresponds
to an array with the labeled number of hairs. G = 25 µm [G/D = 1] in each case. Qual-
itatively different behavior is observed at A) U0 = 1.87 cm/s [Re = 0.5] (representative
shape for most of parameter space) versus B) U0 = 7.49 cm/s [Re = 2] (higher U0, small
G) versus C) U0 = 15.0 cm/s [Re = 4] (highest U0 tested, small G). Note different y-axis
scales.

3.4. Discussion

3.4.1. Leakiness vs uptake

Previous studies on the small-scale dynamics within crustacean olfactory appendages have
focused on aspects of the fluid velocity field. Transport of a passive scalar such as odorant
has rarely been explicitly addressed. Leakiness has thus been used as a simple descriptor
of how much fluid, and the food or scent it carries, can penetrate into the spaces between
hairs of an array. Although the fluid velocity field does largely determine the transport
dynamics of a passive scalar, the relationship is by no means simple even at low Re laminar
conditions, and is complicated by the unsteady aspect of plume sampling. Here, we can
directly assess the effectiveness of leakiness at explaining odorant sampling performance.

The large changes in leakiness that occur over the parameter range covered by many hair-
bearing appendages is undoubtedly related to the behavior we see in odorant molecule
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capture, but leakiness by itself is not a good predictor of any of the odorant flux metrics
we studied. Although increased leakiness does generally predict increased peak flux, peak
slope, and decreased flux duration, poor collapse is observed in plots of each metric (peak
flux, peak slope, total flux, flux duration) versus leakiness (Figure 3.10). This is the case
for both aggregate parameters of the entire array, and for locally within the array, such as
in the center (not shown). Hence, odorant flux depends on array morphology and sampling
kinematics in unique ways and leakiness cannot be relied upon to predict this behavior.
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Figure 3.10: Aggregate flux metrics plotted vs aggregate leakiness for all simulations.

3.4.2. Effect of number of hairs

Although leakiness does decrease with number of hairs, the effect is small relative to the
changes across U0 and G (Section 3.3.1). The overall scale of leakiness variation within the
arrays is also small (Section 3.3.2) and means that it is unlikely for one part of a hair array
to be paddle-like and another section to simultaneously be sieve-like. The basic function of
a hair bearing appendage, therefore, seems dependent only on Re and G/D, not the number
of hairs.

The simple monotonic variation in leakiness versus N stands in contrast to the behavior of
the flux metrics. The opposite effects of N on aggregate peak flux and peak slope at different
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U0 and G (Section 3.3.1) could have important consequences for animals that change the
number of hairs on their appendages as they grow. Stacey et al highlighted how changes in
Re and G/D between juvenile and adult stomatopods (G. falcatus) lead to large changes
in odorant transport to the aesthetascs (Stacey et al. 2002). Stomatopods also increase N
as they grow. Here, we show how this can have opposite effects on odorant flux during
the flick versus return strokes, in addition to the changes in Re and G/D that also occur.
Our data (Figure 3.6 B and C) also suggest the possibility of hair-bearing appendages that
experience nearly the same peak flux and peak onset slope over a range of N (e.g., as the
animal grows), despite changes in total array surface area.

Some animals, such as the spiny lobster P. argus, have thousands of aesthetascs arrayed
along their antennules. Since the behavior of finite arrays is fundamentally different from
that of infinite arrays (Section 3.3.1), one motivation of this work was to determine a
sufficient value of N such that the odorant transport dynamics, at least near the center
such arrays, are no longer sensitive to further increases in N . As shown by the trends in
Figure 3.11 of innermost-hair behavior, there is no simple answer, as it depends on U0 and
G, and often on the specific quantity of interest. At high U0 and G, interactions between
cylinders are very small and a pair of cylinders is in fact nearly identical to a row of ten or
more in terms of leakiness and odorant flux, both in an aggregate sense and at the center of
the array (Figures 3.6 and 3.11). As U0 and G decrease, however, it takes more and more
hairs for leakiness and the flux metrics to asymptote in the center of the array (Figure 3.11),
particularly in the cases of peak flux and peak slope (panels B and C). Total flux at the array
center (panel D) may lack asymptotic behavior entirely at U0 = 0.375 cm/s [Re = 0.1], G
= 250 µm [G/D] = 10, instead having a local minimum between 7 and 10 hairs. Therefore,
although the fast flick movements of many olfactory appendages might be modeled with
just a few hairs without incurring large errors, the same is not true for the slower return
strokes. This could be a formidable obstacle to the development of models that seek to
include the complete flick-return-pause sequence of appendages with many hairs.

Lastly, the question of why some animals (e.g., P. argus) have so many aesthetascs has been
raised in the literature. Each aesthetasc has been shown to contain the same complement
of olfactory receptor neurons (Steullet et al. 2000), so additional hairs probably do not
help with discrimination of odor quality. Instead, long arrays of aesthetascs could simply
improve the chances of encountering a thin odor filament oriented arbitrarily relative to
the antennule. Here, we show that there may be some performance costs (i.e., decreasing
aggregate leakiness, peak flux, and peak slope) associated with increasing the number of
hairs in an array, but only at low sampling speeds (Figure 3.6 A, B, C). The rapid flick
movements of marine crustaceans put the aesthetasc array in a regime where additional hairs
do intuitively act to increase all aggregate flux metrics for a given odorant filament. Hence,
one simple advantage of many hairs may be to increase sensitivity and make detection more
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Figure 3.11: Sampling performance metrics for innermost hairs vs number of hairs N . Marker symbols indicate
U0 (cm/s), with corresponding Re in [ ]: # = 0.375 [0.1], △= 0.749 [0.2], � = 1.87 [0.5], ⋄ = 3.75 [1], ▽ = 7.49
[2], ⋆ = 15.0 [4]. Lines indicate gap spacing (µm) with corresponding G/D in [ ]: solid = 25 [1], dash-dot = 80
[3.2], dashed = 125 [5], dotted = 250 [10]. Trends across markers and lines are summarized in inset of A. Note
logarithmic scaling on several y-axes.
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likely, as hypothesized by (Gleeson et al. 1993).

3.4.3. Intra-array variability

The physical presence of an olfactory appendage affects how the actual environmental odor-
ant concentration field is perceived by olfactory neurons, and this physical filtering varies
throughout the array. Peak flux, peak slope, and total flux are all highest at the outer edges
of the array, while flux duration is usually longest in the center. Olfactory neurons in the
outer aesthetascs of an array will therefore be exposed to higher peaked, sharper odorant
flux input and more total odorant molecules, but neurons in aesthetascs in the middle will
be stimulated for a longer time period. Thus, aesthetascs at various positions in an array
may respond differently to the same environmental odorant signal, despite containing nearly
identical populations of olfactory receptor neurons. In particular, the jumps in peak flux,
peak slope, and especially total flux at the outermost hairs (Figure 3.8) raises the question
of how the signals from “end” aesthetacs might be processed. In species with thousands of
aesthetascs such as the spiny lobster P. argus, such edge effects must surely be averaged
out by the nervous system, but they could be important in species with rows of O(10)
aesthetascs such as the mantis shrimp G. falcatus.

Heterogeneity in the odorant sampling behavior of individual aesthetascs may be especially
important if aesthetasc arrays are used to sample the fine-scale spatial structure of turbulent
odor plumes, a question frequently raised in the literature (e.g., Atema 1996, Koehl 2001a).
Real plumes are much more complex than the single Gaussian odorant filament studied here,
and in nature one could expect to encounter odorant filaments of various peak concentrations
and widths. If olfactory neurons require some minimum peak flux, peak slope, total flux,
and flux duration in order to detect an odor filament, intra-array variability in sampling
performance could mean that hairs near the edges of an array might detect low-concentration
filaments that middle hairs miss (since peak flux, peak slope, and total flux are proportional
to peak filament concentration and highest at the array edges), while hairs near the middle
might detect thin filaments that outer hairs miss (since inner hairs prolong flux duration
for a given filament width the most). Of course, we can only offer conjecture as to the
significance of these variations in the absence of more neurobiological data.

The qualitative changes in patterns of intra-array leakiness and flux duration as sampling
speed increases are fascinating, but of unknown biological importance. To put the sam-
pling speeds of Figures 3.7 and 3.9 in some context, the spiny lobster P. argus flicks its
aesthetascs at about 6 - 9 cm/s for the rapid downstroke (comparable to panel B in both
figures) and at about 2 cm/s for the slower return stroke (comparable to panel A in both)
(Goldman and Koehl 2001). The clawed lobster H. americanus is known to flick down at 12
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- 15 cm/s (comparable to panel C in both) (Moore 1991). While aesthetasc diameters are
similar to that used here (25 µm here, 22 µm for P. argus (Goldman and Koehl 2001), 30 µm
for H. americanus (Moore et al. 1991a)), the morphology of both species’ aesthetasc arrays
is quite complex and poorly defined by a single gap size, although G/D = 5 has been esti-
mated for P. argus (Goldman and Patek 2002). Hence, whether small enough gaps between
olfactory hairs exist in nature for these transitions to be important is unclear. Even if they
do occur, it is difficult to say whether the scale of variations observed is neurobiologically
important without experimental data.

3.4.4. Comparison to a virtual sensor

The main interest of this study has been to quantify the actual (dimensional) flux metrics of
various olfactory hair array configurations. Since the physical presence of the array alters the
structure of an odorant filament during a sampling event (largely through viscous effects),
it can also be informative to compare the actual flux metrics to those of a virtual sensor
that does not affect plume structure, but instead samples it passively. We believe a virtual
sensor that senses advective flux to be the most appropriate here. Specifically, the virtual
sensor can be thought of as a line segment that traverses the entire array and is oriented
like the array, parallel to the odorant filament (Figure 3.12). As it intercepts the odorant
filament by moving toward it at U0, it captures 100% of the advective odorant mass flux
integrated across the line segment at a given moment. Hence, the virtual sensor can be
thought of as achieving the maximum peak flux, peak slope, and total flux possible, given
a sampling speed and sampling area. The flux duration of the virtual sensor is how long
a sensor would experience an influx of odorant if it did not distort the odorant filament at
all. Details of these calculations are given in Appendix A.
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Figure 3.12: Schematic of virtual sensor used to normalize odorant sampling performance
of a 5-hair array. The virtual sensor is a line segment the same width as the array and
moves toward the odorant filament at U0 as the real array would. The virtual sensor does
not alter the filament’s structure, however, and completely absorbs the section enclosed
by the dashed lines via a convective flux.

Normalizing the flux metrics of the finite arrays by their virtual sensor analogs gives an
idea of how much the real arrays are extracting compared to what is theoretically possible.
Not surprisingly, very little odorant is captured by the real arrays since they are limited to
capturing molecules via a diffusive flux instead of a convective flux: maximum normalized
peak flux, peak slope, and time integrated flux across our entire parameter space were
0.02, 0.01, and 0.05, respectively. These maximums all occured for two-hair arrays at U0 =
0.375 cm/s [Re = 0.1] and G = 25 µm [G/D = 1], the lowest that we investigated, which
is surprising given the low leakiness at these arrays. What little fraction of the odorant
filament is absorbed, is absorbed over a relatively long period of time compared to a virtual
sensor: normalized duration ranged from 1.2 (at U0 =15.0 cm/s [Re = 4], N = 2) to 19 (at
U0 = 0.375 cm/s [Re = 0.1], N = 15), meaning that the duration of odorant flux lasted
from 1.2 to 19 times as long as the advection time for the filament to move past the array at
U0. This temporal stretching is much more pronounced than is the case for infinite arrays
(Chapter 2 of this work) because fluid is not forced through the array at relatively high
speed in the case of finite arrays.

