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ABSTRACT 
 

A five-layered confined-unconfined flow and transport models are developed and 
calibrated for the Alamitos seawater intrusion barrier in Southern California.  The 
conceptual model is based on the geological structure of the coastal aquifer system, and 
the key parameters in the flow and transport models are calibrated using field 
measurements of hydraulic conductivity as well as head and concentration observations.  
Because of the abundance of point measurements of hydraulic conductivity, the 
heterogeneous and random hydraulic conductivity field for each of the five aquifers is 
estimated by the proposed geostatiscal method of natural-neighbor-kriging (NNK).  The 
longitudinal and transverse dispersivities in the transport model are estimated by an 
inverse procedure that minimizes the least-squares error for concentration (LSE-CON).  
The minimum LSE-CON is achieved near 50 ft (15.2 m) and 5 ft (1.52 m) for the 
longitudinal and transverse dispersivities, respectively.  The calibrated simulation model 
is linked with two optimization models to investigate alternatives for enhancing seawater 
intrusion barrier operations for the Alamitos Barrier Project in Los Angeles.  Two types 
of management problems are analyzed the optimal scheduling problem (OSP) and the 
optimal well location problem (OWLP).  The objective of the OSP is to minimize the 
total injected water subject to constraints on the state variables: hydraulic head and 
chloride concentration at target locations.  Two OSP formulations are considered, a pure 
hydraulic gradient formulation, and a combined hydraulic and transport formulation.  
Optimization results suggest that algorithm performance is best when the number of 
decision variables can be limited to approximately ten wells.  Next, a genetic algorithm is 
linked with the calibrated simulation model to determine the locations of new injection 
wells that maximize the marginal increase in head targets along the barrier.  Parallel 
processing is also employed to improve algorithm efficiency.   
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INTRODUCTION 
 

As population has grown in the Los Angeles County (LAC) throughout the 19th 
and 20th centuries and into the current decade, local groundwater has been a crucial 
resource to the numerous cities of Southern California.  Currently, as much as 40% of the 
annual water supply in Southern California is derived from groundwater pumping.  From 
about the 1940s through the 1950s, concern began to mount as monitoring data revealed 
rising chloride levels in wells close to the Pacific Coast (Callison et al., 1991).  To 
mitigate the growing threat of seawater intrusion from prolonged development and in 
some cases over-drafting of local aquifers, commencing in 1959 seawater barrier projects 
were implemented in LAC (Water Replenishment District of Southern California, 2004).  
These hydraulic barriers raise freshwater water head, creating a hydraulic gradient that 
prevents seawater from advancing inland and protects freshwater pumping wells in the 
coastal groundwater basins.  As stated by Reichard and Johnson (2005) in their recent 
regional study of the Los Angeles County Basin, “[a] continuing water-management 
challenge, however, is to improve the effectiveness of seawater intrusion control.” 

 
The Los Angeles County Department of Public Works (LACDPW) currently 

operates three seawater barrier projects: the West Coast Basin, the Dominguez Gap, and 
the Alamitos Barrier Projects.  In particular, the Alamitos Barrier Project (ABP) operates 
under the direction and approval of a joint committee representing the interests of both 
the Los Angeles County Flood Control District and the Orange County Water District.  
This study focuses on the model development and calibration of the Alamitos seawater 
intrusion barrier associated with the ABP.  

  
This study addresses the urgent need to develop simulation-optimization models 

that can be used as tools in formulating and adapting management strategies to improve 
barrier operation.  First a conceptual model of the Alamitos seawater intrusion barrier 
associated with the ABP is developed and calibrated.  Then two important management 
scenarios are investigated by combining simulation and optimization models.  In the first 
scenario, optimal injection policies that minimize the amount of injected water, while 
maintaining head and concentration targets, are identified for the existing barrier 
configuration.  In the second scenario, optimal locations for new injection wells are 
identified that result in the greatest improvement in the hydraulic gradient along the 
barrier alignment.   

 
While this study focuses solely on the ABP study site, the simulation-optimization 

tools and management approaches presented could be easily adapted to the other barriers 
operating in the area.  In contrast with this study, Reichard and Johnson (2005) use 
simulation-optimization modeling to examine alternatives for reducing future seawater 
intrusion on a regional basis for all of Los Angeles County.  Reichard and Johnson (2005) 
simulated the regional groundwater flow in Los Angeles County with MODFLOW 
(Harbaugh and McDonald, 1996), producing the response matrix subsequently 
incorporated as linear constraints in the optimization formulation and solved with LINDO 
(Schrage, 1993).  The elements of the response matrix relate the state variable, in their 
case predicted head, to the injection policy where the head is maintained at or near a 
target level while the cost of purchased water is minimized. 
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Study Site Description 
 
The ABP study area, shown in Figure 1, includes parts of the city of Long Beach 

in Los Angeles County, and the cities of Los Alamitos and Seal Beach of Orange County.  
The ABP was initiated to protect the groundwater supplies of the Central Basin of Los 
Angeles County and the East Coastal Plain of Orange County from seawater intrusion 
through the Alamitos Gap.  The ABP, and all other barriers in Los Angeles County, are 
operated under the direction and approval of a joint committee representing the Los 
Angeles County Flood Control District and the Orange County Water District (Callison et 
al., 1991).  The County of Los Angeles Department of Public Works carries out daily 
operations and maintenance of the barriers, and the Water Replenishment District of 
Southern California is responsible for maintaining the water supply to each barrier.  
Roughly 4,600 acre-feet (7.931*106 m3) of imported water are injected annually through 
43 injection wells along the barrier.  The ABP injection wells operate continuously with 
injection rates ranging from 0.05 to 1.5 cfs (0.00142 to 0.04248 cms).  Extemporaneous 
adjustments to injection rates of the various barrier wells are currently made based on a 
range of factors including water level elevations and chloride concentrations in the 
observation wells, local groundwater conditions, and individual injection well 
performance. 

 

 
Figure 1:  Alamitos Study Site Area Map, Plan View of Model Domain, and 

Observation Well Networks for Model Building and Calibration. 
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Geological Description 
 
The Alamitos seawater intrusion barrier is located at the southern coastal 

boundary of Los Angeles County.  The model domain in relation to local faults and the 
distribution of two monitoring well networks will be described later in greater detail.  
Like most of the Los Angeles Basin, the Alamitos site is comprised of alternating layers 
of conductive alluvium capped by less conductive mud and clay layers.  The shape and 
composition of these layers is further complicated by the action of local faults and rivers.  
With respect to the Alamitos study site, two local faults run parallel to the coast and 
delineate the northeast and southwest model boundaries, these are the Seal Beach and Los 
Alamitos Faults.  Two cross sections in Figure 2a and 2b demonstrate the local geologic 
complexity and also delineate the local faults.  The injection well barrier is aligned in a 
zigzag pattern between two Upper Pliestocene Quarternery formations (Callison et al., 
1991): Bixby Hill to the north, and Landing Hill to the south. 

 
(a) Cross-Section A-A’ 

 
(b) Cross-Section D-D’ 

Figure 2:  Cross-Sections Through Alamitos Barrier Project Study Site Adapted from 
Callison et al. (1991). (a) Northern cross-section A-A’ through Bixby Hill; 
(b) Southern cross-section D-D’. 

 
Callison et al. (1991) summarized the geology of the ABP area, providing much 

of the necessary data required to build the conceptual model of the study site.  The 
following list summarizes a few key attributes of the local geology. 

April, 2006 Yeh   No. W-983 5 of 41 



 
 The ABP area consists of five representative aquifers and four aquitards between 

them. The Recent Aquifer, the shallowest unconfined aquifer and abbreviated R, is a 
depositional feature of alluvial deposits from the San Gabriel and other local rivers, 
while the mid layer Lynwood formations (i.e. C, B, A, and I aquifers in order of 
increasing depth) are a sequence of depositional features from sea level fluctuations 
long ago.  The C, B, A, and I aquifers are essentially confined although some regions 
of these aquifers are hydraulically connected to the unconfined R Aquifer in mergent 
zones.  The deepest aquifer that receives injected water, the I Aquifer, is 
approximately 450 ft below sea level. 

 
 Local geologic complexity is heightened by indigenous channels, like the San Gabriel 

River, because of their persistent presence during the developmental stages of the 
various geomorphic layers. 

 
 A and I Aquifers within the Lynwood formation are the most important in terms of 

controlling seawater migration inland, particularly because these layers are relatively 
conductive layers composed of fine sands and gravels. 

 
 The local faults (Los Alamitos and Seal Beach) offset the aquifers and aquitards, 

essentially disconnecting them from adjacent basins (see cross sections in Figures 2a 
and 2b).  Furthermore, because of vertical and lateral movements, particularly in the 
more active Seal Beach Fault, these features effectively act as a barrier to seawater 
encroachment. 

 
 The primary mechanism of seawater intrusion to deeper aquifers is vertically from the 

R aquifer following lateral intrusion from the ocean.  Seawater migrates into the R 
aquifer horizontally then travels to deeper layers primarily through mergent areas 
where aquitards evanesce, causing upper and lower aquifers to merge together.  Once 
in the lower layers, seawater moves inland towards the Los Alamitos Fault. 

 
Currently, the ABP consists of 43 injection wells and four extraction wells 

operating between the barrier and the coastline.  The extraction wells are intended to 
enhance the hydraulic gradient around the barrier while intercepting some of the 
advancing seawater.  Four additional private production wells also are operating inland 
from the barrier within the model domain.  Extensive historical records of injection and 
extraction rates for all wells under the purview of LACDPW are available while private 
production data are limited. 
 
OBJECTIVES 
 

The first objective is to build and calibrate a conceptual model of the Alamitos 
seawater intrusion barrier associated with the ABP.  Following conceptual model 
development, a two-phase calibration procedure is proposed for parameter estimation in 
which two different techniques are applied to calibrate a large-scale, density-dependent 
seawater intrusion model.  In the first phase the dominant parameter for the flow model, 
the hydraulic conductivity field, is calibrated.  The field is estimated for each element 
associated with a finite-element model in the flow domain by a modified kriging 
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technique called natural-neighbor-kriging (NNK).  In the second calibration phase, the 
optimal transport parameter values are determined by an inverse procedure that 
minimizes the least-squares error.  The dominant transport parameters are the 
longitudinal and transverse dispersivities, where the latter is constrained to be an order of 
magnitude less than the former.  A measure of the model error, the least-squares error 
(LSE), is calculated over a reasonable range in the parameter values, and the optimal 
parameter values are those that minimize the LSE.   

