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A first prototype of PyACTS

Ning Kang L. A. Drummond

September 30, 2003

Abstract
The ACTS Collection is a set of software tools that help devel-

opers or programmers write high performance parallel codes for their
scientific applications. PyACTS is a Python-based interface to some
of the tools in the ACTS Collection. The main purpose of develop-
ing PyACTS is to provide a uniform easy-to-use external interface to
existing ACTS tools, and support ACTS users to rapidly prototype
their codes with the tools. In particular, for users who are new to
ACTS, they will find PyACTS helpful to test and try the functionality
available in the collection. Further, this training will allow users to
acquire the necessary experience to develop their own applications. In
the current development phase of PyACTS, part of the ScaLAPACK
subroutines are being made available. This report illustrates how we
develop the idea of wrapping the ACTS Collection with a high level
scripting language, like Python, and a status of the development of the
Python front-end interface and future plans.

1 Why Python?

Python is a very high-level, object-oriented, open source programming lan-
guage, designed to optimize development speed [2]. It is often considered as
an object-oriented scripting language since it is commonly used as glue to
put software components together in an application, and its easy of use is
another big advantage over peer languages.

The reasons for choosing Python as the front-end interface for ACTS are
summarized as follows.

• The core Python language and libraries are platform-independent. It
implies that most Python codes, like those that use ACTS tools, run
without change on almost every computer system in use today. The
only requirement is to copy the script over different systems, where
Python and ACTS tools are installed.
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• Python is designed to make straightforward the integration with other
software components in a system. Programs written in Python can
be easily blended with other languages. For instance, Python scripts
can call out to existing C and C++ libraries, Java classes, and much
more. Actually, it is this feature of Python that is employed to develop
PyACTS. On the other hand, programs written in other languages can
just run Python scripts easily by calling C and Java API (Application
Programming Interface) functions.

• Some features of Python which are appealing to PyACTS:

– No compile or link steps;

– No type declarations;

– High-level data-types and operations;

– Extending and embedding in C as system glue;

– Dynamic loading of C modules, leading to simplified extensions
and smaller binary files;

– Dynamic reloading of Python modules, letting programs be mod-
ified without stopping, which makes possible the dynamic config-
uration of ACTS functionality;

– Either in batch mode or interactive mode for running scripts,
making possible incremental development and testing under in-
teractive mode;

– Standard portable system calls;

– Built-in and third-party libraries.

Since we expect to run ACTS tools under Python language interface, its
integration support makes it very useful and convenient for the implementa-
tion of PyACTS. More specifically, a well developed C API is included in the
Python framework for building extensions. It is relatively straightforward
to produce the interface registration tables and module functions required
to add the PyACTS extension module. In fact, because Python was built
with integration in mind, it has naturally given rise to a growing library of
extensions and tools, available as off-the-shelf components to Python users
[2].

Because it is interpreted, Python is not as fast or efficient as static,
compiled languages like C. Thus, Python alone usually is not the best tool
for delivery of performance-critical components. Instead, computationally
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intensive operations can be implemented as compiled extensions to Python,
and coded in a low-level language in C or in Fortran. Although Python
can not be used as the sole implementation language for such components,
it can work well as a front-end scripting interface to them. This is exactly
how PyACTS interface is implemented using Python. In PyACTS, only the
Python front-end combined with the extensions is visible to users and all the
programming occurs at the higher-level Python scripting level. This leads
to a programming tool that is both efficient and relatively trivial to use.

2 Building PyACTS

Before we start developing PyACTS extension module, there are two fun-
damental problems needed to be addressed. The first and foremost is that
parallelism is deeply embedded in the ACTS tools, while the current Python
is not dedicated to parallel environment. Secondly, manipulating large
amounts of data in Python is not efficient with its built-in standard data
structures such as lists or tuples. For the first problem, we have tried to
handle it with the master-slave model in a way such that Python is started
on the master node and then it broadcasts modules and data to the slave
nodes. It turns out to be a lot of endeavors to achieve this though. For-
tunately, there is a Python extension, pyMPI, available to take care of the
parallel operations for Python on distributed, parallel machines using MPI.
The pyMPI extension makes implementing PyACTS relatively easy since
it relieves us the burden of having to run Python on parallel architectures.
Another Python extension, NumPy, which has the advantage of handling
large data sets efficiently, helps to facilitate the second problem. Actually
PyACTS is built upon the shoulders of Python and ACTS tools with the
exploit of the two Python extensions, which greatly ease the efforts of its
development.

More details on the two extensions are given in the next sections.

2.1 pyMPI

As we mentioned, the major beneficiaries of ACTS tools are those who are
developing parallel scientific applications. However, the original design of
Python is not targeted for parallel programming although it has a thread
model. In order for PyACTS to be able to work in parallel environment,
pyMPI [3], a distributed implementation of Python extended with an MPI
interface, is adopted. It is a Python extension set designed to provide parallel
operations for Python on distributed, parallel machines using MPI. It allows
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fast prototyping of parallel code and makes it trivial to integrate Python
with explicit parallel extensions written in C, C++, or Fortran, by way of
parallel extension modules.

