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Abstract 

EEG-based emotion recognition is one of the hot research 

directions in the field of human-computer interaction. The 

traditional user-dependent models have had remarkable 

success. However, due to the individual differences, the 

generalization performance of traditional models is poor for 

user-independent emotion recognition. Therefore, this work 

proposes a two-step domain adversarial transfer learning 

based on typical subjects (TS-DATL) framework with pre-

training and domain adversarial training. Pre-training is to 

find out several typical representative subjects in the 

training dataset and mark the data most similar to the target 

domain as the source domain. Domain adversarial training 

is to narrow the mapping gap between the source domain 

and the target domain on the common feature space. 

Experiments were conducted on a public dataset DEAP. 

The results show that TS-DATL framework successfully 

reduces the difference of EEG signals across subjects, and 

effectively improves the prediction accuracy of two 

emotional dimensions. 

Keywords: emotion classification; EEG; domain 
adaptation; GAN; transfer learning;  

Introduction 

In the field of human-computer interaction, in order to 

achieve accurate and natural interaction, computers and 

robots must have the ability to process emotions. From 

facial images, gestures, and voice signals to other 

physiological signals, methods of emotion recognition 

vary accordingly. Electroencephalogram (EEG), which is 

directly generated by brain neurons, is spontaneous and 

not affected by  subjective consciousness, and has special 

advantages in some application scenarios. Many scholars 

have done a lot of research on EEG emotion recognition. 

Recently, many researchers have achieved accuracy of 

over 85% in user-dependent models (Koelstra et al., 2012; 

Zheng & Lu,2015; Katsigiannis & Ramzan, 2017) on 

EEG-based emotion recognition. 

However, psychological studies have shown that there 

are significant differences in the way individuals feel and 

express emotions (Jayaram et al., 2016). Traditional user-

dependent models don’t consider the particularity of 

individuals, and can’t adapt to new individuals in 

practical application. For example, the recognition 

accuracy of the model proposed by Petrantonakis & 

Hadjileontiadis (2012) can reach 94.40% for the user-

dependent scenes but 62.58% for the user-independent 

one. Fortunately, recent years have seen new efforts to 

classify emotions across subject. 

Transfer learning is a promising method to solve this 

problem. One solution is to apply instance-based transfer 

learning. In order to make the probability distribution of 

the training data similar to that of the testing data, a few 

samples are purposefully selected from the labeled source 

domain data. Then, the emotion classification is 

performed using the traditional model. For example, X. 

Zhang et al. (2019) used the maximum mean discrepancy 

(MMD) (Gretton et al.,2012) to measure the similarity 

between individuals, and then constructed a target 

personalized emotion model with the labeled EEG data of 

similar individuals using the TrAdaBoost (Wenyuan Dai 

et al., 2007). The method achieves average accuracies of 

66.1% and 66.7% for valence and arousal respectively in 

subject-independent experiment on DEAP (Koelstra et al., 

2012) dataset.  

Another transfer learning approach that has been 

successfully applied in emotion recognition is the feature-

based one, whose idea is to map the features of two 

domains into a common feature space where the marginal 

probability distributions of the two domains are similar. 

To find this common feature space, various domain 

adaptive methods have been developed. Zheng & Lu 

(2016) compared the performance of transfer component 

analysis (TCA) (Pan et al.,2010), kernel principle 

component analysis (KPCA) (Schölkopf & Müller, 1998), 

and transductive parameter transfer (TPT) on SEED 

dataset, and found that TPT had the best classification 

effect. J. Li et al. (2019) applied style transfer mapping 

(STM) (Zhang & Liu, 2011) to EEG-based emotion 

recognition across subjects, which also achieved a good 

test result. Another way to find the public space is to take 

advantage of the transferability of deep neural networks. 

Li et al. (2018) proposed to replace the deep layer of 

neural network with the multikernel MMD(MK-MMD) to 

adapt the source domain and target domain to narrow the 
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differences between domains, achieving a higher accuracy 

than traditional transfer learning methods. J. Li et al. 

