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Entangled in a Membranous Web: ER and Lipid Droplet 
Reorganization during Hepatitis C Virus Infection

Nathan L. Meyers*, Krystal A. Fontaine*, G. Renuka Kumar, and Melanie Ott
Gladstone Institutes, University of California San Francisco, 1650 Owens Street, San Francisco, 
CA 94941

Abstract

Hepatitis C virus (HCV) is a major cause of liver disease worldwide. To establish and maintain 

chronic infection, HCV extensively rearranges cellular organelles to generate distinct 

compartments for viral RNA replication and virion assembly. Here, we review our current 

knowledge of how HCV proliferates and remodels ER-derived membranes while preserving and 

expanding associated lipid droplets during viral infection. Unraveling the molecular mechanisms 

responsible for HCV-induced membrane reorganization will enhance our understanding of the 

HCV life-cycle, the associated liver pathology, and the biology of the ER:lipid droplet interface in 

general.

Introduction

Hepatitis C virus (HCV) is a significant health burden: 170–185 million individuals are 

infected worldwide [1,2]. Most infections result in a life-long condition that increases risk of 

liver cirrhosis and hepatocellular carcinoma [1]. New anti-HCV drugs that eradicate the 

virus do not reverse end-stage liver disease, are very expensive, and unavailable in resource-

poor countries where most infected people live [3].

HCV is an enveloped, positive-strand RNA virus of the family of Flaviviridae [4]. Unlike 

other Flaviviridae, such as yellow fever virus and dengue virus, HCV is not mosquito-borne 

and infects mainly hepatocytes after contact with infected blood. The virus replicates 

continuously to high titers within the cytoplasm of infected cells, a process that revolves 

around the endoplasmic reticulum (ER) and associated lipid droplets (LDs). HCV engages 

these organelles in multiple ways (Figure 1): 1) After viral entry, the ~9.6-kb single-stranded 

HCV RNA genome is translated at the rough ER into a single large polyprotein that is 

proteolytically processed into 10 functional HCV proteins, which are all, except the NS3 

protease, firmly integrated in or associated with the ER membrane (Box 1). 2) The C-

terminal region of the polyprotein gives rise to nonstructural viral proteins, which form a 

replicase complex that propagates the viral RNA genome within a newly formed ER-derived 

web-like membranous compartment that consumes considerable space and membrane 

resources in the cytoplasm of infected cells. 3) The N-terminal part of the polyprotein 
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produces structural viral proteins that reside on the surface of LDs or are firmly anchored 

within the ER membrane to assemble immature progeny virions that eventually bud into the 

ER. 4) Within the ER lumen, progeny virion production intersects with intraluminal LDs to 

produce mature “lipoviroparticles” that are released from producer cells via the lipoprotein 

pathway [3].

Here, we focus on points 2 and 3 and on recent insights into how HCV infection induces 

proliferation of ER membranes and manipulates LDs within the cytoplasm of infected 

hepatocytes.

Molecular architecture of the membranous web

Positive-strand RNA viruses induce extensive cytoplasmic membrane proliferation and 

remodeling [5]. Induced membrane structures provide favorable microenvironments for 

compartmentalization of viral RNA replicase complexes. Here, the local concentration of 

host and viral factors required for efficient RNA replication is increased, and replication is 

protected from nuclease-mediated degradation and host cell antiviral responses [3,6–9]. 

HCV is unique as it induces a matrix of cytoplasmic double-membrane vesicles (DMVs) 

(Figure 1) [10,11]. This is different from other flaviviruses, which mainly form invaginated 

vesicles within the ER [5,12]. DMVs have diameters of 150–200 nm [13,14] and contain 

active replicase complexes, supporting the model that they form to support viral RNA 

replication [8,13]. The outer membranes of ~50% of DMVs connect to the ER membrane 

via a neck-like structure [13,15]. Biochemical analyses of purified membranes reveal ER-

resident calnexin and calreticulin proteins, confirming the ER as a major membrane source 

for DMVs [15–18].