 
The second objective is to examine ways of improving the Alamitos barrier 

operation and effectiveness in mitigating seawater intrusion through the use of 
simulation-optimization modeling.  To meet this objective two management problems are 
investigated for improving the efficiency of the Alamitos barrier: first to improve upon 
the operation of the existing barrier configuration, and second to identify the optimal 
locations for new injection wells.  The scenarios presented in this study demonstrate how 
these simulation-optimization models can be used to improve barrier operations, and 
provide insight as to their performance. 
 

Problem 1: Improving Existing Barrier Operations 
 
In the first problem, the existing configuration of injection wells is optimized to 

quantify the minimum amount of water injected, such that specified head and 
concentration targets are maintained.  The decision variables are the injection rates of 
existing wells under the purview of Los Angeles County Department of Public Works, 
and the state variables are head and concentration predicted by the calibrated 
groundwater simulation model.  This optimization problem, henceforth referred to as the 
optimal scheduling problem (OSP), is effectively a nonlinear programming problem 
because head and concentration constraints are nonlinear functions of injection rates, and 
continuous since the injection rates are permitted to vary continuously between an 
operational minimum and maximum in each management period. 

 
Problem 2: Identifying Optimal Candidate Sites for New Injection Wells 

 
The second management scenario is to consider the optimal placement of new 

injection wells added to the existing barrier.  The second management scenario, termed 
the optimal well location problem (OWLP), is solved by linking a genetic algorithm (GA) 
to the simulation model.  In the GA each individual chromosome string defines a unique 
injection well configuration, which is fed to the simulation model to provide the 
quantitative benefit associated with the given configuration.  In this case the benefit or 
fitness function is the marginal gain in the hydraulic gradient along the barrier alignment 
above the baseline scenario in which no new wells are added.   

 
 
 
 
 
 

April, 2006 Yeh   No. W-983 7 of 41 



 
PROCEDURES 
 

Seawater Intrusion Modeling Approaches 
 

In terms of mitigating seawater (saltwater) intrusion, some researchers like 
Reichard and Johnson (2005) for example, have approached the problem indirectly, 
focusing only on maintaining pressure head above a designated level.  In this case 
maintaining head along a barrier at or above mean sea level is intended to control future 
seawater intrusion and involves only the solution of the groundwater flow model.  
However, in dealing directly with both the transport of seawater and groundwater flow, 
two predominant approaches have been pursued – the sharp and disperse interface 
approaches – the former being a simplified case of the latter.  Under the sharp interface 
approach, saltwater and freshwater are considered two immiscible fluids of constant 
density with a common interface where pressure continuity is maintained.  The sharp 
interface approach was preferred in earlier studies because it is relatively easier to 
implement and does not require the coupling of flow and transport.  Many variations of 
the sharp interface approach can be found in the literature (see for example Shamir and 
Dagan, 1971; Wilson and Sa da Costa, 1982; and Essaid, 1990).  The fundamental 
disadvantage of the sharp interface approach is that only a rough approximation of the 
saltwater wedge location and evolution can be estimated. 

 
Alternatively, the disperse interface approach more accurately accounts for the 

spatial and temporal variations in saltwater concentration and density within a coastal 
aquifer.  The dissertation by Henry (1960) was one of the first to intensively compare 
sharp and disperse interface approaches.  Henry developed a closed form analytic 
representation of the disperse interface model for a simple test case that eventually 
evolved into the widely known Henry’s problem.  Advances in computing apparently 
have led to a boom in the popularity of groundwater simulation models that implement 
the more general disperse interface approach (Simmons, 2005).  A corresponding rise in 
the popularity of Henry’s problem has established a benchmark for testing and validating 
these numerical models (Croucher and O’Sullivan, 1995).   

 
In the context of groundwater modeling, the disperse interface approach is more 

commonly known as the density-dependent (DD) approach.  DD models have been 
applied successfully in many hydrogeological contexts.  Gupta and Bair (1997), for 
example, developed a regional DD model to study how density impacts vertical and 
horizontal fluxes as deep salt formations interact with the overlying aquifer formations.  
Schincariol and Schwartz (1990) studied the interaction of mixing and heterogeneity in 
DD flow while Frind (1982) investigated the long-term implications of applying DD 
models relative to other approaches.  Koch and Zhang (1993) utilized a DD model in a 
different context, investigating the transport of contaminant plumes originating from a 
landfill source.  While the use of DD models has increased in the last two decades, as 
Simmons (2005) argues, there are still plenty of opportunities for future research and 
development to improve upon them. 
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Conceptual Model Development 
 

The southwest and northeast model boundaries are the Seal Beach and Los 
Alamitos Faults, respectively while the northwest and southeast boundaries are extended 
a few thousand feel away from the barrier to minimize boundary effects.  The study area 
is approximately four and one quarter miles wide and close to 3 miles in between the two 
faults covering an area close to 11 square miles.  Nine distinct geologic layers are 
represented in the model beginning with an unconfined aquifer containing areas of partial 
saturation (e.g. Bixby Hill) followed by a sequence of aquitards and aquifers (the layers 
are shown in Figure2a and 2b).  Only layers directly affected by the injection wells are 
included with the exception of the upper unconfined R Aquifer. 

 
The flow and transport models, respectively presented below, describe the 

functional variation in the hydraulic pressure field (h) and the constituent concentration 
(C) with respect to the three Cartesian coordinates (x, y, z) and time (t).  Saltwater 
conventionally is treated as a conservative contaminant, a reasonable assumption since 
chloride adsorption, decay, and reaction effects are minimal, and therefore are not 
included in the transport model.  The governing equations for flow and transport can be 
represented as follows (Lin et al., 1997): 

 
*

0 0

h

0

F K h z
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⎟
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1 2
0

a a Cρ
ρ

= +  (7) 

 
Equation 1 is the conservation of mass equation where head h [L] is related to the 

fluid density ρ [ML-3], the freshwater density ρ0 = 1.9383 slug/ft3, the injected fluid 
density ρ* [ML-3], the specific source or sink per element volume q [T-1], and time t [t]. 
The divergence and gradient operators are represented with the respective notations∇⋅ 
and ∇.  The predominant coefficients in Equation 1, the specific storage F [L-1], and 
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hydraulic conductivity tensor K
G

 [LT-1], are calculated with Equations 3 and 4, 
respectively.  In Equation 3, α is the coefficient of consolidation of the soil [LT2M-1], g is 
the gravitational acceleration constant (9.81m/sec2), θ is the moisture content, n is 
porosity, β is the compressibility of the fluid [LT2M-1], and the last term describes the 
differential change in saturation, S, with head and is either empirically known or typically 
estimated using a standard van Genutchen model (Lin et al., 1997).  In Equation 4, µ 
[ML-1T-1] is the dynamic viscosity of water and k

G
 [L2] is the intrinsic permeability 

tensor. 
 
In the advection dispersion model in Equation 2, C [ML-3] represents the 

constituent concentration, m is the external source or sink rate per medium volume [ML-

3T-1], DV
G

 [LT-1] is the Darcy velocity computed with Equation 6,  [LD
G 2T-1] is the 

dispersion tensor, and all remaining variables have been defined previously.  The third 
term in Equation 2, the gradient of the surface flux containing the transport parameter , 
is calculated from Equation 5 where α

D
G

L [L] is the longitudinal dispersivity, αT [L] is the 
transverse dispersivity, δ is the Dirac delta function, V

G
 [LT-1] is the fluid velocity and is 

proportional to DV
G

, am [L2T-1] is the molecular diffusion coefficient, and τ is the 
tortuosity.  The key transport parameters calibrated in phase two are αL and αT which 
influence the shape, extent, and degree of saltwater dispersion within the aquifer.  The 
molecular diffusion am, and consequently the last term in Equation 5, are assumed to be 
negligible in practice. 

 
Equation 7 describes a typical first-order relationship that links the variation in 

concentration to fluid density.  For saltwater intrusion the parameter a1 is equal to unity 
and dimensionless; but a2 generally has dimensions equivalent to the inverse 
concentration [L3M-1], and therefore depends upon the constituent of interest.  The 
parameter a2 provides the essential link between the flow and transport equations in the 
density-dependent approach.  Furthermore, the interdependence among the dependent 
variables, h, V, ρ, and C in Equations 1, 2, 4, 5, 6, and 7 complicates the numerical 
solution of the flow and transport models. 

 
A number of boundary conditions were experimented with during the calibration 

process.  However, to match head and concentration trends in observation wells, the 
Dirichlet condition is preferred and is the exclusive boundary condition applied in this 
study.  The Dirichlet boundary conditions for the dependent variables are as follows.   

( ), , ,   on  d b b b dh h x y z t B=  (8) 

( ), , ,   on  d b b b dC C x y z t B=  (9) 
 

In Equations 8 and 9, the subscript d delineates the Dirichlet condition, while the 
subscript b delineates the boundary coordinates that belong to the Dirichlet boundary 
node set Bd.  Initial conditions simply are represented as the two dependent variables 
specified for all discretized coordinates in the problem domain or h(x,y,z,0) and 
C(x,y,z,0).  The boundary and initial conditions are derived from the two observation 
networks shown in Figure 1.   
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The borehole data are a network of 179 wells providing point estimates of each 
geologi

he open-source groundwater model, FEMWATER version 3 (Lin et al., 1997), 
meets a

 pre- and post processing software package is used to aid in the development of 
the fini

cal layer’s thickness, hydraulic conductivity (required for the NNK method), and 
head and concentration for each geologic layer.  The head and concentration values are 
interpolated to provide an initial condition representing the state of the system in 1992.  
The least-squares or LS data set is an alternative set of 180 observation wells that provide 
a temporal record of head and chloride concentration for each of the five aquifers over a 
period-of-record (POR) extending from 1992 to 2002.  Observation wells near the model 
boundaries reveal a decline in pressure head in the I Aquifer over the POR, a trend that is 
reflected in the Dirichlet conditions.  The head and concentration measurements that 
make up the LS data set are used in the second transport calibration phase.  As can be 
seen in Figure 1, the borehole and LS data sets are not mutually exclusive.  The borehole 
data are relatively sparse while the LS data are clustered around the injection well barrier.   

