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Abstract

We survey results in geometric network design theory, including algorithms for constructing
minimum spanning trees and low-dilation graphs.





1 Introduction

This survey covers topics in geometric network design theory. The problem is easy to state: connect
a collection of sites by a "good" network. For instance, one may wish to connect components of
a VLSI circuit by networks of wires, in a way that uses little surface area on the chip, draws little
power, and propagates signals quickly. Similar problems come up in other applications such as
telecommunications, road network design, and medical imaging [1]. One network design problem,
the Traveling Salesman problem, is sufficiently important to have whole books devoted to it [79].
Problems involving some form of geometric minimum or maximum spanning tree also arise in the
solution of other geometric problems such as clustering [12], mesh generation [56], and robot motion
planning [93].

One can vary the network design problem in many ways. The space from which the sites are drawn
is often the Euclidean plane, but other metrics and higher dimensions are possible. One may wish to
construct networks of varying classes such as trees, planar graphs, or general graphs. One may restrict
the vertices of the network to be at the given sites or instead allow additional Steiner points. One may
measure the quality of a network in different ways; typical quality measures include the weight (total
length of all edges in a network), diameter (longest network distance between two sites), and dilation
(largest ratio of network distance to Euclidean distance). The problem may be static, or various types
of dynamic changes to the collection of sites may be possible.

Geometric network design problems can generally be solved by translation to a graph problem:
simply form a complete geometric graph in which each pair ofsites is connected by an edge with length
equal to the distance between the pair. We are interested here in solutions which depend intrinsically on
the geometry of the problem, and don't immediately reduce a geometric problem to a graph problem.

This survey is organized from the specific to the general: we first describe algorithms for finding
trees of various types, then algorithms for finding planar graphs, and finally we describe algorithms for
finding graphs without restriction to a specific class. Within a class of graphs we organize the topics
by the criteria used to measure the quality of a given graph. We only describe problems of designing
networks with vertices limited to the initial sites; Steiner tree and Steiner triangulation problems have
been extensively surveyed elsewhere [17, 19,48].

2 Trees

Much of the research on geometric network design problems has involved problems in which the
network to be designed is a tree. Such problems include the minimum spanning tree, maximum
spanning tree, minimum diameter spanning tree, bounded degree spanning trees (such as the traveling
salesman path), and the ^-point minimum spanning tree.

VLSI design theory is responsible for several more specialized geometric spanning tree problems,
which we do not discuss in detail: Steiner min-max spanning trees [36], minimum skew spanning trees
(for routing clock signals) [69,70,110], and minimum area routing of interdigitated power and ground
networks [67]. For more discussion of these and other geometric VLSI problems, see Sherwani [107].
Much of the work on these problems provides only heuristics for their solution, so there may be room
for more work on exact algorithms.



Figure 1. The lune of two points, their diameter circle, and a 60° wedge.

2.1 Minimum weight spanning trees

The most basic and well-studied network design problem is that of finding minimum spanning trees:
connect the sites into a tree with minimum total weight. Many graph minimum spanning tree algorithms
have been published, with the best taking linear time in either a randomized expected case model [71]
or with the assumption of integer edge weights [61]. For deterministic comparison-based algorithms,
slightly superlinear bounds are known [62]. Therefore, by constructing a complete geometric graph,
onecan find ageometric minimum spanning tree intime 0(n^), inany metric space forwhich distances
can be computed quickly.

Faster algorithms for most geometric minimum spanning tree problems are based on a simple
idea: quickly find a sparse subgraph of the complete geometric graph, that is guaranteed to contain all
minimum spanning tree edges. The details of this approach vary depending on the specific problem; for
planarproblemsthe Delaunaytriangulationis the appropriategraph touse, whileforhigherdimensional
problems a more complicated recursive decomposition works better.

2.1.1 Planar MSTs

In the plane, one method of finding a subgraph containing the minimum spanning tree is provided by
the following well-knownresult. Define the lune of two points u and v to be the region interior to the
two circles having line segment mu as radius.

Lemma 1. Suppose uu is an edge in the minimum spanningtree of a planar point set. Thenthe lune
of II and V contains no other site.

Proof: Let T be a tree containing uv, and let w be some other site in the lune of u and v. Then the
lengths of segments wu and wv are both shorter than that of segment uv. The removal of uv from T
would partition it into two connected components U (containing u) and V (containing v). If w is in
U,T —uv + wv wouldbe a tree, and if if is in V, T —uv + uw would be a tree, in eithercase having
smaller weight than T. So if T is to be minimum, there can be no such point w in the lune. •



The set of all edges uv with empty lunes is known as the relative neighborhood graph. The
lemma above can be rephrased as stating that the minimum spanning tree is a subgraph of the relative
neighborhood graph. Clearly, the lunecontains the diameter circle of uv. It also contains the region
formed by intersecting a circle centered at u with radius uv, withany 60® wedgehaving apexat u and
containing v. (Bothshapesare depicted in Figure 1.) As a consequence wehavethe following results.

Lemma 2 (Shamos and Hoey [106]). The minimum spanningtree of a point set is a subgraph of the
points'Delaunaytriangulation.

Proof: An edge is in the Delaunay iriangulation if some circle contains the two endpoints and no
other site. This holds for the minimum spanning tree edges and their diameter circles. •

Lemma 3 (Yao [115]). Partition the set of planar unit vectors into subsets, no one subset containing
two vectors at angles 60® or greater to each other. For each site u, and each subset 5 of the unit vectors,
find the nearestother site v such that uv has slope in S. Then the collection of all such pairs (u, i*)
forms a graph containing the minimum spanning tree of the sites.

Proof: The set of points forming slopes in S from u forms a subset of a 60® wedge, and as we have
seen the portion of that wedge closer to u than is u is a subset of the lune of u and v. •

All three of these lemmas can be used to find the minimum spanning tree quickly:

Theorem 1, We can find the minimum spanning tree of a planar point set in time 0(n logn).

Proof: By anyof various methods, one constructs the relative neighborhood graph, Delaunay trian-
gulaiion.or Yao graph described in Lemma 3 in time 0(n logn). Anyof the classical graphminimum
spanning tree algorithmscan then findthe minimumspanning tree of these graphs in time 0{n log«) or
better. (Thefirst twographs areplanar, so Boruvka'salgorithm or a method of Cheriton andTarjan [29]
can be used to find their minimum spanning trees in linear time.) By the lemmas above, the minimum
spanning trees of these graphs are exactly the geometric minimum spanning treesof thepoints. •

2.1.2 Higher dimensional MSTs

The methods described above, for constructing graphs containing the minimum spanning tree, all
generalize to higher dimensions. However Lemma 2 is not so informative, because the Delaunay
iriangulationmay form a complete graph. Lemma 3 is more useful; Yao [115] used it to find minimum
spanning trees in time 0(«^~*'') where for any dimension d, €d is a (very small) constant.

Agarwal et al. [2] found a more efficient method for high dimensional minimum spanning trees,
via bichromaiic nearestneighbors. If we are given two setsof points,oneset coloredredand theother
colored blue, the bichromatic nearest neighbor pairis simply theshortest red-blue edge inthecomplete
geometric graph. It is nothard to show that thisedgemust belong to the minimum spanning tree, so
finding bichromatic nearest neighbors is noharder than computing minimum spanning trees. Agarwal
et al. showthat it is also noeasier; the twoproblemsare equivalent to within a polylogarithmic factor.



Theintersection of anyd halfspaces forms asimplicial cone, withanapexwhere thethree bounding
hyperplanes meet. Wedefineadouble conetobe theunionof twosimplicial cones,where thehalfspaces
defining the second cone are opposite those defining the first cone on the same bounding hyperplanes.
Such a double cone naturally defines a pair of point sets, one in each cone. Define the opening angle
of a cone to be the maximum angle uvw where v is the apex and u and w are in the cone. The opening
angle of a double cone is just that of either of the two cones forming it.

Lemma 4 (Agarwalet al.). There is a constant a such that, if pq is a minimum spanning tree edge,
and PQ are the points in the two sides of a double cone with opening angle at most a, with p e P
and q e Q, then pq is the bichromatic nearest neighbor pair of P and Q.

The proof involves using Lemma 3 to show that p and q must be mutual bichromatic nearest
neighbors. It then uses geometricproperties ofcones to show that, if there were a closer pair p'q\ then
pp' andqq' would also have to be smaller than pq, contradicting theproperty of minimum spanning
trees that any two points are connected by a path with the shortestpossiblemaximum edge length.

One can then use this result to find a graph containing the minimum spanning tree, by solving a
collection of bichromatic closestpair problemsdefined by a sequence of double cones, such that any
edge of the complete geometric graph is guaranteed to be contained by some double cone.

