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ABSTRACT OF THE DISSERTATION

Mapping subsurface processes to surface expressions: geophysical
observations and analyses for policy and science development

by

Wesley Randall Neely

Doctor of Philosophy in Earth Sciences

University of California San Diego, 2021

Adrian A. Borsa, Chair

The higher variability of surface-water supplies due to a changing climate has

motivated an increased reliance on groundwater for urban, industrial, and agricultural

purposes. This is particularly evident in California’s San Joaquin Valley (SJV) where

overexploitation of the underlying aquifer system threatens the quality and availability

of future groundwater resources as well as lead to large magnitude land subsidence im-

pacting critical infrastructure. Direct observation of these reservoirs on policy relevant

scales, however, has remained elusive. The three principle chapters of this dissertation

xvii



explore the extent to which geodetic tools and data can be used to better character-

ize regional subsurface processes such as groundwater recharge, flow, and extraction.

Chapter 1 provides the motivation of this research and an introduction to the data used

in the subsequent chapters. Chapter 2 presents a new methodology for combining in-

terferometric synthetic aperture radar (InSAR) and Global Positioning System (GPS)

displacements. Chapter 3 explores the efficacy of seasonal surface displacement time

series for characterizing locations of groundwater recharge and flow in the SJV. Chapter

4 describes a method for analyzing networks of groundwater level records and how they

relate to an extension of Chapter 3 results.
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Chapter 1

Introduction

1.1 Motivation

The story of life on Earth could not be told without mention of water. So critical

is water for all organisms, more so than any other ingredient, it is the basis for life as we

know it. Whether in the form of ice, liquid, or vapor, our planet’s surface is mostly cov-

ered or underlain with this resource. While seemingly ubiquitous, less than a hundredth

of a percent is non-saline and readily accessible (Shiklomanov , 1993). Limited by this

access, the human species need for potable water directly influenced the development of

civilizations, culture, and interactions with the environment (Yevjevich, 1992).

Our uses for water range from drinking to agriculture to sanitation to energy

production. The presence of water (or the lack thereof) has influenced local to global

transportation networks, determined the location of population centers, and played sig-

nificant roles in major religions (Conners , 2013). With so many systems relying on

1



certain levels of water resources, extremes in availability can have harmful impacts.

Droughts can disrupt food and energy production (Below et al., 2007), limit the effi-

ciency of shipping channels (Carse, 2017), and lead to losses on export/import earnings

(Benson and Clay , 1998). On the other end of the spectrum, too much water may re-

sult in natural disasters such as flooding which similarly can have devastating social,

economic, and environmental impacts. While these phenomena have always presented

threats, changes in global climate can exacerbate their effects and may make their oc-

currence more frequent (Van Aalst , 2006).

In order to mitigate the effects of water variability, humankind has developed a

range of technologies to control and store water resources. So important is a stable supply

of water that it’s likely that the earliest engineering accomplishments were systems of

water conveyance and storage (Conners , 2013). From the ancient canals and dams in

Egypt and Mesopotamia to the Roman aqueducts to complex systems of cisterns in

northern India, humans have been adapting to their environments and ensuring they

have access to water since the Neolithic era (Galili and Nir , 1993). A key component of

this adaptation has been the utilization of groundwater resources.

Groundwater is the largest source of freshwater resources excluding glaciers and

ice caps (Shiklomanov , 1993). A subsurface region of sufficient permeability (ability

to transmit a fluid) and porosity (ratio of open space in the host material) to support

a usable supply of groundwater is referred to as an aquifer. Aquifer systems are fairly

ubiquitous and often considered a “stable” source of water to be used when demand can-

not be met by surface water alone. Globally, groundwater accounts for roughly a third

2



of all freshwater withdrawals (Taylor et al., 2013). With a growing global population

(projected to rise to 9.7 billion by 2050 (United Nations et al., 2019)) and more variable

surface water supplies due to climate change, increased importance will likely fall on

groundwater resources (Hanson et al., 2012). While previously thought that these reser-

voirs were near inexhaustible, their limits are now in sight and action to monitor and

protect these resources need to be taken. Overexploitation of aquifer systems may lead

to irreversible damage, threatening these water sources for future use (Scanlon et al.,

2012). Improved monitoring, characterization, and management of aquifer systems need

to be developed in order to balance the water needs of today with the protection for use

in the generations to come.

1.2 Tools for Groundwater Monitoring

Despite so much reliance on these resources, the state of aquifer systems remains

relatively unknown. Aquifer systems can be challenging to efficiently and synoptically

monitor due in part to the large spatial extent they can span (up to hundreds of thou-

sands of square kilometers (McGuire, 2017)) and because they are hidden underground.

However, there are tools and techniques that can be used to better understand these sys-

tems. Briefly, the advantages and disadvantages of a few of these methods are outlined

below.

Monitoring wells provide a direct measurement of groundwater levels and are

used extensively in groundwater management (Kim et al., 2020). However, a single well
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can be costly to install and only samples at the station location and perforation depth.

Additionally, many of these wells need to be physically sampled, reducing the temporal

resolution to often just a few times a year. For large aquifer systems that are heteroge-

neous both laterally and vertically, the utility of these wells may be limited. In addition

to providing direct estimates of groundwater levels, the drilling of the well allows for

hydrostratigraphic characterization via well completion records and induction electrical

logs. Well completion records typically provide descriptions of the subsurface material

with depth. They must be used with caution as they are subject to interpretation by

the person providing the description and are often times very general. Electrical logs

make use of the relationship between a material’s composition and how well that mate-

rial conducts an electrical current (Conners , 2013). With electrical logs, one can have

a near continuous record of resistivity with depth which can suggest not only the type

of material but also the percentage of water content. Completion records and electri-

cal records can provide a much better understanding of the underlying lithology when

used together rather than individually, though as with groundwater level data, they are

limited to the locations of the stations.

Imaging techniques can provide much higher spatial resolution than in-situ ob-

servations. These techniques include but are not limited to electromagnetic (EM) meth-

ods, seismic surveying, and ground penetrating radar. EM methods, whether airborne

or terrestrial, map out the electrical resistivity of the subsurface which can be used to

determine the underlying sediment type. This technique works by transmitting a pri-

mary magnetic field that generates eddy currents at various depths in the subsurface
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which consequently produce secondary magnetic fields that are recorded by a receiver

(Kirsch, 2009). Magnetic data can then be inverted for resistivity and subsequently

sediment type. Airborne EM surveying can have a vertical resolution on the order of

meters and extend to depths of 500 m (Knight et al., 2018) while towed systems only

extend to depths of 10s of meters. Lateral resolution depends on the survey design and

system type but can span 10s of meters to kilometers. Alternatively, seismic methods

make use of acoustic sources of energy. Vibrations sent into the earth reflect (bounce) or

refract (bend) as they travel through the subsurface. These vibrations are then recorded

at strategically placed geophones which can then be used to map out subsurface struc-

ture. Seismic methods tend to have higher structural resolution and penetration depth

than EM techniques but at greater acquisition and interpretation costs (Kirsch, 2009).

Ground penetrating radar makes use of the reflection of electromagnetic waves, similar

to seismic techniques, to map out subsurface structure based on variations in the electri-

cal properties. These surveys are generally higher resolution but limited in depth. For

all the various imaging techniques, they are constrained by the survey design and can

be costly to operate.

Variations in mass related to groundwater extraction or recharge can also be

measured by repeat microgravity surveys and, if a large enough signal, by satellite

gravimetry. Microgravity surveys use relative and/or absolute gravimeters to estimate

local groundwater storage and specific yield (Pool and Eychaner , 1995; Gehman et al.,

2009). However, these instruments can be expensive and require delicate care in order

to obtain quality measurements. Like other pointwise measurements these studies are
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often limited in scope and temporal frequency. The Gravity Recovery and Climate

Experiment (GRACE) satellites (as well as the GRACE Follow-On mission) ushered us

into a new age of global hydrological observation. These pair of low orbit (∼ 400 km)

twin satellites use microwave k-band ranging technology to precisely measure the along-

track distance between each other as the trailing satellite “chases” the leading satellite

(average separation of ∼ 200km) (Tapley et al., 2004). Changes in this distance are

then mapped to gravitational anomalies on/in the Earth. While these missions provide

regular estimates of regional to global scale mass changes, they lack the fine spatial

resolution needed to understand the heterogeneity of aquifer systems.

Changes in groundwater can also induce surface displacements. Data from contin-

uous Global Positioning System (GPS) networks and interferometric synthetic aperture

radar (InSAR) can detect this motion at sub-centimeter precision. GPS uses a constel-

lation of satellites which transmit radio signals encoded with a precise time. Ground

receivers coupled to the Earth’s surface take the satellite signal and compute the time

difference relative to its local clock. These differences are then used to determine the

range between the satellites and receiver and thus the change in position through time.

Using the positioning, surface motion related to geophysical processes can be estimated

at frequent intervals (daily or better)(Bock and Melgar , 2016). However, the spatial res-

olution is limited to the station spacing (often 10s of km for a “dense” network). InSAR

makes use of the difference in the carrier signal phase to estimate relative displacements

over wide areas between two synthetic aperture radar (SAR) images (Massonnet and

Feigl , 1998). Using a suite of these differences, referred to as interferograms, a time
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series of surface displacements can be constructed (Berardino et al., 2002). While there

are different modes of SAR acquisitions, many missions offer images 100s of km wide

allowing for large spatial coverage and spatial resolution on the order of 10s of meters.

While revisit times are not as frequent as GPS sampling, missions such as Sentinel-1A/B

have repeat intervals as little as 6 days (Torres et al., 2012). Displacements can reflect

either or a combination of elastic loading and poroelastic effects. In the case of elastic

loading, variations in surface loads (or near surface loads) induce instantaneous displace-

ments related to elastic deformation (Farrell , 1972). For example, the addition of mass

during wet periods (i.e. increases in water volumes) depresses the solid earth. During

dry periods, the solid earth rebounds as water is removed (Borsa et al., 2014). Using

this principle, the volume of water change can be “weighed” using surface displacements.

This has been proven to work well and is consistent with mass change observations from

GRACE (Adusumilli et al., 2019). Conversely the land surface can move via poroelastic

displacements. Changes in groundwater levels can increase or decrease pore pressure

leading to uplift or subsidence (Poland and Davis , 1969) and is described in more detail

below (Section 1.3). This process responds inversely to elastic loading effects and can

be orders of magnitude larger (Argus et al., 2017). This relationship has been used to

estimate aquifer parameters and loss of groundwater storage (Ojha et al., 2018; Smith

et al., 2017). However, it is important to remember that surface displacements can be

a combination of hydrologic, volcanic, and tectonic processes and that they represent

integrated effects (Silverii et al., 2021).
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1.3 Link between Surface Motion and Groundwater

changes

For confined aquifer systems, we generally assess groundwater through hydraulic

head, a measurement of liquid pressure relative to a vertical datum. Changes in hy-

draulic head may induce aquifer system compaction or expansion. This is based on the

relationship between pore pressure and effective stress which can be described following

the Principle of Effective Stress (Terzaghi , 1925)

σe = σT − Pp (1.1)

where σe is the effective stress, σT is the total stress, and Pp is the pore pressure. As

the total stress is related to the overburden weight and is assumed constant for confined

systems, we can express changes in effective stress as

∆σe = −∆Pp = −ρwg∆h (1.2)

where ρw is the density of water, g is the gravitational constant, and h is the hydraulic

head. Using the expression for specific storage, Ss, which relates the volume of water

produced for a aquifer system volume and change in head (Jacob, 1940), we can begin

to describe the link between head and ground deformation. Ss can take the form of

Ss = Ssk + Ssf = ρwg(α + ηβ) (1.3)
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where Ssk is the skeletal-specific storage, Ssf is related to the deformation of the fluid to

a change in effective stress. η is the porosity, β is the compressibility of the fluid, and α

is the compressibility of the sediment (or aquifer skeleton). α can be described by the

ratio of vertical strain to effective stress

α =
−∆b

∆σeb0
(1.4)

where ∆b is the change in volume thickness for an initial thickness b0. Assuming that the

component of deformation related to the compressibility of water is negligible, we can

combine equations 1.2 and 1.4 to demonstrate the link between head and deformation

Sskb0 = Sk =
∆b

∆h
(1.5)

where Sk is the skeletal storage coefficient. Further, Sk is the sum of the inelastic and

elastic coefficients

Sk = Skv + Ske (1.6)

where Skv and Ske the inelastic and elastic skeletal storage coefficients, respectively. It

is generally assumed that this poroelastic deformation behaves inelastically (i.e. perma-

nent deformation) whenever the effective stress, σe, exceeds the preconsolidation stress,

typically taken to be the lowest previous hydraulic head. This type of deformation results

from the realignment of the grains constituting the aquifer system skeletal matrix with

reduced capacity for water storage (Leake, 1990). This is more typical for fine grained
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deposits such as clay and silt, resulting in permanent land subsidence. Changes in pore

pressure that do not lead to the effect stress exceeding preconsolidation stress manifest

as elastic deformation (i.e., reversible deformation) in the form of land subsidence or

uplift (Figure 1.1).

1.4 Dissertation Structure

This dissertation describes the improvement and use of geodetic observations

from satellite radar and Global Positioning System stations for better observing and

characterizing surface displacements as they relate to groundwater changes using Cali-

fornia’s San Joaquin Valley as a case study. This dissertation is structured as follows.

The three principal Chapters (2 through 4) were originally written for individual pub-

lication and can be read independently. In Chapter 2 (Neely et al., 2020), I present

a method for correcting long spatial wavelength error in InSAR data using GPS time

series data. I also detail a new method for InSAR time series inversion that retains

more data coverage than traditional algorithms. In Chapter 3 (Neely et al., 2021), I use

combined InSAR and GPS observations to characterize seasonal surface displacements

over the San Joaquin Valley for the dry 2016 and wet 2017 water years. Finally, chapter

4 focuses on the potential application of a state-wide network of monitoring wells to

assess monthly and seasonal conditions of groundwater levels and how they relate to the

displacement record.
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Figure 1.1: Diagram of land surface deformation over an alluvial sediment aquifer sys-
tem in response to changes in pore pressure. Clay and silt packages (aquitards) are more
susceptible to the permanent rearrangement (inelastic deformation) of grain alignment
through compaction. Changes in pore pressure that do not exceed the preconsolidation
stress result in reversible deformation. Image modified from Galloway et al. (1999).
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Chapter 2

GInSAR: A cGPS Correction for

Enhanced InSAR Time Series

Abstract

Earth surface displacements from interferometric synthetic aperture radar (In-

SAR) have long been used to study deformation from a wide range of geophysical pro-

cesses. Whereas deformation rates can be robustly estimated from InSAR by averaging

many individual deformation observations, noise in these observations has limited their

utility for generating deformation time series. In this article, we introduce a novel combi-

nation of InSAR and Global Positioning System (GPS) data that align InSAR displace-

ments to an absolute reference and reduces long-wavelength spatial errors prior to InSAR

time series construction. We test our GInSAR (GPS-enhanced InSAR) methodology on

Sentinel-1 data over the southern Central Valley, CA, USA, comparing GInSAR dis-
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placement velocities and time series with those from three other referencing techniques.

We find that the GInSAR approach outperforms alternative methods, yielding mm-level

displacement differences with respect to collocated cGPS. By contrast, other referencing

methods can overestimate peak subsidence velocities in the Central Valley by upwards of

10%, deviate by tens of millimeters relative to cGPS validation time series, and contain

spatial biases absent in the GInSAR methodology. We also present a modification to the

widely used small baseline subset (SBAS) technique for time series estimation, whereby

we use a temporal connectedness constraint to regularize the mathematical inversion

and increase the number of InSAR pixels with valid time series estimates.

2.1 Introduction

The use of interferometric synthetic aperture radar (InSAR) to measure and ob-

serve Earth surface deformation from space represented a paradigm shift in geodetic re-

mote sensing when it came into wide use over 20 years ago (Massonnet and Feigl , 1998).

InSAR techniques, which use the difference in the carrier signal phase between SAR

images to recover relative displacements over wide areas, have been used to study sec-

ular deformation related to tectonic processes (Fialko, 2006), volcanic activity (Hooper

et al., 2004), groundwater storage changes (Amelung et al., 1999), glacial flow (Fatland

and Lingle, 2002), and permafrost evolution (Liu et al., 2012). With the availability

of open source rapid-repeat SAR data, particularly from the European Space Agency’s

(ESA) Sentinel-1 missions and the upcoming joint National Aeronautics and Space Ad-
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ministration (NASA) and Indian Space Research Organisation (ISRO) NISAR mission,

InSAR’s potential for recovering the temporal evolution of surface deformation is rapidly

growing.

Despite this potential, InSAR accuracy is degraded by phenomena such as un-

modeled atmospheric phase delay, satellite orbit uncertainty, and errors in interferomet-

ric processing (e.g., image resampling and phase unwrapping errors) (Zebker et al., 1997;

Hanssen, 2001), the effects of which can be of the same magnitude or larger than the

deformation signal of interest. Additionally, since InSAR yields relative surface change,

there is a benefit to linking collections of InSAR displacements via a common absolute

reference (Berardino et al., 2002), especially across multiple missions.

Various methods have been used to overcome these twin challenges, with much

focus on incorporating displacement data from independent sources such as contin-

uously operating Global Positioning System (cGPS) stations. Previous studies have

jointly leveraged cGPS and InSAR data in several ways, which include combining short-

wavelength secular deformation from InSAR with long-wavelength velocities from cGPS

(Wei et al., 2010; Tong et al., 2013), using GPS horizontal velocities to decompose the

three-component displacement time series (Shirzaei and Bürgmann, 2018), estimating

along-track orbital errors using a priori deformation information from cGPS (Gourmelen

et al., 2010), or simply by referencing a single location in the InSAR scene to the motion

of a collocated GPS station [e.g., (Chaussard et al., 2014)]. While these approaches

result in an improvement over using InSAR data alone, some challenges still remain.

For example, the combination of short-wavelength InSAR deformation with cGPS ve-

18



locities is effective for constraining the horizontal velocity field where vertical motion is

minimal and cGPS station density is high, but it can lead to biases if short-wavelength

changes in velocities are spatially aliased into the long-wavelength cGPS velocity field.

The estimation of along-track orbital errors from cGPS time series is useful, but only

corrects errors in azimuth and not in range. Finally, referencing InSAR displacements

to the contemporaneous motion of a single GPS station gives every interferometric pair

a common absolute reference at the station location, but it also projects any positioning

error specific to that station into the entire interferogram. It also neglects gradients

in the plate motion across the scene, which is an important consideration near plate

boundaries.

In this article, we introduce a simple methodology for estimating and correcting

long-wavelength errors in InSAR displacements using continuous GPS time series data.

Our approach, which we call GPS-enhanced InSAR (or GInSAR), assumes that differ-

ences primarily reflect errors in the InSAR observable (e.g., unmodeled tropospheric

and/or ionospheric signal propagation delay, impact of soil moisture on surface height,

and scattering properties (Hanssen, 2001)) that are mitigated in cGPS by design (deeply

anchored monuments that are insensitive to near-surface changes (Wyatt , 1989), dual

frequencies for removing ionospheric delay (Melbourne, 1985; Wubbena, 1985), and mul-

tiple satellite signal paths to constrain tropospheric effects (Herring , 1992)). GInSAR

models the long-wavelength spatial structure in the cGPS-InSAR differences and re-

moves it from the InSAR deformation field on an interferogram-by-interferogram basis

prior to the estimation of InSAR time series. We apply our methodology to California’s
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southern Central Valley Aquifer System (CVAS) and environs, with particular focus on

agricultural fields where we wish to improve our understanding of subsidence related to

groundwater extraction (Figure 2.1). While our methodology does not seek to correct

short-wavelength errors in InSAR (e.g., the turbulent component of atmospheric phase

delay and changes in dielectric properties of the surface), it does offer several benefits

relative to other approaches, as we will show.