 
T
ll the modeling requirements for this study, and is adopted to solve the coupled 

flow and mass transport model defined in Equations 1 through 9.  The finite element 
numerical procedure for solving the mathematical model is implemented in FEMWATER 
to generate solutions of head and concentration allowing either a coupled or an uncoupled 
flow and transport simulation (Lin et al., 1997).  An iterative successive-over-relaxation 
scheme is used to couple the flow and transport equations within each time step.  Before 
proceeding with model development, a brief validation exercise was carried out with 
FEMWATER.  The modified Henry's problem was simulated and model output was in 
excellent agreement when comparing with the semianalytical solution from Simpson and 
Clement (2004). 

 
A
te element mesh and in visualizing model output.  To build the finite element (FE) 

model, the following procedure is followed.  First, a plan view map is imported and the 
model boundaries are outlined.  Discretization along the model boundary is course, on the 
order of a few hundred feet, and is successively tightened approaching the barrier where 
computational nodes are separated by tens of feet.  Once a two-dimensional FE mesh is 
generated the mesh is copied and interpolated to the borehole data thereby defining the 
interfaces between each aquifer and aquitard.  Then each aquifer is divided into three 
sections for a total of 19 FE layers in the conceptual model as shown in the schematic on 
the right side of Figure 3.  Also shown a rendered view of the model containing 100,000 
nodes that make up 188,119 three-dimensional finite elements is presented in Figure 3.   
 

April, 2006 Yeh   No. W-983 11 of 41 



 
Figure 3:   Rendered 3D View of ABP Conceptual Model with Aquifers Shaded and 

Aquitards Lightly Colored and Layer Sequence Schematic.  Note z-
dimension is exaggerated by a factor of ten. 

 
Two-phase Calibration Procedure 

 
In this study the flow and transport parameters are estimated in two independent, 

successive phases rather than a single unified approach primarily because of data 
availability.  A geostatistical method, NNK, is developed to estimate the hydraulic 
conductivity field because a more extensive database of prior point estimates is available.  
In contrast, the transport parameters, αL and αT, are estimated by minimizing a measure 
of model fit, the least-squares error for concentration (LSE-CON).  By separating the 
estimation of the predominant parameters of the two models, it is implicitly assumed that 
the crossover effect is negligible.  Later in the calibration analysis the impact of the 
transport parameters on the least-squares error for head (LSE-HEAD) is investigated to 
verify this assumption. 

 
Phase I:  Estimation of the Hydraulic Conductivity Field 

 
Kriging is a geostatistical method originally developed to estimate the extent of 

underground ore deposits by providing a reliable means of extrapolating a network of ore 
density measurements (Royle et al., 1980).  In a broader sense, the field of geostatistics 
arose from a need to explain how a particular regionalized random variable might vary as 
a function of location.  Variations of the kriging method have been extended to 
geohydrology, particularly to estimate the heterogeneity of hydraulic conductivity (or 
transmissivity) since the parameter is highly correlated with local geological conditions 
(Yeh, 1986).  One relevant example is a study by Li and Yeh (1999) that demonstrated 
the use of one kriging algorithm, named cokridging, as a means of solving the inverse 
problem for both coupled flow and transport models.   
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The proposed natural-neighbor-kriging (NNK) method is a variation of the 
kriging method, which estimates a parameter at an unsampled site using natural 
neighboring measured parameter values in the random field.  In NNK, the natural 
neighbors of an unsampled site are determined based on Voronoi tessellation or Delunay 
triangulation (Tsai and Yeh, 2004), and represent the most influential data points to an 
estimate (Tsai et al., 2005).  NNK integrates standard kriging with a localized 
parameterization scheme called the natural-neighbor interpolation (NN) method (Sibson, 
1981).  An important distinction between the NN method in Tsai et al., (2005) and NNK 
developed in this study is that in the former, the location and magnitude of the parameter 
values are considered as decision variables in an experimental design context.   

 
In this study, an extensive network of observation wells (borehole data in Figure 

1) provides a collection of point estimates of the hydraulic conductivity for each aquifer 
layer.  The borehole data set is the necessary input needed to execute the NNK algorithm 
outlined in the five steps below.  Steps 1, 2, and 5 are common among kriging algorithms, 
whereas steps 3 and 4 are adapted from the natural-neighbor parameterization scheme 
described in Tsai et al., (2005).  

 
1. Transform the borehole conductivity data by taking the natural logarithm.  

Calculate the spatial statistical properties (mean, covariance, and correlated 
length) of the transformed hydraulic conductivity data.  Apply the transformation 
equation (shown below) to all borehole data (NB=179) for each aquifer layer 
(NAL=5): 

( ), ,ln ,    1,...,      1,...,i j i jZ K i NB j NA= = = L  (10) 
 

2. Develop experimental semivariograms for each of the five aquifers considered (R, 
C, B, A, I).  Calculate the experimental semivariogram with the following 
expression from Journel and Huijbregts (1978, pp 12): 

( ) ( ) ( ) ( )
( )

2

1

1
2

N M

i i
i

M Z x Z x
N M

γ
=

= − M+⎡ ⎤⎣ ⎦∑  (11) 

In Equation 11, N(M) is the number of experiment pairs of data separated by the 
distance M or [Z(xi),Z(xi+M)].  Develop the experimental semivariogram using at 
least 25 pairs at each lag M. Then, apply a standard non-linear regression to 
develop a smoothed semivariogram fit to the experimental semivariogram.  For 
the nonlinear regression, use the exponential semivariogram model below:   

( ) 1
3

2 1
M
pM p eγ

⎛ ⎞
− ⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠  (12) 

Equation 12 describes the variability of ln( )K  for the five aquifers where γ  is the 
semivariogram as a function of the distance lag M, and the two model parameters, 
p1 and p2, are estimated for each of the five aquifer layers. 
 

3. Define the natural-neighbors by applying Voronoi tessellation (or Delaunay 
triangulation) to identify the unique set of polygons using the transformed 
borehole observation data set as the basis point locations (Tsai and Yeh, 2004).  
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4. Assign the natural neighbors for unsampled sites in the model domain (each 
computational element) not labeled in step 3. 

 
5. Estimate ln( )K  for each unsampled site by forming and solving the appropriate 

system of kriging equations.  The general forms of the kriging equations with a 
non-stationary mean are presented below (Olea, 1999) and require the natural-
neighbor index sets from steps 3 and 4 above.   

 

( )
1

ˆ
NN

i i
i

Z Zλ
=

= ∑x  (13) 

( ) ( )
0

n

l l
l

b fφ
=

= ∑x x  and ( )0 1f =x  (14) 

( ) ( ) ( ) ( )0 0 0
1 1
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NN n

i Y i j l l j Y j
i l

1, 2, ,f jλ γ µ ν γ
= =

− − = =∑ ∑x x x x x x " NN

1

NN

i r i r
i

f fλ
=

=∑ x x x 0, ,r n

 (15) 

( ) ( ) ( )0 0 ,  = "  (16) 

 
In Equations 13 through 16, NN denotes the number of natural-neighbors in the 

summation, and γ is the estimated or smoothed semivariogram (from step 2, Equation 
12).  Equation 13 is the standard kriging estimator equation which defines the estimated 
parameter value, Z(x), with location vector x, as a weighted sum of the neighboring 
parameter measurements.  Finally, Equations 15 and 16 are effectively solved to estimate 
the conductivity for each element within each aquifer layer. 

 
Equation 14 is a general expression for the drift representing first order non-

stationarity.  The residual is defined by ˆ( ) ( ) ( )Y Z φ= −x x x  and is assumed to be intrinsic, 
which therefore allows the residual semivariogram, γY, in Equation 15, to be estimated 
easily.  Usually the drift is assumed to be constant (first order stationary) especially for 
small or relatively homogeneous formations (Royle et. al., 1980).  In this case, the drift 
functions are zero and the residual semivariogram, γY, is replaced in Equation 15 by the 
semivariogram γ determined in step 2 (Olea, 1999).  In general, Equations 15 and 16 
represent a system of linear equations that are solved to obtain the optimal kriging 
weights, λi, and Lagrange multipliers, µ0 and νl.  Once the optimal kriging weights are 
attained, Equation 13 is used to estimate the parameter for each computational element in 
each aquifer. 

 
An advantage of the proposed NNK method is that it is computationally more 

efficient than a standard kriging algorithm, because in the latter all ln( )K  measurements 
would be used in generating the linear equations and linear coefficients in Equation 15.  
Under the standard approach there would be a much larger number of equations and 
unknown coefficients that, when solved, provide a means of estimating the ln( )K  
anywhere in the domain.  For a large-scale random field, this may not be necessary.  In 
NNK, only a small subset of the ln( )K  measurements is selected.  In fact, a handful of 
the closest measurements are selected, which leads to a smaller set of linear equations 
and unknowns that can be solved faster and more efficiently.  The second benefit of using 
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a subset of local measurements is that the estimation locations are close to the sample 
locations and in the high correlation region of the semivariograms. 

 
In cases where prior data may be lacking in significant portions of the domain – 

or whether the data are simply too sparse – optimization may be used to improve upon 
the heterogeneous conductivity fields.  The pilot point method (RamaRao et al., 1995), 
for example, could be implemented where additional synthetic conductivity 
measurements can be optimized sequentially, in terms of location and magnitude, while 
constraining these points to respect the spatial statistics computed from the set of prior 
parameter measurements.  In this study, optimization is not used to adjust the 
conductivity fields further because of adequate sampling density, especially in proximity 
to the injection barrier. 

 
Phase II:  Estimation of Transport Parameters 

 
In the second calibration phase the key transport parameters are estimated.  These 

are the longitudinal and transverse dispersivities, αL [m] and αT [m], which are 
determined such that the modeled concentration optimally matches the observed chloride 
concentration at the various observation data locations (LS data in Figure 1).  Also, αT is 
constrained to be one-tenth the value of αL, which reduces by half the degrees-of-freedom 
in the optimization.  The following procedure is implemented to determine the optimal 
values for αL and αT.  To be clear, αL and αT are assigned as constant values to all nine 
geologic layers during this calibration phase.  However, in the last step, step 6, four 
additional simulations are performed by systematically increasing and decreasing the 
optimized longitudinal and transverse dispersivities for the most sensitive A and I 
Aquifers.  The upper bound of the parameter set is determined from the relationship 
between dispersivity and problem scale presented in Gelhar et al., (1992). 