Lemma 5 (Agarwal et al.). Given a set of n points in we can form a hierarchical collection of
0(n n) bi-chromatic closest pair problems, so that each point is involvedin problems
of size OinjX) (1 < i < logn) and so that each MST edge is the solution to one of the closest pair
problems.

Proof: For simplicity of exposition we demonstrate the result in the case that d = 2; the higher
dimensional versions follow analogously.

If pq is a minimumspanning tree edge, and u; is a double wedge having sufficientlysmall interior
angle, with p in one half of w and q in the other, then pq must have the minimum distance over all
such pairs defined by the points in w. Therefore if F is a family of double wedges with sufficiently
small interior angles, such that for each pair of points {p, q) some double wedge w{p, q) in F has
p on one side and q on the other, then every MST edge pq is the bichromatic closest pair for wedge
u}{p,q).

Suppose the interior angle required is 2n/k. We can divide the space around each point p into k
wedges, each having that interior angle. Suppose edge pq falls inside wedge i/;. We find acollection of
double wedges, with sides parallel to w, that is guaranteed to contain pq. By repeating the construction
k times, we are guaranteed to find a double wedge containing each possible edge.

For simplicity, assume that the sides of wedge w are horizontal and vertical. In the actual con
struction, IV will have a smaller angle than tt/I, but the details are similar. First choose a horizontal
line with at most n/2 points above it, and at most n/2 points below. We continue recursively with
eachof thesetwosubsets; therefore if the line does notcross pq, then pq is containedin a closestpair
problem generated in one of the two recursive subproblems. At this point we have two sets, above
and below the line. We next choose a vertical line, again dividing the point set in half. We continue
recursively with the pairs of sets to the left of the line, and to the right of the line. If the line does



Figure 2. A fair split tree.

not cross pq, then pq will be covered by a recursive subproblem. If both lines crossed pq, so that it
was not covered by any recursive subproblem, then w(p, q) can be taken to be one of two bichromatic
closest pair problems formed by opposite pairs of the quadrants formed by the two lines.

The inner recursion (along the vertical lines) gives rise to one subproblem containing p at each
level of the recursion, and each level halves the total number of points, so p ends up involved in one
problem of each possible size n/2'. The outer recursion generates an inner recursion at each possible
size, giving i problems total of each size n/T. The construction must be repeated for each of the k
wedge angles, multiplying the bounds by 0(1). •

Theorem 2 (Agarwal et al). We can compute the Euclidean minimum spanning tree of a d-dimtn-
sional point set in randomized expected time 0((n logn)^^^) for = 3, or deterministically in time
(j(„2-2/(W2i+i)+<) jjj (jimension, forany fixed constant €.

Proof: We use Lemma 5 to find a collection of bichromatic closest pair problems, which can be
solved in the given time bounds. The resulting closest pairs form a graph with 0(n log^^*^) edges,
from which the minimum spanning tree can easily be found in time 0{n log^ '̂̂ ). •

2.1.3 Approximate MSTs

The method above for high dimensional minimum spanning trees takes close to quadratic time when
the dimension is large. We describe now a method for approximating the minimum spanning tree,
within any desired accuracy, much more quickly. This method is due to Callahan [25, 26], and is
based on his technique of well-separated pair decomposition. We will use this same method later in
the construction of spanners. Callahan also uses this technique to compute exact minimum spanning
trees from bichromatic pairs, somewhat more efficiently than the reduction of Agarwal et al. described

above, by using bichromatic nearest neighbor computations to merge clusters of points; we omit the
details. Similar minimum spanning ireee approximation algorithms with worse tradeoffs between time
and approximation quality were previously found by Vaidya [111] and Sa]owe [100].

Callahan's method is to recursively partition the given set of sites by axis-parallel hyperplanes.
This produces a binary tree T, in which each node corresponds to a subset of points contained in some



if-dimensional box. For any node v of T, corresponding to some set S{v) of points, define R{v) to
be the smallest axis-aligned box containing the same point set, and let f (u) denote the length of the
longest edge of /?(v). Then Callahan calls T afair split tree if it satisfies the following properties:

• For each leaf node Vof r, |5(v)| = 1.

• For each internal node v, one can choose tl^ axis-parallel hyperplane separating its children's
points to be at distance at least £(v)/3 from the sides of R(v) parallel to it.

Figure 2 depicts a fair split tree. Such a tree can be constructed in time 0{n log n) (for any fixed
dimension) via any of several algorithms, for instance using methods for quadtree construction [20].

Callahan now defines a well-separated pair decomposition (for a given parameter j) to be a
collection of pairs of nodes of a fair split tree, having the properties that

• For any pair of sites (p, q) in the input, there is exactly one pair of nodes (P, Q) in the decom
position for which p is in S{P) and q is in S(0).

• For each pair (P, Q) in the decomposition, there is a length r such that S(P) and S{Q) can be
enclosed by two radius-r balls, separated by a distance of at least sr.

The connection between this definition, minimum spanning tree edges, and bichromatic pairs, is
explained by the following result.

Lemma 6 (Callahan). Let pq be a minimum spanning tree edge, and (P, Q) be a pair of nodes in a
well-separated decomposition of the input (with 5 = 2) for which p is in S{P) and q is in S(Q). Then
pq must be the bichromatic closest pair connecting S(P) and S(Q).

Proof: This follows from the well-known fact that the minimum spanning tree solves the bottleneck
shortest path problem, of connecting two points p and ^ by a path with the shortest possible maximum
edge length. If there were a shorter edge p'q' connecting 5(P) and 5(Q), one could find a path
p-p'-q'-q using shorter edges than pq, contradicting this property of minimum spanning trees. •

As a consequence one can find minimum spanning trees by solving a collection of bichromatic
closest pair problems for the pairs of a well-separated pair decomposition, then compute a minimum
spanning tree on the resulting graph. However for this approach to be useful, one must bound the
complexity of the well separated pair decomposition.

Callahan constructs his well separated pair decomposition as follows. The method is recursive, and

constructs a collection of pairs of sets covering all edges connecting two point sets, each represented
by a node of T. Initially, we call this recursive algorithm once for the two children of each node of T.
The recursive algorithm, if presented with well-separated nodes P and Q of T, simply returns one pair
{P, Q). Otherwise, it swaps the two nodes if necessary so that P is the one with the larger bounding
box, and calls itself recursively on node pairs {P], Q) and {P2, Q) where Pi are the two children of P.

Intuitively, each node of T is then involved only in a small number ofpairs, corresponding to nodes
with similar sized bounding boxes within a similar distance from the node.

Lemma 7 (Callahan). The procedure described above results in a well-separated pair decomposition
consisting of Oin) pairs, and can be performed in time 0{n) given a fair split tree of the input



This information is not enough to reduce the problem of finding exact minimum spanning trees
to that of bichromatic closest pairs; it may be, for instance, that the decomposition involves Q(«)
pairs {P, Q) for which \S{P)\ = 1 and |5(0)| = ^2(n); the total size of all subproblems would then
be quadratic. (Callahan does use this decomposition in a more complicated way to reduce minimum
spanning trees to bichromatic closest pairs). However if we only want an approximate minimum
spanning tree, the problem becomes much easier.

Theorem 3 (Callahan). For any fixed e, one can compute in 0(n log n) time a tree having total length
within a factor of (1 +1) of the Euclidean minimum spanning tree.

Proof: Compute a well-separated pair decomposition for s = max(2,4/c) and form a graph G by
choosing an edge pq for each pair {P, Q) in the decomposition. Note that pq can have length at most
r(4 4-5) and any other edge connecting the same pair must have length at least rs, so pq approximates
the bichromatic closest pair within (1 -f €). Replacing each edge of the true minimum spanning tree by
the corresponding edge in G produces a subgraph 5 of G with weight within (1 + e) of the minimum
spanning tree.

We now prove by induction on the length of the longest edge in the corresponding minimum
spanning tree path that any two sites are connected by a path in S. Specifically, let e = pq be the
longest edge in the minimum spanning tree path connecting the sites; then the corresponding edge in
C connects two points p'q' in the same pair (F, Q) of the decompositon, There is a path of edges all
shorter than e from one of the two sites to p' (via the minimum spanning tree to p, then within the
cluster to p', using the fact that .s > 2 to prove that this last step is shorter than e). By the induction
hypothesis, one can find such a path using only edges in S. Similarly there is a path of edges in S all
shorter than e from q' to the other site. Therefore S is connected, and must be a spanning tree.

The minimum spanning tree of G must then be shorter than 5, so it approximates the true minimum
spanning tree of the sites within a (1 -f e) factor. •

By choosing more carefully the representative edges from each pair in the decomposition, Callahan
achieves a time bound of G(n(logn 4- loge"')) for this approximation algorithm.

