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Abstract 

Environmental conditions play crucial roles in modulating immunity and disease in plants.

For instance, many bacterial disease outbreaks occur after periods of high humidity and

rain. A critical step in bacterial infection is entry into the plant interior through wounds or

natural openings, such as stomata. Bacterium-triggered stomatal closure is an integral part

of the plant immune response to reduce pathogen invasion. Recently, we found that high

humidity  compromises  stomatal  defense,  which  is  accompanied  by  regulation  of  the

salicylic acid and jasmonic acid pathways in guard cells. Periods of darkness, when most

stomata are closed, are effective in decreasing pathogen penetration into leaves. However,

coronatine  produced  by  Pseudomonas  syringae pv.  tomato (Pst) DC3000  cells  can  open

dark-closed  stomata  facilitating  infection.  Thus,  a  well-known  disease-promoting

environmental  condition  (high  humidity)  acts  in  part  by  suppressing  stomatal  defense,

whereas an anti-stomatal defense factor such as coronatine, may provide epidemiological

advantages  to  ensure  bacterial  infection  when  environmental  conditions  (darkness  and

insufficient humidity) favor stomatal defense.

Plant disease is a successful culmination of three important factors viz. high pathogen virulence,

ineffective plant immunity, and favorable environmental conditions. This central dogma of plant

pathology is a 50-year-old concept of the disease triangle1 (Stevens, 1960) and is relevant in all

aspects of plant-pathogen interactions2 (Scholthof 2007). Environmental abiotic factors such as

relative humidity (RH) and light conditions have a drastic effect on prevalence of disease in

different geographical regions. Plants need to adapt to simultaneous exposure to variable biotic

and abiotic stresses, sometimes with opposing effects, for maintenance of healthy whole plant
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physiology. For instance, high disease incidence can be explained by the occurrence of climatic

conditions that favor pathogen growth and weaken the plant immune system3   (Panchal et al.,

2016a).  It  is  well  known that the  outbreak of  late blight  of  potato  caused by  Phytophthora

infestans that lead to the unfortunate Irish potato famine of 1845 was initiated and spread rapidly

mainly  because  of  the  unusually  wet  and cool  climatic  conditions  chronicled  for  that  year 2

(Scholthof  2007).  Still, current knowledge  on  the  molecular  basis  of  environment-mediated

regulation of plant responses to pathogens is still in its infancy. Moreover, we have gathered

evidence  that  different  cell  types  (e.g.,  guard  cell  and  mesophyll  cell)  may  have  variable

molecular  responses  to  the  same  environmental  condition3 (Panchal  et  al.  2016)  adding

additional levels of complexity in plant immune responses. 

Plant immune system consists of a complex network of signals tuned to respond to specific types

of  biotic  stresses.  One  of  the  first  outputs  of  pattern-triggered  immunity  (PTI)  consists  of

stomatal  defense4 (Melottto  et  al.  2006).  The  microscopic  stomatal  pores  in  the  leaves  are

important not only for transpiration and exchange of gases, but also as entry points for some

pathogenic microbes, which otherwise could not transit from the phylloplane to the leaf apoplast.

However,  recognition  of  microbe-associated  molecular  patterns  (MAMPs)  by  plant  pattern-

recognition receptors (PRRs) is a signal to close stomata that serve as guarding gates against

microbe  invasion5 (Arnaud  and  Hwang  2015).  A rapid  (<2h)  bacterium-triggered  stomatal

closure  is also  observed  when the plant  perceives  non-pathogens  such  as  Escherichia  coli,

Salmonella enterica, and Bacillus subtilis4,6,7,8 (Melotto et al. 2006; Kroupitski et al. 2009; Roy et

al 2013; Kumar et al. 2012).

Molecular  mechanisms  underlying  stomatal  defense  have  been  studied  mostly  in  the

Arabidopsis-Pst  pathosystem. This well-studied system has been very useful to decipher both
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stomatal  defense  and counter-defense  mainly due to  the initial  PTI response and subsequent

induction of coronatine production in the bacterium that overrides PTI9,10 (Melotto et al. 2017;

Xin  et  al.  2013).  This  temporal  response  in  the  Arabidopsis  guard  cell  is  mediated  by

phytohormones5 (Arnaud and Hwang 2015). For instance, abscisic acid (ABA), salicylic acid

(SA), and jasmonic acid (JA) play important roles in guard cell signaling during Arabidopsis/P.

syringae interaction. 

Endogenous ABA and SA are important for stomatal closure in response to bacteria or purified

MAMPs4,11,12,13,14,15,16,17 (Melotto et al 2006, Zhang et al 2008,  Zeng and He, 2010;  Zeng et al

2011; Montillet et al 2013, Du et al 2014; Lim et al 2014, Derger et al 2015). By contrast, strong

evidence  suggests that, similar to its structural and functional mimic coronatine, jasmonoyl-L-

isoleucine  (JA-Ile)  mediates  stomatal  opening3,18 (Panchal  et  al.  2016;  Okada  et  al.  2009).