 
1. Compile the head and concentration database (LS data) for the POR 1992 to 2002.  

Also, collect all pertinent data for injection and extraction wells within the 
problem domain. 

 
2. Begin by setting the transport parameters to their lower bound, αL = 0.10 ft (0.03 

m) and αT = 0.01 ft (0.003 m). Then perform a series of hot start simulations, 
slowly increasing the parameter a2 in Equation 7 until reaching the appropriate 
value for chloride where a2 = 0.8013 ft3slug-1 (1.56x10-3 m3kg-1). 

 
3. Simulate the POR with a reasonably small time step (∆t = 1 day) then compute 

and store the LSE-CON and LSE-HEAD by combining the modeled 
concentration and head to similar data from the LS database as in the LSE 
equations below: 

 

( 2* 0

1
LSE-CON

NC

i i
i

C C
=

= −∑ )

)

 (17) 

( 2* 0

1

LSE-HEAD
NH

i i
i

h h
=

= −∑  (18) 
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In Equations 17 and 18, the superscripts “*” and “0” represent the modeled and 
measured variables, respectively. 
 

4. Parametrically increase the transport parameters αL and αT and repeat step 3 until 
reaching the upper bound when αL = 150 ft (46 m) and αT = 15 ft (4.6 m). 

 
5. Once at the upper bound of the parameter range plot LSE-HEAD and LSE-CON 

as a function of αL.  Determine the values of αL and αT that minimize LSE-CON 
and investigate the sensitivity of LSE-HEAD to changes in αL and αT.   

 
6. Determine if the LSE-CON can be reduced further by slight modifications to the 

dispersivity assigned to the A and I Aquifers.  Perform four additional runs where 
the dispersivity is decreased and increased systematically by 10% of the 
optimized value for both the A and I Aquifers while holding all other layers at the 
optimized values determined in step 5.  Calculate the LSE-CON for each of the 
four additional runs and compare to LSE-CON from step 5. 

 
RUN 6-A:  All aquifers set to αL

* and αT
* from step 5, except elements 

associated with the A Aquifer where αL and αT are decreased by 10%. 
RUN 6-B:  All aquifers set to αL

* and αT
* from step 5, except elements 

associated with the A Aquifer where αL and αT are increased by 10%. 
RUN 6-C:  All aquifers set to αL

* and αT
* from step 5, except elements 

associated with the I Aquifer where αL and αT are decreased by 10%. 
RUN 6-D:  All aquifers set to αL

* and αT
* from step 5, except elements 

associated with the I Aquifer where αL and αT are increased by 10%. 
 

Management Approaches 
 

Phase III:  Optimal Scheduling Problem (OSP) 
 

The OSP is concerned with determining the optimal injection rates for each 
existing well along the barrier.  The location and screened interval of each injection well 
represented in the simulation model is fixed and known.  Gorelick (1983) reviewed 
distributed parameter groundwater management modeling methods concerning the joint 
use of groundwater simulation models and optimization methods and defined two broad 
categories of management models: groundwater policy evaluation and allocation models, 
and groundwater hydraulic management models.  In the case of groundwater hydraulic 
management models, the decision variables are pumping or injection well rates, and are 
generally determined by one of two approaches, the embedding approach or the response 
matrix method.   

 
In the embedding approach, the finite difference or finite element equations 

representing the simulation model are incorporated directly into the optimization 
formulation as equality constraints (e.g. Willis and Liu, 1984; and Shamir et al., 1984).  
The primary disadvantage of the embedding approach is the large number of equality 
constraints added to the optimization formulation.  In the response matrix method the 
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simulation model is represented by a response matrix, which has a smaller dimension.  
The basic procedure consists of the following four steps: first an initial policy is 
developed; second the response matrix is evaluated upon the initial policy; third the 
policy is updated by applying a specific optimization algorithm; and finally convergence 
criteria are examined.  Iteration between the second and third steps is required for 
nonlinear management formulations or nonlinear simulation models like the unconfined 
flow or coupled flow and transport models.   

 
While there have been many published variations of the response matrix method, 

also referred to as the influence coefficient method or sensitivity method, nearly all of 
them follow the same four basic steps outlined above.  Becker and Yeh (1972) presented 
an iterative influence coefficient algorithm to estimate hydraulic parameters in a 
nonlinear open channel flow model.  Louie et al. (1984) similarly adopted an iterative 
influence coefficient scheme in their study of a basin-wide management plan for a region 
in Southern California using a multiobjective management formulation.  The recent study 
by Reichard and Johnson (2005) also implemented an iterative influence coefficient 
method to determine the least-cost water distribution scheme for a regional unconfined 
flow model of the Los Angeles County Basin. 

 
One particular optimization software, the Modular In-core Nonlinear 

Optimization Solver (Murtagh and Saunders, 1995), or MINOS, has become very popular 
in applications of the response matrix algorithm.  Gorelick et al. (1984) linked MINOS 
with the two-dimensional flow and transport model SUTRA to identify optimal aquifer 
reclamation designs.  Willis and Finney (1988) developed a planning model for optimal 
control of seawater intrusion, comparing a quadratic programming model allied with the 
iterative influence coefficient method from Becker and Yeh (1972) with the reduced 
gradient quasi-Newton algorithm in MINOS.  Finney et al. (1992) linked a quasi three-
dimensional sharp interface model with MINOS to identify optimal pumping policies that 
limit seawater intrusion for a multilayerd aquifer system in Jakarta.  Emch and Yeh 
(1998) linked MINOS with the sharp interface flow and transport model SHARP to 
examine optimal conjunctive use strategies in a multiobjective formulation for the 
Waialae Aquifer in Southeastern Oahu.  Important to note, as recognized by Willis and 
Finney (1988), is that only locally optimal solutions can be guaranteed for a nonlinear 
objective and non-convex constraints; and furthermore, the optimal solutions obtained by 
coupling nonlinear solvers with complex groundwater simulation models tend to be 
computationally intensive and sensitive to the specified initial policy. 

 
Two alternative OSP formulations are investigated, the hydraulic gradient control 

(HG), which is combined with post optimization analysis, and the combined hydraulic 
and transport formulation (CHT).  The HG formulation is presented below.   

 

,
1 1

min      
NT NW

i t
t i

q
= =
∑∑q

  (19a) 

s.t.   (19b) ( ), ,     1,...,j NT jh H j≥ =q NL

, ,0 ,     1,..., ;  1,...,i t i tq QM i NW t NT≤ ≤ = =  (19c) 
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The OSP objective function defined in Equation 19a is to minimize the total 
injected water over all NW injection wells and NT management periods.  The objective 
function is linear in terms of the decision variables, which are the injection well rates 
q∈RN, where N=NW*NT.  In the HG formulation above, only one type of nonlinear 
constraint is considered, Equation 19b, the end-of-period (EOP) minimum head targets at 
NL target locations.  In Equation 19b, hj,NT is the predicted EOP head (obtained from the 
calibrated simulation model) at the jth target location, and Hj is the lower bound on the 
hydraulic head at the jth location.  Equation 19c defines the operational minimum and 
maximum injection rate, QM∈RN, that can be assigned to each injection well in each 
management period.  In the HG formulation the total number of decision variables is N 
and the total number of nonlinear constraints is M=NL with 2N box constraints placing 
upper and lower bounds on the injection rates.   

 
Since the HG formulation only involves nonlinear constraints on the hydraulic 

head, only the solution of the groundwater flow equation is necessary.  Following 
optimization, however, additional simulations of the coupled flow and transport model 
are conducted to investigate the optimal hydraulic policy performance in terms of 
meeting chloride concentration targets. 

 
The CHT formulation includes constraints on both hydraulic head and chloride 

concentration.  Note that the objective and operational constraints on the injection wells 
are common among both the HG and CHT shown below.   
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= =
∑∑q

 (20a) 

s.t.   (20b) ( ), ,     1,...,j NT jh H j≥ =q 1NL
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  (20f) , ,0 ,      1,..., ; 1,...,i t i tq QM i NW t N≤ ≤ = =
 

The first two sets of (nonlinear) constraints, Equations 20b and 20c, are the EOP 
minimum head and EOP maximum concentration targets at NL1 and NL2 target (node) 
locations, respectively.  Clearly the equivalent objective function is applied in both 
formulations (compare Equation 20b with Equation 19b).  In Equation 20c, cj,NT is the 
predicted EOP concentration at the jth target location and Cj is the maximum 
concentration target at the jth location.  The second set of nonlinear constraints, 
represented by Equations 20d and 20e, are added to maintain the mean head and mean 
concentration above a specified target level.  In Equation 20d, ηj is the specified mean 
head target at the jth location, and χj is the mean concentration target in Equation 20e.  
Reichard and Johnson (2005) also used a mean head constraint similar to Equation 20d in 
their formulation to discourage large fluctuations in the injection rate over successive 
management periods.   
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In the CHT formulation, Equations 20a to 20f, the total number of decision 
variables is the same as the HG formulation, N=NW*NT; however, the total number of 
nonlinear constraints is now M=NL1+NL2+NL3+NL4.  Also there are still 2N box 
constraints defined in Equation 20f, which ensure operational feasibility of the decision 
variables.  In order to solve formulations presented above, the simulation model is allied 
with MINOS, which solves nonlinearly constrained optimization problems by solving a 
series of subproblems, each minimizing an augmented Lagrangian with linearized 
constraints using a quasi-Newton method (Murtagh and Saunders, 1995).   

 
The first two scenarios are simulated in a historical mode in order that optimal 

policies can be compared to historical operation. In the third scenario the simulation-
optimization framework is used to specify a future injection policy that will improve 
upon current barrier conditions. 
 

Scenario 1:  Steady Optimal Scheduling Problem, Historical Mode:  In this scenario 
the HG formulation in Equations 19a to 19c is adopted.  The simulation 
model is run for eleven years spanning the calibration period-of-record 
(POR) from 1992 to 2002 with an annual simulation time step.  
However, in this case a single or steady injection rate is considered for 
each well over the POR, therefore NW=43, NT=1, and N=43 in 
Equation 19a.  The right-hand-sides of Equation 19b are determined by a 
base simulation run assigning the mean recorded injection rates to each 
well over the POR and tabulating the resultant EOP head at NL target 
locations.  Two optimization runs are performed to examine the 
sensitivity to the initial policy, and the optimized results in both cases 
are compared to the historical record.  Post optimization analysis 
examines the optimal policy’s performance in terms of meeting the 
transport targets explicitly defined in the CHT formulation. 

