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Abstract

While there has been extensive research developing gene-environment interaction (GEI) methods 

in case-control studies, little attention has been given to sparse and efficient modeling of GEI in 

longitudinal studies. In a two-way table for GEI with rows and columns as categorical variables, a 

conventional saturated interaction model involves estimation of a specific parameter for each cell, 

with constraints ensuring identifiability. The estimates are unbiased but are potentially inefficient 

because the number of parameters to be estimated can grow quickly with increasing categories of 

row/column factors. On the other hand, Tukey’s one degree of freedom (df) model for non-

additivity treats the interaction term as a scaled product of row and column main effects. Due to 

the parsimonious form of interaction, the interaction estimate leads to enhanced efficiency and the 

corresponding test could lead to increased power. Unfortunately, Tukey’s model gives biased 

estimates and low power if the model is misspecified. When screening multiple GEIs where each 

genetic and environmental marker may exhibit a distinct interaction pattern, a robust estimator for 

interaction is important for GEI detection. We propose a shrinkage estimator for interaction effects 

that combines estimates from both Tukey’s and saturated interaction models and use the 
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corresponding Wald test for testing interaction in a longitudinal setting. The proposed estimator is 

robust to misspecification of interaction structure. We illustrate the proposed methods using two 

longitudinal studies — the Normative Aging Study and the Multi-Ethnic Study of Atherosclerosis.

Keywords

adaptive shrinkage estimation; gene-environment interaction; longitudinal data; Tukey’s one df 
test for non-additivity

1. Introduction

The presence of gene-environment interactions (GEI) implies that the effect of an 

environmental exposure (E) is enhanced or reduced for a sub-group with a certain genotype 

or vice versa. Investigation of GEI is essential to better understand the etiology and 

development of common, complex diseases. Many longitudinal environmental epidemiology 

studies have been collecting genetic data with the goal of identifying GEI. In these cohort 

studies, GEI is often investigated by focusing on an established association between an 

exposure biomarker (e.g., lead levels in blood or bone) and a quantitative trait (e.g., pulse 

pressure), and how this association is modified by a selected set of genetic markers. The set 

of genes (candidate genes) to be studied is often determined by the metabolic pathway 

related to the exposure instead of an agnostic search across the genome.

While there has been extensive literature on GEI regarding ways to enhance the efficiency 

of interaction test in case-control studies [1, 2, 3], statistical methods for GEI in longitudinal 

settings remain limited. Methods to study disease-gene association in longitudinal settings, 

however, have started to receive attention. For instance, Wang et al. [4] proposed to estimate 

and test for time-varying genetic effects using semiparametric models with penalized 

splines. Fan et al. [5] also used penalized spline models to estimate the mean function and 

genetic regression coefficients with extensions to linkage disequilibrium (LD) mapping. 

Nevertheless, very limited number of studies have focused on testing of gene-gene 

interactions (GGI) or GEI for complex traits in longitudinal settings. The multivariate 

adaptive splines presented by Zhang [6, 7] have been applied to analyze GEI in longitudinal 

cohort studies (e.g., Zhu et al. [8]). Xu [9] developed an empirical Bayes method to estimate 

GGI effects under the mixed model framework and compared it with several variable 

selection procedures. Malzahn et al. [10] developed a nonparametric test for investigation of 

GGI in repeated measures data using a rank procedure. Mukherjee et al. [11] proposed to 

explore the GEI structure with various parsimonious classical ANOVA models for non-

additivity by taking the average of repeated measurements and forming cell means of a two-

way GEI table. Along the same lines, Ko et al. [12] extended the classical ANOVA models 

under a mixed model framework and developed a resampling-based test for GEI that 

accounts for correlation within repeated measures.

Typically, an interaction model including cross-product terms of gene and environment 

under the mixed model framework is used for testing GGI and GEI in longitudinal studies 

[13]. In considering the estimation of GEI for longitudinal data where both the genetic factor 

(G) and E are categorical variables, this conventional modeling approach involves distinct 
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parameter estimation for each configuration of GEI (i.e., a saturated interaction form) with 

sum-to-zero type constraints to ensure identifiability. Estimation bias is minimized since the 

model does not impose any structural assumptions on the interaction term. However, the 

number of parameters and hence the corresponding degrees of freedom (df) for the 

interaction test can become substantially large as the number of categories of G and/or E 

increases. In addition, under a saturated interaction model only observations in a cell can 

contribute to the parameter estimation for that cell. This may result in reduced efficiency and 

loss of power for detecting interactions because of small cell sample size in human studies 

involving a gene with a modest minor allele frequency.

Tukey’s one df model for non-additivity [14], originally proposed for data with no 

replication per cell, has been applied to the modeling of GGI in cohort studies. Maity et al. 