2.2 InSAR Data and Processing

We estimated surface displacements in and around the southern CVAS from a

suite of Sentinel-1 interferograms spanning November 2014 to February 2017. Our raw

data set consisted of 49 Single Look Complex, Interferometric Wide swath acquisitions

from descending track 144 of the Sentinel-1A/B missions (Table 2.S1 in Supplementary

Material). Sentinel-1 satellites use a burst radar acquisition mode known as “terrain

observation by progressive scans” (or TOPS) (De Zan and Guarnieri , 2006), which re-

sults in wide image swaths (250 km) and high geometric resolution (5 m × 20 m pixel

dimensions) (Torres et al., 2012). From these 49 scenes, we used the GMTSAR software

package (Sandwell et al., 2011; Xu et al., 2017) to generate 276 interferograms. For

our processing, we geometrically aligned our SAR scenes to a common master image

(Xu et al., 2017) from November 8, 2014 and used postprocessed precise orbits. We

opted not to apply enhanced spectral diversity (ESD) because we observed that phase

discontinuities at burst boundaries were infrequent and of relatively low magnitude (Xu
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et al., 2017; Shirzaei et al., 2017). We removed the topographic phase from these inter-

ferograms using the 1 arcsecond digital elevation model (DEM) from the Shuttle Radar

Topography Mission (SRTM) (Farr et al., 2007), and we imposed a maximum temporal

separation of 100 days and a perpendicular baseline of 250 m between satellite orbits to

maintain sufficient coherence between interferometric pairs (Figure 2.S1 in the Supple-

mentary Material). GMTSAR uses the phase unwrapping algorithm Snaphu (Chen and

Zebker , 2001) to convert wrapped interferograms into line of sight (LOS) displacements,

for which we set a pixel correlation threshold of 0.1. A full description of GMTSAR pro-

cessing steps and parameter options is outlined in Xu et al. (2017) and the GMTSAR

manual (Sandwell et al., 2011).

The fundamental InSAR observable is the difference in topography-corrected

radar phase ∆φobs(ti, tj) between times ti and tj at discrete ground locations (or pixels)

(Massonnet and Feigl , 1998). The observed change in phase

∆φobs(ti, tj) = ∆φdef(ti, tj) + ∆φatm(ti, tj) + ∆φorb(ti, tj) + ∆φnoise(ti, tj) (2.1)

is a superposition of signals that includes the phase shift due to the surface deformation

of interest ∆φdef(ti, tj) and the contribution of various nuisance signals, including at-

mospheric phase delay ∆φatm(ti, tj), orbital errors ∆φorb(ti, tj), and noise ∆φnoise(ti, tj)

from changes in surface dielectric properties, phase decorrelation, residual topography,

processing errors, etc. (Hanssen, 2001). Minimizing these nuisance terms results in a

better estimate of surface deformation.
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2.3 Continuous GPS Data and Processing

In the western USA, continuous Global Positioning System (cGPS) stations pro-

vide estimates of surface displacement at low spatial resolution (5–50 km) but relatively

high temporal resolution (1 day). For this article, we used daily positions for the 122

continuous GPS stations from the National Science Foundation’s Plate Boundary Ob-

servatory (PBO) network that lie within our InSAR footprint. These positions are

provided in the global IGS08 (International GNSS Services 2008 (Rebischung et al.,

2012)) reference frame, are produced by the Geodesy Advancing Geoscience and Earth-

Scope (GAGE) analysis centers (Herring et al., 2016), and are publicly available from

UNAVCO (ftp://data-out.unavco.org/pub/products).

We made three adjustments to the cGPS position time series to ensure compat-

ibility between cGPS and InSAR observations. First, we removed offsets in the cGPS

position time series due to documented equipment changes by estimating and removing

displacement medians for 30 days on either side of the change date. We then smoothed

the offset-corrected East/North/Vertical components for each station using a 6-day (2σ)

Gaussian filter. This minimized power in the time series at periods shorter than ∼ 2

weeks, which we assume to be dominated by GPS multipath and tropospheric effects

rather than true surface motion (Borsa et al., 2007). Finally, we projected the three-

component cGPS displacements into the satellite LOS direction using the SAR look

angle, which is unique for every station location (Figure 2.S2 in the Supplementary

Material).
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We divided the 122 cGPS stations into three nonoverlapping sets for our analysis.

The first (“correction”) set consisted of the 54 stations used in the GInSAR correction

(Figures 2.1 and 2.2, black squares). We ensured that these stations were distributed

across the SAR footprint by binning the region into a grid of equal-area (∼ 400km2) cells

and selecting a cGPS station at random from each cell with at least one station. From

the remaining stations, we used the same procedure to choose a second (“validation”)

set of 23 stations (Figures 2.1 and 2.2, red squares) for algorithm parameter selection

and validation. The third (“other”) set contained the remaining 45 stations, several of

which were used to validate velocity profiles (see Section 2.6.1 and Figures 2.1 and 2.2,

blue squares).

2.4 Correction of Long-Wavelength InSAR Dis-

placements

GInSAR is an extension of a technique introduced by Argus et al. (2005) to

correct long-wavelength errors attributed to unmodeled atmospheric delay. Argus et al.

(2005) estimated surface displacements at GPS station locations from a simple velocity

and seasonal sinusoid model that they fit to each GPS time series (hereafter referred

to as modeled GPS). They differenced modeled GPS values over three interferometric

pairs spanning 6 to 24 months to obtain a set of reference displacements, fit a minimum-

curvature surface to the residuals between the reference and InSAR displacements, and

added the fitted surface to each interferogram. They demonstrated that this technique
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improves the 95% confidence limits of the vertical InSAR estimates by a factor of three,

from approximately ±15 to ±5 mm.

We expand on the Argus et al. (2005) technique in three ways as follows.

1. We apply it to 276 interferometric pairs spanning 6 to 96 days, representing nearly

a 100-fold increase in the size of the corrected InSAR data set.

2. We use the actual cGPS time series data rather than the modeled GPS for the

correction, which allows us to capture the significant short-period and interannual

surface deformation that exists within the InSAR footprint.

3. We search for an optimal functional form for the surface fit, with an emphasis on

long-wavelength errors.

We applied the GInSAR algorithm described below to each interferogram inde-

pendently, with InSAR and cGPS displacements evaluated in LOS coordinates and the

cGPS positions offset-corrected and smoothed as described in Section 2.3:

1. For each interferogram n and cGPS correction station k, we calculated the cGPS

LOS displacement as

dGPS
nk = sGPS

k (tj)− sGPS
k (ti) (2.2)

from the cGPS position time series sGPS
k (t) evaluated at SAR acquisition tj and ti,

which are unique to each interferogram.

2. We took the difference between the InSAR and cGPS LOS displacements at each
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correction station to form the residual

rnk = dGPS
nk − dInSAR

nk (2.3)

where dnk is the displacement at station k for interferogram n. To minimize pixel-

scale noise (e.g., unwrapping errors or short-wavelength changes in scattering prop-

erties (Hanssen, 2001)), we took dInSAR to be median InSAR displacement value

within a 30-pixel-wide box centered on each station location.

3. We fit a second-order polynomial surface to rnk using the “fit” function in MAT-

LAB, generating a residual (or correction) model rn(lat, lon) from which we es-

timated the long-wavelength error at each InSAR pixel (see Figure 2.S3 in the

Supplementary Material for our choice of the functional form of the polynomial

fit). Since the rnk are distributed across the InSAR scene because of how we se-

lected the cGPS correction stations, they provide a strong spatial constraint on

the polynomial fit.

4. Finally, we estimated the GInSAR-corrected interferometric displacement

dGInSAR
n (lat, lon) for each interferogram n by adding the residual model back to

the InSAR displacement field

dGInSAR
n (lat, lon) = dInSAR

n (lat, lon) + rn(lat, lon). (2.4)

We used the resulting suite of GInSAR-corrected interferograms as input into our

InSAR time series generation workflow.
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2.5 Generation of Deformation Time Series: CS-

BAS

The Small Baseline Subset (SBAS) method (Berardino et al., 2002) is an inversion

algorithm for reconstructing deformation time series from a set of coregistered interfer-

ograms with small orbital separations. SBAS is well suited for data sets in urban or

rocky regions, where correlation of the phase observable between SAR scenes is high. In

regions with heavy vegetation or periodic resurfacing (e.g., from plowing/harvesting or

seasonal snowfall), points on the ground can exhibit low or variable coherence (Wei and

Sandwell , 2010). Pixels with low correlation (low signal-to-noise) values in any of the in-

terferograms are typically excluded from standard SBAS processing (Tong and Schmidt ,

2016). To the extent that redundant temporal overlaps in other InSAR pairs can pro-

vide information spanning the low-correlation interval, this processing strategy has the

effect of unnecessarily reducing data coverage within the InSAR footprint. The problem

is particularly acute where large InSAR data sets are processed with SBAS, since the

likelihood of random single-interferogram decorrelation at any given pixel increases with

the number of interferograms used.

Several modifications to SBAS have been proposed to incorporate phase infor-

mation from pixels with intermittent correlation (e.g., Sowter et al. (2013); Tong and

Schmidt (2016)). One approach, the Intermittent SBAS method (ISBAS), relaxes the

criterion that a pixel must be coherent in all interferograms and instead sets a threshold

for the number of interferograms in which the pixel is coherent (e.g., 60% of the total)
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(Sowter et al., 2013; Bateson et al., 2015). Here, we implement our own version of ISBAS

that instead imposes a temporal connectedness criterion for each pixel. Our algorithm,

which we call CSBAS (temporally Connected SBAS; Figure 2.S4 in the Supplementary

Material), considers only pixels for which there is at least one valid displacement es-

timate spanning every interval of the time series. This avoids the potential problem

(inherent in other SBAS implementations) of estimating time series across periods for

which there is no observational constraint.

SBAS methods solve for the instantaneous velocity at each SAR acquisition time

ti (Berardino et al., 2002) and integrate these velocities to produce a time series of LOS

displacements. For a single pixel, the problem can be written as

Bv− d = 0 (2.5)



t2 − t1 0 0 . . . 0

t2 − t1 t3 − t2 t4 − t3 . . . 0

0 t3 − t2 t4 − t3 . . . 0

...
...

...
...

...

...
...

...
...

...

0 . . . . . . . . . tP − tP−1





v1

v2

v3

...

vP−1


−



d1

d2

d3

...

...

dN



= 0 (2.6)

where v is a (P − 1)× 1 vector of velocities between the P sequential SAR acquisition

times, d is an N×1 vector of observed interferometric displacements, and B is an N×P
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matrix that integrates the velocity solution into displacement estimates corresponding to

each of the N interferograms. The structure of B depends on the specific interferograms

used in our CSBAS inversion, although in all cases there will be at least one displacement

observation constraining the value of each element of v. In the hypothetical example

shown in (2.6), this pixel did not have a valid SAR phase measurement at time t3;

however, however, displacements from two spanning interferograms (between t4 and t1

in row 2 of B, and t4 and t2 in row 3) constrain the velocity for this epoch.

In addition to requiring temporal connectedness for v, CSBAS also minimizes

large changes in velocity between SAR acquisitions (often attributed to the turbulent

component of atmospheric noise ∆φatm) by imposing a first-order (smoothness) Tikhonov

regularization on (2.5). The regularized form of the problem is

 B

λL1

v−

d

0

 = 0 (2.7)

where L1 is the P × P first-difference matrix

L1 =



−1 1

−1 1

. . . . . .

−1 1

−1 1


(2.8)
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and λ is a weighting parameter that determines the degree of temporal smoothing for v.

For our analysis, we substituted dGInSAR in place of d in (2.7) and chose λ = 150,

which resulted in a close fit between the GInSAR and validation cGPS displacements

without over-smoothing the time series (see L-curve analysis in Figure 2.S5 in the Sup-

plementary Material). To solve for velocity, we minimized the left-hand side in (2.7)

using a least-squares inversion with the Moore-Penrose pseudoinverse of our extended B

matrix (Ben-Israel and Greville, 2003). After inverting, we integrated the velocity vector

for each pixel over time to generate the displacement time series sGInSAR(lat, lon, t).

2.6 Validation and Comparison With Other InSAR

Correction Approaches

We assessed the performance of GInSAR by validating both the velocities and

time series of InSAR deformation with respect to independent estimates from cGPS.

We used two different approaches for the validation: an absolute referencing approach

that directly compared InSAR and cGPS estimates at individual cGPS station loca-

tions, and a relative referencing approach that compared InSAR and cGPS differences

between pairs of station locations. Unlike the absolute approach, the relative approach

is insensitive to reference frame shifts between InSAR and cGPS, which would manifest

almost entirely as uniform translations across our study region.
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2.6.1 Velocity Validation

For the absolute validation of the GInSAR velocity field, we analyzed the residuals

between cGPS and GInSAR velocities at the locations of the 23 validation cGPS stations

described in Section 2.3. We estimated the reference cGPS velocities by fitting a straight

line to cGPS displacements at each station, using a robust least-squares technique that

iteratively reweights outliers with a bisquare weighting function. We similarly estimated

GInSAR velocities from the GInSAR displacement time iseries at all pixels in our study

area. For the GInSAR velocity at the validation stations themselves, we took the median

value within a 30-pixel-wide box centered on each station location. We differenced

these two sets of velocities to form a collection of 23 velocity residuals, for which we

calculated the median and the robust standard deviation σr (defined as the median

absolute deviation scaled by 1.4826). Assuming the cGPS velocities represent “truth,”

the better the InSAR correction is, the closer the median and σr would be to zero.

We evaluated GInSAR’s performance with respect to three alternative referenc-

ing schemes: 1) “Uncorrected,” which simply uses the raw InSAR LOS displacements

without correction; 2) “Pinned to ground,” which zero-references each interferogram to

a single pixel at a location assumed to have minimal deformation; and 3) “Pinned to

GPS,” which references each interferogram to cGPS displacements at a single station.

For each scheme, we applied the same CSBAS algorithm and smoothing parameters that

we used to obtain our GInSAR results. We tested the “Pinned to ground” and “Pinned

to GPS” schemes at eleven cGPS station locations, but used P560, which is in a region
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of the Mojave Desert with minimal vertical deformation relative to the rest of the scene,

to illustrate our technique (Figures 2.2-2.5).

In addition to point validation at cGPS locations, we also examined the spatial

characteristics of the velocity fields generated using each of the referencing schemes.

Specifically, we extracted two velocity profiles across our study area (A-A′ and B-B′,

shown in Figure 2.2) along which we compared results between the four referencing

schemes. Profile A-A′ strikes predominately west to east, while B-B′ strikes northwest

to southeast and intersects the “Pinned to ground” and “Pinned to GPS” station lo-

cations. Both cover a range of horizontal tectonic and vertical hydrologic deformation

signals. We obtained reference velocity profiles from the Southern California Earthquake

Center (SCEC) Community Geodetic Model (CGM) Horizontal Velocity Grid (Sandwell

et al., 2016), which we transformed from the Stable North American Reference Frame

(SNARF) to the IGS08 reference frame and projected into LOS for comparison with

eight cGPS stations near A-A′ and six stations near B-B′. While the SCEC model con-

tains only the horizontal components of motion, it provides important validation for

regions where we expect minimal vertical signal.

2.6.2 Time Series Validation

We followed a similar methodology to validate shorter period variability in the

InSAR time series. First, we estimated and removed a linear trend from the 23 validation

cGPS time series and from the corresponding InSAR deformation time series for each

of the four referencing schemes. We then differenced the detrended cGPS and InSAR
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time series to form displacement residuals (whose mean and median values are nominally

zero by construction).We report the robust standard deviation, σr, of the residuals as

a measure of time series variance for the various referencing schemes (Tables 2.1 and

2.2). For the relative validation, we differenced the cGPS time series between station

pairs, then differenced the corresponding InSAR time series for those same pairs. We

report the median and robust standard deviation of the residuals between the differenced

InSAR and cGPS time series in Table 2.1.

2.7 Results and Discussion

Our validation results show that the inclusion of position information from multi-

ple cGPS stations in GInSAR improves InSAR displacement estimates in two key ways:

1) it removes biases in the InSAR velocities with respect to independent cGPS estimates

and 2) it removes large excursions in InSAR displacement time series that we assume to

be related to errors in the InSAR observable in one or more individual interferograms.

2.7.1 InSAR Velocity Improvement

Application of the GInSAR methodology to Sentinel-1 interferograms over the

southern Central Valley significantly reduces the residuals between InSAR velocity es-

timates and those from cGPS (Table 2.1). Relative to “Uncorrected” InSAR, GInSAR

results in an order of magnitude reduction in the velocity residual median (from 12.3 to

-1.0 mm/yr) and a 42% reduction in σr (from 6.0 to 3.5 mm/yr).
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GInSAR also outperforms the two schemes that pin each interferogram to a single

location within the SAR footprint (“Pinned to ground” and “Pinned to GPS”). Relative

to those schemes, GInSAR results in reduction by a factor of 10 and 3 (respectively) in

the residual median and a 24% and 45% reduction in σr (Tables 2.1 and 2.2), highlighting

the benefit of using multiple cGPS stations to model long-wavelength errors across the

SAR scene.

The “Pinned to GPS” scheme at station P560 does better than “Pinned to

ground” in terms of reducing the residual median velocity, but worse in terms of σr

(Table 2.1). When we consider a suite of pinning locations at various cGPS station

locations across the scene (Table 2.2), we find that “Pinned to GPS” systematically

outperforms “Pinned to ground” in terms of residual median, while the two perform

similarly in terms of σr . However, the variability we observe from using different GPS

station locations for pinning in either scheme, including GPS stations that are near each

other (e.g., ETLN and P560), underscores the risk of pinning to a single location when

InSAR errors are likely to vary differentially over the entire scene.

GInSAR performs even better with respect to the alternative referencing schemes

in the relative validation (Table 2.1). GInSAR achieves a reduction in the velocity

residual median by a factor of 38 to 62, along with a 49% to 53% reduction in σr.

Comparing results between the absolute and relative validations, all four referencing

schemes produce a smaller residual median in the relative validation, which is expected

due to the fact that double-differencing removes the effect of expected reference frame

differences between cGPS and InSAR. The increase in the velocity residual σr between
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the absolute and relative validations is also expected. Because variances are additive

under subtraction (assuming roughly Gaussian-distributed uncertainties), the double-

differencing operation in the relative validation amplifies noise inherent in the cGPS

and InSAR estimates, thereby increasing σr.

The secular velocity fields for each of the four schemes (Figure 2.2) all identify

similar locations of surface deformation (e.g., the large subsidence bowls in agricultural

areas and more compact regions of hydrocarbon production on the periphery of the

southern Central Valley), but they give different quantitative estimates of deformation

magnitude. For example, peak subsidence values near Corcoran relative to a nonagricul-

tural area to the east of the Central Valley [marked by a red star in Figure 2.2a] range

from -334.3 mm/yr (GInSAR) to -381.9 mm/yr (“Pinned to GPS”), with intermediate

values of -360.3 mm/yr (“Pinned to ground”) and -369.7 mm/yr (“Uncorrected”). The

35.4 mm/yr difference between GInSAR and “Uncorrected” InSAR represents an 11%

overestimation of peak subsidence when no correction is applied. Additionally, the me-

dian displacement outside the high-deformation agricultural areas is different between

schemes, as can be seen in the various panels of Figure 2.2 (e.g., the Sierra foothills are

deeper blue, indicating more uplift, in the schemes excluding GPS). These differences

are largely a result of how the reference frame is handled by the different schemes. Since

raw InSAR data only provide relative displacements, the “Uncorrected” and “Pinned

to ground” results are blind to average secular motion across the scene due to long-

wavelength phenomena such as plate tectonics. This motion is partly restored as a

static shift when absolute position information is provided by GPS, as evidenced in the
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“Pinned to GPS” and GInSAR schemes.