72



3.4. DISCUSSION CHAPTER 3. FINITE ARRAYS

Normalized peak flux, peak slope, and time integrated flux always decrease with number of
hairs, and normalized flux duration increases (not shown), unlike the behavior of some of
the dimensional metrics as discussed in Section 3.3.1. However, more interesting behavior
does occur in the normalized metrics versus U0 and G, especially at the lower end of each.
Trends versus U0 for small G are shown in Figure 3.13. The importance of N on the basic
shape of the peak flux (panel A) and peak slope (panel B) curves stands in contrast with the
trends of the dimensional metrics versus U0, for which qualitative shape does not depend on
N (not shown). While arrays with only a few hairs always experience decreased normalized
peak flux and peak slope with increasing sampling speed, arrays with many hairs display
the opposite trend. Edge effects that are only significant for arrays with few hairs may
be responsible for this transition. These results again emphasize the importance of N in
comparing the theoretical sampling performance of different morphologies, such as mantis
shrimp (small N , especially juveniles) versus lobsters (large N).
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Figure 3.13: Trends in normalized aggregate peak flux (A), peak slope (B), total flux (C),
and flux duration (D) vs U0 [from Re = 0.1 - 4] for G = 25 µm [G/D = 1] and selected
N . Markers indicate N : # = 2, △= 3, � = 4, ⋄ = 6, ▽ = 15, summarized in the inset of
(A).

The curves in Figure 3.13 also suggest that all the normalized flux metrics might asymp-
totically approach the same values as U0 increases, no matter how many hairs are in the
array. This may be due to thinning boundary layers as flow speed increases, so that each
hair behaves independently, and thus number of hairs eventually loses significance since the
normalization accounts for total array surface area. Hence, flicking an olfactory appendage
at ever faster speeds is expected to yield diminishing returns of the flux metrics we studied,
compared to what is theoretically achievable.

These data complement the dimensional flux metrics by providing more evidence that bi-
ological olfactory hair arrays operate in a transitional odorant transport regime. While
changes in U0 and G can fundamentally alter how the actual peak metrics (peak flux, peak
slope) of finite arrays are affected by changes in N , here we see that changes in N can
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fundamentally alter behavior versus U0 in terms of performance relative to a virtual sen-
sor. Whether these transitions are important neurobiologically can only be answered with
experimental data.

3.5. Summary

The morphology and kinematics of hair-bearing animal appendages can be critical in de-
termining their function. In the case of the olfactory antennules of marine crustaceans,
previous work has shown how the geometry of the aesthetasc array and flicking speed of the
appendage often result in a transitory flow regime and discrete sampling of the fluid envi-
ronment, or sniffing. Although odorant molecules act as passive scalars carried by the fluid
flow, odorant sampling performance can exhibit additional variability not easily predicted
from simple descriptors of fluid flow alone (e.g., leakiness). Here we show that fundamen-
tally different trends in odorant sampling performance, not predicted by leakiness alone,
can occur over a biologically relevant parameter space.

Our data emphasize the importance of sampling speed, gap size, and number of hairs on
odorant sampling performance of idealized olfactory hair arrays. The effects of changes in
hair number can be strongly modulated by sampling speed and gap size, so that all three
parameters are needed to make accurate predictions. This can be important not only for
making comparisons across species, but also for different life stages of the same species.

Numerical simulations can tell us the scale of variation likely to occur in the odorant sam-
pling performance of real appendages of different species and life stages, but ascertaining the
relevance of this variation is difficult. Normalizing results to the performance of a virtual
sensor allows us to compare with what is theoretically possible, but in general, most organ-
isms seem to thrive without achieving anywhere close to theoretical maximum performance.
More experimental data for real neurons exposed to realistic odorant plumes is therefore
required to determine the neurobiological significance of these results.
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4. Real Morphology

4.1. Introduction

Real olfactory antennules vary widely in morphology, and a resemblence to a straight row
of cylinders is the exception rather than the rule. For instance, crabs have toothbrush-
like tufts of aesthetascs that deform as the antennule is flicked, and mantis shrimp have
multiple rows of aesthetascs (Koehl 2006). The spiny lobster P. argus has been well studied
but has an exceptionally complex aesthetasc morphology. The aesthetascs are arranged in
a complex 3D pattern such that the hairs are nearly parallel viewed at the base, but form a
zig-zag viewed at cross sections higher up (Goldman and Koehl 2001). The zig-zag pattern
has been suspected to channel flow through the aesthetascs due to the orientation of the
antennule as it is flicked, as shown in Figure 4.1 (Gleeson et al. 1993). The aesthetascs are
also enclosed by a cage of guard hairs that are known to modify the flow encountered by the
aesthetascs (Reidenbach et al. 2008). Hence, a single row of hairs might not be an accurate
model of this real geometry.

To facilitate quantifying the differences between idealized geometries and a real olfactory
appendage, a 3D tomographic scan of a P. argus antennule was obtained (Section 4.2).
From this, the surface geometry can be extracted and eventually used in computational
models of flow and odorant transport. An image segmentation algorithm designed to ex-
tract the surface geometry is presented in Section 4.3 along with some preliminary results.
Since complete segmentation results in a form suitable for numerical simulations are not
yet available, several key measurements of the morphology were taken manually (Section
4.4) to facilitate 2D numerical simulations of flow around and odorant transport to a single
V-formation of aesthetascs (Section 4.5). These represent only a slightly higher level of geo-
metric complexity than the straight rows studied in Chapters 2 and 3, but can provide some
basic insight into the effects of the real zig-zag pattern on odorant sampling performance.
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Figure 4.1: (A) Cross-sectional view of the lateral filament (right antennule) illustrating
the orientation of the aesthetasc tuft relative to the direction of a flick. Note that, during
a flick, water enters the tuft at an angle of approximately 35°. (B) Direction and pattern
of water flow (arrows) through the V formations of aesthetascs during a flick. Reproduced
from (Gleeson et al. 1993).

4.2. 3D Scan

4.2.1. Specimen acquisition

Several P. argus specimens were ordered from a commerical seafood supplier, FloridaLob-
ster.com, and shipped overnight to the Electron Microscope Lab at UC Berkeley in an
ice-packed insulated container. The lateral flagellums were removed near the base of the
aesthetasc-bearing region and, while submerged in artifical seawater (Instant Ocean), ex-
amined under a dissecting microscope. The aesthetasc arrays on the majority of antennules
appeared to be clogged with green flocs (perhaps algae), but a few appeared to be in good
condition and underwent subsequent treatment. The samples were first fixed in 2% glu-
taraldehyde in 0.1 M sodium cacodylate and rinsed with 0.1 M sodium cacodylate buffer.
Then two samples were stained with 1% osmium tetroxide while two were left unstained.
All samples then underwent an ethanol dehydration series and supercritical drying as per
standard protocol at the Electron Microscope Lab at the University of California, Berkeley.
After critical point drying, the zig-zag pattern of aesthetascs was still identifiable under
dissecting microscope, indicating that the samples were not damaged by these procedures.
Lastly, one of the osmium-stained samples was also sputter-coated with a gold/palladium
mixture to try to increase the signal to noise ratio during subsequent X-ray tomography.
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4.2.2. Micro X-ray tomography

Hard X-ray microtomography was performed at beamline 8.3.2 at the Advanced Light Source
at Lawrence Berkeley National Lab. Briefly, X-ray computed tomography involves the
collection of many 2D X-ray images (slices) around a single axis of rotation in order to
reconstruct a 3D image of an object, including its internal structure. Although the inter-
nal structure of the antennule was not of interest here, this imaging technique is possibly
the only one currently able to achieve the micron-scale resolution necessary to resolve in-
dividual aesthetascs in 3D. Electron microscopes have been used to obtain 2D images of
antennule morphology, but are typically incapable of generating a 3D scan. Unfortunately,
X-ray tomography works best on dense materials such as bones and teeth, and is not well
suited for chitinous materials such as crustacean antennules. We therefore attempted the
aforementioned heavy metal treatments on some specimens to try to increase contrast.

A beam energy of 15 keV was used to scan small sections of both the osmium stained and
sputter coated antennule, and a control specimen that was not treated with heavy metals.
The metal treatment did not seem to significantly enhance contrast, and in fact, seemed
to introduce a V-shaped artifact near the base of the aesthetascs that may have been a
layer of sputter-coated metal. Therefore, the sample without any heavy metal treatment
was used for a full scan of an approximately 1 cm section of antennule. Scanning such a
long section was prudent because although each aesthetasc is only ~20 µm diameter, the
long guard hairs are oriented at an acute angle relative to the antennule, each spanning a
few mm. This large range of spatial scales posed another problem for tomography, as there
are tradeoffs between field of view and resolution. To get around this problem we tiled five
scans vertically, each spanning 2 mm of antennule, with a voxel size of 0.888 µm. The entire
scan took several hours overnight, and because this facility is in high demand, the scanning
of multiple specimens is not currently feasible.

Some pre-processing of the images is needed before 3D reconstruction. First a background
normalization was done to account for variations in radiation intensity. Then a de-ringing
routine was performed to reduce ring-like artifacts that often appear after reconstruction.
Lastly, sinograms (Radon transforms) were created and input to a parallel 3D reconstruction
routine in a commerical software package (Octopus, inCT, University of Ghent, Belgium).

A single, representative reconstructed slice is shown in Figure 4.2, where the slice is oriented
perpendicular to the antennule. Five tiles, each composed of 2000 images similar to that in
Figure 4.2, are stacked to form the entire 3D volume of data. A representation of one of
these tiles is shown in Figure 4.3, where the volume data is translucent and a slice parallel

to the antennule and at the base of the hairs is shown (interpolated from the 3D dataset
in the commerical visualization program Avizo, VSG). In the slice, the cross sections of a
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Figure 4.2: A single representative slice of the 10,000 making up the 3D tomographic data
set. The slices are perpendicular to the antennule.

few salient features are labeled: the large guard hairs, the rows of aesthetascs, and the thin
asymmetric sensilla. Although the identity (left vs right) of the antennule was unfortunately
not recorded at the time of specimen collection, the location of the asymmetric sensilla and
the direction of tilt of the aesthetascs and guard hairs (to the right in Figure 4.3) indicate
that this is a right antennule (Gleeson et al. 1993, Goldman and Koehl 2001).

4.3. Image segmentation

4.3.1. Overview

The term “reconstruction” in the preceding section is somewhat misleading, as the objective
of this work is to obtain a digital 3D representation of the surface geometry of the antennule,
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Figure 4.3: Visualization of 3D tomography data for a right antennule, sliced parallel to
antennule near bases of hairs. The entire scan consists of five such sections tiled along
the antennule. The distal end of this section is to the right, and water would flow into
the page during a flick downstroke.
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guard hairs, and aesthetascs. The reconstructed dataset, however, consists of far too much
information, as it is a filled volume of intensity values. Hence, additional processing is nec-
essary to extract only the surface of interest. The simplest method is an intensity threshold;
ideally, there is very high contrast between the sample material and air, and the correct
choice of the threshold value results in a continuous isosurface. Unfortunately, a threshold-
ing approach by itself is of little practical use with this data because of the carbonacaeous
nature of the specimen. As shown in Figure 4.4, numerous disconnected islands and clumps
of “noise” are caused by insufficient differences between the X-ray absorbance of the sample
versus air and dust. Although the desired geometry is still easily recognizable to the eye, it
is not connected or smooth enough to permit use in fluid dynamics simulations. Attemping
to remove the artifacts by working directly with the 3D volume data is not computationally
feasible or practical due to the shear amount of data (about 60 gigabytes).