For some time, viral NS4B protein, an integral membrane protein in the ER, was believed to 

induce DMVs [12]. NS4B expression induces membrane remodeling via a mechanism 

dependent on NS4B oligomerization, mediated by its N- and C-terminal α-helices 

[10,19,20]. However, more sophisticated EM techniques showed that NS4B induces 

formation of single-membrane vesicles (SMVs) [13]. Only combined expression of all HCV 

replicase proteins induces DMVs morphologically similar to HCV-infected cells [13]. The 

contribution of SMVs to HCV replication is unknown, but one model postulates that local, 

HCV-induced exvaginations form SMVs and, while the vesicles remain attached to the ER, a 

secondary invagination produces DMVs [13,14].

Critical players in DMV biogenesis are NS5A and the prolyl-peptidyl cis-trans isomerase 

cyclophilin A that binds to the D2 domain of NS5A [21–24], an intrinsically unstructured 

domain required for efficient HCV replication [25]. Cellular expression of NS5A alone 

induces small DMV formation albeit with low efficiency [9,13]. Pharmacological inhibition 

of cyclophilin A or treatment with antiviral compounds targeting NS5A abrogates de novo 
DMV formation in cells expressing the viral replicase complex, underscoring the critical 

role of both factors in membranous web formation [9,13,24,26,27]. The compounds likely 

prevent a conformational change in NS5A required for membrane rearrangements otherwise 

induced by active cyclophilin A. In support of this model, catalytically active cyclophilin A 

is required to induce DMVs [24,27], and the NS5A N-terminal amphipathic helix exhibits 
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membranolytic properties, suggesting a direct role in membrane remodeling [28–30]. NS4B 

and NS5A interact with the proline-serine-threonine phosphatase-interacting protein 2 

(PSTPIP2), a host protein that induces positive membrane curvature and is required for 

DMV formation [31].

Lipid signaling and viral RNA replication

Local lipid concentrations recently emerged as a second regulatory layer of membranous 

web formation. During HCV infection, phosphatidylinositol-4-phosphate-3 kinase 

(PI4KIIIα), a critical enzyme within the phosphoinositide synthesis pathway, is trafficked 

from the Golgi apparatus and the plasma membrane to the ER via interaction with NS5A 

[32–35]. Intracellular phosphatidylinositol 4-phosphate (PI4P), the product of PI4KIIIα 
activity and the ligand of pleckstrin-homology domains present in many cellular coat and 

accessory proteins, increases in concentration concomitantly with this redistribution, 

particularly at local sites of HCV RNA replication [32,36]. Transient depletion or inhibition 

of PI4KIIIα suppresses viral RNA replication and causes aggregation of atypically small 

DMVs [32–34]. This phenotype is mirrored by NS5A mutations that impair interaction with 

PI4KIIIα, supporting the concept that NS5A recruits PI4KIIIα to the ER, where PI4P 

accumulates to enhance proper DMV formation and HCV replication [35].

One consequence is delivery of sphingholipids, cholesterol, and fatty acids to budding 

DMVs and formation of detergent-resistant lipid rafts [33,37]. Lipid rafts are membranous 

microdomains involved in compartmentalization of HCV replicase complexes within DMVs 

and signal transduction to modulate host-cellular processes [37]. Glycosphingolipids access 

PI4P-enriched membranes by interacting with four-phosphate adaptor protein 2 (FAPP2), 

which contains functional binding domains for PI4P and glycosphingolipids [38]. FAPP2 

knockdown impairs HCV replication and prevents formation of DMVs, while addition of 

exogenous glycosphingolipids restores viral RNA replication [38].

In one model, viral proteins interact with specific host factors (i.e, PI4KIIIα) to induce lipid 

changes that recruit host factors (i.e., FAPP2 and associated lipids) to promote membrane 

curvature and DMV biogenesis (Figure 1). Cholesterol is delivered to DMVs by interaction 

of oxysterol-binding protein (OSBP) with PI4P and vesicle-associated membrane protein-

associated protein A (VAPA), a host protein interacting with NS5A and NS4A [39–41]. 