Differences between velocity fields become even more evident when we examine

profiles A-A′ and B-B′ (Figures 2.3 and 2.4). For both profiles, the most notable differ-

ence between the schemes is an offset of 15–20 mm/yr in nondeforming regions between

results without some form of GPS correction (“Uncorrected” and “Pinned to ground”

lines) and results incorporating information from GPS (“Pinned to GPS” and GInSAR

lines). This shift is consistent with the average local velocity of LOS-projected GPS in

the IGS08 reference frame.

Short-wavelength noise is markedly reduced in the GInSAR result compared to

other referencing schemes. For example, the GInSAR velocity profile shows a clear

jump across the San Andreas Fault [Figure 2.3 (inset)] that is consistent with inde-

pendent cGPS velocities and the SCEC CGM. While the jump is also apparent in the

non-GInSAR profiles, those profiles have higher variability to the east and west, which

increases the uncertainty in any estimation of jump magnitude. Additionally, GInSAR

estimates are the most consistent with SCEC’s CGM in locations with little to no verti-

cal deformation, and they are the most consistent with cGPS velocities in general. This

agreement instills confidence in the GInSAR results. By contrast, the “Pinned to GPS”

case performs well near the station to which it is referenced to (e.g., P560 in Figure 2.4),

but can deviate from cGPS stations that are further away (e.g., Figure 2.3, west of -120

longitude; Figure 2.S6). The strength of the GInSAR method is that it performs compa-

rably to the “Pinned at GPS” near the pinning location, in addition to performing well

elsewhere in the scene. GInSAR velocities do exhibit occasional mm-level discrepancies
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with respect to individual cGPS station velocities, but these are typically much smaller

than the case with other schemes. We attribute some of these differences to the spatial

and temporal smoothing applied to the InSAR time series used to generate our velocity

fields.

2.7.2 Time Series Improvement

In addition to improving velocity estimates, the GInSAR methodology is also

effective in correcting short-period errors in InSAR time series. The absolute validation

shows that relative to the other referencing schemes, GInSAR results in a 69%–71%

reduction in the robust standard deviation of time series residuals with respect to the 23

cGPS validation stations (Table 2.1). Also, the GInSAR results do not show a spatial

dependence in residual variance across the study region. This is not the case with

the “Pinned to ground” and “Pinned to GPS” schemes, where variance reduction is the

strongest near the pinning location. For example, in the case of pinning at P560, residual

variance is reduced in the southeast of the scene near P560, but remains high at stations

near Parkfield to the northwest (Figure 2.S6 in Supplementary Material). Furthermore,

the time series performance of the two pinning schemes is affected by the choice of the

pinning location, as it is with velocities (Table 2.2).

GInSAR also performs well in the relative validation, providing a 49% to 53%

reduction in the standard deviation of double-difference time series residuals (Table 2.1).

Similar to the case with velocity residuals, the robust standard deviation of the time

series residuals is considerably higher (∼ 50%) for the relative validation than for the
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absolute validation. As we explained in Section 2.7.1, this is consistent with the increase

in variance expected from double-differencing in the relative validation.

We compared the displacement time series from each referencing scheme with

cGPS time series at three stations: ARM1 (located in the subsidence bowl south of

Bakersfield and used in the GInSAR correction), P560 (located to the southeast and

used as the reference point for “Pinned to ground” and “Pinned to GPS,” but not used

in the GInSAR correction), and P530 (located to the west and fully independent of all

referencing schemes) (Figure 2.5).

For these stations, all GInSAR time series show a close agreement with those from

cGPS, with differences rarely exceeding 10 mm. At P560, which is the pinning location

for both pinning schemes, “Pinned to GPS” slightly outperforms the GInSAR time series.

This is expected since the correction is optimized for the pinning location. At ARM1,

“Pinned to GPS” does almost as well as GInSAR, consistent with the fact that ARM1 is

only 50 km from the pinning location and likely experiences similar atmospheric effects.

At P530, which is 200 km from the pinning location, all the non-GInSAR schemes

perform poorly, deviating by up to 40 mm from the cGPS. In all cases, “Pinned to

ground” performs about as poorly as “Uncorrected,” underscoring the fact that even in

a relatively stable location like the western Mojave Desert (where P560 is located) there

is often significant surface motion or phase error.
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2.7.3 Effect of cGPS Station Coverage

A key consideration for the utility of the GInSAR method is the spatial distri-

bution of cGPS stations available for interferometric correction. To test the dependence

of GInSAR on the geometry of the cGPS network, we evaluated the performance of

the GInSAR correction for varying numbers and locations of cGPS correction stations.

Our goal was to assess the minimum number and distribution of stations needed to: 1)

constrain the correction model rn (Section 2.4) and 2) ensure a good agreement between

cGPS and GInSAR displacements.

For our test, we selected groups of at least six cGPS stations (the minimum

needed to constrain a second-order polynomial surface) corresponding to every possible

combination of stations in our cGPS correction set. For each of these station groups,

we performed the GInSAR correction procedure on 13 randomly selected interferograms

(e.g., Figure 2.S10).

For the interferogram spanning March 2–June 6, 2016, we calculated the root-

mean-square (rms) of the residuals between cGPS and GInSAR displacement time series

at the validation station locations (the “validation residuals”). Smaller rms values in-

dicate a closer agreement between cGPS and GInSAR, and thus better performance of

the GInSAR correction for a given station configuration (Figure 2.S9). Additionally,

for all interferograms, we calculated the robust standard deviation of all pixels in the

residual model rn to assess the model size (Figure 2.S10). In general, larger models

result from “clumpy” station distributions that provide insufficient spatial constraints
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on the polynomial fit in Section 2.4, Step 3.

On average, increasing the number of correction stations (i.e., adding constraints

for the determination of rn) resulted in smaller validation residuals (Figure 2.S9) and

smaller correction models (Figure 2.S10). However, performance did not uniformly im-

prove with higher numbers of stations. We found diminishing returns on GInSAR per-

formance beyond 15 stations (spacing of ∼ 50 km), and some configurations with many

stations yielded high rms values. These configurations tend to be those with “clumpy”

station distributions that did not sample the full SAR footprint. Finally, we found that

the minimum rms is fairly constant at ∼ 14 mm, indicating that even minimal station

coverage (e.g., six stations at a spacing of ∼ 85 km) is sufficient to support the GInSAR

correction, provided that the stations are in an optimal spatial configuration (Figure

2.S8).

Our results from the southern Central Valley are encouraging from the standpoint

of using GInSAR in areas without the dense cGPS coverage of California. Even a modest

cGPS station spacing of 75 km can support the optimal correction of long-wavelength

InSAR errors, provided the stations are distributed across the SAR footprint. In all

cases, we recommend that potential users of GInSAR validate the correction in their

region of interest, using Section 2.6 as a guide.

2.7.4 Errors Uncorrected by GInSAR

While the GInSAR correction is a promising approach for correcting long-

wavelength InSAR error in areas with adequate cGPS coverage, it is limited in several
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ways. For example, short-wavelength noise, which is often correlated with high gradients

in topography or in atmospheric properties (Hanssen, 2001), cannot be removed using

the GInSAR methodology. We apply smoothing in the CSBAS time series estimation

in part to mitigate the impact of this noise, but we note that GInSAR corrects a sig-

nificant component of short-period noise even without smoothing (compare Figure 2.5

and Figure 2.S11). Compared to alternative correction schemes with their greater short-

period noise (Figure 2.S11), GInSAR should improve the detectability of transients in

the InSAR time series.

While smoothing may be appropriate for observing slowly varying processes such

as changes in groundwater, we recognize that it may not be ideal for time series that

include impulsive processes such as earthquakes. However, the GInSAR correction is

compatible with other interferogram-correcting techniques that are better suited to re-

moving short-wavelength noise (such as those incorporating atmospheric models or em-

pirical noise estimates (Tymofyeyeva and Fialko, 2015; Yu et al., 2018), filtered to exclude

the long-wavelength components supplied by GInSAR). These alternatives can be used

instead of smoothing in cases where the signals of interest are transient.

2.8 Conclusions

The expansion of SAR data catalogs from ESA’s Sentinel-1 and the prospect of

the upcoming NISAR mission offer new opportunities for studying earth’s surface defor-

mation at high spatial resolution (10s of meters) and low latency (1–2 weeks). However,
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error terms in the InSAR observable and a need to link collections of interferograms

via a common absolute reference inhibit the reconstruction of detailed deformation time

series. Using our GInSAR methodology, we obviate many of these limitations by lever-

aging the observed differences between InSAR and cGPS displacements to model and

remove long-wavelength spatial errors from each SAR interferogram, while imposing an

absolute reference frame common to the cGPS displacements. In short, we minimize

long-wavelength components of the nuisance terms in (2.1) while preserving signal com-

mon to independent data sets. Further, we retain a denser collection of coherent InSAR

pixels than traditional SBAS methods through the use of our temporally Connected

SBAS (CSBAS) algorithm, which only excludes pixels for which there are temporal

gaps in observational constraints. Finally, since our GInSAR operates on individual

interferograms, it is compatible with a variety of SAR data, interferometric product

generation methods, time series construction algorithms (Berardino et al., 2002; Hooper

et al., 2004), and additional interferometric corrections (e.g., (Tymofyeyeva and Fialko,

2015; Yu et al., 2018)).

We tested our GInSAR methodology against three other referencing techniques

using Sentinel-1 SAR data over the southern Central Valley. We found that GInSAR sig-

nificantly outperformed the “Uncorrected,” “Pinned to ground,” and “Pinned to GPS”

schemes for estimating both secular surface velocities and displacement time series, con-

sistent with results reported by Argus et al. (2005).

We attribute most of the differences in velocity estimates between each scheme to

how the displacement reference frame is handled. Methodologies that include cGPS time-
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series information (“Pinned to GPS” and GInSAR) contain average plate velocity in the

LOS-projected IGS08 reference frame, which improves velocity estimates with respect

to cGPS. Near the North American and Pacific Plate boundary, where the relative

velocity between the two plates is on the order of 45 mm/yr (DeMets et al., 1990,

1994), plate motion is an important consideration in the context of total deformation

and discrepancies between referencing methods. While pinning to a single GPS may

improve results near the pinning location, velocity gradients across large-swath SAR

scenes can yield comparisons at distant cGPS stations that are as poor as when no

correction is applied.

Typical InSAR time series generation techniques often apply heavy smoothing

to reduce noise, at the expense of important short-period signals that may be relevant

for low-latency monitoring. Our GInSAR methodology, on the other hand, is capable

of reducing noise without smoothing over shortperiod variability that is independently

observed in cGPS time series. We find that using a single pinning location (“Pinned to

ground” and “Pinned to GPS”) cannot resolve this short-period variability across the

entire SAR footprint.

With more InSAR and cGPS data becoming openly available, this new method-

ology bridges the two observational data sets, establishes an absolute reference frame

between interferograms, and improves our confidence in spatially dense time series of

surface deformation.
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Table 2.1: Validation summary for pinning schemes.
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Table 2.2: Absolute validation summary for pinning locations.
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Figure 2.1: Topographic map of the southern Central Valley, CA and environs. The
inset shows the western United States with the orange box delineating the mapped area.
The red box marks the boundary for our InSAR footprint. Square symbols represent
the available cGPS stations from the Geodesy Advancing Geoscience and EarthScope
(GAGE) network inside the SAR footprint. Black squares indicate stations used in our
correction process. Red squares are locations of the validation cGPS stations. Blue
squares are the remaining available cGPS stations. The black lines indicate fault traces
in the region (from the USGS). Different line types correspond to how well constrained
the fault locations are: solid lines are well constrained, dashed lines are moderately
constrained, and thinly dotted lines are inferred locations. Black circles mark notable
population centers in the region.
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Figure 2.2: Velocity maps of inverted InSAR data for the four interferogram referencing
techniques over the same region shown in Figure 1.1. The results are in LOS velocity
(mm/yr) and are median filtered (1-km radius). Blue lines are profile transects used in
Figures 2.3 and 2.4. The red circle marks peak subsidence and the red star denotes the
nonagricultural reference location used in Section 2.7.1. (a) GInSAR deformation with
cGPS stations used in the correction (black squares), cGPS validation station locations
(red squares), additional cGPS stations used in the profile comparison (blue squares),
and time series locations labeled. The remaining panels show (b) “Uncorrected” results,
(c) “Pinned to ground” (at P560 site location), and (d) “Pinned to GPS” (at P560).
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Figure 2.3: Velocity profiles along the transect A-A′ shown in Figure 2.2, with corre-
sponding topography. Colored lines are different pinning schemes. The solid gray line
is the horizontal velocity from the South California Earthquake Center’s Community
Geodetic model. Black squares are cGPS velocities with 3σ error bars. The dashed
gray line marks the location of the San Andreas Fault. Inset shows a closer view of the
section near the fault.
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Figure 2.4: Same as Figure 2.3, but for the transect B-B′.
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Figure 2.5: Time-series comparisons (offset for clarity) of the four tested referencing
techniques and collocated cGPS time series at stations ARM1, P560, and P530. ARM1
is one of the stations used in the correction for GInSAR and is located in a region of
subsidence. P560 is used as the pinning location for “Pinned to Ground” and “Pinned
to cGPS.” P530 is a cGPS location independent of the pinning schemes and is used in
the validation.
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2.9 Supplementary Materials

Introduction

This Supplementary Material contains the Supplementary Table 2.S1 and Sup-

plementary Figures 2.S1 through 2.S11 (with associated captions). The Supplementary

Table and Figures are preceded with text briefly providing context.

Tables

Table 2.S1: SAR Data

Table 2.S1 list the dates and perpendicular baselines (B⊥) of Sentinel-1 SAR

data used in this study. Sentinel-1 data is accessible via the European Space Agency’s

Copernicus Open Access Hub (scihub.copernicus.eu).

Figures

Figure 2.S1: Interferometric Baseline Plot

Figure 2.S1 shows the perpendicular baseline of the Sentinel-1 SAR (synthetic

aperture radar) image acquisitions along track 144, referenced to November 8, 2014,

and the interferometric pair connections. We limited the generation of interferograms

to a temporal separation of 100 days and an orbital baseline of 250 meters.

Figure 2.S2: Line-of-Sight Three Component Scaling Factors
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Figure 2.S2 shows how the East, North, and Vertical components of displacement

contribute to a Line-of-Sight (LOS) observation. These scaling factors are computed

using the look angles for Sentinel-1 satellites, descending track 144. Sentinel-1 is

sensitive to the East and Vertical components of displacement and insensitive to the

North component. We use these relations to project the cGPS time series into LOS.

Figure 2.S3: Surface Fit Parameter Misfits

We searched for and selected our correction surface fit by evaluating the misfit

of the residuals between GInSAR and the validation cGPS time series as a function

of polynomial fit order complexities. We define the misfit to be the L2 norm of the

epoch-by-epoch differences between InSAR and LOS-projected cGPS time series for

each of the 23 cGPS validation stations (Section 2.3). From these results and those in

Figure 2.S5, we selected λ = 150 and Poly22 for the analysis described in this paper.

Figure 2.S4: CSBAS Connectivity Map

We implement a variation of the Small Baseline Subset algorithm (SBAS),

similar to Intermittent SBAS, which we called temporally Connected SBAS (CSBAS).

That is, unlike SBAS, we do not exclude pixels that exhibit a loss coherence but rather

only exclude pixels if there are no valid displacement estimates spanning any particular

epoch. This allows us to retain a higher density of data over regions with intermittent

surface cover while avoiding the estimation time series across periods for which there is

no observational constraint (Section 2.5).
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Figure 2.S5: Temporal Smoothing Parameter Selection.

We searched for and selected our temporal smoothing parameter λ by evaluating

the root-mean-square of the residuals between GInSAR and the 23 validation cGPS

time series (Section 2.3). The RMS values were computed from a GInSAR time series

using a second-order polynomial surface for interferogram correction (see Figure 2.S3)

and our CSBAS inversion method. From this analysis, we selected a λ value of 150,

which falls nears the region of highest curvature.

Figure 2.S6: Residual Time Series Variance

We assess the variance of the residuals between the tested referencing schemes

and 23 validation cGPS time series (Section 2.3). The InSAR and cGPS time series

are detrended using a robust least squares technique that iteratively reweights outliers

with a bisquare weighting function. We compute the variance of the residuals between

InSAR derived displacements and the validation cGPS displacements at each validation

location.

Figure 2.S7: Velocity Fit Uncertainty

Using the CSBAS technique, we estimate displacement time series for each viable

pixel. Using a robust least squares technique that iteratively reweights outliers with a

bisquare weighting function (‘robustfit’ in MATLAB), we estimate the velocity for each

pixel. We report the standard error associated with each velocity fit spatially. This
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map demonstrates the regions with the greatest magnitude velocities (i.e. agricultural

regions exhibiting subsidence) have the largest standard errors.

Figure 2.S8: Example GInSAR Corrections for Varying Numbers of cGPS Sta-

tions

We tested how the cGPS station density and configuration affected our GInSAR

correction. Using a representative interferogram with noise, we compute the RMS

of the residuals between the GInSAR corrected interferogram and validation cGPS

displacements for tens of thousands of cGPS configurations with varying numbers of

correction stations. Below are three examples of low RMS values for an input of 6, 16,

and 46 stations. Their RMS values are plotted as magenta circles in Figure 2.S11.

Figure 2.S9: RMS of GInSAR Corrections for Varying Numbers of cGPS Sta-

tions

Using a representative interferogram with noise, we compute the RMS of the

residuals between the GInSAR corrected interferogram and validation cGPS displace-

ments for tens of thousands of cGPS configurations with varying numbers of input

stations. For each number of allowable stations, we test all possible or up to 1000

randomly selected configurations.

Figure 2.S10: Correction Surface Convergence

Using the polynomial coefficients computed for each tested cGPS configuration
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for Figure 2.S11, we estimate the robust standard deviation of the correction surfaces

(second order polynomial). A lower standard deviation indicates similarity between the

correction surfaces. We test this for 13 randomly selected interferograms and found

a similar relationship between standard deviation and the number of cGPS stations

included.