(2019) also offered another efficient solution. Considering 

joint distributed adaptation (JDA) (Long et al.,2013) and 

generative adversarial network (GAN) (Gulrajani et 

al.,2017), they used adversarial training to adapt the 

marginal distribution in the shallow layer of the network, 

and collaborative reinforcement to adapt conditional 

distribution in the deep layer of the network, and achieved 

success on SEED and DEAP datasets. 

In this study, combining the above two approaches, we 

proposed a two-step domain adversarial transfer learning 

based on typical subjects（TS-DATL）framework. This 

framework flexibly uses source domain information (i.e.  

EEG data of subjects in the training set) for emotion 

recognition in the target domain. Typical subjects were 

selected according to the applicability of each user-

dependent model on the other subjects’ data in the 

training set. Only the typical subject’s domain data that 

best matched the target domain were used to the domain 

adaptation on the target.  On DEAP dataset, the 

framework achieved 71.89% and 60.42% classification 

accuracy in valence and arousal scales respectively. The 

results suggest that this framework is a promising 

technique towards user-independent EEG emotion 

recognition. 

The remainder of this paper is organized as follows. 

The next section details the two parts of the TS-DATL 

framework. Then, we present the details and results of the 

experiments on DEAP dataset. Finally, discussion is 

given. 

Methods 

The proposed TS-DATL framework consists of two parts, 

namely pre-training and domain adversarial training as 

illustrated in Fig. 1.   
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Domain 
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Figure 1: The proposed TS-DATL framework. 

 

The pre-training is instance-based transfer learning. 

First, several typical representative subjects were 

identified in the training data. Then, the data most similar 

to the target domain were marked as the source domain. 

The domain adversarial training is a feature-based transfer 

learning based on Wasserstein GAN, which is an 

improved stable version of traditional GAN. Through 

adversarial training, the distance of the marginal 

probability distribution between domains is reduced. 

Pre-training 

Emotional EEG activities are specific, and it is difficult to 

cluster subjects directly by traditional clustering algorithm. 

Pre-training attempts to find several typical subjects to 

achieve clustering effect indirectly. Studies (Zhang, X. et 

al., 2018) have shown that EEG based biometric 

recognition is highly reliable. Hence, the accuracy of 

user-independent classification was taken as an indicator 

of the similarity between subjects, that is, a classifier 

trained by one subject’s EEG data was applied to another 

subject. Specifically, for the total number of M subjects in 

the training set, each subject can obtain 𝑀 − 1  user-

independent classification accuracy, and then the subject 

with the highest accuracy is marked as a typical subject. 

Compared with other user-dependent models, that model 

trained from the data of typical subjects has better 

generalization performance. In this way, the subjects in 

the training set are assigned to typical subjects, and the 

subjects belonging to the same typical subjects set 

naturally form a source cluster, as Figure 2. The number 

of clusters n is the number that is not identical among the 

31 typical subjects selected. All typical subjects were 

encoded from 0 to n, and the IDs were taken as the labels 

to train a 4-layer feedforward neural network on the 

training set as the target cluster selector. In this way, EEG 

variation between subjects is reduced by using data from 

the most similar typical subject and a “negative transfer” 

of the whole framework is ensured on the target.  
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T1
T2
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b2

n1
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Figure 2: Visualization of source clustering results. 

Circles denotes subjects of training set. Subjects of the 

same color are consistent with their most similar subjects. 

T1 to Ti represent all selected typical subjects. 

Domain Adversarial Training 

Conventional GANs have a wide range of applications 

and are proven to produce a lot of " realistic" data. 