Inhibitiing OSBP or depleting cholesterol results in aggregated, atypically small DMVs in 

HCV-infected cells, underscoring the critical contribution of this process to web formation 

[8,39]. Fatty acid synthase co-localizes with the viral NS5B polymerase within lipid rafts, 

and its transient knockdown or inhibition also impairs HCV replication [42].

However, fatty acids play a two-faced role in HCV infection. In hepatoma cells and primary 

hepatocytes, adding polyunsaturated fatty acids (PUFA), targets of reactive oxygen species 

in lipid peroxidation reactions, inhibits RNA replication of HCV strains that are not adapted 

to replication in cell culture [43,44]. Conversely, adding antioxidants, such as vitamin E, 

enhances replication of the same strains [43,44]. Expressing the vitamin E transporter 

SEC14L2, naturally lacking in hepatoma cells, or inhibiting sphingosine kinase 2 (SPHK2) 

phenocopies this effect, pointing to lipid peroxidation as a critical barrier to viral RNA 

replication in in vitro cultures [44,45]. The mechanism by which SPHK2 regulates HCV 
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replication remains unknown but it is likely that SEC14L2 expression serves to locally 

deliver vitamin E to sites of HCV replication. In some strains, resistance to PUFA treatment 

maps to adaptive mutations located in membrane-proximal residues of viral NS3/4A or 

NS5B proteins, suggesting that peroxidation could impair viral RNA replication by 

preventing viral protein oligomerization or generally by altering membrane fluidity [44].

Lipid storage and virion assembly

Packaging of the HCV genome into nucleocapsids, a process called assembly, also depends 

on lipids [46]. In particular, HCV assembly is dependent on lipid droplets (LDs), which are 

cytosolic lipid storage organelles involved in many cellular processes [47,48]. LDs are 

composed of a neutral lipid core consisting of triglycerides and cholesterol esters, 

surrounded by a phospholipid monolayer likely derived from the ER outer leaflet of the ER. 

Juxtaposed to the ER within the membranous web, LDs are regarded as platforms for HCV 

virion assembly (Figure 1) [12].

Two HCV-encoded proteins, the nucleocapsid core and NS5A, associate with LDs during 

virion assembly; NS5A may traffic the RNA genome out of DMVs to the LD surface where 

encapsidation by core is initiated (Figure 1) [46]. Notably, in HCV-infected or core-

expressing cells, LDs cluster around the nucleus, which may further condense the sites of 

viral RNA replication and virion assembly [49,50]. Why LDs are required for assembly is 

unclear, as virion formation does not involve LDs directly, but instead occurs at adjacent ER 

membranes where envelope proteins E1 and E2 reside [51]. Mutations that prevent core 

from localizing to LDs inhibit HCV assembly [47,48,52], but viral p7 and NS2 are thought 

to eventually recruit LD-bound core to the ER to enable infectious virion formation [53].

Core undergoes two proteolytic cleavages at positions 191 and 179 that generate mature core 

protein (179 amino acids), which is loosely anchored within the cytosolic leaflet of the ER 

via a C-terminal signal peptide [54]. It then traffics onto the surface of LDs [55–58] and 

other closely associated organelles, such as the mitochondria [59,60]. Localization of core to 

the ER, mitochondria, or LDs is dependent on its D2 domain, which harbors an amphipathic 

helix-turn-helix motif found in other LD-binding proteins [60,61].

NS5A attaches to intracellular membranes through its N-terminal amphipathic helix [62]. 