2.1.4 Incremental and Offline MSTs

In some applications one wishes to compute the minimum spanning trees of a sequence of point sets,
each differing from the previous one by a small change, such as the insertion or deletion of a point. This
can be done using similar ideas to the static algorithms described above, of constructing a sparse graph
that contains the geometric minimum spanning tree. Such a graph graph will also change dynamically,
and we use a dynamic graph algorithm to keep track of its minimum spanning tree. As with the static
problem, the specific graph we use may be a Yao graph, Delaunay triangulation, or bichromatic closest
pair graph, depending on the details of the problem.

We start with the simplest dynamic minimum spanning tree problem, in which only insertions are
allowed to a planar point set. In this case, the graph of choice is the Yao graph described earlier, in
which we compute for each point the nearest neighbor in each of six 60° wedges.



Lemma 8. Given a set 5 of n points, and a given 60° wedge of angles, in 0(n log«) time we can
construct a data structure which can determine in 0(log n) time the nearest point in S to a query point
X, and forming an angle from x within the given wedge.

Proof: We construct an Voronoi diagram for the convex distance function consisting of the Euclidean
distance for points within the wedge, and infinite distance otherwise. This diagram can be found in
time 0{n logn) using any of several algorithms [34,47, 88]. We then perform planar point location
in this diagram; again, various algorithms are possible [49, 77, 84, 103]. •

We can then apply the static-to-dynamic transformation for decomposable search problems [15]
to this data structure, producing an inaemental data structure in which we can insert points to S and
answer the same sorts of queries, both in time 0(Iog^ n).

Theorem 4. Wecan maintain the Euclidean minimum spanning tree of a set of points in the plane,
subject topoint insertions only, in time 0(log^ n) perupdate.

Proof: We maintain a sparse graph G containing the minimum spanning tree. We then use the above
data structure to determine for each new point six candidate edges by which it might be connected
to the minimum spanning tree, and add these edges to G. Insertions to a dynamic graph minimum
spanning tree problem can be handled in logarithmic time each, using a data structure of Sleator and
Tarjan[108]. o

A more complicated technique based on the same Yao graph idea can be used to handle an offline
sequence of both insertions and deletions, in the same time bound [52].

2.1.5 Fully dynamic MSTs

The fullydynamiccase, in which we musthandleboth insertionsanddeletions online (without knowing
the sequence of events in advance) is much harder. A method of Eppstein [53] can be used to maintain
the solution to a bichromatic closest pair problem; combining this with the reduction of Lemma 5 and
a fully dynamic graph minimum spanning tree algorithm [59] gives a method with amortized running
time n + ^i-2/(r<'/2i+i)+€^ pgj. update, where d denotes the dimension of the problem.
However this time bound is too large, and the algorithm too complicated, to be of practical interest.
Weinstead describe in more detail a technique that works well in a certain average case setting dehned
by Mulmuley [92] and Schwarzkopf [104].

We define a signature of size « to be a set 5 of n input points, together with a string s of length
at most 2n consisting of the two characters "+*' and Each 'V represents an insertion, and each

" represents a deletion. In each prefix of s, there must be at least as many "+" characters as there
are characters, corresponding to the fact that one can only delete as many points as one has
already inserted. Each signature determines a space of as many as (n !)^ update sequences, as follows.
One goes through the string s from left to right, one characterat a time, determining one update per
character. For each "+" character, one chooses a point x from 5 uniformly at random among those
points that have not yet been inserted, and inserts it as an update in the dynamic problem. For each

character, one chooses a point uniformly at random among those points still part of the problem,
and updates the problem by deleting that point. For any signature, we define the expected time for a



given algorithm on that signature to be the average time taken by that algorithm among all possible
update sequences determined by the signature. The algorithm is not given the signature, only the actual
sequence of updates. We then define the expected time of the algorithm on inputs of size n to be the
maximum expected time on any signature of size n. In other words, we choose the signature to force
the worst case behavior of the algorithm, but once the signature is chosen the algorithm can expect the
update sequence to be chosen randomly from all sequences consistent with the signature. Note that
this generalizes the concept of a randomized incremental algorithm, since the expected case model for
such algorithms is generated by signatures containing only the 'V character.

To demonstrate the power of this expected case model, and derive a fact we will need in our
minimum spanning tree algorithm, we prove the following result. Compare this with the ©(«) worst
case bound on the amount of change per update in the Delaunay triangulation.

Lemma 9 (Mulmuley). For any signature of size n, the expected number of edges in the Delaunay
triangulation that change per update is 0(1).

Proof: We first consider the change per insertion. Suppose after an insertion at some step i of the
algorithm, there are exactly j points remaining. Since the Delaunay triangulation is a planar graph, it
will have at most 3; - 6 edges. Each edge will have just been added to the graph if and only if one
of its endpoints was the point just inserted, which will be true with probability 21j. So the expected
number of additional edges per insertion is at most (3; - 6 • Ifj) = 0(1). The number of existing
edges removed in the insertion is at most proportional to the number of edges added, and can possible
be even smaller if the convex hull becomes less complex as a result of the insertion. Thus the total
change per insertion is 0(1). The total change per deletion can be analysed by a similar argument that
examines the graph before the deletion, and computes the probability of each edge being removed in
the deletion. •

This fact can then be used to show that the Delaunay triangulation can be maintained efficiently.
Deletions can be performed in time proportional to the complexity of the change [4]. Insertions can
also be performed in this amount of time as long as the point to be inserted can be located within the
existing Delaunay triangulation. This point location can be performed using a data structure based on
the history of the structure of the Delaunay triangulation, similar to that used by Guibas et al. [661,
and which can be shown to have logarithmic expected search time in this expected case model. With
some care, this structure can be updated quickly after each deletion.

Theorem 5. The minimum spanning tree can be maintained fully dynamically for any signature of
size n in expected time 0(log n) per update.

Proof: As shown by Mulmuley, by Schwarzkopf, and by Devillers et al. [43], we can maintain the
Delaunay triangulation in this time bound. Since the Delaunay triangulation is a planar graph, we can
find its minimum spanning tree using a data structure of Eppstein et al. [60]. •

Open Problem 1. Can we maintain the Euclidean minimum spanning tree dynamically in polyloga-
rithmic worst case or amortized time per update?



2.2 Maximum weight spanning trees

For graphs, the maximum spanning tree problem can be transformed to a minimum spanning tree
problem and vice versa simply by negating edge weights. But for geometric input, the maximum
spanning tree is very different from the minimum spanning tree, and different algorithms are required
to construct it. This problem was first considered by Monma et al. [90], and has applications in certain
clustering problems [12].

We first examine the edges that can occur in the maximum spanning tree. One might guess, by
analogy to the fact that the minimum spanning tree is a subgraph of the Delaunay triangulation, that
the maximum spanning tree is a subgraph of the farthest point Delaunay triangulation. Unfortunately
this is far from being the case—the farthest point Delaunay triangulation can only connect convex
hull vertices, and it is planar whereas the maximum spanning tree has many crossings. However we
will make use of the farthest point Delaunay triangulation in constructing the farthest neighborforest,
formed by connecting each site to the site farthest away from it.

The first fact we need is a standard property of graph minimum or maximum spanning trees.

Lemma 10. The farthest neighbor forest is a subgraph of the maximum spanning tree.

Lemma 11 (Monma et al. [90]). Let each tree of the farthest neighbor forest be two-colored. Then
for each such tree, the points of any one color form a contiguous nonempty interval of the convex hull
vertices. The trees of the forest can be given a cyclic ordering such that the intervals adjacent to any
such interval come from adjacent trees in the ordering.

Lemma 12 (Monma et al. [90]). Let e = (x, y) be an edge in the maximum spanning tree but not in
the farthest neighbor forest, with x in some farthest point neighbor tree T. Then x and y are both
convex hull vertices, and y is in a tree adjacent to T in the cyclic ordering of Lemma 11.

Putting these pieces of information together, we have the following result.

Theorem 6 (Monma et al. [90]). The maximum spanning tree of a planar point set can be constructed
in 0(nlog/i) time by computing the farthest neighbor forest, determining the cyclic ordering of
Lemma 11, finding the longest edge between each adjacent pair of trees in the cyclic ordering, and
removing the shortest such edge.

The farthest neighbor forest and the longest edge between adjacent trees can be computed easily
via point location in the farthest point Voronoi diagram.

Eppstein [55] considered the same problem from the average case dynamic viewpoint discussed
above. His algorithm performs a similar sequence of steps dynamically: maintaining a dynamic
farthest neighbor forest, keeping track of the intervals induced on the convex hull and of the cyclic
ordering of the intervals, and recomputing longest edges as necessary between adjacent intervals using
a dynamic geometric graph based on the rotating caliper algorithm for static diameter computation.