Figure 2.S11: Non-temporally Smoothed Time Series

Using the locations shown in Figure 2.5, we plot the non-temporally smoothed

InSAR time series. This shows how the GInSAR method (red lines) reduce variability

in the time series compared to the alternative referencing schemes.
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Table 2.S1: Dates and perpendicular baselines for SAR data
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Figure 2.S1: Plot of the perpendicular baselines between acquisitions and the number
of interferometric pairs each time contributes to. Circle symbols indicate the acquisition
times with a perpendicular baseline using the November 8, 2014 acquisition as our master
image. Color values denote number of interferograms each time contributes to where
warmer colors (yellows, oranges, and reds) signify more pairs and cooler colors (blues)
denote relatively fewer pairs. Black lines indicate interferometric connection between
two acquisitions.
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Figure 2.S2: Maps of the scaling factor for the East, North, and Vertical components
of signal as seen by the Sentinel-1 satellites for track 144. The off-zenith and azimuth
angles for the line of sight look vector are given by θ and φ respectively.
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Figure 2.S3: Statistics of InSAR-cGPS time series residuals for different GInSAR poly-
nomial fitting functions and various values of temporal smoothing (λ) for CSBAS. Square
symbols indicate the median value of these norms and error bars show the interquartile
range. The X-axis shows results for different surface fits with complexity increasing to
the right (Poly00 corresponds to a zeroth order polynomial in latitude and longitude
while Poly 55 is a fifth order polynomial in each direction). Colors correspond to the
temporal smoothing value applied.
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Figure 2.S4: Connectivity Map showing the data density and pixels used for time series
construction. Pixels with color values indicate locations where there is no temporal gap
in data coverage. Color values show the number of interferometric pairs that were used
for time series construction at each pixel.
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Figure 2.S5: Root-mean-square of the residuals between GInSAR displacement time
series and LOS-projected position time series of the validation cGPS stations as a func-
tion of smoothing parameter λ.
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Figure 2.S6: Residual Maps at cGPS validation stations. Maps show the residual
variance between detrended InSAR and cGPS time series at validation cGPS station
locations (circle symbols) for the a) “Uncorrected,” b) “Pinned at ground” (at P560),
c) “Pinned at GPS” (at P560), and d) GInSAR results. Colors represent the residual
variance (mm2) with warm colors (reds and yellows) indicate poor agreement between
the two datasets and cool colors (blues and purples) suggest closer agreement.
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Figure 2.S7: Spatial map of the standard error associated to the linear velocity esti-
mation.
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Figure 2.S8: Maps of GInSAR correction using 6, 16, and 46 cGPS stations. The left
panels show the raw interferogram spanning the times March 2 – June 6, 2016. Symbols
indicate cGPS locations and displacement values. Circles correspond to the cGPS sta-
tions used in the correction and squares are the validation cGPS stations. The center
panels show the second order polynomial fit to the residuals between InSAR and cGPS.
Colors indicate residual values. The right panels show the corrected interferogram, sym-
bols same as left pane

64



Figure 2.S9: Plot of root-mean-square of residuals between validation cGPS and GIn-
SAR for different configurations of stations as a function of number of stations for inter-
ferogram 39 (spanning March 2 – June 6, 2016). Black dots are the RMS for different
cGPS configurations used to correct the interferogram. Dashed black line is the RMS
for when no correction applied. Red line is the median RMS for each number of stations.
Blue line is the minimum RMS per number of stations. Magenta circles are values of
RMS for the configurations using 6, 16, and 46 cGPS stations plotted in Figure 2.S10.
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Figure 2.S10: Plot of the robust standard deviations for correction surfaces (residual
models) as a function of number of cGPS stations used. Different colored lines correspond
to different interferograms tested (randomly selected).
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Figure 2.S11: Time series comparisons of the four tested referencing techniques and col-
located cGPS time series at stations ARM1, P560, and P530 with no temporal smoothing
applied. Same time series locations as Figure 2.5 in main text. ARM1 is one of the sta-
tions used in the correction for GInSAR and is located in a region of subsidence. P560
is used as the pinning location for “Pinned to Ground” and “Pinned to cGPS”. P530 is
a cGPS location independent from the pinning schemes and is used in the validation.
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Chapter 3

Characterization of Groundwater

Recharge and Flow in California’s

San Joaquin Valley From

InSAR-Observed Surface

Deformation

Abstract

Surface deformation in California’s Central Valley (CV) has long been linked

to changes in groundwater storage. Recent advances in remote sensing have enabled
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the mapping of CV deformation and associated changes in groundwater resources at

increasingly higher spatiotemporal resolution. Here, we use interferometric synthetic

aperture radar (InSAR) from the Sentinel-1 missions, augmented by continuous Global

Positioning System (cGPS) positioning, to characterize the surface deformation of the

San Joaquin Valley (SJV, southern two-thirds of the CV) for consecutive dry (2016)

and wet (2017) water years. We separate trends and seasonal oscillations in deformation

time series and interpret them in the context of surface and groundwater hydrology. We

find that subsidence rates in 2016 (mean -42.0 mm/yr; peak -345 mm/yr) are twice that

in 2017 (mean -20.4 mm/yr; peak -177 mm/yr), consistent with increased groundwater

pumping in 2016 to offset the loss of surface-water deliveries. Locations of greatest

subsidence migrated outwards from the valley axis in the wetter 2017 water year, possibly

reflecting a surplus of surface-water supplies in the lowest portions of the SJV. Patterns in

the amplitude of seasonal deformation and the timing of peak seasonal uplift reveal entry

points and potential pathways for groundwater recharge into the SJV and subsequent

groundwater flow within the aquifer. This study provides novel insight into the SJV

aquifer system that can be used to constrain groundwater-flow and subsidence models,

which has relevance to groundwater management in the context of California’s 2014

Sustainable Groundwater Management Act (SGMA).
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3.1 Introduction

California’s Central Valley (CV) is a major agricultural production center with

an economic output of tens of billions of dollars (USD) annually (Howitt et al., 2015).

Because agricultural water demand exceeds supply from precipitation and surface water

even in climatologically wet years (Faunt et al., 2016), groundwater is a key resource

for CV water users. Periods of prolonged and intense drought threaten economic and

agricultural production by limiting access to surface-water supplies, which motivates

increased reliance on groundwater (Hanson et al., 2012). This was particularly evident in

the semi-arid southern two-thirds of the CV (the San Joaquin Valley or SJV) during the

2012-2016 drought (Lund et al., 2018). Sustained dependency on groundwater resources,

such as occurs in the SJV, may jeopardize future groundwater availability if extraction

persistently exceeds aquifer recharge (Scanlon et al., 2012).

The hydrological system of SJV is diverse in terms of availability, storage, and

conveyance. During an average water year (WY; October 1 to September 30), the

SJV receives most of its precipitation between November and April (∼85%), with half

occurring between December and February (Williamson et al., 1989; Faunt , 2009). Ge-

ographically, this precipitation typically falls on the western slopes of the Sierra Nevada

as rain and snow, and much of that which does not directly run off is stored in sea-

sonal snowpack, soil moisture, and groundwater (Enzminger et al., 2019). Much of

the drainage from these sources of water storage funnels into streams and rivers, with

about 84% of the total unimpaired streamflow (surface-water runoff not regulated by
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dams, reservoirs, or conveyance systems) entering the SJV from January through June

(Williamson et al., 1989). Water is transported from north to south and from east to

west via conveyance systems such as the California Aqueduct and the Friant-Kern Canal

(Figure 3.1). Networks of canals and artificial waterways distribute surface water from

these primary diversions and natural streamflow throughout the valley for agricultural,

industrial, and urban use.

Inter-annual variation in surface-water availability, as well as within-year differ-

ences in the timing of natural (river) and imported (state and federal project) surface

water, plays an important role in SJV water use and groundwater recharge. In an av-

erage water year, surface water accounts for ∼60% of water demand with groundwater

supplementing the remaining ∼40% (Faunt et al., 2016). During dry or drought years,

more groundwater is typically used (some years accounting for as much as 70% of the

demand) due to reduced surface-water availability e.g. (Faunt et al., 2016). In the dry

WY2016, for example, total unimpaired and natural local inflows to the San Joaquin

Valley (San Joaquin and Tulare Lake basins) totaled 7,167 thousand acre-feet (TAF)

while state and federal projects imported 3,476 TAF. This is in contrast with wet years,

such as WY2017, where total natural inflows were 22,530 TAF and imports from state

and federal projects were 6,431 TAF (Public Policy Institute of California, 2019). Dur-

ing these wet years, surface-water use increases while groundwater use declines, with

excess surface water available for groundwater banking (Scanlon et al., 2016) and natu-

ral recharge (Faunt , 2009; Meixner et al., 2016). Generally, SJV natural inflows peak in

March, while project water imports peak months later in July at the height of surface-
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water irrigation (U.S. Bureau of Reclamation, 2020). Thus, both the dry and wet year

magnitudes of local and imported supplies, and differences in their timing, are expected

to be reflected in recharge dynamics. To better understand the resiliency of groundwater

reservoirs for future use, there is a great need for assessing how and where both natural

and artificial aquifer recharge occurs, whether via managed recharge, return flow from

irrigation, direct precipitation, or river runoff.

Directly observing the state of aquifer systems remains challenging because of

the sparsity of quality in-situ point measurements (both in time and space). However,

groundwater extraction and recharge induce Earth surface displacements that can be

observed using geodetic techniques. In sedimentary basins such as the SJV, surface dis-

placements are often attributed to the expansion or compaction of the aquifer system

in response to pore pressure variations (Poland and Davis , 1969). This poroelastic de-

formation is governed by the law of effective stress (Terzaghi , 1925), which is directly

related to groundwater levels (hydraulic head). Furthermore, poroelastic deformation

can be inelastic or elastic. Wherever the effective stress within the aquifer-system matrix

exceeds the preconsolidation stress, often taken to be the lowest previous level of hy-

draulic head, a new preferred grain realignment with reduced capacity for water storage

may result (Leake, 1990). For fine-grained deposits such as clay and silt, this consolida-

tion can lead to inelastic deformation, which is manifested as permanent land subsidence

(Leake, 1990). Changes in hydraulic head that do not result in irreversible realignment

of grains result in elastic deformation, which includes reversible land subsidence or uplift.

The sediment-filled trough that is the SJV aquifer system can be described as an
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interbedded mix of sand and gravel with finer-grained deposits of clay and silt (Page,

1986). Deposited as coalescing alluvial fans, there are generally thicker lenses of coarser

grained sediments at the valley margins and a higher clay content nearer the valley axis

(Page, 1986). Clay and silt deposits are particularly susceptible to inelastic deformation,

resulting in observed subsidence of as much as tens of centimeters annually in the SJV

e.g., (Faunt et al., 2016). While the link between recent land surface subsidence and

groundwater extraction in the SJV has been well documented and attributed to the

inelastic aquifer-system response to pumping (Farr and Zhen, 2014; Faunt et al., 2016;

Smith et al., 2017; Murray and Lohman, 2018; Ojha et al., 2018, 2019; Jeanne et al., 2019;

Chaussard and Farr , 2019), the relatively subtle surface uplift response related to the

recovery of local groundwater levels at sub-annual time scales has not been extensively

studied.

In 2014, California passed the Sustainable Groundwater Management Act

(SGMA) to protect its groundwater resources. To understand the evolution of groundwa-

ter resources under natural and human forcing, it is critical to characterize and monitor

the aquifer-system response to variable climatological regimes and with respect to an-

thropogenic management over short (< 1 year) and long (≥ 1 year) time periods. Here,

we leverage continuous Global Positioning System (cGPS) daily positions and interfer-

ometric synthetic aperture radar (InSAR) techniques (Neely et al., 2020) to evaluate

the time evolution of SJV surface deformation associated with changes in groundwater

levels across dry and wet water years. We present a new methodology for investigating

the elastic (reversible) deformation associated with the seasonal response of the aquifer
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system by analyzing both the magnitude and timing of peak seasonal surface uplift at

high spatial resolution (100 m). Interpreting our results in the context of relevant hy-

drological features and data, we provide insight into the movement of water through the

SJV aquifer system, with relevance to groundwater management.

3.2 Data and Methods

3.2.1 InSAR Displacements

Our study region spans the southern Central Valley from 34.4◦N to 37.9◦N. For

this analysis, synthetic aperture radar (SAR) scenes from the European Space Agency’s

Sentinel-1A/B mission (descending track 144; Figure 3.1) are merged along track to

construct 51 extra-long images spanning 1 April 2015 to 23 October 2017 (Table 3.S1).

Using the GMTSAR software package (Sandwell et al., 2011; Xu et al., 2017), we generate

a suite of 263 interferograms (difference in carrier signal phase between SAR images),

geometrically aligned to a primary reference image on 17 August 2016. For the purpose of

interferogram construction, a maximum perpendicular baseline of 250 m and a maximum

100-day separation is imposed between SAR acquisitions (Figure 3.S1; Table 3.S2). The

1 arc second digital elevation model (DEM) from the Shuttle Radar Topography Mission

(SRTM) (Farr et al., 2007) is used to remove the topographic phase contribution from

each interferogram. To remove observed burst discontinuities from misregistration, we

used the enhanced spectral diversity (ESD) algorithm (Prats-Iraola et al., 2012) available

in GMTSAR. Finally, interferograms are unwrapped using the Snaphu algorithm (Chen
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and Zebker , 2000) with pixel correlation of 0.1 and subsequently converted to line-of-

sight (LOS) displacements (∼100 m resolution).

3.2.2 InSAR Correction Using cGPS

Since InSAR estimates are affected by atmospheric, orbital, and processing er-

rors, we augment interferometric displacements with independent surface displacements

from 89 cGPS stations located within the study region (Figure 3.1; Table 3.S3). We

obtain daily time series of post-processed position data for these stations from the Na-

tional Science Foundation’s Geodesy Advancing Geosciences and EarthScope (GAGE)

facility (Herring et al., 2016), then a) correct for offsets from equipment and other

non-geophysical changes, b) smooth using a 6-day Gaussian filter to minimize high fre-

quency signals that are likely due to multipath and tropospheric effects (Borsa et al.,

2007), and c) project the three components of cGPS displacements into the SAR LOS

direction. For a given interferometric pair, the cGPS displacements spanning the dates

of the associated SAR images are computed. We take the difference between the cGPS

and InSAR displacements at each station location to create a set of residuals, to which

we fit a low-order polynominal surface (second order in longitude and fourth order in

latitude, empirically selected based on strategies presented in (Neely et al., 2020); Figure

3.S2). This surface is separately calculated for and subtracted from each interferogram

to correct long-wavelength error. This methodology (GPS-enhanced InSAR or GInSAR,

(Neely et al., 2020)) has the additional benefit of aligning interferometric pairs to the

absolute reference provided by the cGPS.
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3.2.3 InSAR Time Series Construction

To construct the deformation time series of the SJV study area from our set of

corrected interferograms, we implement a modified version of the Small Baseline Subset

(SBAS) algorithm (Berardino et al., 2002). Standard SBAS requires pixels to be coherent

in every interferogram, which is well suited for urban or rocky terrain where loss of

coherence between SAR scenes is minimal. To improve coverage over highly decorrelated

vegetated regions such as the agricultural fields in the SJV, we employ a newer algorithm

(temporally Connected SBAS, or CSBAS) that estimates displacement for all pixels for

which there is at least one valid displacement estimate spanning every interval of the time

series (Neely et al., 2020). We apply a temporal smoother to the least-squares CSBAS

estimation via a first-order Tikhonov regularization, with the weight of the smoothing

constraint λ = 150, to minimize large changes in displacement velocity often attributed

to the turbulent component of atmospheric noise (Schmidt and Bürgmann, 2003; Wang

et al., 2019). Validation of the CSBAS time series with an independent set of 28 cGPS

velocities and time series show good agreement (Table 3.S4).

To isolate the vertical component of displacement, we remove LOS-projected hor-

izontal motion from the Southern California Earthquake Center (SCEC) Community

Geodetic Model (CGM) (Sandwell et al., 2016). Inspection of the seasonal amplitudes

for cGPS vertical and horizontal components projected into LOS in this region show

that the horizontal amplitudes (median value 0.36 mm and 0.12 mm for East and North

respectively) are about an order of magnitude smaller than the vertical amplitudes (me-
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dian value 3.12 mm). Thus, we consider this approach to be valid and we project the

horizontal-corrected LOS residual into the vertical component of displacement by divid-

ing by the cosine of the radar incidence angle.

3.2.4 InSAR Time Series Modeling

To evaluate the annual seasonal response of surface deformation (hereafter re-

ferred to simply as “seasonal”), the displacement time series are modeled for each water

year at each CSBAS pixel as a linear trend and a single sinusoid described by

Y (t) = vt+ A cos (2π(t− T )) + Y0 (3.1)

where Y (t) is our observed surface displacement (mm), t is time in fractional years, v

is the linear rate of displacement (mm/yr), A is the seasonal amplitude (mm), T is the

time of maximum uplift (in fractional year, where T = 0 corresponds to October 1),

and Y0 is a constant shift in the model (mm). We solve equation 1 using least-squares

minimization and then map A and T across our study region to investigate spatial

patterns in the seasonal signal.

3.2.5 Spatiotemporal Evolution of Seasonal Uplift

The solution to equation 3.1, offers unique insights into the timing of seasonal

signals and how they vary across the SJV. For the purpose of this analysis, we assume

the peak uplift time T corresponds to the time of maximum instantaneous aquifer pore

pressure. By mapping T across the SJV, we are able to observe the spatial evolution of
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peak uplift time, and thus the temporal propagation of aquifer pressure. Additionally,

the spatial gradient of T indicates the directionality of the subsurface pressure front,

which can distinguish the geometry and location of focused groundwater recharge zones.

To estimate this gradient, we convert T (lat,lon) from fractional year into “day

of year” relative to the start of the water year (hereafter referred to as “phase” or “p”).

We then apply a 2.5 km radius median filter on the phase, p(lat,lon), to smooth over

smaller spatial scale features and capture the general behavior of phase progression. For

each water year, we take the two-dimensional numerical gradient of this filtered phase

P (lat,lon):

∇P =
∂P

∂E
ı̂+

∂P

∂N
̂ (3.2)

where ∂P
∂E

is the difference in the longitudinal (East) direction, and ∂P
∂N

is the difference in

the latitudinal (North) direction. We unit-normalize ∇P , giving a vector that indicates

the lateral direction of (peak) uplift over time. Following the same steps, we calculate

the local topographic gradient, ∇Ptopo, from the SRTM DEM (Farr et al., 2007) to deter-

mine the approximate direction of uninterrupted surface-water drainage. For shallower

groundwater systems in particular, the water table may represent a subdued replica

of topography where streams and rivers can provide locations for efficient groundwater

recharge or discharge. Thus, the consideration of the topographic gradients, along with

river traces, is important in the interpretation of the seasonal uplift timing progres-

sion. While recent land subsidence has modified the land surface elevation since SRTM

data collection, these effects are relatively small compared to the topographic slope and
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gradient differences are generally confined to the valley axis (Figure 3.S3).

3.2.6 Hydrological Data

While geodetic time series from cGPS and InSAR have expanded our under-

standing of the SJV aquifer system, they are best intrepreted together with hydrological

data. We use stream and river traces (average annual streamflow > 0.5 m3/s) from

the U.S. Geological Survey’s (USGS) Elevation Derivatives for National Applications

database and the outlines of the California Aqueduct and Friant-Kern Canal (provided

by the U.S. Bureau of Reclamation [USBR]) to relate natural and artificial surface-water

flow patterns to spatial features observed in the displacement data. In particular, we

compare the timing of peak seasonal uplift with the surface flow paths inferred from

the SRTM DEM (Farr et al., 2007) and watershed boundaries (hydrologic units code

level 8; HUC8) from USGS. Separately, we characterize water availability by hydrologic

region using summary statistics from the California Department of Water Resources

(California Department of Water Resources , 2021) and USBR and DWR summaries of

surface-water deliveries by water year (Lund et al., 2018). Though periodic ground-

water level measurements from DWR are temporally sparse, we qualitatively compare

relative changes in hydraulic head to seasonal surface displacements. Lastly, we infer

the role of surface runoff (occurring as streamflow) in our estimated seasonal uplift tim-

ing using area-normalized runoff data from USGS WaterWatch portal (U. S. Geological

Survey , 2019). The runoff information helps constrain our interpretation of the observed

deformation in the SJV.
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3.3 Results

3.3.1 Vertical Displacement Rates

The estimated vertical displacement rates (v in equation 3.1) between April 2015

and October 2017 are dominated by two areas of high subsidence (≥ 100 mm/yr) inside

the alluvial boundary of the SJV (Vt1 and Vt2 in Figure 3.S4). These subsidence regions

are well documented and geographically consistent with recent studies (Farr , 2018; Mur-

ray and Lohman, 2018; Ojha et al., 2019). We observe a maximum subsidence rate of

∼270 mm/yr within Vt2, similar to the 250 mm/yr maximum subsidence rate reported

by (Ojha et al., 2019) for January 2015 to April 2017. Much higher subsidence rates

were reported by (Farr , 2018) (∼400 mm/yr; May 2015 through May 2017) and (Mur-

ray and Lohman, 2018) (∼550 mm/yr; November 2014 through September 2017). The

observational time window and methodologies for estimating the vertical motion from

LOS play large roles in the differences between these reported rates. Further, we show

in a recent study (Neely et al., 2020) that interferogram referencing methodologies can

influence peak deformation rates, which may account for some portion of these observed

differences.

Importantly, subsidence rates in the SJV change throughout the year in response

to water demand (Levy et al., 2020). All four of these rate estimates include data across

dry and wet years. Because of this interannual variability, and to assess displacement

responses to hydrological endmembers (Figure 3.2), we partition our data into water

years and separately analyze the dry (WY2016; 1 October 2015 to 30 September 2016)
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and wet (WY2017; 1 October 2016 to 30 September 2017) water years. While the

absolute magnitude of surface displacements can be related to groundwater changes, for

this study we focus on comparing relative displacement changes between dry and wet

years.