This helix interacts with the LD-resident protein tail-interacting protein 47 (TIP47), which 

connects ER and LD membranes and supports HCV RNA replication [63–66]. This and the 

phosphorylation status of NS5A might serve as an important rheostat for NS5A’s dual 

function in viral RNA replication and virion assembly (Figure 1) [67,68]. Interestingly, 

transfer of core and NS5A to LDs is linked via common host factors (e.g., diacylglycerol 

acyltransferase-1 (DGAT1), Ras-related protein 18 (Rab18) and apolipoprotein J).

DGAT1 is one of two known enzymes that catalyze the final step in triglyceride synthesis 

and fuel LD generation. Core and NS5A bind DGAT1 within the ER and associate with 

DGAT1-generated LDs, a process that enables proper colocalization of both factors to 

support assembly [69,70]. Similarly, Rab18 binds NS5A and promotes its association with 

LDs [63], while the role for Rab18 in the trafficking of core to LDs remains unclear [63,71]. 
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Apolipoprotein J, a very low-density lipid (VLDL)-associated molecular chaperone, 

stabilizes the core-NS5A complex and supports infectious virion production [72].

LDs also harbor antiviral host factors such as viperin, an interferon-induced host factor 

involved in the antiviral immune response [73]. Viperin interacts with core and NS5A and is 

thought to disrupt the interaction of NS5A with the host VAPA protein at replication sites, 

thus suppressing viral RNA replication [74]. Heterologous nuclear ribonucleoprotein K 

(HNRNPK) is a poly(C)-binding protein exerting anti-HCV effects through localization near 

the ER and LDs [75]. Silencing of HNRNPK reduced HCV entry/replication steps, but 

enhanced virus assembly/release steps, suggesting complex involvement of the factor in 

HCV infection [75–78]. One model is that HNRNPK is redistributed to sites of viral particle 

production where it sequesters HCV RNA, blocking HCV assembly [75].

Ups and downs of lipid droplets

Remarkably, cellular LDs are preserved and enriched in HCV infection [79]. This is in 

contrast to the consumption of LDs that is observed during infection with the related dengue 

virus [80]. HCV infection is often characterized by liver steatosis, a complex feature 

involving aberrant accumulation of LDs recapitulated in HCV-infected or core-expressing 

cells [46]. Steatosis is more frequently associated with HCV genotype 3, and genotype 3a 

core protein induces formation of large LDs by downregulating phosphatase and tensin 

homolog (PTEN) [81] or increasing LD cholesterol ester content with sphingolipid 

biosynthesis [82]. Core expression in mouse liver induces expression of sterol regulatory 

element binding protein 1c (SREBP-1c), a critical transcription factor in fatty acid, 

triglyceride, and phospholipid biosynthesis [83]. Moreover, SREBP transcription is induced 

upon HCV infection via interaction of the 3′-UTR of the viral genome with the host protein 

DEAD box polypeptide 3, X-linked and the IκB kinase-α, an innate immune response that 

couples lipogenesis and inflammation [84,85]. NS5A and core associate with 

apolipoproteins A1 and A2, respectively, which regulate triglyceride content in hepatocytes 

[58,86], and core interacts with nuclear receptor retinoid X receptor alpha to promote 

lipogenesis [87]. Also, core modulates expression of two transcription factors regulating 

liver lipid metabolism, peroxisome proliferator-activated receptors (PPAR) alpha and gamma 

[88,89], and inhibits the microsomal triglyceride transfer protein, preventing lipid secretion 

through the VLDL pathway in hepatocytes [90].

Cellular LD homeostasis is maintained through a balance between lipogenesis and lipase-

dependent processing of LDs (lipolysis). Lipolysis produces free fatty acids, which are 

transported into the mitochondria to undergo β-oxidation. Reports on β-oxidation during 