Theorem 7 (Eppstein). The Euclidean maximum spanning tree can be maintained in expected time
0(log^n) perupdate.



Just as higher dimensional minimum spanning trees are closely related to bichromatic nearest neigh
bors, higher dimensional maximum spanning trees can be related to bichromatic farthest neighbors.
Agarwal et al. [3] used this idea to give a randomized algorithm for the three-dimensional maximum
spanning tree with expected time complexity n), almost matching the bound for the
corresponding minimum spanning tree problem. The same authors also provide fast approximation
algorithms to three- and higher-dimensional maximum spanning tree problems.

Since the maximum spanning tree involves many edge crossings, it is also natural to consider the
problem of finding the maximum planar spanning tree, that is, the maximum weight spanning tree not
involving any edge crossings. The exact complexity of this problem appears to be unknown, but Alon
et al. [6] point out that it can be approximated to within a factor of two simply by choosing a tree with
a star topology (in which one hub vertex is connected to all « —1 others). Choosing the best possible
hub canbedone in 0{n^) time; Alon et al. show thata constant factor approximation to the maximum
non-crossing spanning tree can be found in 0{n) time by choosing a suboptimal hub.

Open Problem 2. What is the complexity of finding the exact maximum weight non-crossing span
ning tree? If it is NP-hard, how well can it be approximated in polynomial time?

2.3 Low-degree spanning trees

For points in the plane (with the Euclidean metric), any minimum spanning tree has degree at most
six, and a perturbation argument shows that there always exists a minimum spanning tree with degree
at most five [91]. In general the degree of a minimum spanning tree in any dimension is bounded by
the kissing number (maximum number of disjoint unit spheres that can be simultanously tangent to a
given unit sphere) [98].

However it is interesting to consider the construction of trees with even smaller degree bounds. As
an extreme example, the traveling salesman path problem asks us to find a spanning tree with degree
at most two. As is well known, one can approximate this to within a factor of two by performing
an Euler tour of the graph formed by doubling the edges of a minimum spanning tree. Christofides'
heuristic [35] reduces the approximation ratio to 3/2 by forming a smaller Eulerian graph, the union
of a minimum spanning tree and a matching on its odd degree vertices. These techniques do not take
much advantage of the geometry of the problem, and work for any metric space.

Very recently, Arora (personal communication) has discovered a polynomial lime approximation

scheme for the planar Traveling Salesman Problem. The basic idea, like that of many recent geometric
approximation algorithms, is to use dynamic programming on a structure similar to Callahan's fair
split tree. Arora shows that, for any point set, there exists a tour approximating the TSP and a recursive
decomposition in which each box is crossed only a small number of times by this approximate tour.

One can then find the best possible subtour for each small subset of edges crossing each box, by
combining similar information from smaller boxes.

This approximation strategy generalizes to higher dimensional traveling salesman problems as
well, but the time bounds grow to quasipolynomial (exponential in a polylogarithmic function of «,
with the exponent in the polylogarithm depending on dimension).

One can also consider degree bounds between two and five. Khuller et al.. [75] consider this
problem for degree bounds of three and four; they show that one can find constrained spanning trees



Figure 3. (a) 6-poim minimum spanning tree, (b) Guillotine partition .

with length 3/2 and 5/4 times the MST length respectively. They also show that in any dimension one
can find a degree-three tree with total length at most 5/3 that of the minimum spanning tree.

The methods of Khuller et al. are based, like the 2-approximation to the TSP, on modifications to
the minimum spanning tree to reduce its degree. For instance, their algorithm for the planar degree-
three tree problem roots the minimum spanning tree, then finds for each vertex v the shortest path
starting al v and visiting all the (at most four) children of v. The union of these paths is the desired
degree-three tree.

The exact solutions to the planar degree-three spanning tree problem is NP-hard [95] but apparently
the complexity of the degree-four problem remains open.

Open Problem 3. Is it NP-hard to find the minimum weight degree-four spanning tree of a planar
point set?

It is also natural to consider maximization versionsofthese bounded-degree spanning tree problems.
Barvinok [14] shows that the adjacency matrix of a complete geometric graph (using a polyhedral
approximation to the Euclidean distance function) has "low combinatorial rank" and uses this to
approximate the maximum traveling salesman problem within any factor (1 - €) in polynomial time.
Little seems to be known about similar bounded-degree maximum spanning tree problems with larger
degree bounds.

Alon et al. [6] consider the maximum non-crossing traveling salesman problem, and its general
ization to the construction of a maximum bounded-degree non-crossing spanning tree. They show that
this can be approximated by linking the edges of a heavy non-crossing matching formed by projecting
the points onto a line, splitting the points into two sets by their median on this line, and matching
points of one set with those of the other. The approximation ratio of this method for the non-crossing
traveling salesman problem is l/;r - this ratio is not worked out explicitly for the other bounded-
degree spanning tree problems but remains a constant. The time used by Alon et al. to find this long
non-crossing path is 0{n \ogn). As with the other non-crossing problems considered by Alon et al.,
the complexity of finding exact solutions apparently remains open.

2.4 k'poini spanning trees



We next consider the k-minimum spanning tree problem: given n points in the Euclidean plane, find

the shortest tree spanning k of the points (Figure 3(a)).
Up to constant factors in the approximation ratio, the ik-MSTproblem is equivalent to the problem of

finding apath connecting k points (the k-TSP problem) or a Steiner tree connecting k points. The choice
of Euclidean metric is also not critical. However we will use the Jt-MST formulation for simplicity.
The k-MST problem was introduced independently by Zelikovsky and Lozevanu [116], and by Ravi
et al. [97]. Many similar /fe-point selection problems with other optimization criteria can be solved in
polynomial time [42,58] but the A:-MST problem is NP-complete [97,116] (as are obviously the k-TSP
and ife-Steiner tree variants), so one must resort to some form of approximation. In a sequence of many
papers, theapproximation ratiowas reduces to 0(1:'̂ '*) [97], 0(log Jfc)[64,87], 0(logife/loglogn) [54],
0(1) [21], 2\/5 [89], and, very recently, 1+€ (Arora, personal communication). We describe the2-v/5
approximation algorithm, but the other results use similar methods. For related work on non-geometric
fc-MST problems see [13, 22, 30,97, 116].

Mitchell [89] first restricts his attention to the rectilinear metric in the plane; the weight of a tree in
this metric differs by itsEuclidean weight bya factor ofatmost V^,sothis simplification entails only
that factor loss in the overall approximation ratio of his algorithm. With this restriction, one can look
for a rectilinear tree in which vertices are connected by paths of horizontal and vertical line segments.

Most of the approximation algorithms for the geometric ife-MST problem work by using dynamic
programming to construct a suitable recursive partition of the plane, and Mitchell's is no exception.
Mitchell defines a guillotine subdivision to be a recursive partition ot the plane into rectangles, in
which each rectangle is subdivided by a vertical or horizontal line segment into two smaller rectangles
(Figure 3(b)). For a given rectilinear tree, the span of a line segment in the subdivision is the shortest
contiguous subsegment containing all the points where the segment intersects the tree. (In other words,
this span is a one-dimensional convex hull of the intersection of the line segment with the rectilinear
tree.)

The key technical result of Mitchell, the proof of which is too complicated to repeat here, is the
following:

Lemma 13 (Mitchell). For any rectilinear graph G, we can find a guillotine subdivision S, such that
each edge of G is covered by the spans of segments in S, and such that the weight of these spans is at
most twice the weight of G.

Let G be the optimum rectilinear /:-point spanning tree; then the lemma shows that there exists a
guillotine subdivision, for which the spans of segments form a connected region of the plane covering
at least k points, and with weight at most twice that of G. Conversely, if we construct the minimum
weight guillotine subdivision with these properties, we can simply take a minimum spanning subgraph
of this region of the plane to produce a rectilinear ifc-point spanning tree with the same weight, which
will then be twice that of the optimum rectilinear tree. (Actually, in general this process will form

a Steiner tree rather than a spanning tree. One must instead be more careful, and find a guillotine
subdivision for which the minimum spanning subtree of the given k points has minimum total weight.)

Thus we have reduced the problem to one of finding an optimum guillotine subdivision. This can be
done bydynamic programming: there are Oin^)combinatorially distinct ways of forming a rectangle
containing one or more of the sites. For each of these different rectangles, for each possible number of



sites within the rectangle, and for each of the (polynomially many) distinct ways of connecting those
sites to the boundary of the rectangle, we finds the optimal guillotine partition within that rectangle
by combining information from 0{n) pairs of smaller rectangles. The result is a polynomial time
algorithm for finding the optimum guillotine partition.

Theorem 8 (Mitchell). In polynomial time, one can find a spanning tree of a subset of k out ofn given
planar sites, having total weight at most 2\/2 times the optimum.