Figure 4.4: Isosurface formed by thresholding one tile of volume data. Data has been
downsampled by a factor of 6 due to computer memory limitations.
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We opted to work with each 2D image (or slice) sequentially, semi-automatically identifying
the outlines of the cross sections of the aesthetascs, guard hairs, and antennule (Figure 4.2).
A stack of such 2D outlines can then be combined to form a 3D surface. This process of
finding shapes in images is part of the field of image segmentation, and is generally a very
difficult problem in biological images. Initially, a number of existing segmentation methods
were briefly tested: the Hough transform desgined to find circles, watershed segmentation,
and a few other methods such as active contours. However, these high-level segmentation
algorithms were very sensitive to noise in the images and did not result in clearly separated
hair outlines. We therefore decided to use simple thresholding to binarize each image and
isolate pixels belonging to each hair (though simple edge-detecting routines might work as
well or better - see Section 4.3.5). The result of thresholding a typical image (i.e., Figure 4.2)
is shown in Figure 4.5. Unfortunately, it is clear that this method alone also is not sufficient
to segment the hairs: it includes both pixels within the hairs as well as pixels around their
outer boundaries, and the latter are frequently not connected in a closed curve. In light
of these problems, as well as small variations in hair shape from slice to slice (due to both
real variation and random noise), we opted to fit geometric primatives to each hair. This
method allows limits to easily be placed on the changes in hair geometry between slices,
and generally puts “smoothness” constraints on the segmented surface. It also has the
inherent requirement of keeping track of each hair’s identity from slice to slice, which would
be necessary if the odorant flux to individual aesthetascs were desired output from future
numerical simulations.

Figure 4.5 suggests that the cross sections of the aesthetascs and guard hairs could be well
described by ellipses, and that the cross section of the antennule is also close to elliptical,
but with one side flattened (and perhaps well approximated by a cubic spline). There is
also little change from one slice to the next, so a set of elipses fit to the objects in one
image would likely be a good starting guess for the best fit ellipses for the same objects in
the next image. Therefore, instead of attempting to automatically locate these objects in
each image independently, our general strategy is to manually segment each object (ideally
once, but in practice, in a number of slices) and then step through each consecutive slice
one by one, using the previous set of fits as an initial guess for the new fits. To briefly
summarize the algorithm: After the initial human-assisted segmentation of a slice, the next
slice is thresholded to generate a new set of pixels to fit, and the previous set of fits is
overlayed on these points. The old fit is then expanded and contracted slightly (e.g., an
ellipse’s major and minor axes are increased and decreased) in order to account for the shifts
in hair position and size between images. The thresholded pixels in this annular region are
what each new geometric primative are fit to. The new fits are stored, overlayed on the
next thresholded image, and so on. Details of the algorithm are described in the following
sections.
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A

B

Figure 4.5: (A) Pixels corresponded to the thresholded image in Figure 4.2. (B) Zoom-in
on region containing the aesthetascs.
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4.3.2. Segmentation of antennule

The following description of the antennule-fitting algorithm is summarized as pseudocode
in Listing B.1 of Appendix B.

Since the right part of the antennule is well approximated by an ellipse, we first fit an
ellipse to the antennule in each slice. The initial fit was done by thresholding an image and
manually masking the points (via imfreehand() in the Image Processing Toolbox, MATLAB
2011a) along the edge of the antennule, excluding points inside it and points along the
flattened left portion. An ellipse was then fit to these points using a non-linear least squares
(geometric fitting) routine (Brown 2007). Thereafter, the ellipse fit from the previous slice
was overlayed on the thresholded next slice, and expanded and contracted (via its major
and minor axes) by five pixels to create an annular region. The points in this annular region
were fit to a new ellipse, and so on. This method automatically excludes points along the
flattened left side from the ellipse fit.

Next, in each slice, it was necessary to explicitly locate where the actual antennule shape
deviated from the fitted ellipse so that this section could be replaced with a spline. Thus,
a “top” and “bottom” cutoff point must be defined for each slice. Since the procedure is
nearly identical for each, only one case is dicussed from here on. In addition, since the
cutoff point (xc , yc) is constrained to lie somewhere on the fitted ellipse, it suffices to just
find the x-coordinate of the cutoff point, xc, and then determine yc from the equation of
the ellipse. A starting guess xg was chosen by manual inspection and the region in which
the break occured was assumed to be bounded by xg − b ≤ xc ≤ xg + b where b = 45 pixels
worked well. A smaller interrogation window was then formed by masking the annular region
bounded by the fitted ellipse +/- 10 pixels, and additionally constrained by xw −w ≤ x ≤ xw

where the window’s length w was 10 pixels and its right edge location xw initially equaled
xg + b, the right edge of the search domain. The right edge of the window xw was then
looped from xg + b to xg − b. During each loop iteration, the interrogation window moved
to the left, and the number of thresholded pixels in the window was counted. If there were
fewer than 10 pixels, the cutoff point was declared to be xc = xw + offset. The large
offset of 70 pixels was chosen as a conservative measure to ensure that the elliptic section of
the fit did not continue past the region of excellent agreement with the data. If the break
condition on number of pixels was never satisfied, xc was very conservatively chosen to be
xc = xg + b + offset; this occasionally happened while a guard hair was merging into the
antennule. Setting a new initial guess xg to be xw, this procedure was then looped over all
slices. For each slice, the y-coordinate of the cutoff point yc was found by substituting xc

into the equation of the fitted ellipse.

Once the cutoff points for the antennule ellipse in each slice are known, a cubic spline can be
fit to the points that do not conform to the ellipse. Throughout the slices, the shape of the
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left side of the antennule varies from slightly convex, to nearly flat, to concave, and a cubic
spline can easily approximate all of these shapes. The challenge here is to allow sufficient
degrees of freedom (i.e., knots) that the spline can follow the overall variation in antennule
geometry, but not so much freedom that noise and small bumps cause it to oscillate out of
control (i.e., Runge’s phenomenon). After substantial trial and error, a cubic spline with
eight knots was chosen, with the knots equally spaced in the vertical direction. As with
the ellipse fitting, the routine was manually started by masking thresholded points in the
appropriate left-hand region of the antennule, and fitting a spline to these points (D’Errico
2010), subject to the constraints that its values and slopes at both endpoints matched those
of the ellipse fitting the rest of the antennule. These constraints result in a smooth, closed
curve approximating the antennule geometry. Note that because the fitted spline is vertically
oriented, the spline is a function of the form x(y) in the reference frame of the image. The
method used to automatically step through the slices is as follows: An annular region was
masked out of the new slice by shifting the old spline left and right. This was accomplished
by uniformly sampling the old spline function to yield 1500 points, and then adding and
subtracting pixels from each x-coordinate. Since the spline was found to evolve through
the slices differently in the middle region (where the aesthetascs are borne) versus at the
ends (where the guard hairs are borne), the number of pixels to add or subtract differed
accordingly: In the middle region, 7.5 pixels were subtracted and 5 added while in the outer
regions, 6.5 pixels were subtracted and 5 were added. These seemingly minor differences
helped to facilitate “absorption” of aesthetascs into the antennule as they merged into it
through the slices. Thresholded pixels within this mask, and between the cutoff points of
the antennule ellipse, were then fit to a new spline, and the process continued through the
slices.

4.3.3. Segmentation of aesthetascs and guard hairs

Like the antennule, the much smaller aesthetascs and guard hairs are well approximated by
ellipses, with the advantage that no splines are needed. Unfortunately, here there is a much
more difficult problem: because aesthetascs often touch or nearly touch, especially as they
approach the antennule (at their bases), the fitted ellipses will tend to overlap as they evolve
through the slices. Simultaneously, one ellipse will tend to engulf its neighbor by gradually
“stealing” its underlying pixels. The touching aesthetascs in Figure 4.6 are a good example
of when this tends to happen. To partially mitigate this problem, a specialized ellipse
fitting routine was created that fits multiple ellipses to multiple hairs at once, with the
constraint that there is no overlap between any ellipses. The following detailed description
of the method applies to both aesthetascs and guard hairs, though fits of the guard hairs
experience this problem much less often. A pseudocode description of the key parts of the
algorithm can be found in Listing B.2 of Appendix B.
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Figure 4.6: Example of a group of touching aesthetascs that causes automatic segmenta-
tion (indicated by red ellipses) to fail. Small perturbations in each fit tend to grow from
slice to slice, and the segmentation routine rarely recovers without manual intervention.

To begin, each hair in a slice is manually segmented by masking thresholded pixels along its
outer edge and fitting an ellipse via nonlinear least squares, as was done for the antennule.
Note that ellipses manually fit to nearby hairs in this way never overlap in practice, so a
simple fitting routine is sufficient here. Then, the first step in the automatic fitting routine
is a check to determine which hairs, if any, are close enough to each other to warrant
simultaneous fitting. This is accomplished crudely but effectively by expanding each known
ellipse’s major and minor axes by 2 pixels, sampling 100 equally spaced points on each
expanded ellipse, and checking analytically whether any of these points lie within another
expanded ellipse. Then the hairs that are close to overlapping are sorted into groups such
that every hair in a group is connected continuously to every other hair in that group; a
typical example is a row of very close aesthetascs just before it merges into the antennule
(third pane in Figure 4.7). In a typical slice there are many groups containing just a single
hair, and a few groups each containing a few to several nearly overlapping hairs that must
be fit together to prevent overlap.

As with the ellipse fit of the antennule, the points to fit for each hair are determined by
masking the annular region between expanded and contracted versions of the previous ellipse
(here, the major and minor axes are grown and shrunk by 4 pixels each). Since each image
is very large (3500 x 1820 pixels), and there are many aesthetascs to fit in each image,
this was sped up drastically by performing this masking procedure on a small rectangular
subregion of the image surrounding each hair. Within a nonlinear least squares fitting
routine (implemented using fmincon() in the Optimization Toolbox, MATLAB 2011a), each
point’s error is then calculated by determining its distance to the closest ellipse according
to the ellipse parameters during the current iteration. To save CPU time, these distances
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were not calculated from every point to every ellipse; instead, points were initially classified
by keeping track of which ellipses’ annular region(s) they fell within, and distances were
only calculated to those nearby ellipses.

To obtain an objective function to be minimized, the sum of the squared distances for
all masked points was computed. However, a weighted sum was used: squared distances
belonging to points inside the closest ellipse were given a weight of 0.25 while squared
distances belonging to points outside the closest ellipse were given a weight of 0.75. This
has the effect of biasing the fit so that more points are inside versus outside than would
occur in the unbiased case. Since many of the points being fit are, in fact, inside each hair
and not along its outer boundary, biasing the fits in this way caused the fitted ellipses to
better approximate the true sizes of the hairs. Edge detection instead of thresholding might
be an alternate solution to this issue, and is discussed further in Section 4.3.5. Finally, a
constraint is imposed on the fits: none of the ellipses in a group are allowed to overlap with
each other, or with hairs that are already segmented and not being fit. Overlap is checked
via the method described above.

Convergence of the optimization problem was facilitated by using the previous ellipses’ pa-
rameters as the starting guesses for the new fits, and by bounding the new ellipse parameters
to be within a small range of the old values. Even still, fmincon often failed to converge, but
this problem was mitigated by introducing a small random perturbation to the initial guess
for the center coordinates of each ellipse. By doing this within a loop, a center location was
soon found that led to convergence of a solution.