 
Scenario 2:  Transient Optimal Scheduling Problem, Historical Mode: The second 

scenario is a transient extension where injection rates now vary on an 
annual basis over a five year POR extending from 1998 to 2002.  In this 
case NT=5 and NW=43, therefore the total number of decision variables 
are N=215.  Both the HG formulation in Equations 19a to 19c and the 
CHT formulations in Equation 20a to 20f are considered.  When 
operating under the historical mode, a baseline simulation run is 
performed assigning to each well the recorded mean annual injection 
rates and using head and concentration output to assign the head and 
concentration targets of the nonlinear constraints.  Optimal transient 
injection policies are compared to the recorded mean annual injection 
rates over the same period.   

 
Scenario 3: Transient Optimal Scheduling Problem, Forward Mode:  The HG 

formulation is adopted where the total injected water is minimized such 
that a majority of the head targets, specifically the right-hand-sides of 
Equation 19b, are increased by 5% over a five-year period.  Similar to 
the previous scenario, five management periods are considered for the 
existing barrier configuration, therefore N=215. 
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Phase IV:  Optimal Well Location Problem (OWLP) 

 
The decision variables for the OWLP are the locations of a preset number of new 

injection wells, where the optimal locations are those that result in the biggest marginal 
improvement to the hydraulic gradient along the existing barrier alignment.  The 
improvement is quantified as the gain in the head at target locations over a baseline that 
represents no additional wells.  For the OWLP defined here, candidate locations for new 
injection wells are any node within a specified distance of the existing barrier alignment 
that is not already a target location for measuring the hydraulic improvement, or an 
existing injection well node.  New wells are set to inject at an operational maximum 
consistent with existing injection wells and are screened over only one of the following 
four aquifers C, B, A, and I.  All existing wells are set to the mean annual injection rate 
based on the historical data record during the OWLP optimization procedure. 

 
A genetic algorithm is proposed to solve the OWLP.  Optimal locations for new 

injection wells are identified by linking the open source GA by Carroll (2004) with the 
simulation model.  The user is required to develop a problem specific chromosome 
encoding scheme and formulate a fitness function to evaluate chromosome performance.  

  
Each chromosome is a binary string of 

numbers that represent one individual in a 
population of P individuals that comprise a 
single generation.  Each GA iteration seeks to 
improve upon the fitness of the current 
population by the processes of selection, mating, 
crossover, and mutation of individuals within the 
population creating a new population of 
individuals.  Figure 4 illustrates how a single 
chromosome string is decoded into one or more 
potential locations for new injection wells.  The 
length of the chromosome, therefore, is 
determined both by the number of new wells 
added, and by the number of potential locations 
considered.  In this study, the decoded 
chromosome specifies the spatial location and 
layer for the new injection well which is the key 
input driving the simulation model.   

 
Figure 4:  GA Chromosome Mapping 

Schematic. 
 

 
Next the fitness function is developed to evaluate the performance associated with 

each individual chromosome.  In this application, the fitness is defined as the marginal 
improvement in EOP head and mean head targets represented in the two terms below.  
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The fitness for the kth individual in a population of P individuals is the sum of the 
marginal gain in the EOP target and the mean head, which is derived by rearranging the 
nonlinear constraints in Equations 20b and 20d, respectively.  Since these terms are 
dimensionally compatible the weighting coefficients ω1 and ω2 are set to unity.   

 
The fitness function in Equation 21 links the decision variable, the locations of 

new injection wells, and the state variable, in this case head.  The GA must be 
dynamically linked to the simulation model to evaluate the fitness for a given 
chromosome configuration.  The primary disadvantage of the GA is that the algorithm is 
computationally intensive requiring repeated calls to the simulation model to evaluate the 
fitness of many individuals over successive generations.  However, as suggested by 
Banzhaf et al. (1998), an effective way of accelerating the GA is to incorporate parallel 
processing.  By evaluating the fitness of each individual in parallel, rather than in 
sequence on a single processor, a significant reduction in execution time is realized.  The 
solution algorithm is presented in Figure 5.  One processor is dedicated to carrying out 
the basic steps of the GA, with the exception of computing the fitness.  An interface 
routine distributes the individual chromosomes to P processors where the chromosome is 
decoded, the simulation model is executed predicting the state variables h, and finally the 
fitness is calculated.  The interface routine gathers the fitness values for all P individuals 
on the master node and continues with the GA.  Only a minor addition of source code is 
required to convert the FORTRAN77 GA (Carroll, 2004) to a parallel configuration, and 
no modifications are necessary to the simulation model executed on parallel CPUs. 
 

Initialize Chromosome 
Population P

Develop the Next Population 
of P chromosomes by 

processes of selection, mating, 
crossover, and mutation

Convergence 
Check? 

Start

No 

Stop

Parallel Processing 
Interface  

 Send Chromosomes 
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Execute Simulation Model 
FEMWATER  

Calculate Fitness from 
State Variables 

Set Fitness from 
Previous Solution

Individual’s 
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Previously 
Computed?

Yes

Yes 
No 

 
Figure 5:  Optimal Well Location Problem Solution Algorithm. 
 

While the decision variable for the OWLP is the location of new injection wells, 
reasonable limitations must be placed on the sites considered in the OWLP to ensure the 
problem is tractable and yields useful results.  Candidate locations for new injection wells 
are limited to be within a specified distance of the existing barrier alignment.  Any node 
within this distance is a candidate unless already representing existing injection wells, or 
designated for hydraulic target evaluation.  A new injection well is screened over only 
one of the C, B, A, and I Aquifers, and each new well is defined by a single finite 
element node pair because the new well is screened over the entire aquifer’s thickness.  A 
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population of four individuals is considered, P=4, and the GA is terminated after 100 
successive generations.  The locations of two additional injection wells are determined 
from 1,978 candidates within 50 ft (15.25 m) of the existing barrier alignment.   

 
Target Location Development for Nonlinear Constraints 

 
An important aspect of both management problems is the location of target sites.  

Preliminary simulations indicate that at least one target must be near each injection well 
otherwise the well will be set to the nontrivial minimum injection rate during 
optimization.  Therefore, a set of target locations is determined using nodes in close 
proximity to one or more of the existing injection wells to ensure sensitivity among 
decision variables and state variables.   

 
Figure 6 is a plan view of 178 target nodes to be used in the optimization 

formulations.  In the HG formulation, all 178 target sites are dedicated to the EOP head 
targets in Equation 19b, therefore M=NL1=178.  In the CHT formulation, the target 
locations are divided into two equal groups such that half of the target locations are 
assigned to the EOP constraints where NL1=NL2=89 in Equations 20b and 20c, and the 
other half are assigned to the mean constraints where NL3=NL4=89 in Equations 20d and 
20f, for a total of M=356 nonlinear constraints. 
 

 
Figure 6:   Injection Wells and Target Locations for Nonlinear Constraints Along the 

Barrier Alignment. 
 
RESULTS 
 

Hydraulic Conductivity Parameterization 
 

After transforming the borehole conductivity data via Equation 10, the 
semivariograms are developed for each aquifer layer under the assumption of a first order 
stationary mean.  For each semivariogram, a standard nonlinear regression is applied to 
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estimate the parameters p1 and p2 in the semivariogram model (Equation 12).  Carrying 
out the remaining steps finally leads to the estimated ln( )K  for all elements within each 
of the five aquifers.  Each aquitard is assigned a homogeneous hydraulic conductivity 
several orders of magnitude lower than the hydraulic conductivity in the aquifers, except 
in mergent areas where the hydraulic conductivity is modified to match the appropriate 
layer.  Figures 7a to 7e are the smoothed contour plots of the five heterogeneous 
hydraulic conductivity fields with each semivariogram inset in the upper right corner.  
The greatest variation in hydraulic conductivity is evident in the uppermost and lowest R 
and I Aquifers, respectively.  The R Aquifer exhibits a wider cardinal range in the 
conductivity parameter as evidenced by the hydraulic conductivity statistics in Table 1, 
which exhibits the minimum, mean, maximum, and standard deviation for each of the 
nine geologic layers: five aquifers and four aquitards in the order they are presented in 
Figure 3.  These statistics are computed over the set of numerical elements in a single 
computational layer corresponding to one of the nine geologic layers.  Note that the 
aquitard statistics do not reflect a homogeneous layer because of mergent areas within 
their domain.  The mergent zones in the C, B, and A Aquifers tend to reduce significantly 
the hydraulic conductivity near the south-west (Seal Beach Fault) boundary.   

 
A common feature among the five heterogeneous plots in Figures 7a through 7e is 

local circular zonation trends of low or high hydraulic conductivity.  The overall trends in 
the hydraulic conductivity and topology of each of the five aquifer layers is consistent 
with those presented by Callison et al. (1991).  However, the estimated hydraulic 
conductivity field by NNK contains much more variability than those from the previous 
study.  Local variability of the hydraulic conductivity is important as the model is 
intended to be used for optimizing the operation of the Alamitos Barrier Project.  Before 
DD simulations are conducted, the heterogeneous hydraulic conductivity fields are 
converted to intrinsic permeability via Equation 4. 
 
Table 1:  Hydraulic Conductivity Statistics 

for Each Geologic Layer [ft/day].  
Layer Min Max Mean Std Dev 

I 33.601 459.93 155.40 51.82 
C-I 0.026 45.99 0.93 3.38 
C 0.283 459.93 113.43 47.59 

B-C 0.028 19.14 0.21 1.23 
B 5.669 245.62 83.88 37.95 

A-B 0.567 8.93 0.63 0.59 
A 9.0x10-5 998.16 163.45 54.51 

I-A 9.0x10-6 8.93 0.06 0.64 
I 25.676 276.14 98.96 35.41 

 (a) 
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(b) (c) 

 
(d) (e) 

Figure 7:   Heterogeneous Conductivity Distribution (ft/day) for Each Aquifer Layer 
with Semivariogram Inset.  (a) R Aquifer; (b) C Aquifer; (c) B Aquifer; 
(d) A Aquifer; (e) I Aquifer. 