WY2016 (regulatory “dry” year)

In WY2016, California received 104% of average precipitation, had an estimated

90% of average snowpack, and experienced 97% of average river runoff (California De-

partment of Water Resources , 2021), it also had minimal surface-water deliveries (0-5%

of requested) from the state and federal water projects and was preceded by 4 years of

extreme drought (Lund et al., 2018). Thus, we characterize WY2016 as a regulatory

“dry” year. High-subsidence regions in WY2016 (Vd1-2 in Figure 3.2) occur in the same

locations as those in our multiyear estimate (Figure 3.S4), but WY2016 subsidence rates

are greater, with the maximum exceeding 345 mm/yr. Inside the alluvial boundary of

the SJV, the surface subsided at an average rate of 42.0 mm/yr (Table 3.1). Some up-

lift is observed north of Vd1 though this is likely due to residual unwrapping errors not

corrected by our GPS correction (Xu et al., 2017). Outside of the SJV alluvial bound-

ary, the average rate of displacement was near zero. There is some modest uplift (as

much as 20 mm/yr) in the adjacent mountain ranges (Figure 3.S4), which has also been

observed using campaign and permanent GPS. It is attributed to the solid earth elas-

tic rebound from loss of groundwater and surface water incurred during the 2012-2016

drought (Borsa et al., 2014; Fu et al., 2015; Argus et al., 2017; Adusumilli et al., 2019).
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WY2017 (“wet” year)

In the wet WY2017, average precipitation within California was ∼164% of aver-

age, mountain snowpack was ∼163% of average, statewide river runoff was ∼217% of

average (California Department of Water Resources , 2021), and 85-100% surface-water

delivery requests were met (Lund et al., 2018). While the regions of greatest subsidence

in WY2017 (Vw1-2 in Figure 3.2) coincide with those of WY2016, the areal extent of

subsidence and its peak magnitude are sharply reduced in the wet year. The peak sub-

sidence rate in WY2017 is 177 mm/yr and occurs ∼25 km northeastward of the peak

subsidence location in WY2016. The average vertical displacement rate inside the al-

luvial boundary of the SJV was -20.4 mm/yr, which was less than half the subsidence

rate in WY2016. The most striking feature in the wet year displacement rate was the

substantial uplift (up to 100 mm/yr; mean value of 26.4 mm/yr) across the Westlands

Water District (magenta outline in Figure 3.2). In addition to this large area of uplift,

we observe several localized uplift features in the southern SJV (Vw3 in Figure 3.2).

In summary, a comparison of vertical displacement rates between the dry WY2016

and the wet WY2017 shows that even with substantial increases in precipitation, runoff,

and surface-water allocations in WY2017, subsidence persisted in the two regions of

greatest subsidence in WY2016. These locations feature an abundance of underlying

clay and silt layers that are highly susceptible to compaction (Williamson et al., 1989;

Faunt , 2009). Conversely, in regions with coarser-grained deposits, such as the glacial

fluvial fans underlying Fresno (Weissmann et al., 2005; Faunt et al., 2016), observed
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land subsidence is comparably subdued.

3.3.2 Amplitude of Seasonal Surface Deformation

Seasonal amplitudes (A in equation 3.1) of the vertical displacement time series

are an indicator of change in groundwater storage within each water year. Our under-

lying assumption is that seasonal surface deformation within the alluvial boundary of

the SJV is dominated by poroelastic deformation of the aquifer system, which is driven

by cyclical changes in groundwater storage (Murray and Lohman, 2018). Small seasonal

amplitude values typically indicate that groundwater storage changes are non-cyclic on

an annual period. Examples include, but not limited to, regions with multiple inter-

vals of groundwater extraction throughout the year or negligible seasonal groundwater

recharge. Large seasonal amplitudes are consistent with significant seasonal groundwater

recharge and/or highly variable pumping between seasons.

For the purpose of assigning significance to amplitude values, we bin seasonal

amplitudes for each water year into three categories: low (A < 10 mm), moderate (10

mm ≤ A < 20 mm), and high (A ≥ 20 mm). We note that compared to previous

InSAR studies that also examined seasonal amplitude (e.g., (Colesanti et al., 2003) over

portions of the Santa Clara Valley and (Bell et al., 2008) over the Las Vegas Valley),

our low threshold is on the high end of their maximum amplitude of 10 mm.
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WY2016 Amplitudes

For the dry WY2016, seasonal amplitudes reach 35 mm, with an average ampli-

tude of 6.7 mm inside the SJV alluvial boundary (Table 3.1) and an average of 4.3 mm

outside the boundary. High-amplitude regions are exclusively located within the SJV

sedimentary basin, accounting for 2.6% of the study area. Moderate- and low -amplitude

regions accounted for 17.2% and 80.2% of the study area, respectively. The spatial pat-

tern of estimated seasonal amplitudes (Figure 3.3a) is similar to that of (Murray and

Lohman, 2018), although their magnitudes are smaller. High seasonal amplitudes are

generally coincident with the high subsidence rates in WY2016 (Figure 3.S5a); how-

ever, the location of the highest seasonal amplitude value (Ad5) is offset ∼30km to the

southeast of the peak subsidence rate.

High- to moderate-amplitude areas are typically located along the course of rivers

(perennial or ephemeral) originating in the Sierra Nevada to the east or the Coast Ranges

to the west (Figure 3.3a). On the eastern side of the SJV, these areas are associated with

(from south to north) Caliente Creek and other ephemeral streams from the Tehachapi

Mountains, Deer Creek and the Tule River, the Kaweah River, and the termini of several

smaller outflows (Fresno River, Chowchilla River, and Mariposa Creek) (Figure 3.1).

On the western side of the SJV, the zone of high seasonal amplitude is located north

of former Tulare Lake and southwest of the Fresno Slough, adjacent to the Los Gatos

Creek. Not all rivers are associated with areas of high-amplitude seasonal displacements:

most notably the Kern, Kings, and San Joaquin Rivers. These perennial rivers are host
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to the three largest reservoirs in the southern Sierra Nevada (Isabella, Pine Flat, and

Millerton) and heavily managed to support SJV irrigation in both wet and dry years. As

a result, we expect groundwater recharge along these rivers to occur more continuously

throughout the year, which would act to dampen or eliminate the seasonal signal.

WY2017 Amplitudes

Similar to WY2016, WY2017 also exhibits seasonal amplitudes of up to 35 mm,

with the high-amplitude areas located exclusively within the alluvial boundary and ad-

jacent to rivers and creeks primarily sourced in the Sierra Nevada (Figure 3.3b). High-,

moderate-, and low -amplitude pixels account for 2.6%, 16.8%, and 80.6% of the study

area within the SJV, respectively (Table 3.1). We observed average amplitudes of 7.1

mm and 6.6 mm inside and outside of the SJV, respectively. We identified six regions of

high seasonal amplitude; the largest magnitude (Aw3) is located at the terminus of the

Tule River, bordering the boundary of the former Tulare Lake. Spanning 10s of km, Aw3

is located just west of WY2017 peak subsidence and east of the uplift of the Westlands

Water District, where we observe relatively little secular deformation (Figure 3.S5b). In

contrast to WY2016, many of the high to moderate seasonal amplitude regions (e.g.,

Aw1, Aw3-6) are not coincident with strong subsidence rates (Figure 3.S5b).

Comparing the dry and wet years, we observed an increase in mean seasonal

amplitude from 5.0 mm (WY2016, dry) to 6.7 mm (WY2017, wet) across the entire

study area. Within the SJV itself, seasonal amplitude statistics are similar for both

water years (Table 3.1), although there are differences in the spatial patterns of sea-
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sonal amplitudes and associated uncertainties (Figure 3.S6). Specifically, in WY2017 we

observe reductions in amplitude along the Kaweah River, Tule River, Deer Creek, and

intervening regions relative to WY2016. Conversely, we observe an increase in seasonal

amplitude near the former Tulare Lake in WY2017 at the confluence of these water-

courses. Interestingly, the entire Westlands Water District exhibited moderate to high

seasonal amplitude during the dry year but only the southeast portion of this region

experienced appreciable seasonality during the wet year. However, for all the changes

in the spatial pattern, more than half of the local maxima in amplitude are common

to both years (Ad1-2 to Aw1-2 and Ad4-6 to Aw4-6) despite differences in surface-water

availability.

3.3.3 Timing (Phase) of Seasonal Surface Deformation

In addition to amplitude, the sinusoidal term in our model provides the tempo-

ral phase shift (T in equation 3.1) associated with seasonal surface displacements. In

the SJV, these surface displacements are controlled by the pore-pressure response to

changes in hydraulic head (Poland and Davis , 1969). We interpret peak subsidence to

correspond to annual minima in local groundwater storage and peak uplift to correspond

to annual maxima in local groundwater storage (Leake, 1990). In this study, we focus

on groundwater storage maxima and use phase timing to estimate when the maximum

seasonal uplift occurs for each interferometric pixel. We map the peak seasonal uplift in

terms of time of year across the SJV (Figure 3.4) to investigate spatiotemporal patterns

in seasonal groundwater storage. While we highlight higher confidence pixels (σ ≤ 31
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days) in Figures 3.4-3.5, we consider all pixels in our analysis because of the observed

spatial coherence in timing.

WY2016 Peak Seasonal Uplift Timing

During WY2016, we observe spatially continuous patterns of uplift timing in the

SJV that indicate migration of annual groundwater storage peaks across the valley. In

Figure 3.4a, we identify uplift originating in January (pink) to early March (red) along

the San Joaquin River (Pd2), the Kaweah River (Pd4), the southern end of the Friant-

Kern Canal (Pd8), the northern section of the agricultural fields south of Bakersfield

(Pd6), and adjacent to the California Aqueduct along the western edge of the SJV north

of the former Tulare Lake (Pd3). From these locations, peak seasonal uplift radiates

outward (e.g., Figure 3.5a), with peak timing extending through July (yellow). Regions

with uplift outside of this range (October to December and August to September) occur

where there is a) less intense agriculture, b) coarse-grained glaciated fluvial fan deposits

(e.g., near Fresno), and/or c) within the former Tulare Lake bed. As a whole, we observe

a somewhat trimodal distribution of uplift timing across the SJV, with peaks around

April, late July, and, to a lesser extent, late October with the mode of peak uplift

occurring in late March (Figure 3.6).

WY2017 Peak Seasonal Uplift Timing

In WY2017, spatially continuous patterns of uplift timing are also observed, yet

differ from those described for WY2016. We observe fewer locations of winter (January
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to early March) peaks in uplift during the wet year than in the dry year (Figure 3.4).

However, these regions are typically common to those in WY2016 and include Pw2

along the San Joaquin River (compare to Pd2 although with higher uncertainty), Pw4

along the Kaweah River (compare to Pd4), and Pw6 in the agricultural fields south of

Bakersfield (compare to Pd6). In some cases, these peaks visually correspond to regions

with high seasonal amplitudes (Figure 3.S8b). An exception being the most notable high

amplitude feature, Aw3, which coincides with a summer uplift (August) and is concurrent

with the final stages of the river runoff sequence (Figure 3.6). Radiating outward and

typically downslope from these winter uplift maxima, peak seasonal uplift in WY2017

occurs progressively later into the year towards the interior of the valley, lasting through

September (Figures 3.4b and 3.5b). Compared to WY2016, the summer and autumn

uplift peaks for the SJV as a whole are delayed by about a month in WY2017 (Figure 3.6).

In a year such as WY2017, with elevated precipitation and prolonged associated runoff,

we can observe peak seasonal uplift timing patterns that delineate specific surface-water

features at great detail (e.g., the Kern River west of Bakersfield; Figure 3.S9).

For both WY2016 and WY2017, we observe winter (January to early March) peak

uplift at discrete locations on the eastern side of the valley. These uplift features typically

correspond to areas with high seasonal amplitudes and are directly adjacent to perennial

rivers sourced at high elevations in the Sierra Nevada which nevertheless experience high

seasonal variability in flow. However, seasonal displacements in the interior of the SJV

during the wet year do not achieve peak seasonal uplift until September (Figure 3.6).

This is a stark difference with the dry year, where a majority of the valley experiences
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peak uplift in early spring (April) or mid-summer (July).

3.3.4 Phase Progression vs. Surface-Water Flow

As detailed above (Section 3.3.3), we assume that the time of peak uplift at any

given location indicates the time of maximum local groundwater storage. With this

interpretation, we postulate that the spatial gradient peak seasonal uplift can indicate

either the timing of maximum local vertical infiltration of surface water into the aquifer,

the lateral flow of groundwater in response to recharge and/or redistribution resulting

from changes in hydraulic gradients, or a combination of the two processes. We examine

the horizontal progression of peak uplift for each year and compare it with the direction

of uninterrupted surface-water flow derived from topography in order to assess these

potential mechanisms for generating observed uplift timing patterns.

Using the unit-normalized ∇Ptopo (Section 3.2.5), the azimuthal distribution and

spatial patterns of surface-water flow derived from topography indicate a bimodal distri-

bution of flow in the SJV (Figure 3.7a), consistent with water entering the valley from

the northeast near the Sierra Nevada and from the southwest near the Coast Ranges.

Surface-water flow patterns show convergence at topographic lows (rivers and streams)

and divergence at topographic highs (coincident with watershed boundaries). These sur-

face flow directions provide context for the lateral migration of peak seasonal uplift over

our study period. That is, a difference between the direction of uplift progression and

the topographic gradient suggests that the patterns of uplift timing are not controlled by

surface-water drainage according to elevation. Conversely, where the direction of uplift
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progression aligns with the topographic gradient, either vertical infiltration of surface

water (moving downstream over time as the aquifer fills) or the downslope migration of

groundwater can be at work.

We find that the azimuthal directions of uplift migration in both the dry and wet

water years (Figure 3.7b,c) are more uniformly distributed than the pattern of surface

runoff, but are still preferentially oriented along the northeast-southwest axis observed in

the pattern of the topographic gradient (Figure 3.7a). While the seasonal uplift timing

is broadly different between WY2016 and WY2017, the direction of the progression

near noted regions of winter uplift is fairly consistent for both years (Figure 3.S10).

For example, the region focused on Pd4 in WY2016 has peak uplift timing ranging

from January to June (Figure 3.5a), whereas in WY2017 (Pw4), the phase timing spans

January to August (Figure 3.5b). However, despite this difference in uplift timing, the

horizontal direction of uplift progression in both water years is similar (Figures 3.5a,b

and 3.7e,f).

3.4 Discussion

3.4.1 Implications for Groundwater Recharge and Flow within

the SJV

In the SJV, vertical surface displacements are often attributable to changes in

hydraulic head (Smith et al., 2017). A decomposition of these displacement time series
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into annual rates and seasonal oscillations offers unique insight into the spatiotemporal

variability of groundwater resources in this region. While displacement trends can in-

form us of groundwater sustainability and the relative balance of groundwater recharge

and extraction, the seasonal amplitudes and timing of surface displacements are sugges-

tive of how groundwater moves through the aquifer system. Comparison of deformation

observed in the SJV between dry and wet water years further illustrates the complexities

and dynamic behavior of groundwater flow on short time scales. However, surface dis-

placements can be interpreted in several ways. For example, a displacement time series

reflecting only seasonal drawdowns from pumping (or conversely reflecting only seasonal

recharge) separated by periods of no change may yield a similar amplitude to that from

a displacement time series consisting of both seasonal pumping and recharge (Bell et al.,

2008). Further, pumping and recharge can alter hydraulic head gradients on seasonal

time scales, which can change the direction of groundwater flow (Fetter , 2018). Here,

we use “recharge” to denote local groundwater storage increases in the aquifer system

that result from either or both external sources (e.g., infiltration of water from the land

surface to the aquifer system) and internal sources (e.g., redistribution of groundwater

within the aquifer system to areas impacted by groundwater extraction).

Seasonal surface displacements are best understood in the context of local and

regional hydrology. Conceptually, low seasonal amplitude values during a dry year sug-

gests the region was subjected to either negligible groundwater extraction or that the

extraction is non-cyclic on an annual period. Conversely, high amplitude values in a

dry year most likely result from strong seasonal groundwater extraction. Low ampli-
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tude values in a wet year, similar to a dry year, suggests that there was either negligible

groundwater extraction/recharge or that any extraction/recharge is non-cyclic on an an-

nual period. High amplitude values in a wet year indicate strong seasonal groundwater

extraction and/or seasonal recharge. This includes the case where there is both strong

seasonal and nonseasonal groundwater extraction and/or recharge. Thus, the inclusion

of in-situ data and ancillary information is needed to constrain possible interpretations

of the amplitude variations.

WY2016 was a regulatory dry year, having a total uninterrupted runoff from the

Sierra Nevada into the Tulare Lake Region (TLR) of the SJV of ∼2.4 km3 (65% of av-

erage), with peak runoff in May (∼0.6 km3) and below-average river flow for all months

(California Department of Water Resources , 2021). Further, water deliveries from re-

gional, state, and federal water projects were minimal (0-5% of requested for agricultural

contractors south of the Sacramento-San Joaquin Delta) (Lund et al., 2018). In general,

a reduction in available surface water often leads to an increased reliance on groundwa-

ter in order to meet the water demand of agricultural production (Hanson et al., 2012;

Howitt et al., 2015). The increased pumping in WY2016, and in the preceding drought

years, reduced pore-pressure in the aquifer system and subsequently induced high sub-

sidence rates across the SJV (e.g., Murray & Lohman, 2018; Ojha et al., 2019; Figure

3.2a). WY2016 vertical land surface displacements also exhibited strong seasonal am-

plitudes (∼35 mm; Figure 3.3a), despite the minimal surface water available for natural

or artificial recharge. One interpretation is that seasonal groundwater pumping was a

dominant driver of observed seasonal displacements, consistent with results from previ-
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ous studies (Chaussard and Farr , 2019). Groundwater-level observations show increases

that are coincident with the timing of uplift (Figure 3.5c). These relative increases may

be the result of a comparatively rapid pressure response related to groundwater pump-

ing operations, a slower lateral redistribution of water within the aquifer system due to

changes in hydraulic head gradients, or a combination of the two.

In contrast to WY2016, WY2017 was an exceptionally wet year. The SJV expe-

rienced above average precipitation (∼171% of average in the TLR) and river runoff into

the TLR exceeded 8.9 km3 (∼223% of average; peak runoff in June with ∼1.8 km3) with

above-average river flow from January to September. Contractual surface-water deliver-

ies from the State Water Project and the Central Valley Project were 85-100% fulfilled

statewide (Lund et al., 2018). Even when surface water is broadly available, ground-

water is often still extracted to meet agricultural demand late in the growing season or

in regions with minimal access to surface-water supplies (Faunt et al., 2016). Relative

to WY2016, subsidence in WY2017 was greatly diminished, with only a few regions of

high (>100 mm/yr) subsidence persisting across both years (Figure 3.2). Part of this

wet year subsidence may be explained by delayed groundwater drainage from relatively

thick fine-grained (e.g., clays and silts) sedimentary units (aquitards or interbeds) in

the aquifer system (Smith et al., 2017; Ojha et al., 2019). Although large precipitation

and runoff events occurred within several months of the start of WY2017, compaction of

clay layers at depth (due to the previous period of low hydraulic heads) likely continued

until the surface-water influx (recharge) started raising water levels in deeper aquifers.

While the deeper confined aquifer is typically conceptualized as distinct from the shal-
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low “semi-confined” aquifer, groundwater wells that are perforated in both aquifers can

increase the exchange of groundwater between the aquifers through intraborehole flow,

promoting recharge to the deeper confined aquifer (Faunt , 2009).