Unlike the antennule, each aesthetasc and guard hair only exists in the images for a subset
of all slices. Therefore, they must be removed from the fitting routine if they disappear due
to leaving the plane of the slice (at their tips) or if they merge into the antennule (at their
bases). Note that the segmentation algorithm can operate going in either direction through
the slices (along the antennule), so that a hair is usually initially segmented manually
somewhere between these bounds and then automatically segmented in both directions
away from this starting slice. To account for the disappearence of a hair at both the tip and
base, the number of points to be fit to each hair is summed, and if less than a threshold
(55 works well), it is ignored from then on. In addition, points that are inside the already-
segmented antennule are discarded from the fits since aesthetasc and guard hair structure
becomes incoherent inside the antennule.

Finally, substantial speedup can be realized by fitting the hairs in a given slice in parallel,
given the multi-core configuration of modern computers. Since each group of connected
hairs can be reasonably assumed to not affect the ellipse fits of any other group, the fits
for each group can be done independently. Hence, the algorithm was parallelized using the
parfor (parallel for loop) construct in MATLAB 2011a’s Parallel Computing Toolbox. This
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led to a factor of 3.8 speedup using the four cores of a modern CPU. Since this type of
problem is “embarrassingly parallel,” it would be expected to scale very well with more
processors.

4.3.4. Results

Several segmented slices are shown in Figure 4.7. The ellipse fits of the antennule, aes-
thetascs, and guard hairs in these images are quite good, and the cubic spline that fits the
left side of the antennule can follow the changes in morphology (convex to flat to concave)
through the slices very well. Although many aesthetascs are touching in the various images,
the ellipse fits are always guarenteed not to overlap due to the constraint imposed by the
customized fitting routine. However, the algorithm did not automatically segment all ~300
images between the first and last successfully. Instead, a number of manual interventions
were required for aesthetascs that were close together. If the error in any fit became too
large (cases similiar to Figure 4.6, identified by visual inspection), the routine was stopped,
the poor fits deleted, and manual segmention of the offending hair(s) was done for one or
more slices. When the automatic routine was restarted, the manual fits, taken as given and
skipped by the algorithm, tended to stop errors from growing uncontrollably between slices.

Figure 4.8 shows a reconstructed section of the antennule that was created by sampling
the segmented outlines in each slice and creating a 3D point cloud. The major difference
between this and Figure 4.4 is the smooth nature of the surface, since it is derived from
analytical curves.

4.3.5. Future algorithm improvement

There is much room for improvement in the current image segmentation algorithm. One
promising area is the calculation of the initial guesses for each ellipse. Currently, the ellipse
parameters of the previously segmented slice are used, with small perturbations to the
center coordinates to help numerical convergence. However, this is not optimal since it
does not use any information from any other slices, whether those slices were automatically
or manually segmented. A better initial guess would incorporate the values of the ellipse
parameters from several other slices in both directions, perhaps giving more weight to slices
that were manually segmented. This would be most beneficial in the common case of hairs
that touch throughout many slices. In these cases, the algorithm will often cause one hair
to gradually displace the other (Figure 4.6), and the situation usually worsens until one or
more fitted ellipses no longer “owns” enough pixels and disappears. The current solution
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Figure 4.7: Series of four segmented slices spaced 100 slices (approximately 90 µm along
the antennule) apart. Elliptic-fit region of antennule is in blue, spline-fit region of anten-
nule is in green, and aesthetascs and guard hairs are in red.
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Figure 4.8: Rendering of a point cloud sampled from the segmented antennule, guard
hairs, and aesthetascs in a single tile of data. This tile corresponds to the only section of
antennule that was missing some guard hairs (right side of image).
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to this problem is to manually segment the hairs frequently when they are touching, every
few slices and sometimes even every slice. The algorithm then fills in the intervening slices
by starting at a manually segmented slice and proceeding backwards or forwards. The
frequency of manual intervention could likely be reduced if the intial guesses for a given
slice were interpolated (linearly or with a spline), using the information from many slices in
both directions, backwards and forwards.

One might ask whether it would be easier to segment the volume data by using 2D slices
oriented differently than normal to the antennule. For instance, slices oriented parallel
to the antennule (such as those in Figure 4.9 of the next section) can encompass all the
aesthetascs at once, and result in more circular hair cross sections which might be easier
to segment. However, hairs would touch just as often in this orientation than any other,
so the problem of fitted ellipses or circles gradually displacing each other through the slices
would undoubtedly still exist. In addition, segmenting the antennule would become an
entirely different and perhaps more difficult problem since it would now be represented as
two parallel curves instead of a single closed curve. Hence, any slice orientation seems to
have its strengths and weaknesses.

While the current segmentation method uses a simple intensity threshold to binarize the
images and generate points to fit ellipses to, there are other options. Preliminary evidence
shows that an edge detecting routine results in a binary image containing a ring of points
around the outer edge of each hair, plus an inner ring of points inside the hair that delineates
some internal structure. This set of points could easily replace the set of points generated
by thresholding, with the possible advantage of there being far fewer points to fit (edge
detection results in edges one pixel thick), and thus some computational savings. However,
this approach might also be less robust in the face of outlier points and other anomalies, as
each pixel would have a much higher weight.

Once segmentation of all the 2D slices is complete, there is still the practical task of assem-
bling this stack of cross sections into a 3D representation that can be used for boundary
conditions in a CFD simulation. This may be somewhat dependent on the particular CFD
software or code used, but there appear to be two main approaches. While the stereolithog-
raphy (STL) format is widely compatible, it represents a surface as a triangular mesh, so
that a very large number of triangles is needed for an accurate representation of a complex
surface. An alternative is a native computer aided design (CAD) format such as ISO 10303
(informally known as STEP). Formats such as STEP represent solid geometry using sim-
ple mathematical constructs, and freeform curved surfaces are often represented and stored
analytically as non-uniform rational B-splines (NURBS). A crude comparison can be made
between formats for images and these 3D geometry formats: bitmap images such as JPEG
are to STL surfaces as vector graphics such as SVG are to NURBS surfaces. One must make
sure that an STL surface used for boundary conditions is resolved enough to not introduce
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too much error in the simulation, whereas a NURBS surface is “infinitely” resolved. How-
ever, an STL surface is likely to be much easier to extract from the segmented 2D slices
than a NURBS surface. While a triangular mesh can be fit to a point cloud formed by
sampling points along the segmented curves in each slice (such as that in Figure 4.8), fitting
a NURBS surface to a point cloud is a very difficult reverse-engineering problem. While
commerical software that claims such capabilities exists (e.g., Creo Reverse Engineering Ex-
tension), the technology is relatively new. Since the segmented slices are actually composed
of mathematical constructs such as ellipses and splines, it may seem natural and obvious
to utilize this information to construct a 3D NURBS surface. Unfortunately, no software
currently exists that is designed to do this, but could conceivably be created.

4.4. Morphometrics

4.4.1. Overview

Since segmentation of the entire 3D dataset is a difficult and time consuming task, a number
of simple measurements of the aesthetasc geometry were taken to characterize important fea-
tures and the variability of those features within a single antennule. Specifically, the zig-zag
arrangment of aesthetascs is a conspicuous feature of P. argus antennule morphology and
has been hypothesized to channel flow through the gaps between hairs (Gleeson et al. 1993).
This is because, as shown in Figure 4.1, the aesthetascs are oriented in a ventrolateral posi-
tion along the lateral antennule filament during the flick downstroke (Gleeson et al. 1993).
Although many features of the zig-zag pattern have been measured previously (Gleeson et al.
1993, Goldman and Koehl 2001), some features that are likely to be very important (e.g.,
gaps between hairs) have not yet been well quantified. Thus, these measurements will enable
more accurate predictions to be made of P. argus’s odorant sampling performance.

4.4.2. Methods

Measurements were taken by loading each 3D chunk (of five) of the tomography dataset into
the 3D data visualization software Avizo 6.2, and viewing a slice taken at an oblique angle,
parallel to the antennule and cutting through the aesthetascs. Since there is substantial
variation in the geometry of the aesthetasc array throughout its height, two sets of slices
were taken: the first located about 315 µm above the antennule surface, and the second
about 660 µm above. The first slice cut through the aesthetascs at a height slightly less
than halfway to the tips, while the second slice was located just below the tips.
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To facilitate calculation of distances (i.e., diameters and gaps) and angles, the aesthetascs
in each image were manually segmented using freehand masks and nonlinear least-squares
ellipse fits, according to the same method employed in Section 4.3.3. During manual seg-
mentation, the location of each aesthetasc was recorded, and hairs were ordered (traveling
along each line segment of the zig-zag) and grouped (as belonging to a certain row of the
zig-zag). This grouping could be highly subjective sometimes, as the aesthetascs in our
specimen often deviate substantially from a regular zig-zag pattern. Segments of the zig-
zag that were near the edge of an image and not in full view were not quantified, nor were
segments that bore very little resemblence to an identifiable pattern (common in slices taken
at the tips).

The aesthetascs were assumed to be circular cylinders, so that the minor axis of each el-
lipse was taken to be that aesthetasc’s true diameter, D. Using the recorded ordering and
grouping of the hairs, gap lengths (G) between the hairs in each row were calculated as
the shortest distance between each pair of ellipses (Oldenhuis 2010). Gap lengths were also
calculated for the spaces between aesthetasc rows. Here, knowedge of the kinematics of an-
tennule flicking is important: during the flick downstroke, water will flow roughly vertically
upward through the zig-zag, while during the return stroke, water will flow downward, with
the caveat that the geometry and flow is 3D in reality. Hence, two sets of between-row gaps
were recorded: If , the gap between rows within a segment of antennule, and Ir, the gap
between rows on neighboring segments. If is the downstream gap through which water will
likely be channeled during the flick downstroke, while Ir is the downstream gap through
which water would likely be channeled during the return stroke. Measurements of If and Ir

were also highly subjective because of the deviation of the actual hair arrangment from an
idealized zig-zag. The pairs of hairs used for these calculations were therefore not always
the hairs on the ends of the rows; instead, the gap that appeared most likely to limit flow
through each V-formation was used.

Lastly, the angles between each row of aesthetascs (A) were calculated by fitting a line to
the center coordinates of each aesthetasc in a row, and analytically computing the angle
between each pair of lines. Lines were fit by calcuating horizontal (not vertical) distances
between center coordinates and the line.

As discussed in Chapters 2 and 3, the gap to diameter ratio G/D is an important dimen-
sionless parameter that governs the nature of flow through and around aesthetasc arrays.
To calculate an average gap to diameter ratio (G/D) for the within-row gaps, the average
diameter D and average gap size G were used. The variability (i.e., standard deviation) of
G/D for all measured D and G was estimated by assuming that D and G are uncorrelated
and propagating the variability in each (Bevington and Robinson 2003). We tested this
assumption by pairing gaps with diameters first by pairing with the gap on the left side of
each hair, and then by pairing with the gap on the right side of each hair, for those hairs
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not on the ends of a row. Correlation coefficients obtained this way were 0.04 and 0.05,
respectively, for data taken 315 µm above the antennule and 0.01 and -0.04, respectively,
for the data 660 µm above the antennule. Hence, gap and diameter do not appear to be
correlated across a single antennule. We found the same to be true for the gaps between
rows, and thus computed means and standard deviations for the ratios If /D and Ir/D in
the same way as for G/D.