HCV infection are conflicting: HCV infection and core expression downregulate PPARα 
[88,91–93] and the cellular energy sensor AMP-activated protein kinase [94,95], two 

important activators of β-oxidation. In addition, levels of two enzymes involved in β-

oxidation, medium-chain acyl coenzyme A dehydrogenase (MCAD) and short-chain acyl 

coenzyme A dehydrogenase (SCAD), decrease following HCV infection or core expression, 

supporting a model where β-oxidation is downregulated during HCV infection and LD 

content is increased [96]. However, Diamond et al. reported a paradoxical increase in both 

fatty acid oxidation and lipid biosynthesis in HCV-infected cells, which points to a more 
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complex regulation of both processes during HCV infection [97]. Furthermore, HCV 

particle production depends on the activity of dodecenoyl coenzyme A delta isomerase, an 

inner mitochondrial enzyme that catalyzes the breakdown of long-chain fatty acids during β-

oxidation [98]. Similarly, inhibiting the mitochondrial import of fatty acids blocks HCV 

replication, further linking intact β-oxidation to efficient HCV infection [80,98].

Core directly interferes with lipolysis in cultured cells and murine livers [99,100]. Lipases 

linked to HCV infection are the hormone-sensitive lipase (HSL) [96], the putative lipase 

arylacetamide deactylase (AADAC) [101], and the adipose triglyceride lipase (ATGL) [102]. 

ATGL directly hydrolyzes triglycerides in LDs, but this activity is inhibited by core when 

both proteins are located on the same LD surface in vitro [102]. Core expression strengthens 

the interaction between ATGL and its activator CGI-58 and increases recruitment of the 

complex to core-coated LDs, a paradoxical finding pointing to the dynamics of lipase 

recruitment to LDs as a critical regulator of its activity [102]. Interestingly, a variant 

(I148M) of the closely related patatin-like phospholipase family 3 protein (PNPLA3) is 

linked to nonalcoholic fatty liver disease in genome-wide association studies [103] and 

increases steatosis risk in HCV-infected individuals in some, but not all, studies [104–108]. 

Mice carrying a knockin of the pnpla3I148M variant develop liver steatosis accompanied by 

a marked accumulation of the enzyme on LDs similar to what is observed with ATGL in 

core-expressing cells [109]. The possibility exists that lipases abnormally residing at the LD 

surface sequester an essential lipolytic factor, leading to an overall decrease in LD turnover 

[109].

Conclusions and Future Perspectives

HCV biology is closely tied to the lipid biology of infected cells, resulting in rearrangement 

of membranes and LDs. The past few years have seen a prolific increase in our 

understanding of the molecular mechanisms governing these changes with implications far 

beyond HCV infection. This progress was possible after break-through discoveries in in 
vitro viral replication systems in 1999 (viral RNA replication system) and 2005 (full-length 

infectious clone). While these systems propelled research in the area of viral RNA 

replication and viral assembly, they remain limited to certain viral genotypes and a handful 

of cancer cell lines. The next step will be to examine all HCV genotypes in primary 

hepatocytes. The finding that core of genotype 3 in a new replication system is not found at 

LDs is an indication of system complexity [110]. Similarly, findings pointing to lipid 

peroxidation as a major limiting factor for viral RNA replication in primary or hepatoma 

cells might open the door for future studies.
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Box 1

HCV Proteins and Functions

Protein Function

Structural Proteins

Core A multifunctional protein, core forms a viral capsid that protects HCV RNA. Its N-terminal 
domain (D1) contains three basic subdomains that bind RNA and other proteins, while its C-
terminal domain (D2) is highly helical and mediates lipid binding. Mature core resides at the 
cytosolic side of the ER membrane and traffics to cLDs to facilitate viral assembly.

E1
E2

Viral surface glycoproteins, E1 and E2 form non-covalent heterodimers within infected cells, but 
assemble as large covalent complexes stabilized by disulfide bonds on viral particles. E2 
mediates binding to receptors at hepatocyte surfaces to promote viral entry. E1 and E2 may 
mediate fusion between the viral envelope and endosomal host cell membranes.

p7 A short, 63-residue ion channel protein, p7 protects nascent HCV particles while in transit 
through acidic intracellular compartments to facilitate maturation and particle release. p7 also 
modulates capsid assembly and the envelopment of viral particles.