Through the feature space transformation in the generator, 

the noise is made more similar to real data in the 

continuous adversarial training, which is what we are 

hoping for. Therefore, we treat source data as the real 

data of GANs and target data as the noise of GANs. The 

generator ensures the source data can be able to fool the 
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domain discriminator and have better adaptability to the 

emotion classifier. Considering the feature space of the 

source is fixed, we add a source generator to transform 

the source feature space for improving the flexibility, 

shown in Figure 3. In addition, in order to deal with the 

problems of conventional GANs in hyperparameter tuning 

and convergence, we replace the traditional Jensen-

Shannon divergence with Wasserstein distance to train the 

GANs (WGAN-GP). Adversarial-training consists of two 

parts:  

 

Source Domain Training A 7-layer feedforward neural 

network is used as the user-dependent emotion 

classification model, which was fed with the source data 

𝑿𝒔 , referring the source dataset labels 𝒀𝒔 , to minimum 

cross entropy loss optimization. Normally, when the 

network layer is relatively shallow, the extracted feature 

will not have a strong characteristic, which refers to the 

representation of the features to the original data. When 

the network layer is deep, the features extracted by the 

model will have strong representativeness. So, the first 4 

shallow layers of neural network, acting as the source 

generator 𝝍𝒔 , generate more generalization features. As 

emotion classifier 𝑪 , the last 3 deep layers focus on more 

detailed EEG emotion classification information. The loss 

function of emotion classifier is formulated in formula (1):  

 
𝑚𝑖𝑛θ𝑠,θ𝑐

𝐿𝐶(𝑋𝑠 , 𝑌𝑠) = 

−Ε(𝑥𝑠,𝑦𝑠)~(𝑋𝑠,𝑌𝑠) [∑ Ι(𝑦𝑠 = ℎ)𝑙𝑜𝑔𝐶(𝜓𝑠(𝑥𝑠))

𝐻

ℎ=1

] (1) 

 

where 𝐻  is the number of emotion states. θ𝑠  and  θ𝑐  are 

fixed after the source-training step, and  θ𝑐  is also fixed 

for the final target emotion prediction. 

 

Target Domain Training Fed with the target data 𝑿𝒕 , 

alternately train the domain discriminator 𝑫 and the target 

generator 𝝍𝒕. To be specific, first maximize the D-Loss of 

the domain discriminator with the target fixed generator, 

then minimize the G-Loss of the target generator with the 

fixed domain discriminator as following: 

 

𝑚𝑎𝑥θ𝑑
𝐿𝐷(𝑿𝒔, 𝑿𝒕) = Ε𝑥𝑠~𝑋𝑠

[𝐷 (𝜓
𝑠
(𝑥𝑠))]                      

− Ε𝑥𝑡~𝑋𝑡
[𝐷 (𝜓

𝑡
(𝑥𝑡))]          

− λΕ�̂�~�̂�[(‖∇�̂�𝐷(�̂�)‖2 − 1)2]                    (2) 

 

       𝑚𝑖𝑛θ𝑡
𝐿𝐺(𝑿𝒕) = −Ε𝑥𝑡~𝑋𝑡

[𝐷 (𝜓
𝑡
(𝑥𝑡))]                     (3) 

 

where 𝛌  is a hyperparameter of controlling gradient 

penalty, and �̂�   denotes the data sampled from the 

distributions of 𝑿𝒔 and 𝑿𝒕. 

Repeat the above steps until the domain discriminator 

cannot distinguish between the target generated data  

Xt′ and the source generated data Xs′. In this case, D-loss 

converges, and the marginal distributions of Xt′  is 

approximate to the marginal distribution of Xs′. Assuming 

that the conditional distributions of two domains are also 

similar, we input Xt
′   into the emotion classifier derived 

from source domain training to obtain higher recognition 

accuracy, as shown in formula (4) and (5): 

 

𝑃(𝑿𝒔′) ≈ 𝑃(𝑿𝒕′ )                                (4) 

 

𝑃(𝒀𝒔|𝑿𝒔′) ≈ 𝑃(𝒀𝒕|𝑿𝒕′ )                           (5) 

 