4.4.3. Results

There is considerable variation in the zig-zag pattern of our scanned specimen, both at
different heights above the antennule and along the antennule at the same height (Figure
4.9). It has been previously reported that the aesthetascs are nearly parallel at the base, and
form a zig-zag pattern at the tips (Gleeson et al. 1993, Goldman and Koehl 2001). While
a zig-zag pattern is clearly identifiable in our slices taken at the midway height (Figure
4.9 A1-A5), it deteriorates as height increases and is often barely recognizable at the tips
(Figure 4.9 B1-B5). Whether this is an artifact of our particular specimen is unknown; our
antennule was indeed missing a few guard hairs in the most proximal section we scanned
(Figure 4.9 A1, top). However, the general lack of a clearly defined zig-zag pattern near the
aesthetasc tips all along the scanned portion of our antennule (except perhaps Figure 4.9
B2) suggests that physical damage is not to blame.

Figure 4.10 shows an example of aesthetasc segmentation and subsequent measurements for
one section of the antennule, at the midway height above the base. Although the angle A
between rows was calculated separately for rows in the same segment versus rows in neigbor-
ing segments, no significant difference was found between these, so all angle measurements
were pooled.
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Figure 4.9: Cross sectional slices taken parallel to antennule and cutting through aes-
thetasc array, at approximately 315 µm above antennule surface (A1-A5) and 660 µm
above surface, near hair tips (B1-B5). Top images are most proximal and bottom images
are most distal along the antennule’s main axis (there are discrepancies in continuity be-
tween images along the antennule due to small translational and rotational offsets in the
5 tiles of volume data.) 94
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Figure 4.10: Example of measurements taken for slice A3 in Figure 4.9 (315 µm above
antennule). Aesthetascs are outlined in red, gaps within each row are in blue, gaps
between rows within the same segment (If) are in magenta, gaps between rows between
segments (Ir) are in cyan, and linear fits to the centers of the hairs in each row are in
yellow (used to calculate angles between rows, A).

Morphological measurements are summarized in Table 4.1, as well as previously measured
values by Goldman and Koehl (2001). There is generally good agreement in the mean
values of measurements found in both studies, particularly between our values at 660 µm
and Goldman and Koehl’s, also taken at the tips. One odd exception is If , for which there
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is good agreement between our measurements at the base and Goldman and Koehl’s at
the tips. The variation in some array parameters with height is clear from our two sets
of measurements: If increases with height, Ir decreases, and the angle forming the zig-zag
pattern increases as expected. Other parameters (D, G, and N) change little with height.
Standard deviations of most quantities are larger near the tips, which is not surprising
considering the deterioration of the zig-zag pattern there (Figure 4.9 B1-B5).

The large number of measurements of D and G allows us to construct meaningful histograms
of these quantities. Aesthetasc diameter at a midway height above the base (Figure 4.11
A1) is very well described by a normal distribution, as is gap distance (A2) to a lesser
degree due to some rightward skewness. Near the tips of the hairs, diameter can still be
described by a normal distribution without egregious error (B1), but there is some skewness
due to many small diameter values. This is most likely a consquence of the variation in
aesthetasc length and insertion angle, making it impossible to slice the volume data at the
same location along every aesthetasc. In contrast to these nearly Gaussian distributions,
gap spacing between aesthetascs near the tips (B2) is decidedly not Gaussian, with a very
large number of hairs touching and having a gap distance of zero.
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Table 4.1: Morphological measurements of the aesthetasc array of a P. argus antenule. Mean, standard deviation
(SD), and number of samples (n) for two vertical locations within the array. Values from (Goldman and Koehl
2001) are also listed if available.

symbol feature
315 µm above
base

660 µm above
base

Goldman
and Koehl

mean SD n mean SD n mean SD n

D aesthetasc diameter (µm) 22 2.0 582 16 2.3 312 22 3 42
G gaps within a row of aesthetascs

(µm)
24 13 541 24 21 278 - - -

If gap between aesthetasc rows
within a segment (µm)

50 19 22 87 29 14 53 10 18

Ir gap between aesthetasc rows
between segments (µm)

85 27 22 59 23 14 - - -

A angle between aesthetasc rows
(degrees)*

21 6.3 44 37 12 27 39 8 36

N number of aesthetascs per row 12 1.3 46 9.3 1.9 33 10 1 42
* No significant differences were found between the average angle formed by aesthetasc rows within a segment
versus between segments (two sample t-test at a significance level of 0.05) for both locations above the base, hence
the results reported at each location are pooled.
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Figure 4.11: Histograms of measured aesthetasc diameter (1) and within-row gaps (2),
taken 315 µm above the base (A) and 660 µm above the base (B). Bin sizes calculated
according to the Freedman-Diaconis rule. Skewness of each data set is shown, as well as
a Gaussian fit of zero skewness for all but (B2).

Gap to diameter ratios derived from the morphological measurements are listed in Table
4.2. G/D for aesthetascs within each row is small, about 1 - 1.5, while gap to diameter
ratios between rows are higher. Again, there is generally much more variation in geometry
near the tips than at the midway height due to the breakdown of a coherent zig-zag pattern
near the tips.

4.4.4. Discussion

Gleeson et al (1993) hypothesized that the zig-zag pattern of aesthetascs in P. argus acts
to channel water and odorant through the dense array of hairs. The larger gap to diameter
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Table 4.2: Statistics of derived values calculated from data in Table 4.1.

symbol feature
315 µm above base 660 µm above base
mean SD mean SD

G/D gap to diameter ratio (gaps
within a row)

1.1 0.62 1.5 1.3

If/D gap to diameter ratio (gaps
between rows within a segment)

2.3 0.91 5.4 2.0

Ir/D gap to diameter ratio (gaps
between rows between segments)

3.9 1.3 3.7 1.6

* D, G, If , and Ir were assumed to be uncorrelated in the calculation of standard deviation
for these derived values; see text.

ratios (If and Ir) at the vertices of the zig-zag pattern (between rows) versus G/D within
each row (Table 4.2) seem consistent with this idea. The much smaller gaps between hairs
within a row, about the same as an aesthetasc diameter, mean that flow and odorant
transport through a row is likely to be drastically inhibited compared to the gaps between
rows (see Chapter 3). This will tend to make a V-formation behave hydrodynamically as
two solid plates, effectively channeling flow, but also possibly reducing odorant flux to the
hairs due to decreased surface area available for molecule capture. This issue is explored
quantitatively in Section 4.5.

The variation in aesthetasc array geometry with height (i.e., its three dimensionality) may
have important consequences on the flow flow and odorant transport during antennule flick-
ing. Since the downstream gap of each V-formation during the flick downstroke (If) is
larger near the hair tips than lower down (Table 4.1), there is likely to be more flow near
the tips. This is especially likely because of the boundary layer due to the antennule itself,
which may in fact dominate any effect of hair spacing. Indeed, Reidenbach et al (2008)
found fluid velocity to increase quite sharply at a height above the antennule about 3/4 of
the way to the aesthetasc tips. This suggests most odorant flux would occur near the tips
of the aesthetascs. However, the spacing between hairs along each row (G) may also be
important. Although the average value of these gaps is the same near the base and at the
tips (Table 4.1), a large number of hairs are touching and clustered together near the tips
(Figure 4.11 B2). This clustering may act to decrease the effective surface area available for
odorant detection near the tips, confounding the hypothesis that most odorant detection oc-
curs there. Furthermore, the cuticle of P. argus aesthetascs is in fact permeable to odorant
molecules and contains odorant receptors along most of the hair’s length (Blaustein et al.
1993), begging the question of why this might be the case if odorant never penetrates down
into the array. Simulations of odorant transport using more realistic 3D geometry may be
necessary to resolve this question.

99



4.5. NUMERICAL SIMULATIONS CHAPTER 4. REAL MORPHOLOGY

Although there is no significant difference in the medial versus lateral angles of the zig-zag
pattern, the differences in Ir and If (Table 4.1) are significant (α = 0.05). Near the base of
the hairs, Ir is larger than If , while the opposite is true near the tips. Thus, the flow that
occurs during the flick versus return movements of the antennule is not only asymmetric due
to the speed of the movement, but also the geometry of the aesthetasc array. Near the base
of the hairs, larger downstream gaps between rows during the return stroke (Ir) might act to
somewhat mitigate the decreased flow through the V-formations during this slower motion,
but the effect of the slower speed probably dominates the effect of the slightly larger gaps.
Both the idealized numerical simulations of Chapter 3, and the experiments of Reidenbach
et al (2008) using a physical model of a P. argus antennule, support this reasoning. The
slow return stroke is therefore thought to allow sufficient time for trapped odorant in the
V-formations (sampled during the fast downstroke) to diffuse to aesthetasc surfaces (Koehl
2006). The fact that gaps between rows on neighboring antennule segments are larger than
gaps between rows on the same segment might simply be a consequence of the segmented
nature of crustacean antennules.

4.5. Numerical simulations

4.5.1. Overview

The ventrolateral orientation and zig-zag pattern of hairs on the antennules of P. argus have
been thought to channel odor-laden water into the dense aesthetasc array. We wished to test
this theory by quantifying leakiness and odorant molecule capture of single V-formations of
hairs. Since the gaps between rows of hairs are larger than the gaps within each row in P.

argus, both “closed” and “open” V-formations were tested to test the significance of this, as
well as two different angles between the rows, corresponding to zig-zag geometry near the
bases versus the tips of the hairs. As a baseline for comparison, we use a straight row of
the same number of hairs as the V-formations, identical to the geometry studied in detail
in Chapter 3. We can therefore quantify whether the V-formations of aesthetascs making
up the zig-zag pattern of P. argus do in fact achieve higher odorant sampling performance
than a much simpler row of hairs in cross flow. Nearly straight rows of aesthetascs do occur
in some species such as the stomatopod Gonodactylaceus falcatus, though this species has
multiple rows of hairs, one behind the other in the streamwise direction, and its hairs are
much farther apart than is the case in P. argus (Mead and Koehl 2000).
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4.5.2. Methods

The flow of water around and transport of odorant molecules to four different 2D array
geometries (Figure 4.12) at two different sampling speeds (Re = 2 [U0 = 7.49 cm/s] and
Re = 0.5 [1.87 cm/s]), corresponding to a flick downstroke and return stroke by P. argus)
during a plume sampling event was numerically modeled according to the methods detailed
in Chapter 3. Briefly, COMSOL Multiphysics was used to solve the incompressible Navier
Stokes equations for steady fluid flow and the advection-diffusion equation for unsteady
scalar transport, using the finite element method (FEM). Generation of the computational
mesh was very similar to the method described in Chapter 3, except a triangular instead
of rectangular region of very high mesh resolution enclosed the half of the symmetric array
that was explicitly modeled (Figure 4.13). Once the steady flow field around each geometry
was solved for, an idealized odorant filament, Gaussian in the streamwise direction and long
enough to span the cross-stream width of the array, was initialized upstream of the array
and allowed to advect toward it. A boundary condition of zero odorant concentration was
imposed on each hair, which caused a time-varying inward flux of odorant mass that was
recorded for each simulation.