The way in which pyMPI works [4] is that it builds an alternate startup
executable for Python, using the installed base of Python code modules,
which enables pyMPI to use the same modules, string, system, regular ex-
pression, etc., as in Python. By default, pyMPI starts up in SPMD (Single
Program Multiple Data) mode by instantiating multiple Python interpreters,
each with access to world communicators and each with a unique rank cor-
responding to a process ID. That is to say, all processes are running the
same script. The execution is asynchronous unless synchronization opera-
tions are used. The program initializes MPI on startup, sets up interfaces
to MPI COMM WORLD and its clone PYTHON COMM WORLD, and
initializes the parallel console I/O facility.

One of the simple ways to use pyMPI is interactively, from the prompt.
Another way is to use pyMPI in batch mode, with Python script as the input
file on the command line. If starting up pyMPI in the interactive mode, we
just fire it up in the same way as executing a parallel job and we get what
looks like the standard Python prompt (>>>), as shown in Figure 1. As
mentioned earlier, the processes are running asynchronously such that the
values printed out may appear in any order.

% poe pyMPI -procs 4 -nodes 1
>>>a = 3 + 4
>>>a
7
7
7
7
>>>

Figure 1: Running pyMPI interactively on IBM-SP.

2.2 NumPy

NumPy stands for Numeric Python, which is another set of extensions to
the Python language [5]. It allows Python to efficiently manipulate large
sets of objects organized in grid-like fashion. These sets of objects are called
arrays, which can have any number of dimensions.

Poor memory management is one of the main drawbacks of Python, in
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particular for large data arrays like the ones found in high performance com-
puting applications. Python uses data structures like tuple, lists and classes
that aggregate latency time and degrade the performance of an application.
For this reason we rely on the NumPy services to alleviate this problem. We
expect PyACTS to be somewhat efficient when tackling large scale applica-
tions as well, even when PyACTS is not meant to be used inside the large
scale scientific applications. PyACTS should be used only to prototype a
scientific application code by experimenting with the functionality of a tool,
and later the user needs to call from C, C++, or Fortran the actual tool
interfaces to benefit from the full performance of the tool.

Therefore, during the PyACTS development, we reuse the NumPy array
type in its C extension modules. The PyACTS extension modules are used
to make numerical libraries of ACTS, which are written in C or Fortran,
accessible to Python programs. The NumPy array type has the advantage
of using the same data layout as arrays in C and Fortran. Furthermore,
NumPy arrays provide equally simple access to their contents from Python
and from C, making it a convenient tool for running PyACTS as well as
developing PyACTS.

3 Implementing ScaLAPACK Module in PyACTS

The first tool in ACTS Collection we are working on is ScaLAPACK [7].
The platform on which PyACTS is developed is the standard AIX operating
system running on NERSC IBM SP RS/6000 machine. Since Python 2.2
is available on the system, distutils is employed to build the extension
module scalapack for PyACTS. A distutils package contains a driver
script, setup.py. This is a plain Python file, which, in a simplified way
with the scalapack case, is presented in Figure 2.

With this setup.py, a file scalapackmodule.c, and two shared library
files libscalapack.a and libpympi.a, running

% pyMPI setup.py build

will compile scalapackmodule.c, and produce an extension module named
scalapack in the build directory. Depending on the system, in our case,
the module file ends up in a subdirectory build/lib.aix-5.1-mpi-2.2 and
has a name like scalapack.so.

In the code setup.py as shown in Figure 2, libpympi.a will be available
if pyMPI is installed. As NumPy array type is exploited in PyACTS, the
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from distutils.core import setup, Extension
from distutils.sysconfig import mode
mode(’parallel’)
del mode

module0 = Extension( ’scalapack’,
library dirs = [’../lib/pyacts’, ’../lib/pyMPI1.3’],
libraries = [’scalapack’, ’pympi’],
include dirs = [’../include/Numeric’],
sources = [’./scalapackmodule.c’] )

setup( ext modules = [module0] )

Figure 2: A simplified example for setup.py file.

directory containing header files for Numeric Python has to be included.
The shared library file libscalapack.a is created by using all the libraries
contained in ScaLAPACK and some miscellaneous help files written in C or
Fortran, such as files for getting over the tricky problem of passing char*
data type from C functions to Fortran subroutines. From our experience,
the way of building shared library is very much system-dependent. The
scalapackmodule.c contains the module method functions, the methods’
registration table and initialization function. This is a typical structure
to write a C extension module for Python. In addition, ScaLAPACK is
coded by Fortran as well as by C, which results in the integration of Fortran
routines into Python. However, calling Fortran subroutines from C involves
machine-specific peculiarities. A macro APPEND FORTRAN is thus defined to
get around it such that for a Fortran subroutine name SUB, the corresponding
C function is named to be sub , all lower case with an underscore appended
if the macro is defined, and sub, all lower case, if it is not defined.