 
Transport Parameterization 

 
An extensive database of head and chloride concentration is available from 

LACDPW and has been introduced as the LS data plotted in Figure 1.  The LS data 
consists of 180 observation wells providing NH = 2,297 and NC = 4,221 over the 
calibration POR (1992 to 2002). As can be seen in Table 2, the number of concentration  
data outnumbers the head data because a 
maximum of three measurements are 
possible at different depths within a single 
geologic layer tapped by the observation 
well where only a single corresponding 
head measurement is recorded.  A data set 
of all injection and extraction rates for each 
well operating in the study area also is 
provided by LACDPW for this phase of the 
calibration.   

Table 2:   Least-Squares Data Set 
Measurement Breakdown 

Measurement Tally Aquifer Number 
of Wells P. Head  Conc. 

R 35 343 493 
C 20 300 500 
B 27 357 496 
A 52 685 1,458 
I 46 612 1,274 

Totals 180 2,297 4,221  
 
First, the transport parameters are set to their lower limit: αL = 0.1 ft (0.03 m) and 

αT = 0.003 m (0.01 ft).  Then twenty hot start simulations are executed, simulating only a 
few daily steps for each simulation as the parameter a2 (from Equation 7) is gradually 

April, 2006 Yeh   No. W-983 24 of 41 



increased up to 1.56x10-3 m3kg-1, appropriate for chloride which corresponds to a 
maximum fluid density of 999 kg/m3.  After adjusting the initial conditions based on the 
hot start simulation results, nine calibration runs are performed gradually increasing αL 
(ft) in the sequence: 0.1, 1, 5, 10, 20, 35, 50, 100, 150.  Recall that the transverse 
dispersivity is constrained to one-tenth of the assigned longitudinal value.  The eleven 
year POR is simulated with a time step of one day leading to an average run time of 12 
days per simulation on a Dell Pentium IV with two GB of DDR RAM.  Larger time steps, 
while reducing simulation time, led to a notable increase in numerical dispersion, 
therefore time steps are maintained at one day for all calibration runs.  The LSE-CON 
and LSE-HEAD are computed with Equations 17 and 18 following each simulation and 
they are plotted respectively on a semi-Log scale in Figures 8a and 8b.   
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Figure 8:   Least-Squares Error Variation as a Function of Longitudinal Dispersivity 

for (a) Concentration (LSE-CON) and (b) Head (LSE-HEAD). 
 

The LSE-CON decreases with increasing αL until reaching a minimum of 
1.95x1010 ppm2 near αL = 50 ft (15.2 m), then LSE-CON begins increasing with 
increasing αL.  The rate of change in LSE-CON given a change in αL appears to decrease 
around the minimum.  Figure 8b demonstrates that the LSE-HEAD is not sensitive to 
large variations in the transport parameters, supporting the assumption that the crossover 
effect is negligible for these parameters.  For a three order of magnitude shift in αL, LSE-
HEAD increases slightly by 0.3%. 

 
Four remaining simulations (described in Step 6 of the Phase 2 procedure) are 

executed in an attempt to further reduce the model error by a 10% variation in αL and αT 
for the most significant aquifers A and I.  Table 3 presents the variation in aggregate 
LSE-CON for the baseline and additional runs, revealing only a slight change in model 
error for the variation considered.  In fact, when looking only at the change in LSE-CON 
for the affected layer, a reduction of 0.14% is observed for the A Aquifer in the case 
when the dispersivities are decreased by 10%.  The trend for the I Aquifer is reversed, 
however, where a decrease of 0.01% in LSE-CON is observed when the dispersivities are 
increased by 10%.  The variation in LSE-HEAD is even less significant than LSE-CON 
for the additional simulations as evidenced by Table 3.  In conclusion, the improvement 
in model error is insignificant by increasing dispersivity parameter complexity. 
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Table 3:  Tracking the Least-Squares Error for Concentration and Head with 10% 
Variation in Dispersivities from Baseline. 

Run ID 
Longitudinal 

Dispersivity (ft) 
LSE-HEAD  

(m)2
LSE-CON 

 (ppm)2 Affected Layer 
Baseline 50 143776.8 1.951E+10 None 

6A 45 143774.7 1.950E+10 A-Aquifer 
6B 55 143776.5 1.952E+10 A-Aquifer 
6C 45 143777.7 1.950E+10 I-Aquifer 
6D 55 143776.6 1.952E+10 I-Aquifer 

 
Optimal Scheduling Problem Simulation-Optimization 

 
Scenario 1 Results:  Steady Optimal Scheduling Problem, Historical Operation 

 
The first scenario is to determine the optimal steady injection rates for each of the 

injection wells by minimizing their sum, subject to the nonlinear EOP head targets 
defined in Equation 19b under the HG formulation.  The EOP head targets were 
determined by solving the simulation model using the historical mean injection rates for 
each of the injection wells and the consequent EOP heads form the head targets for 
Equation 19b.  It should be noted that the head constraints are all active and the 
corresponding policy is referred to as the “optimum” policy.  Before the simulation-
optimization model is executed, an initial injection policy that lies between the maximum 
and the optimum (the recorded mean injection rate) is developed for each well to begin 
optimization.  Figure 9 shows the convergence of the objective function with successive 
nonlinear iterations for five alternative optimization runs each with a differing number of 
decision variables considered.  When the decision variables are limited to ten or less, the 
objective decreases rapidly in the first iteration converging to a policy essentially 
equivalent to the global optimum.  When the decision variables are increased to twenty 
wells, the convergence rate slows down and the global optimum is not attained.  When 
the full barrier is considered (NW=N=43), the objective function could not be improved 
after 12 iterations in 170 hours (7 days) of runtime and a total of 1,207 calls to the 
simulation model converging to approximately 2.20*105 ft3/day (6.24*103 m3/day), about 
41% greater than the optimum value of 1.56*105 ft3/day (4.43*103 m3/day). 
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Figure 9:  Optimal Scheduling Problem, Scenario 1 Steady Injection Objective 

Function Tracking with Nonlinear Iterations and Varying Number of 
Decision Variables. 

 
Figure 10 presents for each well, the steady injection rate for the initial policy, the 

corresponding optimized policy, and the “optimum policy.”  Clearly the initial policy for 
each well is much greater than the historical mean injection rate.  In terms of the 
optimized policy, most injection wells show improvement over the initial policy, 
injecting less water and in many cases approaching the optimum.  For three wells 492BF, 
502N, and 502AW, the optimized injection rate is greater than the initial policy.  All of 
the nonlinear hydraulic gradient targets are satisfied, and only seven of 178 targets are 
active at their lower bound suggesting a further reduction of injected water is 
theoretically possible.   

 
While Figures 9 and 10 demonstrate that the simulation-optimization model can 

significantly improve upon the assigned initial policy; these figures also imply that 
convergence to the global optimum may not be possible as the optimization problem is 
beset with nonlinearity as well as nonconvexity.  A second simulation-optimization run is 
executed to examine the sensitivity to the initial policy.  For the second simulation the 
initial policy is more ambitious reducing the steady injection rate closer to the optimum.  
Table 4 presents the results.   
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Figure 10:   Optimal Scheduling Problem, Scenario 1 Steady-State Injection Results. 
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Table 4:   Optimized Objectives for Steady Optimal Scheduling Problem with Two 
Alternative Initial Policies and the Total Recorded Water Injected. 

Solution Method Objective 
(ft3/day) 

Nonlinear 
Iterations 

Execution 
Time (hr) 

Optimized Solution with First Initial Policy 220,380 16 170.0 
Optimized Solution with Second Initial Policy 176,039 4 104.6 
Total Water Injected Based on Historical Record 156,413   
 

For the steady injection case, both simulation-optimization runs yielded an 
injection policy that is greater or more conservative in terms of meeting hydraulic targets.  
Furthermore, as demonstrated above, the optimized policy is clearly sensitive to the 
initial policy where a more ambitious initial policy in the second simulation converges to 
a lower objective function value.  Before proceeding with the post-optimization analysis, 
the following abbreviations are adopted to distinguish between the two solutions 
associated with the two alternative initial policies.  Let the optimized solution associated 
with the higher, conservative initial policy be referred to using the abbreviation IP-A, and 
the abbreviation IP-B is used to refer to the optimized solution associated with the 
second, more ambitious, initial policy. 

 
Following optimization, a coupled flow and transport simulation is executed 

where each optimized policy is input to the simulation model, and hydraulic head and 
concentration are calculated at selected target locations.  First, the hydraulic heads are 
successfully verified at each of the 178 EOP head target locations for both cases.  Then 
the selected target locations are divided into two groups consistent with the approach 
adopted in the CHT formulation where half are assigned to the EOP head and 
concentration constraints (NL1 = NL2 = 89 in Equations 20b and 20c), and the other half 
assigned to the mean head and concentration constraints (NL3 = NL4 = 89 in Equations 
20d and 20e).  Following this convention, the EOP and mean hydraulic head constraints 
are next verified for both IP-A and IP-B.  As expected, more of the nonlinear hydraulic 
constraints in both the EOP and mean head cases are active, at or very close to their lower 
limit.  Next the EOP concentration constraints are calculated for both optimized policies 
and compared with the baseline.  The abscissa of Figure 11 indicates the constraint index, 
and the elevation of the target locations generally decreases from left to right.  Higher 
indices along the axis, therefore, correspond to targets in deeper aquifers. 

 
Figure 11a shows that nearly all of the slacks associated with the EOP 

concentration constraint for IP-A are negative or very near 0 ppm.  The maximum 
positive slack in Figure 11a is equal to 71 ppm and represents the maximal violation in 
the nonlinear EOP concentration inequality defined in Equation 20c.  In the case of IP-B, 
the EOP concentration constraint slacks plotted in Figure 11b reveal three constraints are 
more blatantly violated with slacks equaling 534, 500, and 135 ppm.  The two most 
significant violated constraints in Figure 11b are constraints 61 and 76, which are two 
targets on the southern end of the barrier alignment located in the I Aquifer indicating an 
elevated concentration in this region.  Note that these two constraints could be made 
feasible by simply increasing the injection rate at the nearest injection well, well 503BN, 
until the concentration has been adequately reduced.   
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Figure 11:  Nonlinear Constraint Slacks for (a) End-of-Period Concentration IP-A, (b) 
End-of-Period Concentration IP-B, (c) Mean Concentration IP-A, and (d) 
Mean Concentration IP-B. 