All four array types (Figure 4.12) are composed of 25 µm diameter cylinders, which is
similar to the size of P. argus aesthetascs (Table 4.1) and the same as the arrays studied in
Chapters 2 and 3. The gaps between hairs within the rows are also 25 µm, yielding G/D
= 1, as is the case in P. argus (Tables 4.1 and 4.2). Geometry A does not have any gap
between the two rows of the V-formation, while arrays B and C have a 60 µm gap space
between the most downstream cylinders. This corresponds to a gap to diameter ratio (I/D)
= 2.4 for the space between rows, which matches the data of Goldman and Koehl (2001)
and our measured If /D at 315 µm above the base, for the downstream gap during the flick
downstroke. The angle of the V-formation is 39◦ in arrays A and B, and 20◦ in array C; these
values correspond to the angles found midway up and at the tips of the hairs, respectively
(Table 4.1). An array with the smaller 20◦ angle and no downstream gap could not be
tested because it is physically impossible: two of the hairs near the vertex would overlap.
Geometry D is a simple straight row of cylinders designed to test the possible advantages
or disadvantages of the V-shaped geometries. While arrays A and D have 19 hairs, B and
C have 20 hairs; however, the difference of one hair is unlikely to have a large impact on
the aggregate sampling performance of each array.

To succinctly describe the fluid flow through each array, the volumetric flow rate and leak-
iness for a number of control surfaces were calculated. These control surfaces are shown
in Figure 4.12: the gaps between each hair along a row (i.e., the sides of the V-formations
in A, B, and C or the single row of D), as well as the inlet (in A, B, C) and outlet (in
B, C) gaps between rows. Flow rate was computed by integrating the normal component
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Figure 4.12: Tested geometries. Flow is from left to right in all cases. Dashed/dotted lines
across gaps indicate control surfaces, labeled in (C), over which the normal component
of velocity was integrated to calculate flow rate and leakiness, and do not represent real
surfaces. (A) Closed V-formation of 19 cylinders with a 39◦ angle between rows. (B)
Open V-formation of 20 cylinders with a 39◦ angle between rows. (C) Open V-formation
of 20 cylinders with a 20◦ angle between rows. (D) Straight row of 19 cylinders. All
cylinder diameters and gaps are 25 µm, except the vertical outlet gap of open formations
(B) and (C), which is 60 µm.
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Figure 4.13: Top: sketch of mesh regions close to array. Bottom: computational mesh in
near-field. Highest refinement is in triangular area surrounding the cylinders (appears
black due to high element density). Setup is otherwise identical to that used in the
simulations reported in Chapter 3.
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of velocity along each control surface, and leakiness was computed (as in Chapter 3) by
dividing this actual flow rate by the flow rate that would hypothetically occur if the normal
component of the freestream velocity were integrated over the same control surface. Flow
rate is included here in addition to leakiness because leakiness may not be very meaningful
when applied to control surfaces at an angle to the freestream flow (along the side gaps in
V-formations). Flow rates and leakiness values were aggregated over the side gaps along
the rows of A, B, and C - we do not address patterns in intra-array variability in flow.

As in Chapters 2 and 3, the time-varying odorant flux into the arrays is quantified by several
parameters that may be neurobiologically important. These are summarized below for a
flux time series f(t); for a detailed description of each parameter’s relevance and calculation,
see Chapter 3. As with leakiness of the side gaps, these parameters are calculated in the
aggregate sense, using the summed time series of flux into all hairs of each array.

peak flux maximum value of f(t)

peak onset slope (or peak slope) maximum value of d

dt
(f(t))

time-integrated flux (or total flux)
´

∞

0
f(t)dt

flux duration minimum value of t2 − t1 such that
´ t2

t1

f(t)dt = 0.95(total flux)

4.5.3. Results

Instantaneous snapshots of the odorant concentration field during a sampling event at Re
= 2 (a flick downstroke by P. argus) by each geometry are shown in Figure 4.14. The
sampling behavior of all three V-formations (A, B, C) superficially appears quite similar,
but with some odorant mass escaping through the outlet gaps between the two rows of B
and C. The hair at the vertex of array A, which lacks an outlet gap, is blocked by two
upstream hairs and experiences very little odorant flux, as evidenced later in Figure 4.15.
While the hairs along the straight row (D) experience odorant flux at roughly the same
time, the hairs along the V-formations are exposed to odorant in a staggered fashion due to
their stream-wise separation. As discussed in Section 4.5.4, this has important implications
for how V-formations, versus straight rows in crossflow, might integrate sensory information
from each hair in the array.
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Figure 4.14: Odorant concentration field snapshots during a sampling event of the same
Gaussian odorant filament by each geometry. Colorbar indicates concentration (mg/L)
for all cases.
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Flow and leakiness

Table 4.3 summarizes the flow rates and leakiness values for the inlet, side, and outlet (when
present) gaps of the V-formations (A, B, C), as well as for the simple straight row of hairs
(D). Note that flow rates through the inlet gap and side gaps of array A are necessarily the
same due to mass conservation.

At both high and low Re, array B (larger angle, with downstream gap) has the highest
flow through the inlet gap, which is also higher than the total flow through the gaps of the
straight row. However, leakiness of the inlet gap is highest for array C (smaller angle, with
downstream gap), indicating that average fluid velocity entering array C is highest even
though its inlet gap is smaller than array B. Overall leakiness of the straight row is smaller
than leakiness of the inlet space of any of the V-formations, indicating a low permeability
to water relative to its cross stream width.

Although flow rate and leakiness for the inlet gap of a V-formation may predict how much
odorant will enter the volume between rows, examining flow through the gaps betwen hairs
along each row may more accurately reflect sampling performance since odor molecules must
contact a hair in order to be detected. This is especially true for cases B and C, for which
much odorant might escape through the outlet gap. Array B experiences the highest total
flow through the side gaps, though a straight row matches it at the slower sampling speed
of the return stroke. As with the inlet gap, leakiness along the sides of the V-formation
is again highest for case C. However, since leakiness of the side gaps appears to increase
as the angle between rows decreases (between cases B and C), an absolute quantity such
as flow rate (which intuitively decreases from B to C) may be more appropriate here than
leakiness.

Having a downstream outlet gap between rows indeed improves the flow rate and leakiness
between hairs of the V-formation (A vs B). Array B also achieves higher flow rates and
leakiness than a straight row (D). Hence, a V-formation with a downstream opening does
seem to funnel water at the relatively low Re at which olfactory appendages operate, and the
effect is stronger for a larger angle forming the V (B vs C). However, because odorant-laden
fluid can exit the V-formation through an outlet gap, bypassing detection, whether better
odorant sampling performance is achieved by a V-formation is best answered by directly
examining odorant flux into the hairs.
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Table 4.3: Flow rates and leakiness values for different gaps in each geometry, at high Re
and low Re conditions. “Inlet gap” refers to the upstream opening between rows of a
V-formation, “outlet gap” refers to the downstream opening, and “all side gaps” refers
to quantities evaluated over all the gaps within both rows forming the V, as labeled in
Figure 4.12. Case A does not contain a downstream gap between rows, and Case D refers
to a single row in crossflow, whose aggregate flow rate and leakiness values are also listed
as “side” values for comparison despite the different geometry. All flow rates are in mm3

/ s.

Flick Downstroke (Re = 2)
geometry Inlet Gap All Side Gaps Outlet Gap

flow rate leakiness flow rate leakiness flow rate leakiness

A 3.3 0.16 3.3 0.29 - -
B 4.8 0.23 3.8 0.35 0.97 0.22
C 3.5 0.36 3.0 0.53 0.55 0.12
D - - 3.5 0.10 - -

Return Stroke (Re = 0.5)
geometry Inlet Gap All Side Gaps Outlet Gap

flow rate leakiness flow rate leakiness flow rate leakiness

A 0.27 0.053 0.27 0.098 - -
B 0.40 0.077 0.32 0.11 0.081 0.072
C 0.30 0.12 0.24 0.17 0.055 0.049
D - - 0.32 0.037 - -

Odorant flux

Time series of odorant flux into each individual hair of each array are shown in Figure 4.15
for Re = 2 and Re = 1. Though all the time series exhibit similar qualitative features, the
most obvious feature of the V-formations is how much more spread out in time the fluxes
into each hair are than for a straight row geometry. Although a monotonic trend in when
each hair’s peak flux occurs is seen in the V-formations just as in the straight row arrays,
the fact that the hairs of a V-formation are spread out in the streamwise direction causes
odorant fluxes to be spaced apart temporally. As is the case with a straight row of hairs,
the outermost (or most upstream) hairs experience the highest peak flux by a large margin,
and there is usually the same monotonic decrease in peak flux toward the center (or most
downstream) hairs. One exception to this trend occurs for array B, where there is a small
jump in peak flux to the most downstream hairs.
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Figure 4.15: Odorant flux time series into each hair of array geometries A - D at Re = 2
and Re = 0.5. Since each array is symmetric, only fluxes to half the hairs (one side of each
array) are shown. The first curve always corresponds to the most upstream (A, B, C) or
outermost (D) hair, while the last curve always corresponds to the most downstream (A,
B, C) or innermost hair (D), labeled for array (C), Re = 2. Curves in between correspond
to the hairs in between in a straightforward fashion. Flux to the most downstream of
hair of A at Re = 2 is very small and not visible in the plot.
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Table 4.4: Aggregate flux metrics for each geometry at Re = 2 and Re = 1.

Flick Downstroke (Re = 2)
geometry peak flux

(mg / s · mm)
peak slope

(mg / s2 · mm)
total flux

(mg / mm)
flux duration

(ms)

A 5.9E-8 9.0E-6 1.8E-9 43
B 9.9E-8 9.3E-6 2.0E-9 33
C 6.0E-8 9.0E-6 1.9E-9 40
D 2.0E-7 3.4E-5 2.0E-9 17

Return Stroke (Re = 0.5)
geometry peak flux

(mg / s · mm)
peak slope

(mg / s2 · mm)
total flux

(mg / mm)
flux duration

(ms)

A 8.5E-9 3.3E-7 3.0E-9 470
B 1.3E-8 3.1E-7 3.6E-9 400
C 1.0E-8 4.3E-7 3.2E-9 420
D 3.0E-8 4.7E-7 3.5E-9 190

Figure 4.16 shows the aggregate flux time series for each array, in which the flux into every
hair of the array has been summed, for Re = 2 and Re = 0.5. While the aggregate curve
for the straight row (D) is nearly Gaussian at both sampling speeds (as was the case for all
straight rows studied in Chapter 3), the V-formations display very different behavior due to
the larger temporal separation between fluxes to each hair. Several cases exhibit two peaks,
and the the peaks are generally broader, flatter, and not as high as those of the straight
row. Flux during the slower return stroke is about 10 times lower than during the flick
downstroke for each geometry. However, we must note the caveat that we only tested one
outlet gap size, the one of most relevance to the downstroke, so our V-formation geometries
are more appropriate for modeling the downstroke than the return stroke of P. argus.

The flux metrics that summarize the aggregate flux time series to each array are listed in
Table 4.4. Interestingly, the straight row of hairs (D) achieves the highest peak flux, peak
slope, and total flux at the Re of the flick downstroke, though all the arrays achieve similar
total flux. A straight row also experiences the shortest duration of odorant flux, due to its
thin cross-stream extent compared to a V-formation. The same is true at the return stroke
sampling speed, except array B achieves a slightly higher total flux than the straight row.
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Figure 4.16: Aggregate odorant flux time series, summed over all hairs in the array, for
geometries A-D at Re = 2 and Re = 1.
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4.5.4. Discussion

Although a V-formation of aesthetascs does appear to effectively funnel odorant-laden water
into the volume enclosed by the V, it does not appear to be more effective than a simple
straight row in cross-flow at capturing odorant molecules during a plume sampling event.
A straight row achieves similar or higher peak flux, peak slope, and total flux. This result
might be due to the fact that odorant funneled into a V-formation is not guarenteed to be
detected, especially when a downstream outlet gap between rows is present. In addition to
odorant leaking out of the outlet gap, any plume structures that do penetrate into the volume
contained by a V-formation may undergo more shear strain before reaching the hair surfaces
than in the case of a straight row, which would act to decrease concentration gradients and
generally decrease flux. However, the V-formations do experience an odorant flux for a
longer time than a straight row. Although the flux durations at the downstroke Re are still
very short compared to known neural integration timescales (~ 100 ms for the clawed lobster
Homarus americanus (Gomez and Atema 1996a)), flux durations at the return stroke Re
are much higher and likely to lead to detection by the nervous system. The zig-zag pattern
of aesthetascs in P. argus might therefore be an adaptation to retain odorant near the
aesthetascs as long as possible. Interestingly, the mantis shrimp G. falcatus has multiple
rows of aesthetascs in the stream-wise direction (Mead and Koehl 2000). This might be a
similar adaptation that increases the duration of odorant flux and makes detection of very
thin plume structures more likely.