[15] used Tukey’s form of interaction for repeated measures data to test main genetic 

associations in the presence of GGI. The interaction term in Tukey’s model is treated as a 

scaled product of main effects, implying that the existence of interaction is conditional on 

the presence of main effects. When a GEI study is based on a two-stage strategy, namely, 

the candidate genes are selected based on marginal genetic associations [16, 17], it may be 

reasonable to adopt Tukey’s interaction form for GEI. Chatterjee et al. [18] proposed that 

Tukey’s model is also consistent with the notion that individual markers within a gene are 

associated with disease through a common biological mechanism. However, when candidate 

genes are chosen in relation to an exposure pathway, genes may not necessarily have main 

effects. Also, when the assumption of Tukey’s interaction structure is violated (e.g., absence 

of genetic main effects), the estimate for the interaction effect using Tukey’s model will be 

biased and the corresponding one-df test can result in extremely low power [11, 19].

When searching for GEI across multiple genetic markers, it is possible that GEIs exhibit 

distinct interaction patterns, departing from Tukey’s model. Conducting multiple tests under 

a fixed interaction structure (e.g., Tukey) may not capture interactions of alternative forms. 

At the same time, it would be advantageous to leverage the power of Tukey’s test if it is 

indeed a plausible model. Given as such, we propose to model GEI using a shrinkage 

estimator that combines estimates from Tukey’s model and from the saturated interaction 

model. An adaptive framework is utilized similar to that described by Mukherjee et al. [2]. 

This estimator will shrink the maximum likelihood estimates (MLEs) under a flexible 

interaction structure toward Tukey’s model estimates. The amount of shrinkage is data 

adaptive, so that in large samples, such estimator is unbiased even if Tukey’s assumption is 

violated. More importantly, when compared to a saturated model, the shrinkage estimator 

has reduced mean squared error (MSE) for small samples [20]. Although Tukey’s model has 

been used to model GEI or GGI under a generalized linear model setting [15, 18, 19], no 

prior work has been carried out to data-adaptively combine Tukey’s model and saturated 

interaction model to take advantage of both models for testing GEI. Thus, the shrinkage 

approach is not only novel for longitudinal data but also a new approach for cross-sectional 

data.

In Section 2, we introduce notations for GEI models using a mixed-effects model 

framework. The parameter estimation for Tukey’s model with repeated measures data is 

described in Section 3. In Section 4, we propose a shrinkage estimator and derive its 
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approximate variance estimate. In Section 5, we summarize the test for interaction 

corresponding to each method. In Section 6, we evaluate the performance of our proposed 

methods via simulation studies. In particular, we compare the average performance by 

generating GEIs with different interaction structures to mimic a hypothetical GEI search 

study involving multiple genetic markers. In Section 7, we apply the proposed methods to 

search GEI between 105 single-nucleotide polymorphisms (SNPs) within 22 genes in the 

iron metabolism pathway and cumulative lead exposure on pulse pressure using the 

Normative Aging Study (NAS) data. We also test GEI between 27 SNPs and energy intake 

and intentional exercise on body mass index (BMI) using data from the Multi-Ethnic Study 

of Atherosclerosis (MESA). These 27 SNPs have been shown to be significantly associated 

with BMI in previous genome wide association studies (GWAS). In NAS, genes are chosen 

in relation to the exposure pathway. In MESA, the question is whether the loci identified by 

GWAS (with marginal effects) modify the effect of certain exposures. Another distinction 

between the two data examples is that one of the exposure variables considered in MESA, 

intentional exercise, is a time-varying variable, while the other two, energy intake in MESA 

and cumulative lead exposure in NAS, are time-invariant (i.e., both are baseline 

measurements).

2. Model

Let ykt be the value of the t-th repeated measure on a phenotypic response Y corresponding 

to the k-th individual (t = 1, …, nk, k = 1, …, N). Define a mixed-effects model for the nk × 1 

response vector yk = (yk1, yk2, …, yknk)
⊤ such that it is related to an nk × ν matrix of 

explanatory variables Xk = (xk1, xk2, …, xknk
)⊤, with each xkt a ν × 1 vector associated with 

ykt, through some nonlinear function f. Namely,

(1)

where η is the p-dimensional vector of fixed effects, f(η, Xk) is the nk × 1 mean vector, bk ~ 

(0, Ψ) is the q-dimensional vector of random effects, Zk is the design matrix of size nk × q 

for the random effects satisfying rank(Zk) = q ≤ nk for all k, and ek = (ek1, …, eknk)
⊤ ~ (0, 

Σk) is the nk-dimensional vector of random errors. The random effects bk are assumed to be 

independent of ek. Let Vk(ω) be the variance matrix of yk, . Here ω 

consists of parameters in Ψ and Σk.

We use (1) to model the association between the phenotypic response of interest and genetic 

and environmental exposure factors. Let Gk be the genotype and Ekt be the exposure level 

for the k-th subject at the t-th measurement, Gk = i, i = 1, 2, …, I, Ekt = j, j = 1, 2, …, J. Both 

Gk and Ekt are assumed to be categorical variables. Without considering any covariates, the 

mean structure for ykt under Tukey’s model [14] has the following form

(2)
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Here η has two components, η = (β⊤, θ)⊤. β consists of the intercept β0, the parameters for 

genetic main effects, , and exposure main effects, . θ 

is a scale parameter representing the interaction effect. A saturated interaction model, on the 

other hand, allows for separate interaction parameters for each GEI configuration:

(3)

where τ = (τ11, …, τIJ)⊤ is the interaction parameter vector with length IJ. Due to the 

constraints for parameter identifiability, , βG and βE are left with (I − 1) 

and (J − 1) independent parameters to be estimated, respectively. Similarly, Σi τij = Σj τij = 

0, so (I − 1)(J − 1) parameters in τ are left to be estimated.