In addition,  θ𝒔  is fixed after pre-training and used to 

initialize θ𝑡  to ensure that the distribution of  𝑿𝒕′ is 

relatively close to 𝑿𝒔′ (Luo et al.,2018). Otherwise, it is 

difficult for generators and discriminators to achieve Nash 

equilibrium. θ𝑡  are optimized in the alternating procedure.  
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Target EEG

Source EEG
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Target Generator

Emotion Classifier

Domain 
Discriminator

Xt

Xs 

Xt 

 

Figure 3: Illustration of domain adversarial training, 

which consists of four parts: the source generator and the 

target generator map two raw domain data to new feature 

spaces, the domain discriminator distinguishes source and 

target generated data, and the emotion classifier predicts 

emotion states. 

Experiments  

Materials 

In order to evaluate the effectiveness of TS-DATL 

framework, we conducted experiments on DEAP, which 

is a well-known multimodal physiological database. The 

database collected 32 subjects' emotional data induced by 

music videos, including 32 channels of EEG signals and 8  
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Figure 4: International 10-20 system on DEAP dataset. 
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Table 1: DEAP Dataset. 
 

 Shape 

Data 32×40× 32 ×8064 

(Subjects × Videos × Channels ×
(𝑆𝑒𝑐𝑜𝑛𝑑 × Samples)) 

Labels 32×40× 2 

(Subjects × Videos × (𝑉𝑎𝑙𝑒𝑛𝑐𝑒, Arousal)) 

 

channels of other physiological signals. These electrodes’ 

arrangement is based on the internationally recognized 

10-20 system, as shown in Figure 4. Each subject watched 

40 one-minute music videos and filled in the Self-

assessment manikins (SAM), which rated Arousal, 

Valence, Dominance and Liking respectively. Each of 

these scale from 1 to 9. In our experiments, raw EEG data 

is sampled down to 128 Hz in order to filter out irrelevant 

signals. Arousal and Valence are divided into two 

categories: if the score is greater than or equal to 5, the 

label is set to high; otherwise, it is set to low. 

Methods 

Data segmentation A 1-second EEG segment is 

considered a basic unit of emotion. Thus, excluding the 

silent part, the records of each subject were divided into 

2400 (40 videos ×60 seconds) samples. Sample labels are 

the same as that of original trials. In order to verify the 

subject independence of this framework, all samples of 

one subject were divided into testing set, and samples of 

the other 31 subjects were divided into the training set. 

Cross-validation is performed to eliminate randomness. 

 

Feature extraction Based on the knowledge of 

neuroscience and the hypothesis of individual frontal 

asymmetry (Cao et al., 2022), we use the left-right frontal 

region difference as the feature. First, silent signals were 

used to calibrate the stimulus signals to exclude the 

influence of experimental environment and other external 

factors during EEG acquisition. The mean value of the 3-

second silent signals was used as the baseline signal of 

each trial, and the deviation between the stimulus signal 

and the baseline signal reflected the actual emotional state. 

The specific expression is as follows: 

 

𝑒𝑚𝑜𝑡𝑖𝑜𝑛_𝑣𝑗 = 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠_𝑣𝑗 −
1

3
  ∑ 𝑠𝑖𝑙𝑒𝑛𝑡_𝑣𝑘

3

𝑘=1
  (6) 

 

Where 𝑒𝑚𝑜𝑡𝑖𝑜𝑛_𝑣𝑗 , 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠_𝑣𝑗  and 𝑠𝑖𝑙𝑒𝑛𝑡_𝑣𝑘 are 128-

demension vectors.  𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠_𝑣𝑗  denotes raw EEG 

stimulus data vector of the j-th second on each music 

segment. 𝑠𝑖𝑙𝑒𝑛𝑡_𝑣𝑘 is raw EEG silent data vector of the j-

th second on each music segment. 𝑒𝑚𝑜𝑡𝑖𝑜𝑛_𝑣𝑗  refers to 

the actual emotional data vector of the j-th second on each 

music segment. 