While the flux time series to individual hairs of the V-formations are very similar in shape
to that of the original Gaussian odorant filament, the shape of the aggregate flux time series
are quite different. The signal distortion that V-formations introduce, but that straight rows
in cross flow do not, may be due to the V-formations having a high “sampling fraction” (see
Chapter 2) in an aggregate sense compared to straight rows. While a straight row is very
thin (a hair diameter) in the stream-wise direction, a V-formation spans a much longer
distance. Thus, as an odorant filament advects past each array, at any instant in time there
will probably be more array surface area in contact with the filament for a V-formation than
for a straight row. In the case of the V-formation, gradients in odorant concentration in the
stream-wise direction will become averaged out by the array as a whole when transduced
to a temporal flux signal. This high level of filament shape distortion means that it would
be less likely for the nervous system of an animal to reconstruct the spatial structure of
the original plume from an aggregated signal, versus from signals from each individual
aesthetasc. Although the level of neural convergence in crustaceans such as P. argus is
largely unknown, it is unlikely that signals from each aesthetasc are processed individually.
The degree of aggregation of chemosensory information along the antennule may therefore
be an important factor in determining what fine-scale details of the plume are available to P.

argus. This is obvious if spatial sampling (e.g., comparing signals from different aesthetascs)

111



4.6. CONCLUSIONS CHAPTER 4. REAL MORPHOLOGY

is employed, but the data presented here show that this is also true if temporal sampling
(e.g., inferring spatial plume structure from a time series of measurements) is used.

4.6. Conclusions

This chapter investigated the morphology of a real aesthetasc array, that of the spiny lobster
P. argus, in great detail in an effort to understand how its peculiar arrangment of sensory
hairs might affect odorant sampling performance. A 3D scan of an actual specimen revealed
substantial variation in hair arrangement within a single antennule. Although the previously
reported zig-zag pattern of aesthetascs was well defined at an intermediate height above the
antennule, it deteriorated into a much more haphazard arrangment near the tips of the hairs,
where the most exposure to odorant-laden water would be expected to occur. Nonetheless,
measurements of the geometry show that on average, hairs are very closely spaced along
each row but that larger spaces at the vertices between rows might effectively channel water
through each V-formation. This hypothesis is supported by idealized numerical simulations
of single V-formations of hairs. However, as the data in Chapter 3 already showed, odorant

sampling performance is not necessarily well predicted by fluid sampling performance. Data
presented here indicate that in many regards, a simple straight row of hairs in crossflow is
better than a V-formation at capturing odorant molecules from the same odorant filament.
It is possible that the zig-zag morphology of P. argus is then an adaptation to prolong
the duration of odorant flux and mitigate the relatively long sensory integration times of
crustacean olfactory neurons. Biologically inspired chemical sensor arrays that have much
faster response times than olfactory neurons (a feat admittedly yet to be accomplished)
may achieve higher performance with a simple row of sensors than a more exact replica of
P. argus morphology.
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Summary

The work in this dissertation focuses on using computational methods to examine how arrays
of chemosensory hairs, crustacean aesthetascs, interact with and sample turbulent odor
plumes. Although these biological sensor arrays play an important role in the rapid plume
tracking abilities of many marine crustaceans (e.g., lobsters, mantis shrimp, blue crabs),
the small-scale transport of odorant molecules from the plume to individual aesthetascs is
poorly understood. The transduction of spatial plume structures to time-varying odorant
fluxes to aesthetascs that occurs during this process is likely to filter information contained
in an organism’s odor landscape. Following a research path from simpler to more complex
numerical models of reality, the work presented here aims to quantify how the morphology
and sampling kinematics of an aesthetasc array affect how an odorant plume is perceived
by an organism.

In Chapter 2, perhaps the simplest type of array geometry possible, an infinitely wide
row of 2D cylindrical hairs, was used to investigate the fundamental properties of odorant
transport within the gaps between hairs of an array. High shear in the fluid flow in the
gaps, caused by sampling a plume at higher speeds, increases peak odorant flux metrics
but also leads to distortion of original plume structure as represented in the temporal flux
signal. Sampling faster also reduces the total number of odorant molecules detected. Hence,
there are performance tradeoffs that both crustaceans with chemosensory antennules and
similarly equipped bio-inspired plume-tracking robots are likely to experience.

Chapter 2 also provides some evidence that crustacean antennules may be good starting
points in the design of engineered sensor arrays, since arrays based on the antennules of the
spiny lobster P. argus and mantis shrimp G. falcatus generate temporal flux signals of the
same shape as the sampled odorant filament, with very little distortion. However, because
the timescales of response of both crustacean olfactory neurons and current chemical sensors
are relatively slow, measuring fine-scale plume structure does not seem feasible via analysis of
temporal signals. Crustaceans may instead utilize spatial sampling to infer plume structure
by comparing the signals they receive from different regions of the aesthetasc array.
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Chapter 3 introduced another element of realism, leakiness, to the model of a crustacean
aesthetasc array. This was done by accounting for the number of hairs in the row, which
is never infinite in reality. While some features of infinite-extent arrays, such as the design
tradeoff between peak and total flux and the brief duration of flux during a typical plume
sampling event, are also found in finite-extent arrays, the latter exhibit some intriguing
behaviors not predictable by the simpler infinite array model. Firstly, the finite width of a
real array means that not all sensory hairs will experience exactly the same fluid flow and
odorant transport dynamics, as is the case for infinite arrays. Differences in the sampling
performance of hairs across the array may cause some odorant patches to be detected by
some hairs of the array but missed by other hairs, and vice versa. This type of specialization
could occur due to physical processes alone, even if all aesthetascs contained exactly the
same type of olfactory neurons.

A number of other important consequences of finite geometry are detailed in Chapter 3,
the most surprising of which is the following non-monotonic behavior: while adding more
sensory hairs to a simple linear array acts to increase peak flux metrics for high sampling
speeds and sparse arrays, the opposite occurs for low sampling speeds and dense arrays of
closely spaced hairs. These fundamental changes in odorant sampling performance are not
well predicted by trends in leakiness alone, even though the two are undoubtedly related.
This suggests that the dynamics of scalar transport to biological hair arrays should be
investigated explicitly, since simple parameters describing the fluid flow are not sufficient to
explain trends in odorant sampling performance.

Simple linear rows of hairs, even those of finite width, are still a far cry from the anten-
nule morphologies of many crustacean species. Therefore, Chapter 4 examines a particular
species’ aesthetasc array in detail - that of the well studied Florida spiny lobster, P. argus.
A state-of-the-art 3D tomographic scan was performed of an actual antennule, and a paral-
lelized image segmentation method designed to extract the surface geometry is presented.
This segmentation algorithm seems promising for tomography of biological appendages com-
posed of densely spaced, hair-like structures. The scan of the P. argus antennule shows
frequent deviation from the idealized zig-zag pattern of aesthetascs previously described in
the literature, emphasizing the importance of natural variability in morphology even within
a single antennule. Nonetheless, average properties of the morphology agree with previous
measurements, and were used to build a simplified 2D numerical model of the V-formations
making up the zig-zag array. A V-formation of hairs does effectively channel flow through
the aesthetascs as previously hypothesized in the literature, but as the work in Chapter
3 shows, this does not imply more effective odorant sampling. Indeed, a simple straight
row of hairs in crossflow achieves higher peak flux, peak onset slope, and total flux than
any V-formation tested. A V-formation does result in a longer period of chemical flux to
sensors, and both olfactory neurons and current engineered chemical sensors might benefit
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from this sampling behavior since both have relatively long response times. However, these
results remind us that biological solutions are often not optimal solutions for engineering
problems such as plume tracking robots, and should be viewed as a viable starting point
instead of a final design.

Future directions

This work focused on an analysis of the temporal features of the odorant flux time series
that result when an array of flux-detectors samples a turbulent plume. These time series are
presumably used by organisms to perceive the spatial structure of their odor environment.
However, additional information could be extracted from these signals by considering the
spatial arrangement of olfactory hairs within the array. If an odorant patch that exhibited
variation along the span of the array were sampled, this variation could in principle be
estimated by comparing the sensory output from each hair. Thus, a fruitful future research
direction might investigate various types of odorant patches, in addition to the simple
Gaussian filament studied here, to determine how their structures might be reconstructed
from patterns of sensor response across the arrays.

Strong evidence is presented here that suggests the duration of odorant stimulation during
the flick downstroke is too short for odorant detection or quantification to occur in benthic
crustaceans such as lobsters. This implies that the return stroke and inter-flick pause during
typical sampling behavior are important if thin, 1 mm odorant filaments are to be detected.
Although it is popularly believed that these phases of the flicking motion allow sufficient
time for diffusion of odorant molecules trapped in the array to diffuse to aesthetasc surfaces
and be detected, this hypothesis has never been explicitly tested. A simulation of a complete
flick/return/pause sequence would help quantify the proportation of odorant flux that occurs
during each phase, and whether neural stimulation is indeed lengthened substantially by
trapping of odorant during the return stroke and pause. However, this type of numerical
simulation would probably be costly: a very large, highly resolved domain would be needed
to contain the entire back-and-forth advection distance of the odorant filament during the
complete flicking sequence.

Real aesthetasc array morphologies are 3D due to the presence of the antennule to which the
hairs are attached, and the finite length of the hairs themselves. This three dimensionality
is likely to have a profound impact on flow and odorant transport dynamics because water
can move around the array in two different dimensions, reducing leakiness and perhaps
odorant sampling performance compared to a 2D array. Complete segmentation of the
surface geometry of our scanned P. argus antennule would provide boundary conditions for
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input into numerical simulations of a plume sampling event by a real 3D morphology. By
comparing odorant sampling performance of the scanned geometry to idealized, but still
3D, simplifications (e.g., no guard hairs, straight row versus zig-zag), the importance and
possible utility of each aspect of the real morphology could be deduced.