3. Parameter Estimation for Tukey’s Model with Repeated Measures Data

We describe the estimation strategy for the parameters of Tukey’s model. The log-likelihood 

for the data y1, …, yN is

(4)

Given Vk(ω), maximizing the likelihood is equivalent to minimizing the objective function

(5)

with respect to η. The solution for η is the generalized least squares (GLS) estimator. Since 

the estimation for fixed effects in Tukey’s model does not have a closed-form solution, the 

iterative linearization method is considered.

The linearization method uses a first-order Taylor series expansion to approximate solutions 

of a general function by a linear function [21], which has been applied to nonlinear mixed-

effects models [22, 23, 24]. Let η* = η̂(0) = (β̂(0)⊤, θ̂(0))⊤ denote the initial estimate of η = 

(β⊤, θ)⊤. The first-order Taylor series expansion of f(η, Xk) about η = η* is

(6)

where  is an nk × p matrix . Initial 

values of η* can be obtained by fitting a saturated interaction model (via standard linear 

mixed effects model) and using the main effect estimates as β*. After removing main effects, 

the residuals can then be regressed on the product term  (without intercept) to obtain 

θ*. The mean function of Tukey’s model for the k-th subject at the t-th measurement is
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where 

. 

Following (1), the expansion in (6) yields the approximation

which can be expressed as a linear model

(7)

where . Then the GLS estimator for η is given by

(8)

where  is the assumed covariance matrix of  evaluated at ω = ω*. When η and ω are 

unknown, a common strategy is to replace V(ω) with a consistent estimate and minimize the 

corresponding weighted sum of squares to yield an initial estimate of η. The MLE of ω is 

obtained by maximizing (4) with respect to ω, after η is replaced by the estimate in (8).

This iteratively reweighted generalized least-squares (IRGLS) algorithm involves iterations 

between [a] Taylor series linearization – given the w-th iterates η̂(w) and ω̂(w), construct 

 and  to yield a pseudo model that is of 

the form of (7) – and [b] updating estimates η̂(w+1) in (8) and ω(̂w+1). Steps [a] and [b] are 

repeated until a convergence criterion is achieved.

The linearization method provides an easy calculation for nonlinear models by translating 

the nonlinear estimation problem into a linear model. Only the first-order derivatives are 

required. Though the assumption of normality is not required for estimates from this IRGLS 

procedure, minimizing the objective function (5) is equivalent to maximizing the joint log-

likelihood function of yk in (4). Hence, this procedure yields MLEs [25]. Vonesh et al. [26] 
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argued that the IRGLS estimator is consistent and asymptotically normal even when the 

variance-covariance structure is misspecified if the mean function f(η, Xk) is correctly 

specified. Our experience is that the proposed estimation algorithm for Tukey’s model 

converges relatively fast and the final estimates are insensitive to initial values. 

Nevertheless, seriously slow convergence or possibly non-convergence could occur when 

one or both of the main effects are truly absent, a situation where θ is not identifiable.

4. Shrinkage Estimator

We now construct a shrinkage estimator for interaction that is a weighted average of the 

estimators from Tukey’s model and a saturated interaction model. Denote the interaction 

parameters to be estimated for an I × J GEI table by τ = (τ11, τ21, …, τ(I−1)1, τ12, …, 

τ(I−1)(J−1))⊤. Let τtuk and τsat be the asymptotic limits of the estimator of τ from Tukey’s 

model and saturated interaction model, respectively, each being a length-(I − 1)(J − 1) 

vector. When the true model is a Tukey’s one-df model, we have τtuk − τsat = δ(say) = 0. To 

relax the model assumption, let δ ~ (0, Θ). A conservative estimate of Θ is given by δ̂δ̂⊤, 

where δ̂ = τ̂
tuk − τ̂

sat and . We define B = V̂
τ(V̂

τ + 

δ̂δ̂⊤)−1, where V̂
τ is the estimated variance-covariance matrix of τ̂

sat. Then the proposed 

shrinkage estimator for τ is given by

(9)

where τ̂
tuk and τ̂

sat are MLEs from (2) and (3), respectively.