For reducing the impact of poor electrode contact or 

postural movement, de-trending was carried out to 

eliminate signal trend items. Previous studies generally 

divided EEG into four bands, namely θ (4 ~ 8 Hz), α (8 ~ 

13 Hz), β (13 ~ 30hz), δ (30 ~ 45 Hz), and we used a 4 ~ 

13 Hz band-pass eight order Butterworth filter for 

filtering after experiment. Finally, the relevant channels 

that are more closely related to the frontal region are 

selected. For DEAP database, as seen from figure 4, left 

frontal channels (F3, F7) and right frontal channels (F4, 

F8) are selected. It is defined as 𝑓𝑖𝑛𝑎𝑙_𝑣𝑗 = 𝑙𝑒𝑓𝑡_𝑣𝑗 −

𝑟𝑖𝑔ℎ𝑡_𝑣𝑗, where 𝑓𝑖𝑛𝑎𝑙𝑣𝑗
 represents the final EEG feature, 

𝑙𝑒𝑓𝑡_𝑣𝑗  and 𝑟𝑖𝑔ℎ𝑡_𝑣𝑗  represents the left frontal data and 

the right frontal data of the j-th second on each music 

segment respectively. In order to remove the redundant 

items in these feature, PCA algorithm was used to reduce 

the dimension to 128. 

 

Implementation details Three contrast experiments were 

designed to verify the superiority of the proposed TS-

DATL framework from a perspective of subject 

independence. In the first experiment, we compared 

MMD method, standard Euclidean method, the SVM, 

personal identification method and the pre-training 

method. The first two methods were use MMD distance 

and standard Euclidean distance as the metric to select 

similar individuals. The personal identification was to 

encode the id of 31 subjects in the training set from 0 to 

31, and used the SVM model as the identity recognizer. 

The data of the most similar subjects selected by the 

above five methods were used to train the SVM model. In 

the second experiment, the 32nd subject was the target, 

and the other 31 subjects were the source respectively. 

The baseline accuracy of SVM model, the accuracy of 7-

layer fully-connected network and the accuracy after 

domain adversarial training were compared. The third 

experiment was to verify the superiority of the TS-DATL 

framework, which took the similar individuals selected 

from the pre-training as the source domain of the domain 

adversarial training. The source generator, target 

generator, domain discriminator and emotion classifier in 

domain adversarial training were set as four-layer neural 

network. The number of 4-layer source generator’s and 

target generator’s neurons were 128, 128, 256, 256 

respectively. The number of the emotion classifier’s 

neurons were 256, 128, 128, 2. The number of domain 

discriminator’s neurons were 256, 256, 128,1. All 

activation in the middle layers were ReLU. Each of the 

above methods were independently performed for 5 times, 

and retained the average as the final results. 

Results  

In the first experiment, we used accuracy and F1-score as 

a performance metric to verify the reliability of the pre-

training method in selecting similar individuals. Table 2 

shows that the pre-training method achieves 4.4% and 

1.05% improvements respectively in valence and arousal 

dimensions. Since using all data of 31 subjects directly to 

train a SVM model, the baseline has a good performance 
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with long consuming time. Standard Euclidean just fight 

to a draw with the baseline while shortening the training 

time. The personal identification method only plays a role 

in the valence dimension. 

 

Table 2: The first experiment. 

 

Method Valence(%) Arousal(%) 

 accuracy F1-score accuracy F1-score 

Baseline 

(SVM) 
66.5 61.47 56.8 47.02 

MMD 59.21 46.78 41.64 27.42 

Standard 

Euclidean 
66.74 64.12 56.68 44.48 

Personal 

Identification 
67.85 67.80 54.82 45.36 

Pre-training 70.91 71.58 57.85 45.04 

 