 
The trends in the nonlinear constraint slacks comparing EOP concentration and 

mean concentration are generally consistent for a given initial policy, for example 
comparing Figure 11a with 11c or 11b with 11d.  However, when comparing the trends 
associated with two policies (e.g. comparing Figure 11a with 11b or 11c with 11d), the 
slacks associated with IP-B generally varies from negative to positive from left to right 
along the abscissa.  Recalling that constraints with a higher index are associated with 
relatively deeper aquifers, the positive trend in the slacks in Figure 11b and 11d infers 
that the optimized policy from IP-B shows a greater potential for seawater intrusion, 
particularly in the deeper aquifers.  In contrast, the nonlinear constraint slacks in Figures 
11a and 11c do not follow a similar trend; rather the distribution appears to be uniformly 
random, varying between small and large negative values along the abscissa.  Therefore 
the optimized policy associated with the conservative initial policy (IP-A) is also 
conservative in that more water is injected, but also inferring a reduced potential for 
elevated chloride levels in the future. 

 
Scenario 2 Results:  Transient Optimal Scheduling Problem, Historical Operation 

 
When transitioning from steady to transient optimization, the number of decision 

variables rapidly increases.  Before all 43 injection wells are considered in the 
optimization, two of the 43 wells are optimized in order to compare the nonlinear 
approach under transient conditions to the historical record.  These two injection wells, 
502M and 502P, inject freshwater into both the A and I Aquifers.  The CHT formulation 
in Equations 20a to 20f is adopted and a subset of 16 of the closest targets is selected for 
developing the nonlinear constraint set.  Of the 16 target locations, one half are dedicated 
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to EOP head and concentration constraints (Equations 20b and 20c, respectively), and the 
other half are dedicated to mean head and concentration targets (Equation 20d and 20e, 
respectively).  The total number of management periods in this test case is 11 years, 
therefore the number of decision variables is N=2*11=22, with a total of 32 nonlinear 
constraints (NL1 = NL2 = NL3 = NL4 = 8). 

 
For the nonlinear two well test case, the initial policy for each well is to assign the 

maximum recorded injection rate uniformly over an 11 year period.  The optimized total 
injected water for well 502M is 4.47*104 ft3/day (1.27*103 m3/day), slightly less than the 
corresponding historical value of 4.48 *104 ft3/day (1.27*103 m3/day).  For well 502P the 
improvement is more dramatic where the optimized total injected water equals 6.30*104 
ft3/day (1.78*103 m3/day) compared to 7.44*104 ft3/day (2.11*103 m3/day) based on the 
historical record.  Figures 12a and 12b show the optimized injection schedules with the 
corresponding historical mean annual injection rates for wells 502M and 502P, 
respectively.  For this limited number of injection wells, the initial policy appears to have 
no influence on the optimized solution since the maximum injection is uniformly applied 
to each well prior to optimization; although there is clearly relatively less variation in the 
optimized mean annual injection rates compared with the historical injection rates.   
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Figure 12:   Optimal Injection Schedules with Concurrent Historical Mean Annual 

Injection for Wells (a) 502M, and (b) 502P. 
 

Next the simulation-optimization model is employed to optimize all 43 wells over 
the final five years of the calibration planning horizon from 1998 to 2002, therefore the 
total number of decision variables is N=215.  First the HG formulation in Equations 19a 
to 19c is developed and solved, then the CHT formulation in Equations 20a to 20f.  A 
large portion of the computational effort during optimization is devoted to estimating the 
response matrix required in each nonlinear or outer iteration in which the linearized 
Lagrange subproblem is solved.  When exclusively simulating the groundwater flow 
under the HG formulation nearly two minutes of runtime is required to simulate the five 
year management period; therefore simply estimating the response matrix requires at 
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least seven hours of runtime.  Simulating coupled flow and transport roughly triples the 
simulation time and consequently triples the time to estimate the response matrix.   

 
Table 5 presents the objective function values for the HG and CHT formulations 

after two nonlinear iterations along with the total recorded injected water over the same 
period.  Only two nonlinear iterations are allowed in both formulations to maintain 
reasonable execution times but also to allow the convergence to be more closely 
monitored.  For the HG and CHT formulations, two nonlinear iterations are respectively 
executed in approximately 28 and 143 hrs of runtime.  The objective function values for 
the HG and CHT cases are consistent because in both cases a marginal change in the 
initial policy is realized yielding an objective function value that is slightly greater than 
the initial objective associated with the initial injection policy.  The initial objective 
function value is 1.39*106 ft3/day (3.95*104 m3/day) and the respective objective function 
values for the HG and CHT formulations are 1.5 and 3.3% higher, respectively as shown 
in Table 5.  In both cases the simulation-optimization model could not improve upon the 
assigned initial policy. 
 
Table 5:   Objective Function Values for HG and CHT Formulations After Two 

Nonlinear Iterations with Total Recorded Injection from 1998 to 2002. 

Scenario Objective 
(ft3/day) 

Nonlinear  
Iterations 

Execution Time 
(hr) 

HG Formulation (N=215, M=178) 1,415,000 2 27.5 
CHT Formulation (N=215, M=356) 1,436,000 2 143 
Total Recorded Injection 845,000   

 
The optimized injection policies are examined more carefully to determine how 

the injection rates were altered during optimization.  The change in the injection rate is 
plotted in Figure 13 for each of the 215 decision variables in both cases where the initial 
injection policy is subtracted from the optimized injection policy.  Figure 13 shows that 
most decision variables are relatively unchanged yielding a value of 0.  In the HG 
formulation only the values of six decision variables have been significantly reduced with  
three of these being driven to their lower 
bound while the values of 49 decision 
variables are increased during 
optimization, and 34 of these 49 are 
driven to their upper bound.  For the HG 
formulation, the more extreme magnitude 
decrease in relatively fewer decision 
variables is offset by smaller, more 
frequent increases in a larger number of 
decision variables.  The change in 
injection policy obtained when applying 
the CHT formulation is much more 
variable where 53 have been decreased 
relative to their initial value, 107 have 
been increased, and 55 remain unchanged.  
The net effect in both cases is a small  
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increase in the objective function values when compared to their initial value. 
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A final optimization scenario is executed to verify that the simulation-

optimization model performance will improve when the number of decision variables is 
reduced.  This time a subset of three injection wells are considered in the optimization 
over the five year management period (1998-2002).  The full HG formulation is adopted 
and a moderately conservative, and temporally non-uniform initial policy is assigned to 
each well prior to optimization.  Table 6 shows the initial, optimized, and historical 
injection policies for the three wells considered: 492BC, 492BA, and 492BG. 
 
Table 6:  Injection Policies for Initial, Optimized, and Historical Operation for 

Wells 492BC 492BA, and 492BG. 
Initial Policy (ft3/day) 

Well ID Period 1 Period 2 Period 3 Period 4 Period 5 Sum 
492BC 4,000 4,500 5,000 5,500 6,000 25,000 
492BA 3,000 1,000 2,000 5,000 6,048 17,048 
492BG 2,000 3,000 3,500 3,000 3,996 15,496 

     Total 57,544 
Optimized Policy (ft3/day) 

Well ID Period 1 Period 2 Period 3 Period 4 Period 5 Sum 
492BC 1,999 2,499 299 3,499 3,999 14,995
492BA 999 0 0 2,999 4,047 8,045
492BG 0 999 1,499 999 1,995 5,492

     Total 28,532
Historical Policy (ft3/day) 

Well ID Period 1 Period 2 Period 3 Period 4 Period 5 Sum 
492BC 1,149 3,201 4,185 4,183 2,772 15,490
492BA 1,558 559 562 2,940 4,529 10,147
492BG 723 1,523 1,409 1,719 1,814 7,189

  Total 32,826
 

The optimization results in Table 6 are generally consistent with the two well test 
case and demonstrate that the simulation-optimization model performance is improved 
when considering a subset of the barrier injection wells.  From Table 6 the initial 
objective function is 5.75*104 ft3/day (1.63*103 m3/day) and converges to a value of 
2.85*104 ft3/day (8.08*102 m3/day) after three nonlinear iterations executing in about 9.5 
hours.  The corresponding historical injection is 3.28*104 ft3/day (9.30*102 m3/day), 15% 
greater than the optimized injection rate.  Notice also that the historical transient injection 
pattern of the wells is reproduced in the optimized solution.   

 
Scenario 3 Results:  Transient Optimal Scheduling Problem, Forward Operation 

 
The third and final application of the OSP determines a future injection policy 

that will improve the barrier operation.  For this scenario the HG formulation is adopted 
again containing 215 decision variables, the product of all 43 wells over a future five year 
planning horizon spanning 2003 to 2007.  The head targets for the HG case are 
determined by taking predicted head at the beginning of 2003, and increasing the 
hydraulic head at the most sensitive targets by 5% with a base scenario equal to no 
improvement where head is maintained at 2003 levels.  Initial simulation runs revealed 
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that the head could be feasibly increased by 5% at 90 of the 178 target sites shown in 
Figure 6, the remaining 88 targets are maintained at their 2003 base level.  To begin 
optimization an initial policy is developed where for each well a significantly high 
injection rate approaching, but slightly less than, the maximum injection rate is uniformly 
assigned over the five year planning period.  In this case selecting an initial policy that is 
feasible in meeting the proposed hydraulic constraints is critical; therefore a relatively 
high value of injection is prescribed at each well.   

 
As before, the simulation-optimization model is limited to two nonlinear 

iterations in order that the objective function and convergence can be more closely 
monitored.  Following the first two nonlinear iterations, the feasibility in the nonlinear 
hydraulic constraint set is verified, however only a slight reduction in the objective 
function could be achieved.  The optimized policy output after two nonlinear iterations is 
then reassigned as the initial policy, and two additional nonlinear iterations are executed 
to determine if further improvement in the objective function could be realized.   

 
Table 7 presents the initial objective function value, and the values after two and 

four nonlinear iterations as well as the execution time for both optimization runs.  Notice 
the negligible 0.01% decrease in the objective function value following the first two 
nonlinear iterations, then another negligible increase in the objective function value is 
observed after the second set of iterations.  These results are consistent with the previous 
transient injection scenario in which all 43 injection wells are included as decision 
variables and the efficiency of the simulation-optimization model is significantly 
reduced.  Even though the simulation-optimization model is unable to improve upon the 
initial injection policy, the simulation-optimization results however suggest that assigning 
the prescribed initial policy will result in a quantifiable improvement in operation for the 
hydraulic barrier. 
 