The shrinkage factor B in (9) determines the amount of shrinkage of τ̂
sat toward τ̂

tuk. As δ̂ 

→ 0 and B → I, τ̂
shk → τ̂

tuk (data are indicative of a Tukey’s interaction structure). On the 

other hand, as the bias of Tukey’s model estimator δ̂ increases, the largest eigenvalue of B 
goes to 0 and τ̂

shk → τ̂
sat (data are not in favor of Tukey’s form of interaction). Now express 

the shrinkage estimator in (9) as

When data are under Tukey’s model, δ̂ → 0 as N → ∞. When data are not under Tukey’s 

model, the largest eigenvalue of V̂
τ goes to 0 and  as N → ∞. So, the term 

 converges to 1. This indicates that τ̂
shk is asymptotically 

equivalent to τ̂
sat, which is an unbiased estimator of τ. But with moderate sample size, δ̂ 

creates a small bias in τ̂
shk that can be traded for a larger decrease in variance, leading to an 

improvement in finite sample MSE [2]. In addition, when main effects are not present, the 

shrinkage estimator will guard against the instability of parameter estimates under Tukey’s 

model by shrinking τ̂
shk toward τ̂

sat.
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4.1. Variance Estimation for the Shrinkage Estimator

We proceed to estimate the covariance matrix for τ̂
shk. As a result of asymptotic equivalence 

of τ̂
shk and τ̂

sat, the covariance matrix for τ̂
sat can be used as an estimator for the covariance 

matrix of τ̂
shk in large samples. Since this estimator is often too conservative in finite 

samples, we develop an approximate covariance matrix estimator for τ̂
shk using the delta 

method.

Define  as the MLEs under a saturated form of interaction and Tukey’s 

model with . Further define ξ̂ = (τ̂
sat, τ̂

tuk)⊤ = h(ϕ̂) 

such that τ̂
shk = g(ξ̂) = g(h(ϕ̂)), where ξ̂ and g(ξ̂) have 2(I − 1)(J − 1) and (I − 1)(J − 1) 

elements, respectively. We first derive the joint distribution of the components in ϕ̂. Let 

be the information matrix with dimension (I − 1)(J − 1) × (I − 1)(J − 1) and ℓ be the log-

likelihood corresponding to a saturated interaction model (3). Let  be the information 

matrix with dimension (I + J − 1) × (I + J − 1) and ℓ0 be the log-likelihood for Tukey’s 

model (2). By the consistency of ϕ̂, the MLE τ̂
sat has an asymptotic linear representation

Similarly,

Denote the asymptotic variance-covariance matrix of ϕ̂ by Σϕ̂. Then by multivariate Taylor 

series expansion, the variance-covariance matrix of ξ̂ = h(ϕ̂) is approximated by

where ∇h = ∂h/∂ϕ is the gradient matrix of h evaluated at ϕ̂. Finally, the variance-

covariance matrix of τ̂
shk is approximated by applying the delta method:

(10)

where ∇g = ∂g/∂ξ evaluated at ξ̂ (refer to the supporting information for ∇h(ϕ̂) and ∇g(ξ̂).) 

Comparing Σ̂
τ̂shk to the empirical estimate of variance-covariance matrix through 

simulations, we found that variance components can be estimated very well by Σ̂τ̂shk but not 

necessarily the covariance. Either a small variance for the random measurement errors or a 

large sample size is needed to obtain accurate estimates of covariance terms (see Table 1 in 

the supporting information). Since the magnitudes of covariance estimates are smaller 
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compared to the variance estimates, the influence of covariance estimates on the Wald test 

statistic is expected to be small. Thus, the proposed shrinkage test (see below) is still an 

approximately valid test with conservative Type 1 error rates.

5. Tests for Interaction Effects

We are interested in testing the null hypothesis of no interaction effects H0 : τ = 0 versus 

H1 : τ ≠ 0. For Tukey’s model, it is equivalent to H0 : θ = 0 versus H1 : θ ≠ 0. A likelihood 

ratio test (LRT) statistic is given by TL = −2(l0 − l1), where l0 and l1 are the maximized log-

likelihoods obtained under H0 and H1, respectively. Under regularity conditions,  for 

Tukey’s model and  for saturated model under H0 for large samples. Based on 

(9) and [20], the limiting distribution of the shrinkage estimator is technically not normal. 

The simulation results, however, reveal that this estimator is well approximated by a normal 

density and the amount of departure from normality is small (see Figure 1 in the supporting 

information). Hence, the Wald test is used as an approximate test for interaction. The test 

statistic for H0 : τ = 0 is given by , where Σ̂
τ̂shk can be found in (10). 

T̃
W approximately follows a χ2 with df = (I − 1)(J − 1) under H0 (see Figure 2 in the 

supporting information).

6. Simulation Study

6.1. Settings for Evaluation of Test Properties for a Single GEI Test

We investigated the Type I error and power properties of the following three test procedures 

for interaction: the LRT under Tukey’s model of interaction, the Wald test using the 

proposed adaptive shrinkage estimator, and the LRT using a saturated interaction model. 

Two null hypotheses of no interactions were considered: (i) the genetic main effects were 

present (additive) and (ii) the genetic main effect were absent (null). The main effects of the 

exposure were always present in our simulations to represent a study looking for genetic 

modification effects on an established phenotype-exposure association. For these 

comparisons, we used 3×3 table settings for GEI with N=1200. The number of repeated 

measurements per subject was generated from a multinomial distribution similar to the 

example data: nijk ∈ {2, 3, 4, 5, 6}, n = {nijk : 1 ≤ k ≤ Nij, 1 ≤ i ≤ I, 1 ≤ j ≤ J} ~ Mult(N, p), p 
= (0.15, 0.2, 0.3, 0.2, 0.15), which implies that dropouts are missing completely at random. 