Thecomplexity of this method, while polynomial, is veryhigh{0{n^^k^) or 0(wlogn + nk^^))
but can be reduced somewhat (to Oin^k^) or 0{n\ogn + nk^^)) at the expense of increasing the
approximation ratio to a larger constant [89]. Further work remains to be done on reducing the time
complexity of this algorithm to a more practical range. In this direction, Eppstein [54] showed that an
0(logA:) approximation could be found in time 0(n\ogn+nk\ogk) by combining a similar dynamic
programming approach with techniques based on quadtrees.

2.5 Minimum diameter spanning trees

The previous spanning tree problems have all been based on the weight of the tree constructed. We
now consider other criteria for the quality of a tree. The diameter of a tree is just the length of its
longest path. Since geometric spanning trees are often used in applications such as VLSI, in which
the time to propagate a signal through the tree is proportional to its diameter, it makes sense to look
for a spanning tree of minimum diameter. Ho et al. [68] give an algorithm for this problem, based on
the following fact:

Lemma 14 (Ho et al.). Any point set has some minimum diameter spanning tree in which there are at
most two interior points.

Proof; We start with any minimum diameter spanning tree T, and perform a sequence of diameter-
preserving transformations until it is in the above form. Let P be the longest path in the given tree,
and number its vertices ui, U2. •• ^p-

We first form a forest by removing all edges of P from T, and for each vertex v of P, let denote
the tree in this forest containing v. For any other vertex w, let P« denote the vertex v such that u is
in Tv. Then we construct a new tree T' by adding to P an edge from each vertex mto Ph. T' has the
same diameter as the original tree, since the distance between any two vertices is unchanged except
when they are in the same tree r„, and in that case (by the assumption that P is a diameter path) the
distance of each point to v is less than the distance from u to the endpoints of P.

Now suppose that P has four or more edges and the length of the path U1-V2-V3 is at most half the
length of P. (If not, we can reverse P and consider the three vertices at its other end.) Form a tree
T" by removing every edge uvi and reconnecting each such vertex u to V3. This can only decrease
the lengths of paths already going through V3 in T', so the only pairs of vertices with increased path
lengths are those newly connected to U3. But the length of any such path is at most twice the length of
the path U1-U2-U3, so the diameter of T" is no more than that of T.

Each repetition of this transformation decreases the number of edges in P until it is at most three,
and preserves the property that each vertex is within one edge of P, so we will eventually reach a tree
of the form specified in the lemma. •



Figure 4. (a) Minimum diameter spanning tree corresponds to cover by two circles, (b) Point set with high
diameter minimum spanning tree.

Theorem 9 (Hoet al.). We canfind a minimum diameter spanning treeof anypoint setin time 0{n^).

Proof: We simply try all single interior vertices and pairs of interior vertices. For the latter case, we
still need to determine how to assign each remaining point to one of the two interior vertices. If the
diameter path of the tree is vi-V2-v-}-V4, and we icnow the lengths of ui-1'2 and U3-U4, we can perform
this assignment by drawing two circles, centered at the two interior vertices, with those lengths as radii
(Figure 4(a)); these circles must together cover the whole point set and each point can be assigned to
the interior vertex correspondingto the circle covering it. Ho et al. show that, if we sort the points by
their distances from vz and U3, the space of all minimal pairs of covering circles can be searched in
linear time. These sorted orders can be precomputed in a total of O log n) time. •

Ho et al. also consider optimization of combinations of diameter and total weight; they show that
it is NP-complete to find a tree satisfying given bounds on these two measures. It is also of interest
to combine these criteria with a bound on vertex degree. Of course for degree-two trees, minimum
diameter and minimumweightare equivalentto the travelingsalesman problem. The minimumweight
spanning tree itself can have very high diameter (an f^(V«) factor away from optimal); for instance
a point set spaced nearly uniformly in a unit square can have a path of length Q (Vn) as its minimum
spanning tree (Figure 4(b)). Conversely an upper bound of 0(s/n) follows from results on the worst
case length of the minimum spanning tree of n points [18, 109].

One can achievea better diameter by relaxing the requirement of minimum weight; as wedescribe
later, for two- and three-dimensional point sets, one can find a subgraph of the complete Euclidean
graph with degree three and total weight 0(1) times that of the minimum spanning tree, for which
shortest paths in the subgraph have length within 0(1) of the Euclidean distance [37]. A single-source
shortest path tree in such a graph is a degree-three tree that has both weight and diameter within
a constant of the minimum. Similar problems of constructing spanning trees combining diameter,
weight, and bottleneck shortest path bounds were considered by Salowe et al. [102] and Khuller et
al. [76].

2.6 Minimum dilation spanning trees

Of the various common geometric network design quality criteria, only dilation is underrepresented
among research on the tree problems. (Dilation has been studied for non-geometric tree design



problems [24], and as we will see, is very prominent in work on other classes ofgraph.) This omission
is likely because there is little to do in terms of worst case bounds:

Lemma 15. Any spanning tree on the vertices of a regular polygon has dilation ^ (n).

Proof: As with any tree, we can find a vertex v, the removal of which partitions the tree into
components the largest of which has at most 2n/3 vertices. Therefore there is some pair of vertices
from different components, adjacent to each other along the boundary of the polygon, and separated
from Vby at least n/6 polygon edges. The path in this tree connecting this pair passes through v, and
so has dilation Q (n). •

Conversely, the minimum spanning tree has dilation 0(«) by its bottleneck shortest path property.
However, the minimum spanning tree is not always good in terms of dilation; an example similar to
that of Figure 4(b) shows that it can have dilation Q(n) even when dilation 0(v^ is possible, it is
easy to construct spanningtrees withdilation O(x^).

Open Problem 4. Is it possible to construct the exact minimum dilation geometric spanning tree, or
an approximation to it, in polynomial time? Does the minimum dilation spanning tree lave any edge
crossings? How well is it approximated by the minimum spanning tree?

3 Planar Graphs

3.1 Minimum weight triangulation

The minimum weight triangulation problem asks to find a triangulation (that is, a maximal planar
straight-line graph on the given set of vertices) that minimizes the total Euclidean edge length. This
problem is not known to be NP-hard, nor is it known to be solvable in polynomial time, and the
complexity of minimum weight triangulation is one of the few problems left from Garey and Johnson's
original list of open problems [63]. However, a generalized problem with non-Euclidean distances is
NP-complete [85].

We describe here two very recent developments in the theory of minimum weight triangulations.
First, Levcopoulos and Krznaric [81] have shown that one can find a triangulation with total length
approximating the minimum to within a (large) constant factor; no such approximation was previously
known. Second, Dickerson and Montague have found a method of finding in polynomial time a
subgraph of the exact minimum weight triangulation which, empirically, is usually quite large; enough

so that moderate sized instances of the problem can now be solved exactly. It is possible that their
method in fact gives a polynomial time algorithm for the problem.

3.1.1 MWT Approximation

The two best approximations known to the MWT are those of Plaisted and Hong [96] and of Levcopou
los and Krznaric [81]. Although dissimilar in many ways, an important basic idea is shared by both
papers. Rather than finding a triangulation directly, they consider the problem of finding a minimum
weight partition into convex polygons with vertices at the input points (MC for short).



Figure 5. (a) Ring heuristic triangulation ofa convex polygon, (b) Greedy triangulation can have Qi^/n) larger
weight than minimum.

We first sketch Plaisted and Hong's work. Let u be an interior vertex of a planar straight-line graph
with convex faces (such as the MWT of S). We can find a star of three or four edges forming no reflex
angles at v as follows: choose the first star edge arbitrarily, and choose each successive edge to form
the maximal non-reflex angle with the previous edge. Conversely, if each interior vertex of a planar
straight-line graph has no reflex angles, the graph must have convex faces. Thus motivated, Plaisted
and Hong try to build a graph on S with convex faces by piecing together local structures—stars. For
each point Si in the interior of the convex hull of 5, they find the minimum weight star of three or
four edges. This collection of minimum weight stars, together with the convex hull of S, forms a
graph with total edge length less than twice that of MC and therefore of the MWT. Unfortunately,
the resulting graph may not be planar. Plaisted and Hong use a complicated case analysis to remove
crossings from this graph, ending up with a planar straight-line graph with convex faces having total
edge length at most 12 times that of the MWT. The ring heuristic (connecting every other vertex of a
convex polygon P to form a polygon P' with \n/l\ vertices and a smaller perimeter, and triangulating
P' recursively; see Figure 5(a)) can be used to convert this convex partition to a triangulation, at the
cost of a logarithmic factor in total length (and hence in the approximation ratio). Olariu et al. [94]
showed that this O(logn) bound is tight.