In the second experiment, we evaluated the 

performance of domain adversarial training and showed 

the average accuracy of the three models in Figure 5. In 

addition, a pair of subjects were randomly selected as 

source domain and target domain, and their data 

distributions were plotted in Figure 6. Clearly, in these 

two point of view，domain confrontation training has 

performed well, and the data transformed by both 

generators is of high quality. It can be seen that, for 

different distributions of data from source domains, the 

SVM models fluctuate greatly and the generalization 

performance is not strong. However, the 7-layer 

feedforward neural network is more stable and can 

discover more popular emotional characteristics. Domain 

adversarial training is not only stable, but also more 

suitable to the specific target domain with more great 

accuracy. The same conclusion can be drawn from two-

dimensional visualizations of the distributions. The data 

distributions of the original source domain and the target 

domain are different.  The data distribution of source 

domain is similar to the scattered star distribution, while 

that of target domain is more standard circular distribution. 

And some red emotional data points in the source domain 

are more exotic than other data. After the feature space 

transformation by the source generator and the target 

generator, the data distributions of both domains are 

similar to the fan distribution. We also have orange data 

points in the target domain to fit the red data in the source 

domain. Clearly, the gap between two domains is 

narrowed. 

In the third experiment, we integrated pre-training with 

domain adversarial training. In a best-case scenario, our 

framework reaches averaged accuracy of 71.89% and 

60.42% on arousal and valence respectively across 32 

subjects, respectively, higher than other methods. 

Compared with feeding the pre-training data into SVM 

models, the accuracy of domain adversarial training is 

continuously increased by 1% in valence and 2.6% in 

arousal dimension. The above phenomena suggest that 

there is no mutually exclusive effect between the two 

parts, instead there is a progressive relationship.  

Finally, we provided a comparison with existing state 

of the art, shown Table 4. Some studies construct a model 

for each subject, such as Cao et al. Using single subject’s 

previous EEG data, a good classification effect was 

obtained. Li et al. also used a domain adaptation approach 

to improve the accuracy and reliability of emotion 

recognition across users and sessions. 

 

Table 3: The third experiment. 

 

Method Valence (%) Arousal (%) 

 accuracy F1-score accuracy F1-score 

Baseline (SVM) 66.5 61.47 56.8 47.02 

KNN 61.22 55.83 54.03 54.28 

XGBoost 69.77 69.56 54.63 54.07 

Pre-training 70.91 71.58 57.85 45.04 

Ours (TS-DATL) 71.89 72.28 60.42 67.09 

 

Table 4: Compare with state-of-the-art works. 

 

Method Valence(%) Arousal(%) 

Cao et al. 74.6 67.7 

Li et al. 52.54 62.66 

Ours (TS-DATL) 71.89 60.42 

Discussion  

In order to solve the problem brought by individual 

differences in affective computing, this work introduces 

generative adversarial network and domain adaptation of 

the transfer learning. We proposed a two-step domain 

adversarial transfer learning based on typical subjects 

(TS-DATL) framework, and conducted comparative 

experiments on the two parts of the framework separately 

and completely. The results show that the framework can 

obtain much better performance in the EEG emotion 

classification of user-independent scenario. Although the 

accuracy of EEG emotion recognition has improved 

compared with user-dependent methods, it still needs to 

be improved. In addition to probability distribution 

adaptive task, the generated adversarial network can also 

decouple information. This framework simply regards the 

first 4 layers and the last 3 layers of the 7-layer 

feedforward neural network as the public part and the 

private part. The public part guarantees the success of the 

transfer learning, while the private part enhances the 

learning effect in a specific field. It is expected that more 

domain common and domain specific features can be 

learned through decoupling in the future, so as to further 

improve the accuracy of EEG emotion recognition.  
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Figure 5: Accuracy of 3 models in the second experiment.  
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Figure 6: Two-dimensional visualizations of the distributions of two subjects’ data before and after the source generator and 

the target generator. While data points with red and blue colors represent two emotions states of source domain in arousal, 

respectively, data points with orange and green colors represent two emotions states of target domain. 
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Figure 7: Accuracy of 3 models in the third experiment.  
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