Data were simulated under a first-order autoregressive (AR-1) correlation structure: σ2ρ|t−t′| 

for the (t, t′)-th element in Σk (σ2 = 4, 8 and ρ = 0.7). Additionally, the test properties were 

evaluated under misspecification of correlation structure. Again, data were still generated 

under the AR-1 correlation structure but were analyzed using a compound symmetric 

covariance structure. A total of 1000 datasets were generated for each setting. Type I error 

and power were estimated by the sample proportions of null hypothesis being rejected under 

various simulation settings.

In the 3×3 GEI table settings, three genotype categories were considered for G with minor 

allele frequency 0.4 and following the Hardy-Weinberg equilibrium. An environmental 

exposure with three categories (with probabilities 0.25, 0.25, and 0.50) was considered. Cell 
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means for all GEI configurations were first generated under a pre-specified interaction 

model. Given a mean and covariance structure, the vector of observations per individual 

were generated from a multivariate normal distribution. In addition to Tukey’s and saturated 

models, we considered simulations under additive main effects and multiplicative interaction 

(AMMI) models [27, 28]. AMMI models are a class of interaction models that have a 

flexible structure, which essentially entails a singular value decomposition (SVD) of the cell 

residual matrix after removing the additive main effects. Following the notations in (2), the 

mean structure for ykt under an AMMI model is given by

The m-th interaction factor is subject to the constraints  and 

, as well as the 2(M − 1) orthogonality restrictions Σi αimαim′ = Σi 

γjmγjm′ = 0 for m ≠ m′. Specifically, AMMI models with M = 1 (AMMI1) were considered in 

the simulation as an intermediate model between Tukey and saturated model. AMMI2 

would be equivalent to a saturated interaction model in the 3×3 table settings. We compared 

test performance under AMMI1 models because Tukey’s test may not be capable of 

capturing interaction of AMMI1 form. Though AMMI1 is nested within the saturated 

interaction model, the test based on a saturated interaction model may not have as much 

power to detect the interaction.

6.2. Settings for Assessment of Average Performance for Multiple GEI Tests

When GEI tests are conducted across a moderately large number of SNPs within several 

gene regions, the average performance of each method over many GEI tests is of particular 

interest rather than a single specific GEI test. As such, we assessed the Type I error and 

power of the tests for interaction using Tukey’s model, saturated interaction model, and the 

proposed shrinkage estimator, averaged over a set of genetic markers. We based our 

simulation studies on the setting of the NAS data example where the candidate genes were 

chosen based on some pathway analysis. For each dataset, one exposure factor and 100 

independent SNPs (without LD) were generated, with the minor allele frequencies ranging 

from 0.3 to 0.5. (Simulations with a wider range of minor allele frequencies can be found in 

the supporting information.) The exposure had five categories, each with probability 0.2. 

Thus, a 3×5 table was constructed for each GEI test.

We considered two simulation schemes for multiple GEI tests: (i) 100 marginal models, Yi|

Gi,E, i = 1, …, 100, were generated with a common E for each subject, and (ii) a joint 

multivariate model, Y|G1,G2, …, G100, E, was generated. In both (i) and (ii), 15 out of 100 

SNPs were assigned to have GEI effects on Y. Another five SNPs were generated to have 

only additive main effects on Y. The rest 80 SNPs were not associated with Y. The 

simulation design represents a study where GEI over multiple SNPs are being tested, the 
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majority of SNPs do not have GEI effects and only a relatively small number of SNPs 

exhibit GEI effects.

To assess the sensitivity of tests in response to the underlying composition of different 

interaction models, we created three scenarios by assigning each of the 15 GEI to have 

either a Tukey’s or a saturated form of interaction: Scenario (A): all 15 were of Tukey’s 

form of interaction; Scenario (B): 10 were of Tukey’s form, and 5 had saturated interaction 

structures; Scenario (C): 10 had saturated interaction structures, and 5 were of Tukey’s form. 

For example, the mean function of the simulation model for subject k under scenario (B) in 

simulation scheme (ii), following the notations in (3), is given by

where  represents the genetic main effect of the i-th genotype from the s-th SNP, Gsk is 

the genotype of the s-th SNP for the k-th subject, and θs and  are the interaction parameter 

corresponding to the s-th SNP. An individual-level outcome Y with repeated measures were 

generated for 1000 subjects in each simulation using (1) with , bk = bk1nk, 

. We set , and . The number of repeated measurements per 

subject was generated using the same multinomial distribution described previously.

The average performance for each test procedure was quantified by true positive rate (TPR) 

and false positive rate (FPR). The TPR is defined as the proportion of interactions detected 

in the 15 simulated SNPs with GEI associations. The FPR is the proportion of interactions 

detected among the 85 simulated SNPs without GEI effects. The TPR and FPR were then 

averaged over 10,000 simulation datasets. To control the family-wise error rate (FWER), the 

significance level was adjusted according to the total number of SNPs (i.e., number of GEI 

tests) using Bonferroni correction, α* = 0.05/100 = 5 × 10−4.