Non-Structural (NS) Proteins

NS2 A Cys-protease that mediates cleavage at the NS2/NS3 junction of the viral polyprotein, NS2 is 
not required for RNA replication. Rather, NS2 co-localizes with core and NS5A at punctate sites 
near cLDs and recruits E2 to promote viral assembly.

NS3 A bifunctional molecule comprised of N-terminal serine-protease and C-terminal helicase 
domains. The NS3 protease domain catalyzes polyprotein cleavage between non-structural 
proteins, while the role of the helicase domain is unknown.

NS4A A 54-residue transmembrane protein that is a cofactor for NS3. NS4A stimulates NS3 protease 
and helicase activities, and regulates NS3 localization to ER and mitochondrial membranes.

NS4B A poorly-characterized protein with four transmembrane helices and N- and C-terminal 
amphipathic α-helices. NS4B is critical for efficient RNA replication and HCV particle 
assembly. The protein, as homo-oligomers, facilitates membranous web formation.

NS5A A multifunctional protein that associates with membranes via an N-terminal amphipathic α-
helix. NS5A localizes to both DMVs and cLDs and serves critical roles in both HCV RNA 
replication and virion assembly. A phosphoprotein, basal NS5A promotes HCV RNA 
replication, whereas hyperphosphorylated NS5A promotes HCV assembly.

NS5B NS5B is the RNA-dependent RNA polymerase required for RNA replication. Its N-terminal 
catalytic domain connects to a transmembrane domain anchored to intracellular membranes.
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FIGURE 1. HCV replication and assembly are coordinated via intracellular organelles
Left, HCV infection stimulates production of DMVs and LDs. 1) After viral entry and 

uncoating, HCV RNA is released into the cytoplasm. 2) The HCV RNA genome is 

translated at the rough ER into a single large polyprotein, which is cleaved into structural 

and nonstructural proteins. 3) Viral proteins NS4B and NS5A, along with host factors, 

induce changes in the ER membrane to produce DMVs. DMVs remain attached to the ER or 

bud off into the cytosol and form a membranous web hosting viral RNA replicase 

complexes. 4) LD production increases during infection to serve as a scaffold for assembly. 

NS5A and core proteins are loaded onto LDs and promote HCV RNA translocation from 

DMVs.

Upper right, DMV formation from ER membranes. Following translation and processing at 

ER membranes, NS5A activates PI4KIIIα, locally enriching the membrane in PI4P. FAPP2 

is recruited to these sites via interaction with PI4P recruiting associated glycosphingolipids. 

Membrane curvature is induced by these lipid changes, along with the coordinated actions of 

NS5A and NS4B.

Lower right, HCV assembly at LDs. The core-NS5A complex recruits replication complexes 

to ER membranes close to LDs. Eventually, LDs connect with ER regions containing the 

viral glycoproteins. Assembly begins when core and viral RNA, mediated by NS2 and 

NS3/4A, are transferred back to the cytosolic membrane of the ER.
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FIGURE 2. The modulation of lipogenesis and lipolysis by HCV
Left, Lipogenesis is induced during HCV infection. Interaction of the HCV genome 3′-UTR 

with DEAD box polypeptide 3, X-linked activates IκB kinase-α, which results in SREBP-

mediated expression of lipogenic genes, such as fatty acid synthase (FASN).

Right, Lipolysis is inhibited during HCV infection. HCV infection has been linked to several 

lipases, including ATGL, HSL, AADAC and PNPL3. Core strengthens the interaction 

between ATGL and its activator CGI-58, and increases the recruitment of the complex to 

LDs.

Importantly, this interaction results in suppression of ATGL activity. Core expression and 

HCV infection modulate HSL phosphorylation to potentially impair its activity. HCV 

infection also regulates the temporal expression of the putative lipase AADAC. The I148M 

variant of PNPLA3 causes liver steatosis in mice, which is accompanied by accumulation of 

the enzyme on LDs, similar to what is observed with ATGL.
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