With the exploit of NumPy, we add a new function refvar to create
reference variables (zero dimensional array) to get values back from called
functions, and one dimensional arrays to allocate memory needed by the
underlying Fortran subroutines or C functions. It has two arguments, data
type with either double or int, and the size of array with zero as default
value. However, the way that reference variables behave is somewhat dif-
ferent from the ordinary Python scalars because they are of different type,
although sometimes they have the same behaviors. The reference variables
might be passed as arguments into functions wherever the Python scalars
are accepted but not vice versa. Moreover, the comparisons and arithmetic
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operations between reference variables and Python scalars won’t work. In
order to get rid of the confusion, another function scalar is provided to
convert reference variables to Python scalars.

All the functions in PyACTS modules have corresponding functions in
ACTS, with the same name and argument list. In this way, PyACTS users
may easily change the prototyping Python scripts to codes written either in
C or in Fortran with few modifications for serious large scale computations.

4 Examples

Here we present two examples to show how to use PyACTS interface to
ScaLAPACK. Generally, the first step is to import scalapack module from
the PyACTS package, then call the module functions in scalapack to do
the computations.

The first example comes from the example program #2 in ScaLAPACK
users’ guide [7], which solves a dense linear system of equations using the
PDGESV subroutine. The coefficient matrix and the right-hand-side matrix
both are read from data files. Figure 3 gives some code pieces of the Python
script for this example.

The second example comes from another ScaLAPACK example,
sample pdsyev call.f, listed on the web page of ScaLAPACK Example
Programs [1]. It is a program to solve symmetric eigenvalue system using
subroutine PDSYEV, a dense eigenvalue solver. The matrix is being generated
inside the code instead of reading from external file. Figure 4 shows part of
the Python script for this example.

5 Future Work

The PyACTS infrastructure is built in a way such that it can be extendible,
i.e., more subpackages and extension modules could be easily added into it
in the future. The top-level structure of PyACTS looks like

- PyACTS
- PyACTSgeneral
- PyACTSScaLAPACK
- PyACTSOPT++
- PyACTSSuperLU
- ...

and each subpackage of PyACTS is composed of several modules, which
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might be loaded separately without importing the whole subpackage. For in-
stance, the PyACTSScaLAPACK subpackage contains modules of pblas, blacs,
tools, and scalapack. All of the functions shared through PyACTS are
included in the PyACTSgeneral subpackage, which will be loaded whenever
PyACTS is imported. Currently only part of the ScaLAPACK is made
available in PyACTS, while code development is still under way to enrich
PyACTS step by step, with more tools from ACTS to be integrated.
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import scalapack
from scalapack import *

# Reference variables
ictxt = refvar( "int" )
myrow = refvar( "int" )

# Initialize the process grid
sl init( ictxt, nprow, npcol )
Cblacs gridinfo( ictxt, nprow, npcol, myrow, mycol )

# Distribute the matrix on the process grid
np 1 = max( np, 1 )
desca = refvar( "int", DLEN )
descinit( desca, matsiz, matsiz, blksiz, blksiz, zero, zero,
ictxt, np 1, info )

# Allocate memory for arrays
locsiz a = desca[LLD-1] * nq
A = refvar( "double", locsiz a )

# Read matrices A and B from file and distribute them
pdlaread( fileA, A, desca, zero, zero, work )
pdlaread( fileB, B, descb, zero, zero, work )

# Call the SCALAPACK subroutine to solve A*X=B
pdgesv( matsiz, rhssiz, A, ia, ja, desca, ipiv, B, ib, jb,
descb, info )

# Save solution to file
pdlawrite( fileX, matsiz, rhssiz, B, ib, jb, descb, zero,
zero, work )

# Release the process grid and free the BLACS context
Cblacs gridexit( ictxt )

Figure 3: Code pieces of Python script for Example #1.
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import scalapack
from scalapack import *

# Reference variables
iam = refvar( "int" ); nprocs = refvar( "int" )
ictxt = refvar( "int" ); myrow = refvar( "int" )
mycol = refvar( "int" ); info = refvar( "int" )

# Initialize the BLACS
Cblacs pinfo( iam, nprocs );

# Initialize a single BLACS context
Cblacs get( -1, 0, ictxt )
Cblacs gridinit( ictxt, ’R’, nprow, npcol )
Cblacs gridinfo( ictxt, nprow, npcol, myrow, mycol )

# Initialize the array descriptors
desca = refvar( "int", 50 )
descinit( desca, n, n, nb, nb, zero, zero, ictxt, lda, info )

# Allocate memory for arrays
A = refvar( "double", lda*lda )
W = refvar( "double", maxn )
Z = refvar( "double", lda*lda )

# Build a matrix that you can create with
# a one line matlab command: hilb(n) + diag([1:-1/n:1/n])

# Ask PDSYEV to compute the entire eigendecomposition
pdsyev( ’V’, ’U’, n, A, ia, ja, desca, W, Z, iz, jz, descz,
work, lwork, info )

# Print out the eigenvectors
pdlaprnt(n, n, Z, iz, jz, descz, zero, zero, ’Z’, nout, work)

# Release the process grid and free the BLACS context
Cblacs gridexit( ictxt )

Figure 4: Code pieces of Python script for Example #2.
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