Some displacement patterns can be related to specific water management dis-

tricts, underscoring this dataset’s utility for informing groundwater policy. Strikingly,

the Westlands Water District exhibits elevated uplift rates in WY2017 (as much as 100

mm/yr with a mean value of 26.4 mm/yr and standard deviation of 29.5 mm/yr; Figure

3.2b). Historically, this region has experienced periods of uplift, with as much as 61

mm of apparent rebound observed in 1975 (Ireland et al., 1984). Available extensometer

data, which measures compaction or expansion of the subsurface material over a specific

depth interval, revealed ∼40 mm of expansion (from the near land surface to ∼307 m

depth) in this region during WY2017 indicating that some of the observed uplift can

be attributed to recharge and/or regional redistribution of groundwater in the deeper

aquifer system. The remaining uplift maybe explained by additional expansion below

the depth of the extensometer, a swelling of clays at the surface, or the result of a

perched water table from water pooling near the surface due to poor natural drainage

(San Joaquin Valley Drainage Program, 1990). Finally, the heterogeneity of the aquifer

system material may result in a combination of poor drainage and local recharge that

explains the pronounced but spatially localized uplift observed at several locations across

the valley (Vw3; Figure 3.2b).

WY2017 also exhibited significant seasonal amplitudes ( as much as ∼35 mm;

Figure 3.3b). The largest amplitude area (Aw3) is associated with summer uplift and
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occurs near the confluence of the Kaweah and Tule Rivers (Figure 3.S5b). This feature is

absent in the dry WY2016, but there are higher amplitude-value regions farther upstream

not observed in WY2017 (compare Aw3 with Ad3). In a wet year with increased water

deliveries and elevated uninterrupted streamflow, runoff originating in the Sierra Nevada

commingled with canal water imports may travel the lengths of these rivers and directly

recharge the central region of the SJV near the former Tulare Lake in much higher

volumes than is possible in dry years. The change in uplift timing between the dry and

wet years near the terminus of the Kern River (Figure 3.S9) may support this hypothesis,

although we note that this is a region with relatively large timing uncertainties. In

WY2016, there is no discernible trace of the river in the uplift timing map (Figure 3.S9b).

However, in WY2017, there is a clear indication of the river trace and recharge reservoirs

defined by winter uplift (Figure 3.S9c). Runoff was relatively low during WY2016,

followed by a sharp increase around January 2017 (Figure 3.6; waterwatch.usgs.gov).

This general runoff history, taken with our seasonal uplift timing estimates, may indicate

when and where water is moving vertically into the aquifer at locations of high sediment

porosity and permeability (i.e., likely higher hydraulic conductivity of coarse-grained

sediments). Lateral groundwater flow from recharge areas of high hydraulic head near

rivers to areas of lower hydraulic head could explain the increases in groundwater level

and surface uplift observed in this region. We interpret the timing of seasonal uplift

(Figure 3.4) to reveal the spatiotemporal evolution of this flow for a given water year.

As stated previously, there are a number of regions common to both the dry

and wet water years that exhibit winter (January to early March) uplift (e.g., Pd2 vs.
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Pw2; Pd4 vs Pw4; Pd6 vs Pw6). Taking the feature originating off of the Kaweah River

(Pd4 in Figure 3.4a; Pw4 in Figure 3.4b) as an example, we observe that the onset

of uplift and the ensuing lateral progression of uplift are consistent between wet and

dry years. While the topographic slope trends from the northeast to the southwest in

this region, uplift in both years does not simply migrate along this gradient (Figure

3.5a,b), as would be expected if groundwater recharge were initiating along the SJV

margin and progressing from high to low elevations through the aquifer under unstressed

conditions (Williamson et al., 1989). Instead, we find the progression of surface uplift

ranges across all azimuths and often crosses surface watershed boundaries indicated

by topographic gradients, which implies that hydraulic head gradients must deviate

substantially from uninterrupted surface flow gradients and likely are modulated by

groundwater withdrawals (Williamson et al., 1989). While a hypothetical displacement

time series resulting from only seasonal groundwater extraction can generate modeled

(equation 1) uplift (as the model assumes equal magnitudes for peak subsidence and

uplift amplitudes), the relative increase in spring hydraulic head for both dry and wet

years (e.g., Figure 3.5c-d) also supports the concept that the modeled uplift is responding

to local increases in groundwater storage. Additionally, we do not observe symmetrical

phase progression on either side of the Kaweah River. This indicates that the hydraulic

head gradients and/or hydraulic conductivity within the aquifer system can vary over

spatial scales as short as several kilometers, consistent with a high degree of heterogeneity

in the aquifer system.

Attribution of these winter uplift features in WY2017 to recharge from rivers and
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streams sourced in the Sierra Nevada is also supported by recent studies of stable isotopes

of water. As water vapor travels from the warmer coast towards cooler high elevations of

the Sierra Nevada, the heavier isotopes precipitate out first, leaving relatively depleted

concentrations of the heavier stable isotopes (for example δ18O in the water molecule)

in precipitation that falls farther inland, often referred to as the “continental effect”

(Ingraham and Taylor , 1991). Water with a relatively lighter isotopic signature (depleted

in the heavier isotopes) is then channeled and transported into the SJV by Sierra-sourced

rivers. (Visser et al., 2018) found plumes of depleted δ18O concentrations in groundwater

samples originating near the Kings, Kaweah, Tule, and Kern rivers (their Figure 4b),

emphasizing the role that these rivers play in the recharge of the aquifer system. In fact,

all winter uplift features on the eastern side of the valley (e.g., Pw2, Pw4, and Pw6) are

associated with lower δ18O concentrations. While we do not observe a similar, distinct

winter uplift feature along the Kings River, the region of lowest δ18O content in the

(Visser et al., 2018) study, this could be due to the perennial nature of the Kings (i.e.,

recharge occurring with more regularity rather than just seasonally) and that the coarser-

grain material underlying the region is less susceptible to high amplitude deformation

related to changes in pore pressure. The agreement between these two independent

datasets underscores the potential utility of these new observations of uplift timing and

evolution as a tool for understanding groundwater recharge and flow.

101



3.4.2 Limitations of this study and implications for other

aquifer systems

This study investigates the use of surface displacement time series and their

seasonal components for identifying and characterizing potential regions of groundwater

recharge and flow in the SJV. Our approach can be applied to interferometric time series

over other aquifer systems, with the caveat that any such studies consider the simplifying

assumptions we have made about the SJV aquifer.

First of all, our analysis does not relate surface displacement to absolute changes

in groundwater volumes. Rather, we use surface displacement estimates as a proxy for

relative groundwater storage changes, where we assume that displacements are propor-

tional to variations in pore pressure and are governed by the characteristics (e.g., com-

pressibility, thickness, confinement) of the aquifer system. To estimate actual ground-

water recharge volumes and/or flow rates would require explicitly characterizing aquifer

structure and properties, which we do not do.

Secondly, we assume that the San Joaquin Valley aquifer system is spatially (ver-

tically and horizontally) and temporally homogeneous, even though aquifer heterogeneity

has been extensively documented (Faunt et al., 2010). As a result, a given change in

groundwater volume may not translate to the same magnitude of surface displacement

at different locations in the valley and vice versa. This is why we do not focus on the

relative amplitudes of seasonal displacement changes betwen locations, but instead fo-

cus on the timing and location of peak uplift, which we interpret in the context of the
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spatiotemporal evolution of groundwater flow.

Additionally, while we observe seasonal uplift occurring along river channels

where streamflow from the Sierra Nevada provides a potential source of groundwater

recharge, there are river-adjacent locations without measurable seasonal surface eleva-

tion change. An example is the city of Fresno, which is underlain by a coarse-grained

glacial fluvial fan deposit (Weissmann et al., 2005) that would be less compressible

than finer grained sediments found elsewhere in the valley. Other notable examples are

the large perennial Kings River and San Joaquin River systems, which are extensively

managed to provide year-round water flow. These rivers may provide nearly continuous

recharge to adjacent aquifers, which would limit seasonal surface deformation.

Further, interpretations may be improved with the inclusion of mass change ob-

servations. The use of freely available satellite gravimetry from the Gravity Recovery and

Climate Experiment (GRACE) and/or elastic loading estimates derived from GPS have

proven effective at determining regional estimates of terrestrial water storage changes

(Famiglietti et al., 2011; Borsa et al., 2014; Argus et al., 2017; Adusumilli et al., 2019;

Lau et al., 2020). The addition of higher spatial resolution surface displacements from

InSAR to these estimates may be helpful for constraining the areal extent of mass change

concentrations and in turn help supplement water level observations in data limited re-

gions (Castellazzi et al., 2016). Results from this study further highlight the potential

of synergetic use between these datasets.

Lastly, while this study showed success in identifying potential regions of recharge

over an aquifer composed of unconsolidated sediments, we might not expect our approach

103



to be as relevant to karst aquifer systems where deformation related to fluid-pressure

changes is strongly dependent on the orientation and size of pre-existing rock fractures

(Serpelloni et al., 2018; Silverii et al., 2019).

3.4.3 Groundwater Management

With the passage of the Sustainable Groundwater Management Act (SGMA),

the State of California established a framework to protect against the exploitation and

degradation of its groundwater resources. Critical to this initiative was the designation

of “groundwater sustainability agencies” (GSAs; see Figure 3.7d-f). A GSA is estab-

lished by a single agency or a combination of local agencies (Water Code §10723.6) and

is tasked to develop, implement, and enforce a basin’s groundwater sustainability plan

in accordance with SGMA (Water Code §10733.4). As such, their boundaries often coin-

cide with existing water management entities, which were typically designed around the

availability and flow of surface-water as well as urban development. At agency, regional,

and state levels, new or independent data that have the potential to constrain groundwa-

ter flow models can lead to an improved understanding of the interconnectedness of the

aquifer systems. This would aid monitoring and protection of groundwater resources

efforts by informing how existing GSAs can improve their coordination in achieving

sustainability goals.

Here, we offer a synoptic view of seasonal surface displacements from InSAR

and cGPS over the southern San Joaquin Valley at policy relevant scales. Seasonal

displacement amplitude, uplift timing, and lateral progression of timing demonstrate
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the complexities of deformation associated with joint surface-water and groundwater

hydrological processes in the SJV. Our results highlight where groundwater-driven de-

formation deviates from natural surface-driven processes. We infer these differences to

be preferential pathways for annually averaged groundwater flow. While streams and

canals define surface-water networks for GSAs, these inferred pathways suggest potential

subsurface interconnectivity (Figure 3.7e,f). Novel information such as this may help

identify strategies for GSA coordination that maximize the utility of groundwater re-

sources shared between GSAs. The striking differences in the uplift timing between a dry

and wet year display the changing dynamics of the SJV aquifer system under different

water availability scenarios at relatively short timescales. Further analysis comparing

other water years with a range of hydrological conditions may establish a framework that

groundwater managers and users can use to assess and perhaps anticipate the movement

and availability of groundwater early in the water year and in time to inform critical

planning decisions. These decisions may include, but are not limited to, crop selection,

diversions for active conjunctive water use, and monitoring prioritization.

3.5 Conclusions

Leveraging the high spatial resolution of InSAR with the greater accuracy and

temporal resolution of cGPS provides detailed insight into regional surface displace-

ments. We estimated the annual rate and seasonal behavior of land surface elevation

over the southern SJV for both a regulatory dry (WY2016) and wet (WY2017) water
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year using GPS-enhanced InSAR. We find that subsidence in the valley was greatly di-

minished in WY2017 compared to WY2016, consistent with a reduction in groundwater

withdrawals in the presence of increased surface-water availability. Our characterization

of the seasonal deformation reveals coherent patterns in amplitude and phase (peak up-

lift timing) across the SJV. While the peak seasonal amplitude was ∼35 mm for both

years, regions of high amplitude in WY2017 are typically located near the confluence

of rivers and downstream of their WY2016 counterparts. From the seasonal phase, we

find that relative uplift generally occurs in the late winter to spring (March to May) for

the dry year (WY2016) and during the summer (July to September) for the wet year

(WY2017), coincident with waning river runoff volumes. We identified several regions of

winter uplift common to both years which are adjacent to rivers with headwaters in the

high Sierra Nevada. These regions are consistent with recent isotope studies indicating

zones of possible recharge. The progression of this seasonal uplift across the valley of-

ten deviates from the topographic gradient, which suggests that the displacement signal

is controlled by subsurface processes. Relative maxima in groundwater levels from well

measurements (where available) are generally coincident with the timing of peak seasonal

uplift, further indicating that we are able to resolve the pore-fluid pressure response from

changes in pumping activities and/or a lateral redistribution of water (groundwater flow)

in the SJV aquifer system. These analyses and interpretations highlight the complexi-

ties of surface deformation related to changes in surface-water availability, groundwater

resources, and the conjunctive water use.
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Figure 3.1: Topographic map of study region in the San Joaquin Valley (elevation
data from the Satellite Radar Topography Mission). Inset (bottom right) shows the
study region over California with the Central Valley (yellow). Synthetic aperture radar
(SAR) data used is provided by the Sentinel-1A/B missions, descending track 144 (red
outline). A subset of continuous Global Positioning System (cGPS) station locations in
the Geodesy Advancing Geosciences and EarthScope (GAGE) network (gray squares)
are used to correct and reference each interferogram. We note key hydrological fea-
tures such as monitoring well locations with data spanning April 2015 to October 2017
(black dots), the alluvial boundary of the valley floor (black outline), the former Tulare
Lake (blue outline), rivers entering the valley (light blue lines), the Friant-Kern Canal
(dashed yellow line), the California Aqueduct (dashed pink line), and hydrologic regions
as designated by the Department of Water Resources (DWR) (purple outlines)
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Figure 3.2: Vertical displacement rate maps (mm/yr) over the San Joaquin Valley
study region for (a) WY2016 (1 October 2015 to 30 September 2016) and (b) WY2017
(1 October 2016 to 30 September 2017). Regions with vertical displacement rates ≤ -100
mm/yr (indicating subsidence greater than or equal to 100 mm/yr; dashed black contour)
are labeled Vd1-3, velocity for dry WY2016, and Vw1-2, velocity for wet WY2017. The
Westlands Water District (magenta outline) exhibits relatively strong uplift in WY2017.
Other smaller regions of uplift in WY2017 are noted as Vw3. The city center of Fresno,
CA, is marked by a red-orange circle. We note rivers entering the valley (light blue
lines), hydrologic regions (purple outlines), the Tulare Lake (blue outline), the California
Aqueduct (dashed pink line), and the Friant-Kern Canal (dashed yellow line).
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Figure 3.3: Seasonal amplitude maps (mm) over the San Joaquin Valley study region
for (a) WY2016 (1 October 2015 to 30 September 2016) and (b) WY2017 (1 October
2016 to 30 September 2017). Regions of high-amplitude (≥ 20 mm; white contours) are
labeled Ad1-7 (amplitude for dry WY2016), and Aw1-6 (amplitude for wet WY2017).
We note rivers entering the valley (light blue lines), hydrologic regions (purple outlines),
the Tulare Lake (blue outline), the California Aqueduct (dashed pink line), and the
Friant-Kern Canal (dashed yellow line).
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Figure 3.4: Seasonal phase maps (time of year) over the San Joaquin Valley study
region for (a) WY2016 (1 October 2015 to 30 September 2016) and (b) WY2017 (1
October 2016 to 30 September 2017). Colors correspond to the timing of peak seasonal
uplift in the valley. Regions of interest are labeled Pd1-8, phase for dry WY2016, and
Pw1-6, phase for wet WY2016. We note the area around Pd4 and Pw4 shown in Figure
3.5 (black box). We note rivers entering the valley (light blue lines), hydrologic regions
(purple outlines), the Tulare Lake (blue outline), the California Aqueduct (dashed pink
line), and the Friant-Kern Canal (dashed yellow line).
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Figure 3.5: Seasonal phase (time of year) for (a) WY2016 and (b) WY2017 around Pd4
and Pw4. The topographic gradient (white arrows) show the direction of implied natu-
ral surface-water flow. The gradient of uplift timing (black arrows) indicate direction of
phase progression. The general direction of these gradients (larger arrows) are shown in
context with watershed boundaries (black outlines). A and A’ (blue circles) mark the
locations of the seasonal displacement time series shown in (c) and (d) respectively. (c)
shows the detrended and modeled seasonal displacement time series (mm) at A along
with collocated water surface elevations (feet above sea level; blue circles) from well
327204N1168056W001 (DWR). Similarly, (d) shows the detrended and modeled sea-
sonal displacement time series at A’ along with collocated water surface elevations (blue
circles) from well 329223N1170659W001 (DWR). Water years (October 1 to September
30) are indicated by vertical dotted lines.
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Figure 3.6: Histograms of the peak seasonal uplift timing in the San Joaquin Val-
ley for WY2016 (orange) and WY2017 (blue). Contribution from moderate and high
amplitude value pixels are represented by dotted-dashed and dotted lines, respectively.
The monthly area-normalized runoff (waterwatch.usgs.gov) for hydrological unit codes
(Figure 3.S11) 18030003, 18030004, 18030005, 18030006, 18030007, 18030009, 18030012,
18040001, and 18040007 are shown for WY2016 (solid black line) and WY2017 (dashed
black line).
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Figure 3.7: Azimuthal distribution of (a) the gradient of topographic slope, (b) the
WY2016 phase progression, and (c) the WY2017 phase progression. (d), (e), and
(f) show the gradient and phase progression (arrows) for topography, WY2016, and
WY2017, respectively, in the context of proposed groundwater sustainability agencies
(red outlines).
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Table 3.1: Summary Statistics for vertical displacements in the San Joaquin Valley
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3.6 Supplementary Materials

Introduction

This Supplementary Material contains Supplementary Tables 3.S1 through 3.S4

and Supplementary Figures 3.S1 through 3.S11 (with associated captions).
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Figure 3.S1: Plot of the perpendicular baseline between synthetic aperture radar (SAR)
acquisitions and the number of interferometric pairs each date contributes to. Acqui-
sitions (circle symbols) have a perpendicular baseline relative to the primary reference
image (17 August 2016). There are 263 interferometric connections (black lines) with
the number of interferograms each scene contributes to (color value of circle symbols)
ranging between 4 and 17.
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Figure 3.S2: Example of long-wavelength correction for a single interferogram
(Sentinel-1, spanning 6 June 2016 to 10 September 2016). Panel (a) is the raw unwrapped
interferogram in line-of-sight (LOS). (b) is the residual model constructed by fitting a
second/fourth order polynomial to residuals between continuous Global Positioning Sys-
tem (cGPS) displacements and the raw interferometric displacements (scattered circles).
(c) is the corrected interferogram which is a summation of (a) and (b).
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Figure 3.S3: Assessment of land subsidence effects on topographic gradient analysis.
Here we generate an extreme subsidence case where 17 years of subsidence (extrapolat-
ing displacement rates from WY2016) are superimposed on the original Shuttle Radar
Topography Mission (SRTM) Digital Elevation Model (DEM). The histogram in the
right-hand corner shows the azimuthal distribution of the gradient for the original DEM
(black) and the DEM+subsidence (red) cases. Spatially, the differences are generally
confined to the valley axis where there is a change in slope due to sediment sources from
the Coast Ranges to the west and the Sierra Nevada to the east.
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Figure 3.S4: Vertical displacement rate maps (mm/yr) over the southern San Joaquin
Valley (black outline) and surrounding environs for (a) the full time series (1 April 2015 to
23 October 2017), (b) WY2016 (1 October 2015 to 30 September 2016) and (c) WY2017
(1 October 2016 to 30 September 2017). Regions with displacement rates ≤ -100 mm/yr
(indicating subsidence greater than or equal to 100 mm/yr; dashed black contour) are
labeled Vt1-2, velocity for the full time series, Vd1-3, velocity for dry WY2016, and Vw1-
2, velocity for wet WY2017. The Westlands Water District (magenta outline) exhibits
relatively strong uplift in WY2017. Other regions of uplift in WY2017 are noted as Vw3.
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Figure 3.S5: Seasonal amplitude (mm) maps over the southern San Joaquin Valley
for (a) WY2016 (1 October 2015 to 30 September 2016) and (b) WY2017 (1 October
2016 to 30 September 2017). Regions with displacement rates ≤ -100 mm/yr (indicating
subsidence greater than or equal to 100 mm/yr; white contour) are labeled Vd1-3, velocity
for dry WY2016, and Vw1-2, velocity for wet WY2017.
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Figure 3.S6: Seasonal amplitude uncertainty (mm) maps over the southern San Joaquin
Valley for (a) WY2016 (1 October 2015 to 30 September 2016) and (b) WY2017 (1
October 2016 to 30 September 2017). Values indicate the standard deviation of the
amplitude fit. Locations of high seasonal amplitude (from Figure 3.3) are labeled for
reference. Other features are consistent with Figure 3.1 with the exception that the
former Tulare Lake (now white outline).
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Figure 3.S7: Seasonal phase timing uncertainty (days) maps over the southern San
Joaquin Valley for (a) WY2016 (1 October 2015 to 30 September 2016) and (b) WY2017
(1 October 2016 to 30 September 2017). Values indicate the standard deviation of the
phase timing fit. Locations of noted seasonal phase (from Figure 3.4) are labeled for
reference. Other features are consistent with Figure 3.1 with the exception that the
former Tulare Lake (now white outline).
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Figure 3.S8: Seasonal phase maps (time of year) over the southern San Joaquin Valley
for (a) WY2016 (1 October 2015 to 30 September 2016) and (b) WY2017 (1 October
2016 to 30 September 2017). Regions of high amplitude (≥ 20 mm; white contours)
are labeled Ad1-8, amplitude for dry WY2016, and Aw1-7, amplitude for wet WY2017.
Regions of moderate amplitude ( ≥ 10 mm and < 20 mm; gray contours) surround the
regions of high amplitude.
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Figure 3.S9: The Kern River between water years. (a) true cover imagery of the
Kern River terminus (GoogleEarth; any use of trade, firm, or product names is for
descriptive purposes only and does not imply endorsement by the U.S. Government)
with the approximate extent of the river (white outline). (b) and (c) show the dry
WY2016 and wet WY2017 seasonal phase (peak uplift timing), respectively.
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Figure 3.S10: Spatial differences in the phase gradients between WY2016 and WY2017.
The histogram shows the collective distribution of azimuthal differences. Locations of
noted seasonal phase (from Figure 3.4) are labeled for reference.
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Figure 3.S11: Boundaries for the level 8 hydrological unit codes across the San
Joaquin Valley. Runoff values from 18030003, 18030004, 18030005, 18030006, 18030007,
18030009, 18030012, 18040001, and 18040007 were used to compare with peak seasonal
uplift timing (Figure 3.6 in the main text).
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Table 3.S1: List of dates and perpendicular baselines (B⊥) for Sentinel-1 synthetic
aperture radar (SAR) data used in this study. Sentinel-1 data is publicly accessible via
the European Space Agency’s Copernicus Open Access Hub (https://scihub.copernicus.
eu/) and the Alaska Satellite Facility (https://www.asf.alaska.edu/).
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Table 3.S2: Summary of interferometric connections and baselines for the full time
series, WY2016, and WY2017.