We now outline the results of Levcopoulos and Krznaric [81]. Their idea is to start with a proof
that the greedy triangulation (in which one considers the possible edges in increasing order by weight,
adding an edge to the triangulation exactly when it does not cross any previously added edge) achieves
approximation ratio 0{^yn); an Cl(y/n) lower bound was previously known [80, 86] and is depicted
in Figure 5(b). Rather than proving this directly, Levcopoulos and Krznaric again work with convex
partitions. They define a greedy convex partition GC by constructing stars using only the edges in the
greedy triangulation. Unlike the construction of Plaisted and Hong, the result is planar (since it is a
subgraph of a planar graph) so no crossings need be removed. The first step of their proof is a lemma
that the weightof GC approximates MC within a factor of Oi-^ri).

Given any graph G such as MC or GC, define maxG(i^) to be the length of the longest edge
incident to u in G; for any planar graph the sum of these quantities is within a constant of the total
graph weight. Then if the greedy partition is heavier than the minimum partition by a factor of k,
Levcopoulos and Krznaric choose v to maximize maxGc(v) —max^/cC^) among all vertices with

maxGc(i^) = fl(itmaxAfc(v)). Some simple algebra shows that the weight of GC is 0(n maxGc{t^))-



They then use the properties of the greedy triangulation (and the details of their construction of
GC from their triangulation) to construct a fan of Q(/:) edges resembling that in Figure 5(b), in
which the short edge ofthe fan corresponds roughly with max^(7(i;) and the long edge corresponds
with maxGc{v). From this fan one can find a convex chain of f2(fc) vertices such that any star
at one of these vertices involves an edge of length Q(maxGc(iJ)). As a consequence the weight
of MC is f2(A:maxGc(v)). Combining these two bounds we see that the weight ratio k of GC
to MC is Oin/k). Therefore k - 0{^/n), and this gives an 0(V^ approximation of MC by
the.greedy convex partition. Levcopoulos and Krznaric then show that for any convex partition C
formed by edges ofthe greedy triangulation, Ccan be triangulated by adding diagonals oftotal length
0{\MWT\ + [C|). Since the overall greedy triangulation we started with, restricted to each cell
of C, forms a greedy triangulation of that cell, and since the greedy triangulation forms a constant
approximation to the MWT of a convex polygon [82], the result is that the length of the greedy
triangulaUon is 0{\MWT\ + \MC\^) = {\MWT\^).

To improve this O(V") approximation, Levcopoulos and Krznaric modify the greedy triangulation.
Their algorithm MGREEDYadds edges oneata time toaPSLG G, asfollows. Letuvbethesmallest
edge not crossing anything already inG (so that the greedy algorithm would next add uvto G). Then
MGREEDY tests the following six conditions:

• Some pair ofedges uw and wv are already in G, with uwv forming an empty triangle.

• Some edge wx crosses uv, with edge ux already in Gand vwx forming an empty triangle.

• Angle vwu is at least 135®.

• Iwat] < 1.1|mv|.

• Ifp is the intersection point oflines vx and uw, then \xp\ < 0.5\wp.

• There is an edge «y already in G, such that triangule vuy is empty and angle wuy is reflex.

If all six conditions hold, then the algorithm adds edge wx to G; otherwiseit adds uv.
Asimilar construction ofa convex partition and a fan in it now holds in this modified algorithm

as it did in the greedy triangulaUon. However now the fan can only have 0(1) edges before forming
a situaUon in which the six conditions above hold. The result is that the convex parUtion isaconstant
factor approximaUon to the minimum weight convex paitiUon, and the modified greedy triangulaUon is
a constant factor approximaUon to the minimum weight triangulaUon. As Levcopoulos and Krznaric
show, these approximations can be constructed in time G(«log«), or even 0(n) if the Delaunay
triangulaUon is already known.

Open Problem 5. What is the best possible approximaUon ratio for apolynomial time approximaUon
to the minimumweight UiangulaUon?

3.1.2 Exact MWT construction

Instead of approximating the minimum weight triangulation, a number of authors have attacked the
problem ofconstructing the exact minimum weight triangulation, by finding conditions sufficient to



guarantee that certain edges belong to the MWT. If enough MWT edges could be found in this way, so
that the resulting subgraph of the MWT connected all the vertices, the remaining regions of the plane
couldbe treatedassimplepolygonsandtriangulatedin polynomialtime bydynamicprogramming[78].
This approach gained in credibility when Edelsbrunner and Tan [50] used it to solve a closely related
problem, the min maxweight triangulation. In this problem, the quality of a triangulation is measured
by the length of its longest edge; the min max weight triangulationis the one minimizingthis quantity.

Lemma 16 (Edelsbrunner and Tan). There exists some min max weight triangulation that contains
the edges of the relative neighborhood graph of the sites.

Corollary 1. The min max weight triangulation can be found in polynomial time.

The dynamic programming idea described above would lead to an time bound, but Edels
brunnerandTanreduced this to 0 (n^).

Recall that the relative neighborhood graph is defined in terms of aforbidden region characteriza
tion: an edge is in the graph if and only if the lune (formed by intersecting the two circles with that
edge as radius) contains no other sites. Several authors have proven similar forbidden region charac
terizations for the minimum weight triangulation. Yang et al. [114] show that if the region formed as
the union of the same two radius circles is empty, the edge belongs to the MWT. (In particular, the
two closest sites are connected by an edge in the MWT [65].) Keil [73], Yang [113], and Cheng and
Xu [31] prove similar results for an alternate union of two circles, for which the given edge is a chord.

Aichholzer et al. [5] provided a different type of characterization ofminimum weight triangulation
edges, which leads to an algorithm capable of finding the MWT for certain very large subsets. They
define a light edge to be one that is not crossed by any other edge of smaller weight It is not the
case that all light edges need be part of the MWT, but they show that if the set of all light edges
forms a triangulation, that ffiangulation must be the one minimizing the total edge weight (or any other
monotonic functional of edge weights). Aichholzer et al. note that the characterizations of Keil, Yang
et al. [73, 113, 114] all produce edges that must be light.

The best computational results so far for exact minimum weight triangulation construction have
been found by Dickerson and Montague [44, 45]. They define a locally minimal triangulation to be
one in which for every two adjacent triangles forming a convex quadrilateral, the common side of the
triangles is the shortest diagonal of the quadrilateral. Clearly, the minimum weight triangulation is
locally minimal; their idea is to identify edges belonging to all locally minimal triangulations. The
technique is simply to maintain a set S of edges that might possibly be part of a locally minimal
triangulation. Initially S consists all pairs of vertices, then in a sequence of passes Dickerson and
Montague remove from S any edge that is not the short diagonal of a quadrilateral (not containing
other sites) all sides of which still belong to 5. Eventually no more edges can be removed, and the
process terminates. They then define another set S' of all those edges remaining in S and not crossed
by any other edge in S.

Lemma 17 (Dickerson and Montague). All edges in S' belong to all locally minimal triangulations.

Since only O(n^) edges can be removed from S, this heuristic runs in polynomial time. In com
putational experiments,Dickerson and Montague have shownthat for moderatesized inputs (between



Figure 6. (a) Diamond propCTty: one of two isosceles triangles on edge is empty, (b) Graph violating good

polygon property: ratio of diagonal to boundary path is high.

100 and 200 points), the set of edges in 5' is very likely to form a connected subgraph of the mini
mum weight triangulation. The minimum weight triangulation itself can then be found by dynamic
programming.

Open Problem 6. Is the graph found by Dickerson and Montague always cormected? Can one test
in polynomial time whether a given edge belongs to some locally minimal triangulation? Can one find
the exact minimum weight triangulation in polynomial time?

3.2 Low-dilation planar graphs

We next consider the problem ofconstructing planar networks with low dilation (maximal ratio between
graph and geometric distance). Clearly it will not always be possible to find networks with dilation
very close to 1; for instance, any planar graph connecting the vertices of a square hasdilation -/l.

The initial work on this problem has been to show that various previously studied graphs had
constant dilation. Chew [32] showed that the rectilinear Delaunay triangulation has dilation at most
v/lO. (Note that thedilation here is measured in the Euclidean metric even though the triangulation
itself isdefined withthe rectilinear metric. There is a factor of V2 lostin the translation; the rectilinear
Delaunay triangulation has rectilinear dilation >75.) Chew also pointed out that by placing points
around the unit circle, one could find examples for which the Euclidean Delaunay triangulation was
made to have dilation as much as tt/I. In the journal version of his paper [33], Chew added a further
result, that the graph obtained by Delaunay triangulation for a convex distance function based on an
equilateral triangle has dilation at most 2. Chew's conjecture that the Euclidean Delaunay dilation was
constant was proved by Dobkin et al. [46], who showed that the Delaunay triangulation has dilation at
most (pn where cp is the golden ratio (1 + ^5)72. Keil and Gutwin [74] further improved this bound
to • ^ %2.42.