6.3. Power and Type I Error

The upper panel of Table 1 shows the power and Type I error of tests using Tukey’s, the 

saturated model, and the shrinkage estimator for GEI. In general, the saturated interaction 

model has less power to detect interactions when the true interaction has a Tukey’s form. 

For example, the LRT for Tukey’s form of interaction has power 0.76 for σ2 = 4, while the 

saturated model has a power of 0.54. On the other hand, when the true interaction has a 

saturated form, Tukey’s model can hardly detect the interaction effects. The saturated model 

has a power of 0.81 for σ2 = 4, but Tukey’s model using the LRT only has power 0.09. 

Under both situations, the interaction test using the shrinkage estimator has power 0.69. 

When the true interaction has an AMMI1 form, the saturated interaction and the shrinkage 

estimator can detect 82% and 72% of interactions, respectively, but Tukey’s model can only 

detect 30% of interactions. The Type I error rates are maintained at the nominal level for all 

testing procedures under additive models except the Wald test using the shrinkage estimator 
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being a slightly conservative test. However, both Tukey’s test and the shrinkage estimator 

have inflated Type I error under the completely null model when one of the main effects is 

not present.

When the within-subject correlation structure is misspecified (lower panel of Table 1), the 

patterns of power comparison are similar to the upper panel. Under the null hypothesis of an 

additive model where both main effects are present, the Type I error rates for the two LRTs 

are still maintained at the 0.05 level when σ2 = 4 but are inflated when σ2 = 8. Only the 

proposed Wald test using the shrinkage estimator maintains the nominal level of Type I 

erorr. Under the null that genetic main effects are absent, the Type I error is no longer 

maintained at 0.05 for all of the tests.

6.4. Average Performance for Multiple GEI Tests

The upper panel of Table 2 shows the average performance of the three GEI tests for 

marginal models under three scenarios. Under scenario (A) where all 15 simulated GEI are 

of Tukey’s form, the LRT using Tukey’s model has a TPR of 0.72, whereas the saturated 

model has a TPR of 0.43. Under scenario (B) where 2/3 of the simulated GEI are of Tukey’s 

form, the LRT using Tukey’s model and the saturated interaction test have comparable 

performance. Under scenario (C) where 2/3 of the interactions are of saturated forms, the 

Wald test using the shrinkage estimator and the saturated interaction tests have comparable 

performance, but the TPR for the LRT using Tukey’s model is substantially lower. The 

FPRs are maintained at the nominal level for the tests using a saturated model and slightly 

inflated for the shrinkage estimator. However, the LRT for Tukey’s model has the highest 

FPR.

The lower panel of Table 2 shows the results of a multivariate model (single outcome) from 

100 simulated GEI. The LRT using a saturated interaction form yields relatively low TPRs. 

The test based on the shrinkage estimator still maintains at the same level of TPR across 

scenarios. In summary, the GEI test using the shrinkage estimator has the most robust 

average performance with respect to various GEI structures compared to the tests using 

Tukey’s and saturated interaction models.

7. Application

7.1. Normative Aging Study (NAS)

The Normative Aging Study (NAS) is a multidisciplinary longitudinal study initiated by the 

U.S. Veterans Administration in 1963 to investigate the effects of aging on various health 

outcomes [29]. We focus on pulse pressure (PP), which is an important risk factor for heart 

disease [30]. Several studies have indicated a relationship between iron deficiency and 

increased lead absorption [31, 32], and increased cumulative lead exposure has been shown 

to be associated with elevated PP [33]. Thus, it may be reasonable to hypothesize that genes 

responsible for iron metabolism could potentially alter lead absorption and modify the effect 

of lead exposure on PP. The objective of this pathway-driven GEI study was to test the GEI 

between cumulative lead exposure and the iron metabolic genes on PP.

Ko et al. Page 12

Stat Med. Author manuscript; available in PMC 2014 December 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Zhang et al. [34] observed a significant interaction between polymorphisms in the 

hemochromatosis (HFE) gene (rs1799945) and cumulative lead exposure on PP. We 

revisited the study to include 105 SNPs in 22 genes with minor allele frequency>0.1 in the 

iron metabolic pathway to test for GEI using the proposed shrinkage estimation framework. 

Candidate genes were chosen based on a priori knowledge of iron metabolism and previous 

studies on iron-related genes [35, 36]. We analyzed 729 participants from a subset of the 

NAS data who were successfully genotyped for the iron metabolism genes and had baseline 

measurements of cumulative lead concentrations (measured at the tibia bone and patella 

bone). The majority (97%) of the participants were Caucasian. The average age was 

66.37±7.12 (range 48–93) at the time of bone lead measurement. Since 1991, blood pressure 

had been measured every 3–5 years until 2011 with a median follow-up time of 12 years. 

More than 94% of subjects had repeated measurements of blood pressure, and over 48% of 

them had at least four measurements during the study period contributing to a total of 3013 

observations (see Table 7 in the supporting information).