129



Table 3.S3: List of Global Positioning System (GPS) stations and their locations (dec-
imal degrees; east longitude and latitude) used to correct each interferogram. These
locations can be seen in Figure 3.1 (gray squares). Data is from the Plate Bound-
ary Observatory network, a part of the National Science Foundation’s Geodesy Ad-
vancing Geosciences and EarthScope (GAGE) facility. Non-geophysical offsets are cor-
rected then smoothed using a 6-day Gaussian filter, and the three component (North,
East, and Vertical) displacements are projected into the synthetic aperture radar (SAR)
line-of-sight direction. The raw GPS time series data is available from UNAVCO
(ftp://data-out.unavco.org/pub/products).
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Table 3.S4: Validation summary for the full time series, WY2016, and WY2017.
Independent continuous Global Positioning System (cGPS) velocities and time series
were projected into the synthetic aperture radar (SAR) line-of-sight to assess the GPS-
enhanced InSAR surface displacements.
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Chapter 4

Analysis of in-situ periodic

groundwater level measurements

over California’s Central Valley

Abstract

4.1 Introduction

Access to freshwater resources has played a crucial role in human interaction with

the environment and the development of population centers. The first major human set-

tlements were focused near plentiful sources of water such as rivers, lakes, and natural

springs (Yevjevich, 1992). So important were and are these resources that changes in

local to regional water availability have led to the rise and fall of civilizations. Modern
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cities and towns are still reflective of this dependence on freshwater with over 50% of

the global population living within 3 km of a surface water source and fewer than 10%

living farther away than 10 km (Kummu et al., 2011). Where and when access to surface

water is limited, water can be routed from distant sources. The development of water

conveyance technologies such as aqueducts and pipelines have allowed for the transfor-

mation of inhospitable environments for human settlement. Where the importation of

water from afar is too challenging, too costly, or not feasible, wells can be constructed

to tap groundwater resources.

Groundwater reservoirs are commonly referred to as a “savings account”. The

idea being that extraction occurs only during times when surface water is limited or

unavailable and is replenished during wet periods. The use of groundwater via wells

dates back to the Neolitic era (Galili and Nir , 1993). These wells were hand dug up

to depths of 10 m. In many rural and/or developing regions, hand dug wells are still

common practice. Using modern technologies, wells for industrial scale groundwater

extraction can routinely be drilled to hundreds of meters depth. Access to these deeper

sources of water have allowed for longer and more productive growing cycles in arid

to semi-arid environments. However, overexploitation of groundwater reservoirs may

lead to permanent storage loss, jeopardizing the availability of future water (Scanlon

et al., 2012). For the protection and sustainability of these groundwater resources, it

is paramount to characterize groundwater levels (GWL) at local to aquifer-wide scales

with sufficient spatio-temporal resolution.
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4.1.1 Central Valley Aquifer System

For California’s Central Valley, the utilization of groundwater has transformed

the region into one of the most productive agricultural hubs in the world (Howitt et al.,

2015) as well as provide potable water to millions of residents. The Central Valley

Aquifer System is a sediment-filled structural depression bounded by the Sierra Nevada

ranges to the east, the Tehachapi Mountains to south, the Coast Ranges to the west,

and the Cascade Range to the north. As rivers sourced in the surrounding mountain

ranges enter the valley, they deposited an interbedded mix of coarser gravel and sands

with finer-grained deposits of clays and silt (Page, 1986; Weissmann et al., 2005). This

alluvial fill provides the granular matrix for the aquifer system with the silt and clay

lenses acting as impediments to groundwater flow (or aquitards). In the sounthern

Central Valley, the subsurface is often conceptualized as a two-tiered system with a

deeper confined aquifer and a shallower unconifined-to-semiconfined aquifer separated

by the largest regional clay package, the Corcoran clay (Page, 1986; Faunt , 2009).

The valley climate is arid to semi-arid hot with precipitation falling as rain and

snow over the mountain ranges (predominately in the north and east) which drains

into major river systems that enter the valley or into reservoirs. This surface water

is then routed throughout the valley to support agricultural, industrial, and urban de-

mand. During average water years (with a water year beginning October 1 and ending

September 30), a majority of precipitation (∼ 85%) occurs between November and April

(Faunt , 2009; Williamson et al., 1989) making the summers dry. To support the water
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demand not met by surface water, groundwater is extracted and used. In an average

year, groundwater contributes roughly 40% of total water use (Faunt et al., 2016).

4.1.2 California’s Drought Response

Over the past several decades, the state of California has experienced multiple

periods of drought (Figure 4.1). This has led to increased stress on regional aquifers

as groundwater is used to meet the water demand of crops unfulfilled by surface-water

resources alone (Hanson et al., 2012) with up to 70% of total water use sourced from

groundwater (Faunt et al., 2016). As such, California’s Central Valley has seen its

groundwater levels decline resulting in land subsidence related to dewatering of fine-

grained clay and silt aquitards (Chaussard and Farr , 2019; Famiglietti et al., 2011; Faunt

et al., 2016; Jasechko and Perrone, 2020; Murray and Lohman, 2018; Neely et al., 2021;

Ojha et al., 2018, 2019; Scanlon et al., 2012).

The California government passed legislation in 2014 to address and protect

against the decline and degradation of the state’s groundwater stores. The Sustainable

Groundwater Management Act (SGMA) created a framework that allows local agen-

cies to best determine groundwater management strategies in accordance with state

guidelines. This led to the establishment of over 260 Groundwater Sustainability Agen-

cies (GSAs) in high- and medium-priority basins, each tasked with developing and im-

plementing Groundwater Sustainability Plans (GSPs) detailing how these groundwater

basins will reach long term sustainability. GSPs are designed so each basin avoids six

undesirable results: (i) lowering of groundwater levels, (ii) reduction in groundwater
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storage, (iii) seawater intrusion, (iv) degraded quality, (v) land subsidence, and (vi)

surface water depletion. While the observation and understanding of groundwater re-

sources at an agency-level scale is critical to the success of SGMA, there is benefit in

the assessment of the state of groundwater across the entire valley.

4.1.3 Objective

Here we analyze readily available groundwater level (GWL) records and generate

a monthly time series of GWL conditions across the CV between 2009 and 2019. We

assess the suitability of this dataset for identifying patterns in groundwater levels as they

respond to natural and anthropogenic influences during periods of high and low surface

water availability. Further, GWL records in the San Joaquin Valley (southern portion of

the CV; SJV) are placed in the context of seasonal and longer-term surface deformation

as observed by a joint GPS (global positioning system) and InSAR (interferometric

synthetic aperture radar) dataset (Neely et al., 2020, 2021).

4.2 Data and Methods

4.2.1 Monitoring Wells

Monitoring wells are the most direct method for measuring the current state

of groundwater levels and are often used in the determination of groundwater storage

(Jasechko and Perrone, 2020; Kim et al., 2020). However, a single measurement is

limited to the hydrogeological unit the well samples and is specific to the time of the
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observation. The use of multiple monitoring well observations to characterize the aquifer

system across space and time better informs our understanding of the heterogeneity of

the system and its response to various climatological regimes (e.g. periods of drought

or surplus of surface-water supplies).

While there is an abundance of in-situ GWL observations in California, access

to these data may be limited and/or inconsistent due to differing collection and report-

ing processes. In an effort to establish a publicly accessible and permanent network of

groundwater monitoring wells for achieving goals outlined in state legislature, the Cali-

fornia Department of Water Resources (DWR) hosts state-wide databases of groundwa-

ter elevation observations. Focusing on observations within the Central Valley alluvial

boundary and between the 2010-2019 water years (October 1, 2009 to September 30,

2019), we have access to 201,520 quality well measurements from 9,666 unique monitor-

ing well stations in DWR’s “Periodic Groundwater Level Measurements” dataset (with

wells tpically sampled once or twice a year).

4.2.2 Quality Control and Perforation Categorization

Many well level observations are subjected to local or nearby effects that make

their inclusion into a regional groundwater level estimation undesirable. In particular,

the influence of active or recent use/recharge provide an imprecise characterization of

equilibrated head levels. To discriminate against such measurements, we omit well ob-

servations that are flagged as “pumping”, “pumped recently”, “nearby pump operating”,

“recharge or surface water effects near well”, “oil or foreign substance in casing”, or “dry
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well”.

Previously noted, monitoring wells record groundwater conditions specific to the

individual water-bearing hydrogeological units they sample. In the southern Central

Valley, the aquifer system is often conceptualized as a shallower unconfined to semicon-

fined unit stacked on top of a deeper confined unit with the Corcoran clay unit acting

as the confining layer between the two. Thus, where available, we categorize the well

observations as shallow or deep based on the well perforation depths. To this aim,

we simply take a representative depth to Corcoran clay (∼ 120 m) (Faunt , 2009) as a

discrimination between “shallow” and “deep” observations.

4.2.3 Groundwater Level Spatial Gridding

While monitoring well station locations span the whole of the Central Valley,

station density varies across sub-basins reflecting intensities of groundwater use and

management strategies. The heterogeneity of observations is also a product of the fre-

quency of data collection. For example, despite there being more stations in the southern

and central portions of the valley, the stations to the north collect orders of magnitude

more observations (Kim et al., 2020).

In an attempt to avoid spatially biasing our results, we create a framework to

uniformly sample the available well data by establishing a 0.1◦ x 0.1◦ grid over the CV.

For each grid cell, we select the median value of groundwater elevation of the available

wells on monthly intervals. We do this for shallow, deep, and all wells. However, not

all grid cells contain a valid measurement. We then fit a surface to these points for
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each time slice using GRIDFIT (D’Errico, 2005). Rather than directly interpolating

scattered GWL values, this surface fitting technique approximates a smooth surface

that represents general behavior of the provided data. GRIDFIT makes use a triangular

(linear) interpolation scheme and a gradient based regularizer designed to be biased

towards smooth directional derivatives across grid cell boundaries.

4.2.4 Surface Displacements

Using data from the European Space Agency’s C-band Sentinel-1A/B synthetic

aperture radar (SAR) mission (descending track 144), we estimate the spatio-temporal

evolution of surface elevation displacements across the San Joaquin Valley spanning

April 1 2015 to October 1 2019. We generate a suite of 769 interferograms from 114

SAR images using GMTSAR (Sandwell et al., 2011). We geometrically align images to a

primary reference image on August 17, 2016 and construct our interferometric pairs using

a maximum perpendicular baseline of 250 m and a maximum separation of 100-days. The

contribution of topographic phase is removed from each interferogram using the Shuttle

Radar Topography Mission (SRTM) (Farr et al., 2007) 1 arc second digital elevation

model (DEM). Due to observed burst discontinuities resulting from misregistration, we

elect to apply the enhanced spectral diversity (ESD) algorithm (Prats-Iraola et al.,

2012). Interferometric pairs are then unwrapped following the Statistical-Cost, Network-

Flow Algorithm for Phase Unwrapping (SNAPHU) (Chen and Zebker , 2000) with an

unwrapping pixel correlation threshold of 0.1. The interferograms in unwrapped phase

are converted into line-of-sight displacements with a spatial resolution of ∼ 100 m.
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4.2.5 GInSAR Correction and Time Series Construction

To reduce long-wavelength noise present in interferometric estimates of land sur-

face elevations and to provide each interferogram a common absolute reference, we

leverage continuous Global Positioning System (GPS) daily displacement time series

from the National Science Foundation’s Geodesy Advancing Geosciences and EarthScope

(GAGE) facility (Herring et al., 2016). These GPS time series data are atmospherically

corrected and generally taken to be higher fidelity estimates displacement than InSAR

estimates. Using a subset of stations within our interferometric coverage, we correct the

time series for offsets due to nongeophysical changes (e.g. equipment changes/upgrades),

smooth the data using a Gaussian filter (6-day window) to minimize higher frequency

signals (e.g. multipath and tropospheric effects) (Borsa et al., 2007), and project the

combined north, east, and vertical components into the SAR line-of-sight (LOS) direc-

tion. Following the GPS-enhanced InSAR (GInSAR) methodology (Neely et al., 2020),

the residual displacements between GPS and InSAR estimates are calculated at each

GPS station. For each interferogram, we fit a low-order polynomial surface (2nd order

in longitude and 4th order in latitude) to the residuals. These models are used to correct

the suite of interferograms to be used in the time series inversion. A detailed guide to

this method and strategies for parameter selection is presented in Neely et al. (2020,

2021).

To estimate the temporal evolution of surface displacements from our GInSAR

results, we adopt a modified version of the Small Baseline Subset (SBAS) algorithm
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(Berardino et al., 2002). While standard SBAS techniques require pixel coherence in

every interferogram, the temporally Connected SBAS (CSBAS) algorithm (Neely et al.,

2020) that we use retains a higher level of pixel coverage by only requiring at least one

displacement estimate spanning each acquisition date. This is particularly beneficial

for investigations over heavily vegetated region such as the Central Valley were pixel

coherence is lower (Wei and Sandwell , 2010). Additionally, we temporally smooth dur-

ing the least squares estimation using a first-order Tikhonov regularization (smoothing

constraint λ = 150) to minimize large changes in displacement velocity (Schmidt and

Bürgmann, 2003; Wang et al., 2019). Finally, we remove the LOS-projected horizontal

surface motion from our time series using the Southern California Earthquake Center

(SCEC) Community Geodetic Model (CGM) (Sandwell et al., 2016) and scale the resid-

ual by the cosine of the radar incidence angle in order to isolate the vertical component

of displacement.

4.2.6 Time Series Modeling

Neely et al. (2021) demonstrated how a temporal decomposition and simple mod-

eling of surface displacement data over the San Joaquin Valley can provide unique in-

sights into the poroelastic response under wet and dry conditions. We expand that

analysis here to the gridded GWL surfaces and additional years of surface displacement

observations. On a pixel-by-pixel basis, we estimate the annual seasonal response (am-

plitude and timing) of our groundwater level surfaces and displacement data using a
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model described by a simple sinusoid with a linear trend

Y (t) = vt+ A cos 2π(t− T ) + Y0 (4.1)

where Y (t) describes the observable (m for GWL; mm for displacements), t is the time in

fractional years, v is the linear rate of change (m/yr for GWL; mm/yr for displacements),

A is the seasonal amplitude (m for GWL; mm for displacements), T is the time of

relative peak in the seasonal signal (where T = 0 corresponds to October 1), and Y0 is a

constant shift in the model (m for GWL; mm for displacements). We use least-squares

minimization to estimate the model parameters and map v, A, and T across our study

region (Figures 4.2-4.8). For the purposes of this investigation, we consider water years

WY2012-2016 and WY2018 as “dry” years and WY2010-2011, WY2017, and WY2019

as “wet” years using the U.S. Drought Monitor as our basis (Figure 4.1).

4.2.7 Time Series Decomposition

To further assess similarities and differences in signal between GWL (approxi-

mated through surface fitting methods) and land surface displacements, we employ an

empirical orthogonal function (EOF) analysis (also referred to as principal component

analysis) on each dataset. This type of analysis is a multivariate statistical technique

that separates signal in the data into orthogonal basis functions ordered by fractional

variance (Abdi and Williams , 2010). The EOF analyis can be performed using a singular

value decomposition with the data, X, decomposed into the following
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X = P∆QT (4.2)

where P are the left singular vectors (eigenvectors of XXT ), ∆ is the diagonal matrix

of singular values, and Q are the right singular vectors (eigenvectors of XTX). Here,

the columns of P are the EOFs and the amplitudes are the columns of the product of

the singular values and the transpose of the right singular vectors, ∆QT . As EOFs are

mathematical representations of linearly independent components of the data, they do

not correspond one-to-one to physical processes. However, dominant physical processes

should be represented in the first several EOFs and thus provide insight into the data.

4.3 Results and Discussion

4.3.1 Validation with original GWL records

To assess the gridded GWL products, we extract individual time series at loca-

tions where we have collocated displacement observations and monitoring well records

with relatively frequent sampling. In general, we find that the gridded products ex-

hibit large changes in GWL (10s of meters) not observed in the monitoring well records

(panel 2 in Figures 4.9-4.11). Despite these large short-period oscillations, the gridded

time series do capture the first order behavior evident in the original well data. Turning

our attention to models of the annual rate of change and seasonal component (using

equation 4.1), we find a single sinusoid and linear trend sufficiently represent a majority
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of the signal observed in original well data and the displacement observations while the

large swings of GWL in the gridded time series appears to bias the fit. This may result

in disagreements between peak seasonal GWL timing of up to half a year compared to

the original groundwater well record (e.g., Figure 4.10). However, for some years and

locations, the estimated seasonal parameters consistently match the fits to the observed

data to within a month (e.g., Figure 4.11). The seasonal timing of peak uplift in the

displacement time series, which suggests a peak in pore pressure related to a relative

maximum in hydraulic head (Poland and Davis , 1969; Terzaghi , 1925), generally occurs

later than the seasonal peak in GWL. This is consistent with the idea that there is a

delay in aquitard drainage as it responds to drops in hydraulic head, modulating the

timing of deformation (Liu et al., 2019; Ojha et al., 2019; Smith et al., 2017). This

appears particularly true for locations where both the deformation and groundwater

records exhibit regular seasonal oscillations (e.g., Figure 4.9).