3cos(n/6)

Das and Joseph [39] then showed that these constant dilation bounds were not unusual; in fact such
bounds hold for a wide variety of planar graph construction algorithms, satisfying the following two
simple conditions:

• Diamond property. There is some angle <x <n, such that for any edge ^ in a gra[^ constructed
by the algorithm, one of the two isosceles triangles with ^ as a base and with apex angle o



contains no other site. This property gets its name because the two triangles together form a
diamond shape, depicted in Figure 6(a). For instance, because of its empty-circle property, the
Delaunay triangulation satisfies the diamond property with a = nr/2.

• Good polygon property. There is some constant d such that for each face / of a graph
constructed by the algorithm, and any two sites u, v that are visible to each other across the
face, one of the two paths around / from mto v has dilation at most d. Figure 6(b) depicts a
graph violating the good polygon property, because two nearby sites have no short boundary
path connecting them. The good polygon property is satisfies by any triangulation (with J = 1).

Intuitively, if one tries to connect two vertices by a path in a graph that passes near the straight line
segment between the two, there are two natural types of obstacle one encounters. The line segment
one is following may cross an edge of the graph, or a face of the graph; in either case the path must
go around these obstacles. The two properties above imply that neither type of detour can force the
dilation of the pair of vertices to be high.

Theorem 10 (Das and Joseph). Any planar graph construction algorithm satisfying the diamond and
good polygon properties produces graphs with bounded dilation.

The proof is too complicated to summarize here, but is in some ways similar to the proof of
Dobkin el al. [46] that the Delaunay triangulation has bounded dilation. Das and Joseph go on to show
that not only Delaunay triangulations but also the greedy and minimum weight triangulations possess
these two properties, and hence have bounded dilation. (The bound, while constant, is quite high and
could presumably be strengthened.) It seems clear that similar results should also hold for some other
triangulation methods developed since their paper, such as the min max edge length triangulation and
the min max angle triangulation [51]. Constant dilation of greedy and related triangulations plays a key
role in Levcopoulos and Krznaric's recent constant-factor approximation algorithm for the minimum
weight triangulation [81], and Drysdale [23] has pointed out that the diamond property of minimum
weight triangulation can be very helpful in pruning the edges that could potentially take part in it, and
speed up exact solution methods for this triangulation.

Another set of natural candidates for bounded dilation are the ^-skeletons, formed by including
an edge ab when noother site c forms an angle acb larger than some particular bound (dependingon
the parameter /6). When the angle bound is 90"^ this is the Gabriel graph, a subgraph of the Delaunay
triangulation and the relative neighborhood graph, and a supergraph of the minimum spanning tree.
Skeletons larger angle bounds have been used to find sets of edges guaranteed to be part of the
minimum weight triangulation [31, 73, 113). As ^ approaches zero, these skeletons contain more and
more edges, until eventually one forms the complete geometric graph; this limiting behavior along
with the fact that the definition of y6-skeleions is closely related to Das and Joseph's diamond property
hint together that these graphs might have bounded dilation. But Eppstein [57] has recently shown
that a fractal construction leads to /6-skeletons in the form of paths with unbounded dilation, for any
^ > 0. (Figure 7.)

Curiously, there has been little or no published work on using dilation as the direct basis for
constructing planar graphs (rather than constructing graphs some other way and measuring the dilation
of the result). Obviously, the minimum dilation planar graph should be a triangulation, since it is



Rgure 7. Fractal ^-skeleton with unbounded dilation.

never harmful to add diagonals. It seems that it should have useful properties similar to those of the
Delaunay triangulation, min max angle thangulation, min max edge length triangulation, minimum
weight triangulation, and other optimal iriangulations, but this has apparently not been studied.

For many optimal triangulation problems, the version of the problem in which one optimally
completes the triangulationofa convexor simple polygoncan besolvedby dynamicprogramming[78],
howevereven this is not obvious for the minimumdilation triangulation. A solution to this subproblem
might have implications in allowing the powerful edge insertion method [16, 51] to be applied to the
point set version of the problem.

Open Problem 7. Is it possible to construct in polynomial lime the minimum dilation triangulation
of a point set, or of a simple polygon?

Clearly there still also remains a wide gap between the best upper and lower bounds (2 and V2
respectively) on dilation of planar graphs.

Open Problem 8. What is the worstcase dilation of the minimum dilation triangulation?

3.3 Planar Dilation and Weight

Levcopoulos and Lingas [83] and Das and Joseph [39] brought the total weight of the graph, as well
as its dilation, into the equation. Clearly the weight should be measured in terms of the minimum
spanningtree, for as Das and Joseph [39] observe, anygraphwith bounded dilation shouldat least be
connected.

Das and Joseph [39] form a planar graph by applying a greedy triangulation algorithm to the
polygons remaining between the minimum spanning tree and the convex hull of the sites. Theythen
consider the greedy edges in decreasing order of weight, removing each edge if it is unnecessary
to achieve the desired dilation. They then apply their diamond property and good polygon property



criteria to bound the dilation of the resulting prunedgraph. Because they only prune the greedy edges,
thetotal weight of thespanner theyconstruct is close tothree times thatof theminimum spanning tree.

Althofer et al. [7, 8] later generalized this pruning strategy to arbitrary graphs. Given any graph,
and anyparameter t > 0, their method again considers the edges of the graph in decreasing order by
weight, removing each edge if it is not necessary to achieve dilation 1 +1. Obviously the result is a
subgraph withdilation 1-l-r,but theyprovefurther that thetotal weight ofthis subgraphis 14- Oinjt)
times that of the graph's minimum spanning tree, and that the number of edges is For
planar graphs these bounds are much better: The weight is 1 + 0(1//) times that of the minimum
spanning tree, and the number of edge is n(l + 0(1//)).

Althofer et al. then apply this method to the Delaunay triangulation, which as we have seen is
a planar graph with constant dilation that also contains the Euclidean minimum spanning tree. The
result is a planar spanner with constant dilation, few edges, and weight arbitrarily close to that of the
minimum spanning tree.

Levcopoulos and Lingas [83] proved the same result by a similar but more complicated method
of pruning the Delaunay triangulation; their pruning method works only for planargraphs, but has the
further advantage thatit runs in linear time. Thesame pruning method canbeusedto trade weight and
dilation in the otherdirection, and find graphs with dilation arbitrarily close to that of the Delaunay
triangulation, and weighta large constant times that of the minimum spanningtree.

4 General Graphs

Most of the work on general geometric network design problems, in which the network to be constructed
is notof some restricted class, has been on dilation of sparse graphs, since it is trivial to find a graph
with low weight or diameter, or to find a non-sparse graph with low dilation.

4.1 Dilation only

As we saw, for planar graphs, the dilation can not approach one. By considering nonplanar graphs,
it is possible to find sparse graphs approximating the complete Euclidean graph arbitrarily closely.
Specifically, Keil [72] showed that variations of the Yao graph construction (in which one partitions
the space aroundeach point into wedges with a givenfixed openingangle, and connects the point to the
nearest neighbor in each wedge) produce graphs with dilation arbitrarily close to 1, with 0{n) edges,
and that can be constructed in time 0{n log/i).

Theorem H (Keil). The Yao graph, formed by wedges of opening angle 9 < 60°, produces graphs
with dilation I -I- 0(1/0).

Proof: To find a path in this graph from u to u, one at each stepdetermines the wedge containing v
andmoves along a graph edgeto thenearest vertex (ly) in thatwedge. Theworst caseforthealgorithm
occurs when uv and wu;are similar in lengthbutwidelyseparatedin angle, in whichcase the distance to
uisreducedby (l-O(l/0))nuj. For0 < 60°this reduction must bepositive, andrepeating theprocess
brings useventually to u. Thetotal distance traveled is proportional to 1/(1.-0(1/0)) = 1+ 0(1/0)
times the total reduction in distance to v, which is exactly the original distance from u to v. •



Althofer et al. [7, 8]observed thatthis resultholds in anydimension, andRuppert andSeidel [99]
modify the technique so that orthogonal range searching methods can be used in its construction,
improving itsrunning time in high dimensions to Oinlog''"' n).

Callahan [25] improved the dependence between the number of edges and the dilation, as well as
the construction time, in this result:

Theorem 12. If one forms a well-separated pair decomposition, and chooses a representative edge
from each p^, the resulting graph has 0(n) edges and canbe made tohave dilation arbitrarily close
to one (as a function of the separation parameterof the decomposition).