Each of the 105 SNPs had three possible genotypes (homozygous wild-type, heterozygous, 

and homozygous mutant). For illustration purposes, we categorized bone lead concentrations 

into three groups – Low: ≤15, Medium: (15, 25], and High: >25 μg/g for the tibia bone lead 

and Low: ≤20, Medium: (20, 32], and High: >32 μg/g for the patella bone lead. We used 

Tukey’s model, saturated interaction model, and the shrinkage approach to model the GEI 

structures for each SNP×Lead interaction. Covariates in the model included baseline age, 

time since baseline, and squared time. According to the Akaike information criterion (AIC) 

for model fit, we chose a random-intercept mixed-effects model for analysis given by yk = 

f(η, Xk) + bk1nk+ ek, where .

Given that these SNPs are located in a small number of genomic regions, they are in close 

proximity to each other and thus may exhibit LD. To control for the FWER while 

accounting for the potentially correlated SNPs in the multiple testing procedure, we adjusted 

the significance level according to the effective number of independent tests (denoted by 

Meff) using the simple M method [37]. This method involves first estimating the correlation 

matrix among the 105 SNPs by the composite LD, calculating the corresponding 

eigenvalues, λ1 ≥ λ2 ≥ ··· ≥ λ105, and then finding Meff through principal component 

analysis: . We chose Meff = 89 so that the corresponding eigenvalues 

explained at least C = 99.5% of the variation for the SNP data. Thus, the adjusted 

significance level was α* = 0.05/Meff = 0.05/89 = 5.6 × 10−4.

Table 3 lists the smallest p-values of GEI tests for the three top-ranked SNPs by using 

Tukey’s model, the proposed shrinkage estimator, and saturated interaction model within 

iron gene regions in the NAS data. The Wald test via the shrinkage estimator yielded the 

smallest p-values across all top ranked SNPs listed in the table (and three of which reached 

statistical significance), compared to Tukey’s and saturated interaction models. For tibia 

bone lead, we found a significant modifying effect of SNPrs1799945 in the HFE gene using 

the shrinkage estimator (p = 1 × 10−4). For the wild-type participants, mean PP remained 

nearly unchanged between the High and the Low tibia lead groups. In contrast, mean PP was 

estimated to be 20.35 mmHg (95% CI = [14.53, 26.17]) higher for the High tibia lead group 
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than the Low tibia lead group among the homozygous mutant carriers. The results replicate 

the findings in Zhang et al. [34] that the positive association between PP and lead exposure 

was strongest among HFE homozygous mutant carriers. For patella bone lead, significant 

modifying effects of SNP rs17484524 in the IREB2 (iron-responsive element binding 

protein 2) gene (p = 3 × 10−4) and SNP rs7165535 in the B2M (beta-2-microglobulin) gene 

(p = 4 × 10−4) were detected using the Wald test based on the shrinkage estimator (but were 

not captured by the LRTs using Tukey’s or saturated interaction model). For the wild-type 

and the heterozygous mutant participants, higher lead levels corresponded to higher mean 

PP (the estimated difference in mean PP between High and Low patella lead groups ranged 

from 3.12 to 4.32 mmHg at both SNPs). However, mean PP was estimated to be 3.90 (95% 

CI = [1.45, 6.35]) and 7.73 (95% CI = [1.88, 13.58]) mmHg lower for the High lead group 

than the Low lead group among the homozygous mutant carriers at SNP rs17484524 in the 

IREB2 gene and SNP rs7165535 in the B2M gene, respectively. As such, the two 

homozygous mutant genotypes may indicate protective effects (i.e., preventing PP from 

elevating with increased lead exposure).

7.2. Multi-Ethnic Study of Atherosclerosis (MESA)

The Multi-Ethnic Study of Atherosclerosis (MESA) is a longitudinal study to investigate 

characteristics related to progression of subclinical to clinical cardiovascular disease [38]. 

More than 6,800 men and women aged 45–84 years were recruited from six U.S. 

communities. Participants had a baseline examination (exam 1) in 2000–2002 and three 

additional follow-up examinations 18–24 months apart (exams 2–4). We aimed to explore 

GEI effects on BMI in the four race groups: Caucasians (N=2526), Chinese (N=775), 

African Americans (N=1611), and Hispanics (N=1449). Most (84%) of the participants had 

four BMI measurements, and over 92% had at least two measurements during the study 

period from 2000 to 2007 (see Table 3 in the supporting information). A total of 27 SNPs 

that have demonstrated significant and replicated evidence of marginal association with BMI 

were selected as the candidate SNPs [39]. The environmental exposures of interest were 

energy intake, measured at exam 1, and total intentional exercise, measured at exams 1–3. 

Both exposure variables were categorized into five groups: 0, (0, 7], (7, 14], (14, 28], >28 

(MET-hr/week) for total intentional exercise and <1000, (1000, 1300], (1300, 1600], (1600, 

2000], >2000 (kcal/day) for energy intake.