Table 7:   Tracking Objective Function with Nonlinear Iterations for HG 

Formulation of Transient Optimal Scheduling Problem, Future Mode. 

Injection Policy Description
Objective 
(ft3/day) 

Nonlinear 
Iterations 

Runtime 
(hrs) 

Initial  1,859,250 0 0 
First Optimization Run 1,859,081 2 36 
Second Optimization Run 1,859,162 4 31 

 
Optimal Well Location Problem Scenario Results  

 
The calibrated simulation model by itself is a valuable tool for evaluating parts of 

the injection barrier that can be improved without employing optimization.  To briefly 
demonstrate, two simulations are conducted, in the first all injection wells are assigned 
their maximum rate, and in the second all injection wells are shut off over the calibration 
POR.  The difference between head and concentration calculated by these two simulation 
runs are shown for the I Aquifer in Figure 14.  In Figure 14a, three light colored areas 
along the alignment indicate areas of relatively low pressure head, and therefore carry an 
increased risk of future seawater intrusion.  The difference in concentration in Figure 14b  
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Figure 14:  I Aquifer Sensitivity to State Variables, (a) Hydraulic Head (ft), (b) 
Chloride Concentration (ppm). 

 
suggests that the upper left portion of the barrier has the greatest potential risk of rising 
chloride concentration.  While simulations can provide insights as to regions of the 
barrier where the efficiency can be improved, optimal well locations are determined 
through simulation-optimization methods previously discussed.  The OWLP algorithm in 
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Figure 5 is developed and executed on the UCLA Academic Technology Services 
Hoffman Cluster consisting of approximately 48 Intel Xenon dual processors.   
 

The OWLP simulation-optimization model converged after about 10 hours of 
runtime on four processor nodes.  Figure 15 shows the evolution of the fitness function 
over the course of generating 100 of populations, each containing four individuals.  The 
maximum difference between the best and worst new well pairs is nearly 30 ft (9 m). The 
fitness initially trends in a steady 
positive direction for about the 
first five generations.  The 
population is restarted for the first 
time after the twelfth generation, 
then the fitness tends to be much 
more random or scattered, 
although the fittest individual is 
repeatedly discovered with a 
fitness of 26.27 ft (8 m).  After 56 
generations a new optimum is 
discovered with a marginally 
improved fitness of 29.24 ft (8.91 
m), which remains the fittest 
individual until the 75th generation 
in which the final fittest individual 
is  discovered  with a fitness  equal 
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Figure 15:   Evolution of Fitness for Each 
Individual Over Successive 
Generations. 

to 29.36 ft (8.95 m).  The top five individuals, their fitness, and the corresponding well 
node pairs are summarized in Table 5.  Interesting is that all of the top ranked well pairs 
are located in the B aquifer.  Furthermore, the new wells are clustered together near the 
existing injection well 503AY, working together with the existing well to cause the 
largest impact thereby maximizing the fitness function.   
 
Table 8:   Top Five Optimized Well Pairs within 50 ft of Existing Barrier Alignment. 

Rank ID 1 ID 2 Well 1 Well 2 Fitness [ft] 
1 883 875 (51961, 56961) (51959, 56959) 29.36 
2 883 879 (51961, 56961) (51960, 56960) 29.24 
3 883 871 (51961, 56961) (51958, 56958) 26.46 
4 849 875 (51952, 56952) (51959, 56959) 26.45 
5 883 868 (51961, 56961) (51957, 56957) 26.27 

 
CONCLUSIONS 
 

Heterogeneous conductivity fields estimated by the NNK method are consistent in 
trend to previously published maps of local transmissivity at the study site in Callison et 
al. (1991).  The NNK results show much more local variations.  Small circular patterns 
evident in the field may be enhanced by the zonation schemes embedded in the NNK 
algorithm as the consequence of a set of highly variable prior estimates of hydraulic 
conductivity.  The accuracy of the NNK method is based largely upon the prior parameter 
measurements.  Therefore, the accuracy of the NNK results is highly dependent on both 
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the arrangement of the sample locations and the uncertainty associated with the estimates 
themselves. 

 
A minimum LSE-CON is achieved when the longitudinal dispersivity is 15.2 m 

and the corresponding transverse dispersivity is 1.52 m.  The rate of change in the overall 
model fit with a corresponding change in dispersivity, tends to decrease around the 
minimum LSE-CON.  Also, the crossover effect is confirmed to be negligible in the 
transport calibration phase.  In this case, a three order of magnitude increase in the 
transport parameters leads to a negligible increase of 0.3% in the LSE-HEAD.  
Additional adjustments to transport parameters for the most significant layers, the A and I 
aquifers, result in a negligible impact on the model error quantified as LSE-CON and 
LSE-HEAD. 

 
Following the two-phase calibration, three alternative simulation-optimization 

models have been developed linking a calibrated simulation model with two optimization 
solvers.  The first two optimization problems considered compare the simulation 
optimization results to the historical barrier operation while the latter two cases examine 
ways of improving the barrier’s ability to mitigate future seawater intrusion.  While some 
conclusions of this study are general and consistent with previous published studies, 
others are undoubtedly specific to the Alamitos Barrier Project.  

 
A common trend has emerged when looking over all of the OSP scenarios 

considered; the efficiency of the gradient-based simulation-optimization model 
deteriorates as the number of decision variables increases.  In the two well test case the 
simulation-optimization model identified a solution that met all constraints on hydraulic 
head and concentration by injecting 15% and 0.25% less water for wells 502M and 502P, 
respectively.  In the three well test case, an injection policy is identified that injects 15% 
less water overall when compared to the corresponding historical record, while meeting 
all nonlinear targets on the hydraulic gradient.  The steady injection OSP contained a 
moderate number of decision variables (N=43) and provided mixed results.  When 
considering all 43 existing injection wells over a five year period the number of decision 
variables increases to N=215 and the simulation-optimization model appears to have 
greater difficulty improving upon the initial policy.   

 
Due to nonlinearity, interaction among the nonlinear decision variables becomes 

increasingly complex and non-intuitive.  This is particularly evident in the case where 
many of the wells inject freshwater water into two, and in some cases up to four different 
aquifers, and therefore these wells are likely to be sensitive to a greater number of 
nonlinear target constraints.  Also when both the hydraulic head and chloride 
concentration are considered in the formulation, the nonlinear relation between decision 
variables and constraints is enhanced.   

 
When analyzing the operational flexibility of the system it is clear that the system 

is tight meaning that the feasible region for optimization is relatively small.  A tight 
system reduces the efficiency of the optimization algorithm.  Although only a small 
number of nonlinear iterations is allowed during execution of the simulation-optimization 
model, it is highly unlikely that further iterations will result in any significant 
improvements to the objective function. 
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When operated under the steady injection scenario, the simulation-optimization 
model tended to be conservative in that more water tended to be injected.  The post 
optimization analysis of the two optimal steady-injection policies revealed a contrast in 
the two optimized solutions which essentially represent two different management 
strategies.  The conservative IP-A results in an optimized policy in which more water is 
injected and a relatively higher factor of safety is attained in limiting seawater intrusion 
based on the greater frequency and uniform distribution of negative slacks in the 
transport targets referring back to Figure 11a and 11c.  The other ambitious IP-B results 
in a policy which injects less water to maintain hydraulic targets, but also has a lower 
factor of safety in terms of meeting or maintaining concentration targets particularly in 
the deepest aquifers as evidenced by the positive trends in Figure 11b and 11d. 

 
In the case of improving barrier operations, the simulation-optimization model is 

unable to improve upon an initial, feasible injection policy which would raise the 
hydraulic head by 5% at 90 of 178 targets.  Future forward operations should focus on 
improving the hydraulic head in targeted regions along the barrier alignment, and include 
as decision variables only those wells that can influence the hydraulic gradient in these 
designated regions.   

 
For the optimal well location problem, the fitness function, the marginal gain in 

head with newly added injection wells, rapidly increases in the first set of generations.  A 
suboptimal individual of 26.27 ft (8 m) is identified after nine generations, then the 
maximum fitness function remains flat marginally increasing to slightly greater than 29 ft 
(8.8 m) after 56 generations.  Furthermore, all of the top five fittest individuals are 
located in the B Aquifer referring back to Table 8. Also when adding two wells to the 
barrier alignment, the combinations resulting in the largest fitness function are those that 
are clustered together near an existing well and nearby observation target location where 
both new wells work together with the existing well to produce the greatest increase the 
head above the baseline value.   

 
Finally, the success of the optimization formulations employed in this study for 

either the OSP or OWLP depend upon the target locations where state variables are 
monitored.  Therefore sensitivity among these variable sets is important when selecting 
targets of which the formulations, and therefore results are based. The management 
application must guide the selection of target locations and the optimization formulation.  
If the process is conducted carefully and thoughtfully, then useful results will be 
efficiently achieved. 
 
FINAL RECOMMENDATIONS 
 

The simulation-optimization model linking MINOS with FEMWATER is clearly 
most efficient when the number of decision variables can be limited as in this case of 
optimizing a subset of the injection wells, for example.  The OSP simulation-optimization 
model could be used on a real-time basis for operations and maintenance were a limited 
number of wells are optimized to determine the short term injection rates required to 
maintain hydraulic head targets while one well is shut off for maintenance.  Also, the 
OWLP simulation-optimization model should be helpful in the future as one tool for 
quantifying and evaluating the benefit associated with candidate locations for new 
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injection wells.  Simulations of the coupled flow and transport model can be used to 
identify regions of the barrier at highest risk of future seawater intrusion.  Then the 
OWLP management model can then be used to identify the best locations for new wells 
within the region identified.  The key to using the OWLP simulation-optimization model 
is a pre-optimization phase where the candidate locations for new wells are screened 
using well-defined management criteria. 

 
The simulation-optimization models developed in this study are intended to be 

adapted and updated to improve accuracy as operational experience increases.  Future 
research will focus on improving upon the optimal well location algorithm presented in 
Figure 5 including possible modifications to discourage clustering of new wells and 
alternative fitness formulations.  Also the use of embedded optimization will be explored 
developing a hybrid GA similar to Tu et al. (2005) where both the location and injection 
rates of new injection wells are decision variables in a single, unified simulation-
optimization model. 
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