Over the course of this research project, it became increasingly apparent how little is known
in the field of animal olfaction and turbulent plume tracking behavior. The large range of
important spatial scales involved, from the turbulent eddies that form filamentous chemical
structures to the microscopic aesthetascs arrayed along the antennules, make a compre-
hensive treatment of the problem very difficult. The fact that many other chemosensory
structures are distributed over a crustacean’s body further complicates the question of how
these animals perceive their odor environment. Nonetheless, the aesthetascs are known
to play an important role in orientation and navigation in odor plumes, so developing a
detailed understanding of their functioning is worthwhile. One of the major difficulties in
putting the results of the present work in a meaningful perspective is the lack of neurobio-
logical data for these sensory structures when they undergo transient exposure to odorant.
Although a virtual sensor can be used to normalize plume sampling performance to what
is theoretically possible, it does not help distinguish differences in performance that are
biologically significant from those that are not. To do that, it is crucial that more extensive
measurements of neural response under realistic plume conditions be performed.
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A. Virtual sensor normalization

The flux into the virtual sensor at a given time is equal to C(t)U0 [ND + (N − 1)G] where
C(t) is odorant concentration anywhere along the sensor (the line segment of cross-stream
width ND +(N −1)G). Therefore, peak flux corresponds with the maximum concentration
of the filament, peak slope corresponds with the maximum spatial slope of the filament, and
total flux corresponds with the total odorant mass contained in this cross-stream section of
the Gaussian filament. We define flux duration in a similar manner to how it is defined for
the real arrays; that is, the smallest cross-stream distance that contains 95% of the total
mass in the filament. Therefore, the flux metrics for a virtual sensor are:

• peak flux = C0U0 [ND + (N − 1)G]

• peak slope =
C0U2

0
e−0.5

σf
[ND + (N − 1)G]

• time integrated flux = C0σf

√
2π [ND + (N − 1)G]

• duration = width95/U0 where width95 = 0.560 mm, which corresponds to the smallest
cross-stream interval that contains 95% of mass in the odorant filament
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B. Image segmentation algorithm

Listing B.1: Method used to segment antennule cross-sections, summarized as MATLAB
pseudocode.

%i n i t i a l manual segmentation o f e l l i p s e

load , thresho ld , and d i s p l a y i n i t i a l image ( s l i c e = 0) ;
maskedpoints = imfreehand ( ) ;
[ x0 , y0 , a , b , alpha ] = f i t e l l i p s e ( maskedpoints ) ; %outputs are c ente r coo rd ina te s

, major and minor axes , and r o t a t i o n ang le
save f i t parameters

%automatic e l l i p s e f i t s f o r the r e s t o f t h i s t i l e o f data (2000 s l i c e s )

f o r s l i c e = 1 :1999
load and thr e sho ld cur r ent image ;

maskedpoints = p i x e l s i n s i d e e l l i p s e de f ined by
( x0 , y0 , a+5,b+5, alpha ) AND outs ide e l l i p s e de f ined by
( x0 , y0 , a−5,b−5, alpha )

[ x0 , y0 , a , b , alpha ] = f i t e l l i p s e ( maskedpoints ) ;
save f i t parameters

end

%i n i t i a l manual guess o f e l l i p s e c u t o f f po int l o c a t i o n ( s l i c e = 0) , f o l l owed
by automatic l o c a t i o n o f c u t o f f po in t s in a l l s l i c e s

%t h i s i s done twice , f o r both top and bottom c u t o f f l o c a t i o n s

load and d i s p l a y s l i c e 0 ;
xg = user input ;
f o r s l i c e = 0 :1999

load and thr e sho ld cur r ent image ;
load ( x0 , y0 , a , b , alpha ) f o r e l l i p s e f i t in cur r ent s l i c e
f o r xw = xg+45 : −1 : xg−45 %loop r i g h t edge o f i n t e r r o g a t i o n window

from r i g h t to l e f t

maskedpoints = p i x e l s i n s i d e e l l i p s e de f ined by
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APPENDIX B. IMAGE SEGMENTATION ALGORITHM

( x0 , y0 , a+10 ,b+10 ,alpha ) AND outs ide e l l i p s e de f ined by
( x0 , y0 , a−10 ,b−10 ,alpha ) AND f o r which xw−10 <= x <= xw

i f numel ( maskedpoints ) < 10
xc = xw + 70 ; %70 p i x e l s a f e t y f a c t o r
xg = xw ;
break ;

end

end

i f xw == xg−45 %break cond i t i on never reached
xc = xw + 45 + 70 ;

end

yc = y−coo rd ina te matching xc on cur r ent e l l i p s e f i t

end

%i n i t i a l manual f i t o f cubic s p l i n e

load , thresho ld , and d i s p l a y s l i c e 0 ;
load ( x0 , y0 , a , b , alpha ) f o r e l l i p s e f i t in cur r ent s l i c e
load top and bottom c u t o f f po in t s in cur r ent s l i c e
eva lua te s l o p e s o f e l l i p s e at top and bottom po int s

maskedpoints = imfreehand ( ) ;

s e t t i n g s = s lmset ( ’ l e f t s l o p e ’ , bottom s lope , ’ r i g h t s l o p e ’ , top s lope , ’ l e f t v a l u e
’ , top x−cuto f f , ’ r i gh tva lue ’ , bottom x−cuto f f , ’ knots ’ , 8 ) ;

slm = slmengine ( maskedpoints , s e t t i n g s ) ; %f i t t i n g rout ine
ypts = l i n s p a c e ( top y−cuto f f , bottom y−cuto f f , 1500) ; %1500 even ly spaced

po in t s
xpts = s lmeva l ( ypts , slm ) %eva lua te s p l i n e at the s e l o c a t i o n s

%automatic s p l i n e f i t s f o r a l l s l i c e s
f o r s l i c e = 0 :1999

load and thr e sho ld cur r ent s l i c e
load ( x0 , y0 , a , b , alpha ) f o r e l l i p s e f i t in cur r ent s l i c e
load top and bottom c u t o f f po in t s in cur r ent s l i c e
eva lua te s l o p e s o f e l l i p s e at top and bottom po int s

lox = NaN( s i z e ( xpts ) ) ; hix = NaN( s i z e ( xpts ) ) ;

%get x−coo rd ina te s that w i l l demarcate masked r eg i on
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%720 <= y <= 1025 conta in s " inne r " s e c t i o n o f s p l i n e where
a e s t h e t a s c s tend to merge

lox ( ypts <720 | ypts >1025) = xpts ( ypts <720 | ypts >1025) − 6 . 5 ;
hix ( ypts <720 | ypts >1025) = xpts ( ypts <720 | ypts >1025) + 5 ;
lox ( ypts >720 & ypts <1025) = xpts ( ypts >720 & ypts <1025) − 7 . 5 ;
hix ( ypts >720 & ypts <1025) = xpts ( ypts >720 & ypts <1025) + 5 ;

%c r e a t e mask from c l o s e d polygon formed by the s e po in t s
mask = poly2mask ( [ lox f l i p l r ( hix ) ] , [ ypts f l i p l r ( ypts ) ] ) ;

maskedpoints = po in t s i n s i d e mask AND between top and bottom c u t o f f s

%f i t s p l i n e to masked po in t s
s e t t i n g s = s lmset ( ’ l e f t s l o p e ’ , bottom s lope , ’ r i g h t s l o p e ’ , top s lope , ’

l e f t v a l u e ’ , top x−cuto f f , ’ r i gh tva lue ’ , bottom x−cuto f f , ’ knots ’ , 8 ) ;
slm = slmengine ( maskedpoints , s e t t i n g s ) ; %f i t t i n g rout ine
ypts = l i n s p a c e ( top y−cuto f f , bottom y−cuto f f , 1500) ; %1500 even ly

spaced po in t s
xpts = s lmeva l ( ypts , slm ) %eva lua te s p l i n e at the s e l o c a t i o n s

save s p l i n e parameters ( slm ) f o r cur r ent s l i c e

end

Listing B.2: Method used to segment aesthetasc and guard hair cross-sections, summarized
as MATLAB pseudocode.

%manual segmentation o f e l l i p s e s f o r s l i c e s

whi l e ( user input cont inue s )
maskedpoints = imfreehand ( ) ;
[ x0 , y0 , a , b , alpha ] = f i t e l l i p s e ( maskedpoints ) ; %outputs are c ente r

coo rd ina te s , major and minor axes , and r o t a t i o n ang le
save f i t parameters ; %sav ing rout ine must keep track o f which ha i r

t h i s i s and in what s l i c e
end

f o r s l i c e = s +1:1999 %or s −1:−1:0 to work in other d i r e c t i o n

%f i r s t group near ly −touching h a i r s
f o r i = 1 : numhairs %loop over a l l h a i r s in cur r ent s l i c e

f o r j = 1 : numhairs %check over lap with every other ha i r
i f comparing ha i r with i t s e l f or t h i s pa i r i s a l r eady

accounted f o r
cont inue ;

end
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[ xpts , ypts ] = 100 equa l l y spaced po in t s a long ha i r j
with a=a+2, b=b+2

i s o v e r l a p = c h e c k i n s i d e ( ha i r i , xpts , ypts ) %l o g i c a l
matrix c r ea ted by a n a l y t i c a l l y check ing whether
each po int i s i n s i d e ha i r i

i f any ( i s o v e r l a p ) %i f at l e a s t one po int on ha i r j i s
i n s i d e ha i r i

group ha i r i and ha i r j tog e the r as a pa i r
end

end
end

combine p a i r s that share h a i r s in common into l a r g e r groups ,
s i n g l e h a i r s each form t h e i r own group

pa r fo r i = 1 : numgroups %runs in p a r a l l e l
f o r j = 1 : numhairs with in group i

load x0 , y0 , a , b , alpha f o r cur r ent ha i r in pr ev ious
s l i c e

subthresh = subreg ion o f th r e sho lded image bounded by
square centered on cur r ent hair ’ s o ld l o c a t i o n

and o f s i d e length a+40
maskedpoints = p i x e l s in subthresh that are i n s i d e

e l l i p s e de f ined by
( x0 , y0 , a+4,b+4, alpha ) AND outs ide e l l i p s e de f ined by
( x0 , y0 , a−4,b−4, alpha ) AND outs ide segmented antennule

i f numel ( maskedpoints ) <= 55
remove cur r ent ha i r from f i t t i n g rout ine
cont inue

e l s e
pts { j } = maskedpoints ; %save p i x e l s to f i t to

each ha i r
end

end

d e f i n e lower and upper bounds f o r x0 , y0 , a , b , alpha o f each
f i t t e d e l l i p s e , the s e are a l lowed to change by +/−
4 , 4 , 3 , 3 , 0 . 1 7 , r e s p e c t i v e l y , from f i t s o f p r ev ious s l i c e

whi l e ( s o l u t i o n not converged )

d e f i n e i n i t i a l gue s s e s f o r x0 , y0 , a , b , alpha o f each
e l l i p s e as o ld va lue s from prev ious s l i c e , except
x0 and y0 are perturbed by +/− 2∗ rand
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use fmincon to vary x0 , y0 , a , b , alpha f o r each e l l i p s e
to minimize SSE ,

s u b j e c t to the c o n s t r a i n t that no e l l i p s e ove r l aps
with any other , or with pre−e x i s t i n g e l l i p s e s on
cur r ent s l i c e :

f o r j = 1 : numhairs with in group i
compute d i s tance o f each maskedpoint in pts { j

} to e l l i p s e j
end

f o r maskedpoints appear ing in more than one c e l l o f {
pts } ,

choose s m a l l e s t d i s tance and s t o r e which
e l l i p s e i t cor responds to

end

f o r j = 1 : numhairs with in group i
c a l c u l a t e and s t o r e r e l a t i v e l o c a t i o n ( i n s i d e

vs out s ide ) o f each maskedpoint and
cor responding c l o s e s t e l l i p s e

end

%compute average sum o f squared d i s t a n c e s
SSE = 0.25∗sum ( ( d i s t a n c e s o f i n s i d e po in t s ) .^2 ) +

0 .75∗sum ( ( d i s t a n c e s o f out s ide po in t s ) .^2 ) / numel
( maskedpoints ) ;

end %whi le loop u n t i l convergence

save a l l f i t parameters

end %par fo r loop over groups

end %loop over s l i c e s
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