We applied Tukey’s model, saturated interaction model, and the shrinkage test to examine 

the GEI structure for each SNP×Energy Intake and SNP×Exercise interaction. Covariates in 

the model included age at the time of data collection (centered), squared age, gender, having 

a college degree, household income, and the exposure variable (either intentional exercise or 

energy intake). We also accounted for population stratification by including the first two 

principal components. Except age, BMI, and intentional exercise that changed with time, all 

other variables were time-invariant. We chose an unstructured covariance matrix for this 

analysis based on AIC. A random gender effect was added to allow men and women to have 

different variances in BMI. Let F = 1nk for women and F = 0nk for men. The analysis model 

is given by yk = f(η, Xk) + Fkbk + ek, where , ek ~ (0, Σk). We first analyzed data 

by race group (see Table 8 in the supporting information) and then applied Fisher’s method 

[40] to combine four race groups into a single meta-analysis p-value for each SNP. Not 
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every race group allowed for GEI tests across all 27 SNPs because of small sample size in 

certain GEI configurations. The df for deriving the combined p-values was based on the 

number of available race groups. The adjusted p-value to control for the FWER was set at 

0.05/27 = 0.0019.

Table 4 lists the combined p-values for significant SNPs using the three interaction tests. For 

the association of energy intake with BMI, significant modifying effect of SNP rs543874 on 

the SEC16B gene was observed using all three tests. SNP rs1558902 within the FTO gene 

was detected by Tukey’s model (p = 4.8 × 10−5) and the shrinkage test (p = 7.4 × 10−4). 

SNP rs10767664 (on the BDNF gene) was also detected by Tukey’s model (p = 1.2 × 10−3). 

For the association between intentional exercise and BMI, we found significant modifying 

effect of SNP rs206936 within the NUDT3 and HMGA1 genes using Tukey’s model (p = 1.4 

× 10−4). Overall, only one interaction was detected by a standard saturated interaction model 

used in the current practice. Both the examples illustrate the utility of enhancing power of a 

test for interaction by leveraging Tukey’s model. The shrinkage estimator also offers 

protection against false positive. The findings require further replication studies.

8. Discussion

We proposed a novel adaptive shrinkage estimator that combines estimates from Tukey’s 

one-df model and a saturated interaction model for GEI effects. The shrinkage estimator 

shrinks the MLEs under a general, saturated interaction structure toward Tukey’s one-df 

model estimator that allows for data-adaptive relaxation of the structural assumption in 

Tukey’s product form.

The unique simulation setting of multiple GEI tests represents the search for GEI over many 

candidate SNPs with different interaction patterns. The results indicate that the test based on 

the shrinkage estimator can be considered as a robust and unified approach for interaction 

detection. More importantly, the shrinkage method not only can be applied to the context of 

GEI or GGI detection but also can be extended to any two-way table.

We evaluated MSE and bias of these estimators of interaction effects through simulations 

(Table 2 in the supporting information). The performance of the shrinkage estimator was 

compared with the MLE under a general saturated interaction model using the ratio of MSE,

Based on simulation results, the ratio is uniformly less than 1, suggesting an efficiency 

advantage for the shrinkage estimator via bias-variance trade-off. In our simulation studies, 

we noted that the Wald test using the shrinkage estimator is slightly conservative, so the 

small bias of the shrinkage estimator in finite samples does not lead to inflated Type I error. 

In addition, we compared the shrinkage estimates of interaction parameters using only the 

diagonal elements of B (i.e., scalar shrinkage) versus using the whole B matrix (i.e., 

multivariate shrinkage). We found that multivariate shrinkage is required under certain 
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situations (see Table 3 in the supporting information). Chen et al. [20] proposed both 

multivariate and scalar shrinkage estimators in case-control studies, and they also found that 

the scalar shrinkage estimator can lead to appreciable bias.

Although the methods we discussed have been developed for a two-dimensional interaction 

structure (i.e., the genetic and interaction effects are assumed to be invariant with time), they 

can be easily modified to allow for time-dependent effects. To allow for temporal changes in 

the main effects and interaction effects, one may use spline functions. For example, the 

mean function for Tukey’s model at time (or age) of measurement t can be expressed as

where the genotype gk and the exposure variable ekt for subject k at time t can be treated as 

continuous, β0(t) is the baseline function, βG(t) and βE(t) are the time-varying genetic and 

exposure function, and θ(t) is the time-varying interaction function. These functions can be 

approximated by a linear combination of basis functions [41]. We plan to address the issues 

of estimation and testing for the temporal dynamic changes in interaction effects using 

alternative models in future studies.

We have proposed a new approach in the area of longitudinal GEI cohort studies. The 

Tukey’s one-df test for non-additivity can be very powerful in terms of detecting GEI for 

studies where the search for GEI is based on the presence of genetic main effects (e.g., 

MESA), but the test can suffer from misspecification of interaction structure. The proposed 

shrinkage estimation procedure, on the other hand, is useful for pathway-driven GEI studies 

(e.g., NAS) where there is no prior knowledge of the existence of genetic main effects. It 

also performs well across many scenarios. Despite the advantage of efficiency, the adaptive 

shrinkage estimation approach still uses the same df for interaction parameters as a saturated 

model. As such, the increase in power by shrinking parameter estimates toward Tukey’s 

model estimates may be limited. However, the robust performance across multiple loci with 

different interaction structures remain an appealing feature of such adaptive screening tests.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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