The broad agreement between the gridded time series and original well records

demonstrates the potential utility of this publicly available dataset for characterizing

GWL across the valley. However, further refinement is needed to confidently approxi-

mate the groundwater surface elevation. A potential avenue for this refinement would

include a detailed assessment of which time periods the surface fitting was unconstrained

for each time series. This would provide insight into the robustness of the seasonal mod-

elling. As the surface fitting technique is conducted independently for each month and

GWL sampling is not uniform across time and space due to some months having a

dearth of data leading to inaccurate estimates (e.g., Figure 4.12). In lieu of increased
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well sampling, which would only affect future GWL approximations, the application of

a temporal smoother may improve the agreement between the gridded GWL estimates

and individual well records.

4.3.2 GWL and Displacement Change Rates

The vertical displacement rates (v in equation 4.1) indicate broad regions of

subsidence over the San Joaquin Valley (Figure 4.2), consistent with previous geodetic

studies (Chaussard and Farr , 2019; Murray and Lohman, 2018; Neely et al., 2021; Ojha

et al., 2018, 2019). Subsidence rates during dry years (WY2016 and WY2018) exceeded

300 mm/yr. Canonically, this agrees with what is expected for poroelastic deformation

where in a dry year there is typically more groundwater extraction (i.e., a greater reduc-

tion in hydraulic head) and thus a larger decline in pore pressure resulting in compaction

of the aquifer system (Poland and Davis , 1969; Leake, 1990). Despite a recovery from

drought conditions during WY2017 and WY2019, these “wet” years still exhibit subsi-

dence signals of ∼ 150 mm/yr. While diminished compared to the dry years, this sinking

of the land surface under wetter conditions is relatively large compared to other regions

globally experience groundwater related subsidence (Bagheri-Gavkosh et al., 2021). This

is due in part to the San Joaquin Valley’s continued reliance on groundwater even in

non-drought years (Faunt et al., 2016) and potentially related to the deferred subsidence

associated with the dewatering of clay and silt packages which can occur on time scales

of years to decades (Liu et al., 2019; Ojha et al., 2019; Smith et al., 2017). Interesting, in

both wet years, a large uplift is observed on the western side of the San Joaquin Valley
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where the Westlands Water District is located. This region has historically experienced

land surface rebound (Ireland et al., 1984) and Neely et al. (2021) identified this feature

previously as well in WY2017. This uplift may be combination of groundwater recharge,

expansion of clay and silt packages near the surface, and/or poor drainage related to a

perched water table (San Joaquin Valley Drainage Program, 1990).

Seasonal amplitude (A in equation 4.1) maps of displacement over the valley

suggest the magnitude and regions of cyclic change in GWL. Following poroelastic the-

ory, larger amplitude values indicate larger seasonal changes in hydraulic head. In all

years, we observe amplitudes exceeding 35 mm (Figure 4.2). The years with the largest

displacement amplitude values (WY2016 and WY2017) are also the years with the great-

est extremes in surface water availability. WY2016 was preceded by 4 years of intense

drought (Lund et al., 2018) and WY2017 had well above average precipitation, Sierra

Nevada snow pack, and river runoff (∼164%, 163%, and 217% of average respectively)

(California Department of Water Resources , 2021). Neely et al. (2021) noted that the

spatial patterns of amplitude do not correspond directly to the vertical displacement

rates and that the higher amplitude regions during WY2016 are typically associated

further upstream along river courses than the high amplitude regions in WY2017 which

appear closer to the confluence of rivers. These patterns appear to hold true for the

relatively dry and wet years of WY2018 and WY2019, albeit muted.

The seasonal phase (T in equation 4.1) of displacement, or timing of peak seasonal

uplift, is assumed to be related to the timing of peak hydraulic head at that location

(Poland and Davis , 1969). For both dry years, the greater part of the valley has seasonal
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uplift during winter and early spring (January to April). As the maximum in surface

water availability occurs during this time, though limited, and this timing is roughly

half a year out of phase with the expected minimum in GWLs following a summer of

persistent groundwater withdrawals, these maps are consistent with our expectation of

water use in the valley. For both wet years, we observe peak seasonal uplift occurring in

winter and early spring (January to April) along the eastern valley margin. Moving from

the valley margin towards the valley axis, this timing occurs progressively later into the

year. For WY2019, this timing is not as extended as for WY2017. While we consider

WY2019 as a “wet” year, conditions were subdued compared to WY2017 and thus may

reflect a seasonal uplift timing spatial behavior that is in between the extremes of the

dry years and WY2017.

Neely et al. (2021) suggested that individual water years with similar hydrolog-

ical conditions (e.g. dry vs. dry or wet vs. wet years) may result in a similar spatial

and temporal evolution of surface displacements. Results here appear to support that

idea with WY2016 and WY2018 exhibiting mirrored behavior of each other and WY2017

and WY2019 are likewise similar (though WY2019 displaying seasonal parameters some-

where in between wet and dry years). Given that California receives a majority of its

precipitation early in the year (Williamson et al., 1989; California Department of Water

Resources , 2021), the spatio-temporal progression of surface displacements and associ-

ated groundwater resources may be predictable. This has implications for which regions

should receive prioritization for critical planning decisions such as surface water diver-

sions, resource and infrastructure monitoring, and/or even crop selection.
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Despite a general agreement between the gridded GWL approximations and in-

situ GWL observations, estimates of the linear rate of GWL change and seasonal param-

eters are noisy and contain artifacts from the surface fitting procedure (Figures 4.3-4.8).

Further, we were unable to produce results when using only deep wells (wells perforated

at depths below ∼120 m) due to a sparsity in data coverage. While we were able to

produce results for the shallow aquifer, we will focus on results that did not discriminate

based on depth unless otherwise specified. Notably, the most northern section of the val-

ley exhibits a gradient in the rate and amplitude with increasing magnitude of “signal”

towards the valley boundary in 7 of the 10 years. This is a region that frequently loses

data coverage (e.g., Figure 4.12) such that it is unconstrained and promotes extreme

edge effects. This phenomenon is also evident along the southwest margin of the valley

were the land is mostly native and unmonitored. The region with the most consistent

network of GWL observations lies between 37◦ and 39◦ latitude. Coincidentally, this is

a region that experiences very little surface deformation and seasonal effects (Jasechko

and Perrone, 2020; Ojha et al., 2018). For regions with low amplitude seasonal signals,

caution should be used when assessing the seasonal phase fits as they can effectively

be random (evidenced here in the form of spatial discontinuities). Curiously, many of

our dry years exhibit increases in GWL when we expected to approximate large GWL

declines (e.g. WY2016 in Figure 4.5). Potentially, the rate of GWL change and seasonal

parameters are likely biased towards wells sampling the shallow aquifer. As groundwater

is typically extracted from the deeper aquifer system to irrigate crops due to its higher

water quality, some of this water may enter the shallower aquifer system (Scanlon et al.,
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2005) which in turn may suggest increases in groundwater level for our results.

4.3.3 EOF Analysis

Figure 4.13 shows the EOF analysis on the surface displacement data by year.

Here we focus on the first 4 components as they explain ∼90% of the variance. The first

component for each year mirrors the long-term deformation rate which explains ∼46-

67% of the variance and have monotonically decreasing temporal functions. While we

only have 4 years of data (2 dry and 2 wet), more variance, on average, is explained in

the first component for the dry years than the wet years (∼58% vs. ∼49%). The second

component explains ∼10-26% of the variance with the most prominent spatial patterns

occuring in the EOF amplitude maps for WY2017 and WY2019. These features are

similar to the regions of observed uplift in the rate of deformation maps near Westlands

Water District. Regions of high seasonal amplitude (observed in Figure 4.2) are also

highlighted here. The third and fourth components, which explain ∼5-15% and ∼4% of

the variance respectively, show the additional regions of higher seasonal amplitude that

were not fully captured in the second component. The temporal functions for the third

and fourth components exhibit seasonality, potentially reflecting groundwater pumping

activities and aquifer recharge processes.

Spatial patterns in this analysis are in general agreement with a previous signal

decomposition study (Chaussard and Farr , 2019) although they focused on the full

time series record rather than investigate on an annual basis. Conceptually, the higher

explained variance in the first component during dry years is consistent if we expect there
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to be more persistent pumping and less seasonal recharge. This analysis demonstrates

the complexity of surface deformation in the San Joaquin Valley.

Figures 4.14-4.19 show the EOF analyses on the gridded GWL by year. Similar

to the displacement EOF analysis, we focus on the first 4 components which explain

∼85-90% of the variance. The first component for each year, which explain ∼41-69%

of the variance, all exhibit similar spatial patterns. When combined with the temporal

functions, these results suggest increases in GWL around the valley margins and GWL

declines in the valley interior. Contrary to our rate of GWL change results (Figures

4.3-4.8), the first components of the EOF analyses generally follow our expectations of

GWL storage changes in the San Joaquin Valley. Further, the mean variance explained

by the first component, when partitioned into wet (WY2010, WY2011, WY2017, and

WY2019) and dry (WY2012-2016 and WY20018) periods, broadly agree with results

from the displacement EOF analysis in the sense that more importance placed on this

component during dry years than in wet years (∼57% compared to ∼52%). However, we

observe GWL declines in the region spanning 37◦ to 39◦ latitude that we do not expect.

As this region is the most consistent in terms of sampling, in addition to our and others

(Jasechko and Perrone, 2020; Ojha et al., 2018) results indicating little GWL change,

this signal in the EOF is confounding which may warrant further investigation.

The second, third, and fourth components explain ∼10-31%, ∼5-17%, and ∼4-6%

of the variance respectively. Interpreting these higher order components are challeng-

ing as spatial structure often appear biased due to the surface fitting process and the

temporal functions oscillate dramatically in a non-physical manner. Additionally, EOF
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analyses on gridded GWL products only using shallow wells (Figures 4.17-4.19) also

appear to be dominated by artifacts from the surface fitting procedure. As noted previ-

ously, the application of a temporal smoother may elucidate meaningful structure that

we could relate to physical processes.

4.4 Summary

The utilization of groundwater is a vital component for California water use,

especially in the Central Valley. During periods of limited surface water availability,

we expect groundwater level (GWL) declines in response to increased reliance. Under

wetter conditions, GWL should rebound or remain somewhat stable. Recent and persis-

tent droughts have threatened these resources and motivated legislation to ensure their

future vitality. However, directly observing the state of these aquifer systems remains

challenging. While monitoring wells have and will continue to play a critical role in

the characterization of groundwater resources, there is currently no means to efficiently

map changes in the water table at spatial and temporal resolutions sufficient for regional

management and policy decisions.

Here, we investigated the utility of DWR’s periodic groundwater level database

for synoptically mapping GWL across California’s Central Valley at monthly intervals

between 2009 and 2019. Despite our gridded GWL product broadly agreeing with in-

dividual monitoring well time series, it is insufficient for describing spatial patterns,

magnitude, and/or timing of GWL changes due to a sparsity of data. A time series
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decomposition in the form of an empirical orthogonal function analysis showed some

promise for estimating GWL behavior in the first component, but contained confound-

ing signal and artifacts from the surface fitting procedure.

Additionally, we investigated 4 years of surface displacement from a joint GPS-

InSAR analysis. We observed large subsidence signals consistent with previous studies

and interestingly found that deformation patterns and timing are comparable for years

with similar hydrological conditions (dry vs. dry or wet vs. wet). While changes in dis-

placement time series do not strictly map to GWL changes in an one-to-one fashion, this

is an early step for predicting how groundwater resources may respond given knowledge

of projected water availability and has implications for groundwater management and

policy development.
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Figure 4.1: Percent area and severity of California in drought between 2000-2020.
Drought conditions are broken into 5 categories: D0 abnormally dry (yellow), D1 mod-
erate drought (peach), D2 severe drought (orange), D3 extreme drought (red), D4 ex-
ceptional drought (maroon). Image recreated using U.S. Drought Monitor data from
the National Integrated Drought Information System (https://www.drought.gov/states/
california).
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Figure 4.2: Annual vertical displacement rates (mm/yr), seasonal amplitudes (mm),
and seasonal uplift timing over the San Joaquin Valley for water years 2016 to 2019.
Displacement time series are estimated using Sentinel-1 data and the GInSAR method.
Rates of deformation and seasonal parameters are modeled using equation 4.1. The
alluvial boundary of the Central Valley distinguished by the black outline.
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Figure 4.3: Annual rates of groundwater (GWL) change (m/yr), seasonal amplitudes
(m), and seasonal timing of peak GWL over the Central Valley for water years 2010 to
2012 using the gridded GWL time series.
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Figure 4.4: Annual rates of groundwater (GWL) change (m/yr), seasonal amplitudes
(m), and seasonal timing of peak GWL over the Central Valley for water years 2010 to
2015 using the gridded GWL time series.
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Figure 4.5: Annual rates of groundwater (GWL) change (m/yr), seasonal amplitudes
(m), and seasonal timing of peak GWL over the Central Valley for water years 2016 to
2019 using the gridded GWL time series.
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Figure 4.6: Annual rates of groundwater (GWL) change (m/yr), seasonal amplitudes
(m), and seasonal timing of peak GWL over the Central Valley for water years 2010 to
2012 using the shallow gridded GWL time series.

164



La
tit
ud

e

Longitude

m
m

m

m
/y
r

m
/y
r

m
/y
r

Oct

Oct

Dec

Feb

Apr

Jun

Aug

Oct

Oct

Dec

Feb

Apr

Jun

Aug

Oct

Oct

Dec

Feb

Apr

Jun

Aug

Figure 4.7: Annual rates of groundwater (GWL) change (m/yr), seasonal amplitudes
(m), and seasonal timing of peak GWL over the Central Valley for water years 2010 to
2015 using the shallow gridded GWL time series.
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Figure 4.8: Annual rates of groundwater (GWL) change (m/yr), seasonal amplitudes
(m), and seasonal timing of peak GWL over the Central Valley for water years 2016 to
2019 using the shallow gridded GWL time series.
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Figure 4.9: Comparison of surface displacements, gridded groundwater levels (GWL),
and in-situ groundwater levels at monitoring well 18890. The top panel shows the surface
displacement from GPS-enhanced InSAR (black with circle symbols), the yearly models
of displacement using equation 4.1 (red with circle symbols), and the timing of peak
seasonal uplift estimated by the models (vertical dashed red lines). The middle panel
shows the gridded GWL (gray with diamond symbols), the yearly models of gridded
GWL using equation 4.1 (cyan with diamond symbols), the timing of peak seasonal
gridded GWL estimated by the models (vertical dashed cyan lines), the GWL at station
18890 (black with square symbols), the yearly models of GWL using equation 4.1 (blue
with square symbols), and the timing of peak seasonal GWL estimated by the models
(vertical dashed blue lines). The bottom panel shows the detrended seasonal models and
timing of peak seasonal signals for displacement, gridded GWL, and GWL at station
18890 (red, cyan, and blue respectively).

167



Figure 4.10: Comparison of surface displacements, gridded groundwater levels (GWL),
and in-situ groundwater levels at monitoring well 51343. The top panel shows the surface
displacement from GPS-enhanced InSAR (black with circle symbols), the yearly models
of displacement using equation 4.1 (red with circle symbols), and the timing of peak
seasonal uplift estimated by the models (vertical dashed red lines). The middle panel
shows the gridded GWL (gray with diamond symbols), the yearly models of gridded
GWL using equation 4.1 (cyan with diamond symbols), the timing of peak seasonal
gridded GWL estimated by the models (vertical dashed cyan lines), the GWL at station
51343 (black with square symbols), the yearly models of GWL using equation 4.1 (blue
with square symbols), and the timing of peak seasonal GWL estimated by the models
(vertical dashed blue lines). The bottom panel shows the detrended seasonal models and
timing of peak seasonal signals for displacement, gridded GWL, and GWL at station
51343 (red, cyan, and blue respectively).
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Figure 4.11: Comparison of surface displacements, gridded groundwater levels (GWL),
and in-situ groundwater levels at monitoring well 48607. The top panel shows the surface
displacement from GPS-enhanced InSAR (black with circle symbols), the yearly models
of displacement using equation 4.1 (red with circle symbols), and the timing of peak
seasonal uplift estimated by the models (vertical dashed red lines). The middle panel
shows the gridded GWL (gray with diamond symbols), the yearly models of gridded
GWL using equation 4.1 (cyan with diamond symbols), the timing of peak seasonal
gridded GWL estimated by the models (vertical dashed cyan lines), the GWL at station
48607 (black with square symbols), the yearly models of GWL using equation 4.1 (blue
with square symbols), and the timing of peak seasonal GWL estimated by the models
(vertical dashed blue lines). The bottom panel shows the detrended seasonal models and
timing of peak seasonal signals for displacement, gridded GWL, and GWL at station
48607 (red, cyan, and blue respectively).
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Figure 4.12: Examples of station coverage used during the surface fitting procedure.
The left panel is an example of a month with higher data coverage (October 2019).
The right panel is an example of a month with lower data coverage (May 2019). The
groundwater level (GWL) surfaces estimated from “gridit” using the available stations
(black circles) are displayed for each month.
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Figure 4.13: Spatial amplitude maps and temporal behavior of surface displacements
as estimated using empirical orthogonal function (EOF) analysis for each water year
(WY2016-WY2019). Input displacement time series are estimated using Sentinel-1 data
and the GInSAR method. Rows of panels correspond to a particular water year. The
first four columns of panels correspond to the first four components estimated during
the EOF analysis. The values in the top right of each panel is the fractional variance
each component explains. The panels in the last column are the temporal functions
associated with each component.
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Figure 4.14: Spatial amplitude maps and temporal behavior of gridded GWL as esti-
mated using empirical orthogonal function (EOF) analysis for each water year (WY2010-
WY2012). Rows of panels correspond to a particular water year. The first four columns
of panels correspond to the first four components estimated during the EOF analysis.
The values in the top right of each panel is the fractional variance each component ex-
plains. The panels in the last column are the temporal functions associated with each
component.
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Figure 4.15: Spatial amplitude maps and temporal behavior of gridded GWL as esti-
mated using empirical orthogonal function (EOF) analysis for each water year (WY2013-
WY2015). Rows of panels correspond to a particular water year. The first four columns
of panels correspond to the first four components estimated during the EOF analysis.
The values in the top right of each panel is the fractional variance each component ex-
plains. The panels in the last column are the temporal functions associated with each
component.
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Figure 4.16: Spatial amplitude maps and temporal behavior of gridded GWL as esti-
mated using empirical orthogonal function (EOF) analysis for each water year (WY2016-
WY2019). Rows of panels correspond to a particular water year. The first four columns
of panels correspond to the first four components estimated during the EOF analysis.
The values in the top right of each panel is the fractional variance each component ex-
plains. The panels in the last column are the temporal functions associated with each
component.
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Figure 4.17: Spatial amplitude maps and temporal behavior of gridded GWL using
“shallow” wells as estimated using empirical orthogonal function (EOF) analysis for
each water year (WY2010-WY2012). Rows of panels correspond to a particular water
year. The first four columns of panels correspond to the first four components estimated
during the EOF analysis. The values in the top right of each panel is the fractional
variance each component explains. The panels in the last column are the temporal
functions associated with each component.
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Figure 4.18: Spatial amplitude maps and temporal behavior of gridded GWL using
“shallow” wells as estimated using empirical orthogonal function (EOF) analysis for
each water year (WY2013-WY2015). Rows of panels correspond to a particular water
year. The first four columns of panels correspond to the first four components estimated
during the EOF analysis. The values in the top right of each panel is the fractional
variance each component explains. The panels in the last column are the temporal
functions associated with each component.
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Figure 4.19: Spatial amplitude maps and temporal behavior of gridded GWL using
“shallow” wells as estimated using empirical orthogonal function (EOF) analysis for
each water year (WY2016-WY2019). Rows of panels correspond to a particular water
year. The first four columns of panels correspond to the first four components estimated
during the EOF analysis. The values in the top right of each panel is the fractional
variance each component explains. The panels in the last column are the temporal
functions associated with each component.
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