Proof: We find a short pathbetween two sites u and v by the following recursive process: by the
definition of a well-separated pairdecomposition, thedecomposition includessomepair (1/, V) of sets
of sites for which n is in 1/ and v is in V. Find the edge u'v' representing the pair (U, V), and form
a path by recursively connecting u to u', following edgeu'v', andconnecting v' to v. If theparameter
of separation in the decomposition is s, and the length of uv is r, the lengthof m'v' can be at most
r(^ -I- A)/s, and the length of uu' and vv' can be at most 2r/s. Therefore this recursive algorithm
produces a path with length satisfying the recurrence

L{r)<r{\-\-Als)-\-2Ulr/s).

If 5 > 4, this solves to 0(r), and for any € > 0 onecan choose a sufficiently large s for which the
solution to this recurrence is r(l -l- €). •

As in his approximation to the Euclidean minimum spanning tree, Callahan further shows that the
dependence on € can be reduced by choosing more carefully the representative edge for each pair in
the well separated pair decomposition.

Similar constructions ofsparse spanners with a larger dependence on the dilation were also given
by Salowe [ 100] and Vaidya [112].

4.2 Dilation and weight

Note that the small-dilation graphs described above may have very high weight. As we have already
seen, it is possible for planar sites to construct small-dilation graphs with weight arbitrarily close to
that of the minimum spanning tree, the greedy algorithm

The greedy algorithm of Althofer el ai. [7, 8] (described in the section on planar graphs) was
defined for any graph, and so produces spanners with nontrivial weight bounds in any dimension; but
in general the results proved by those authors are far from the constant factor over minimum spanning
tree weight thai one would hope for. Das ei al. [38] showed that applying this greedy algorithm tothe
complete Euclidean graph inthree dimensions again produces a spanner with any given dilation t > \,
and total weight 0(1) times that of the minimum spanning tree (where the constant depends on /).
Chandra [27] showed that for random point sets in higher dimensions, the weight is again 0(1) times
that of the minimum spanning tree. Das and Narasimhan [40] apply this greedy approach to a sparse
spanner produced byclustering techniques; thedilation of theresultis theproduct of thedilations from
these two steps, which is still typically some constant. This idea speeds up the greedy method to run
intime 0(n log^ n), and produces results similar to those of Althofer et al.



Figure 8. Isolation property; a cylinder around each edge is not crossed by any other edge.

Chandra et al. [28] showed that, for any graph, onecanconstruct a spanner with dilation 0(log^n)
and weight 0(1) times that of the minimum spanning tree. For geometric graphs in any dimension,
they construct spanners with constant dilation and weight O Gogn) times that of the minimum spanning
tree. They actually give two methods for this second result. One method is simply to apply the greedy
algorithm; they show an OQogn) weight factor based on the gap property, the endpoints of any two
edges are separated by a distance at least proportional to the smaller of the two edge lengths. The other
method combines known sparse (but heavy) spanners with approximations to the traveling salesman
path; the algorithm then partitions the path recursively into smaller pieces and combines spanners
from representative points on each piece. Arya and Smid [10] modify and speed up the first, greedy,
method: instead of adding edges incrementally when necessary to preserve the dilation, and proving
that the result satisfies the gap property, they add edges unless the gap property would be violated, and
show that the resulting graph has bounded dilation. With this modified greedy method they show that
a graph with bounded dilation and weight 0(log«) times that of the minimum spanning tree can be
constructed in time 0(n log'̂ n).

Finally, Das, Narasimhan, and Salowe [41] extended the results of Das et al. [38], and showed

that in any dimension the greedy algorithm produces spanners with both constant dilation and weight
a constant times that of the minimum spanning tree. The dilation bound is immediate; the weight
bound is reminiscent of the methods of Das and Joseph [39] in that the authors describe a collection
of general conditions under which such a bound applies; further their isolation property is very similar
to the diamond property of Das and Joseph.

• Isolation property. There exists a constant c, such that any edge of length t produced by the
given algorithm can be placed within a cylinder of radius and height c • i (Figure 8), such that
the axis of the cylinder is a subset of the edge, and the cylinder does not intersect any other edge
of the graph.

Note that, unlike the diamond property, the cylinders are required to avoid the edges of the graph.



and not just the other sites. Also note that in this definition the cylinders around each edge may intersect
each other, but one can shrink them by a factor of two to avoid intersections. The exact shape of the
cylinders is also unimportant

Lemma 18 (Das et al.). Any geometric graph satisfying the isolation property has weight at most a
constant times that of the minimum spanning tree.

The proof is based on separating the edges of the graphs into groups of nearly parallel edges, and
charging the length in each group to edges in the Steiner minimal tree of the sites. Das et al. also
prove similar results for the leapfrog property, a generalization of the isolation property for which
they give a more complicated definition. They then show that graphs produced by a version of the
greedy algorithm have this property. This then proves that the greedy algorithm produces spanners
with weight 0(1) times that of the minimum spanning tree.

4.3 Dilation, weight, and degree

Perhaps the ultimate results in high-dimensional spanners combine dilation, weight, and vertex degree.
Clearly the degree bound must be at least three, since degree-two graphs may be forced to have very
large dilation. Further, for any fixed bound d on the degree, one must have dilation bounded away
from one by some function of d, even in the plane, as can be seen by considering the vertices of a
regular d -I- 2-gon.

Chandra et al. [28] showed that their version of the greedy method, when applied to polyhedral
approximations to the Euclidean graph, produces a spanner with degree bounded by some function of
the dilation, dimension, and the particular approximation. Their bound is not stated explicitly but is
roughly exponential in the dimension. As we have seen these spanners also have low weight.

Salowe [101] produces another bounded-degree spanner algorithm by modifying the Yao graph
construction described earlier (which may have unbounded degree). The idea is simply to add edges to

the spanner in order by weight, adding an edge (n, v) if there is no other edge (u, ly) or (u, ly) already
added and having an angle close to that of (u, v). Salowe also reports that a similar degree bound

applies to the spanner of Ruppert and Seidel [99] but this appears to be erroneous. However it should
be possible to keep track of the next edge to be added to the graph at each step of this construction (that
is, the shortest edge within a certain range of angles, connecting two points not already incident to
edges in that range) by combining Ruppert and Seidel's modified Yao graph orthogonal range searching
technique [99] with a method of Eppstein [53] for maintaining bichromatic closest pairs dynamically.
The result would be an 0{n log^ '̂̂ n) time algorithm toconstruct this bounded degree spanner.

As we have already seen, Arya and Smid [10] achieved a similar time bound for an alternate bounded
degree spanner. Yet another bounded-degree spanner construction is credited by Vaidya [112] to Feder
and Nisan.

Finally, Arya et al. [9] improved the lime bounds of all these methods. The results of Arya et
al. include an 0(n log«) time algorithm for constructing a spanner with bounded dilation, bounded
degree, and weight a constant factor times the minimum spanning tree. They also give an 0{n logn)
algorithm for constructing a spanner with bounded dilation on paths of 0(log«) edges, bounded
degree, and weight 0(log^«) times that of the minimum spanning tree. (The idea of finding short



paths with few edges was also previously considered by Arya, Mount, and Smid [11].) Therefore for
any fixed dilation, one can quickly find spanners with bounded degree. Further work on the problem
has turned this tradeoff around, and asked how small a degree is possible to achieve bounded dilation.

Salowe [101] was the first to find degree bounds that did not grow with the dimension of the
problem; he showed that in anydimension, there is a degree-four graph with constant dilation. Salowe
starts with any one of the bounded degree methods discussed above. Salowe's method for reducing
the degree to four is then to cluster points using the nearest neighbor forest, and use these clusters to
roughly halve the degree of any spanner construction method. Starting with the initial bounded degree
spanner method described above and iterating this degree reduction process produces his result. This
paper also contains a convenient classification of the spanner literature in terms of five parameters
(dilation, time, number of edges, weight, and degree) and the class of metric space for which the
spanners are defined. Salowe's paper does not however include a bound on the total weight of his
spanners.

Das and Heffernan [37] improved this degree-four bound, by showing that in any dimension, there
is a graph with maximum degree three, at most dn edges (for any d>\), constant dilation (depending on
d), and total weight OGog«) times the minimum spanning tree weight. They state that in dimensions
two and three the weight can be further reduced to 0(1) times the minimum spanning tree weight.
Their technique involves similar nearest-neighbor-forest based clustering methods to those of Salowe,
applied somewhat more carefully, and combined with the greedy spanners constructed by Chandra
et al. [28]. The weight bound comes from summing the weight of the greedy spanner with that of
the nearest neighbor forest (which as a subgraph of the minimum spanning tree has small weight).
Combining this with the recent result of Das et al. [41] on constant weight bounds for the greedy
spanner construction yields the following result.

Theorem 13 (Das, Heffernan, Narasimhan, and Salowe). For sites in any fixed dimension, and for any
constant > 1, there is a graph with constant dilation, degree three, at most dn edges, and weight a
constant factor times that of the minimum spanning tree.
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