Intriguingly, control of stomatal movement by air RH also seems to operate through hormone

signaling.  As  an  example,  low  RH  induced-stomatal  closure  is  associated  with  ABA

biosynthesis19 (Bauer  et  al.  2013),  whereas  activation  of  stomatal  opening  by  high  RH  is

associated  with  ABA catabolism20 (Okamoto  et  al.  2009).  However,  we  have  found  that

exogenous  treatment  of  ABA does  not  close  stomata  to  the  full  extent  under  high  RH  as

compared to plants at moderate RH3 (Panchal et al. 2016). This finding indicates that while ABA

has a prominent role in RH-mediated stomatal movement, it does not seem to be the only target

of high RH in guard cells. 

Previously, SA-dependent phenotypes have also been shown to be suppressed under high RH21

(Yoshioka et al.  2001), including the suppression of SA-dependent activation of  PR genes in

Arabidopsis leaves at 24 h after shifting plants to high RH22 (Zhou et al. 2004). As SA signaling

is required for stomatal closure4,13 (Melotto et al., 2006; Zeng et al., 2011), we performed guard
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cell-specific analysis and determined that high RH also repressed the expression of PR1 gene in

this  cell  type3 (Fig.  1;  Panchal  et  al.  2016).  On  the  other  hand,  JA-responsive  genes  are

upregulated  in  guard  cells  within  1h of  plant  exposure  to  high  RH3 (Panchal  et  al;  2016).

However, this regulation is independent of the JA-Ile receptor, COI1. COI1-independent and JA-

dependent signaling pathway has been previously proposed and induction of some JAZ genes in

coi1 plants  has  been  reported when  Arabidopsis leaves are  infected  with  Sclerotinia

sclerotiorum23 (Stotz et al. 2011). In addition,  P. syringae pv.  maculicola ES4326 infection in

coi1-1 plants also leads to induction of JA-regulated genes, indicating that JA response can be

activated downstream or independent of COI124 (Chen et al. 2001). Moreover, an effector from

Pst  DC3000, HopX1 triggers degradation of JAZ proteins in a COI1-independent manner and

promotes stomatal opening25 (Gimenez-Ibanez et al.  2014). Consistent with this, we observed

that the JA biosynthesis genes,  LOX3 and  OPR3 are repressed within 1 h of exposure to high

RH3 (Panchal et al. 2016). This finding suggests that JA-Ile replenishment may not be required

as the signaling occurs independent of COI1 in guard cells. Specific branches of the SA and JA

signaling pathways regulated by RH are yet to be determined. 

In  several  circumstances,  JA and  SA act  antagonistically  and  some  key  regulators  in  this

crosstalk  have  been  identified.  SA  inhibits  JA  signaling  through  the  regulatory  protein,

NONEXPRESSOR  OF  PR  GENES  1  (NPR1)26 (Spoel  et  al.  2003).  By  contrast,  JA and

coronatine  inhibit  SA biosynthesis  genes  (isochorismate  synthase,  ICS1)  and  activate SA

degradation genes (benzoic acid/SA carboxyl methyltransferase 1,  BSMT1) through three NAC

transcription factors, ANAC019, ANAC055, and ANAC07227 (Zheng et al. 2012). However, we

observed that both activation of JA and suppression of SA occur simultaneously in guard cells of

plants exposed to high RH3 (Panchal et al.  2016) and hence these pathways are likely to be
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regulated independently by RH. Guard cell response to RH is much quicker (<1h) than that of

whole leaves (>8h) suggesting the existence of an independent regulation of guard cell signaling

by RH. However, it is possible that JA/SA antagonism exist in guard cell under high RH at a step

downstream of the signaling components tested so far, which still needs further investigation.

Based on current evidence, we propose that the shift of balance between SA and JA signaling

leads to repression of bacterium-triggered stomatal closure and consequently bacteria that are

otherwise unable to overcome PTI can still penetrate leaf tissue under high RH (Fig. 1). 

High humidity also promotes rapid proliferation of bacteria in the epiphytic phase28 (Hirano and

Upper 2000). However, in general, phyllosphere is a water-limiting environment29 (Beattie 2011)

that  imposes  a  challenge  for  epiphytic  survival  of  pathogens  in  this  niche.  To  counter  this

challenge, bacteria produce extracellular polymeric substances (EPS) to maintain hydration and

form aggregates on the leaf surface30,31 (Monier and Lindow 2003; Yu et al 1999). High humidity

positively  affects  such aggregate  formation  of  P.  syringae  pv.  syringae  B728a on bean leaf

surface and aids in rapid proliferation of the bacteria and subsequent entry into the endophytic

phase30 (Monier  and  Lindow  2003).  To  maintain  epiphytic  fitness,  virulent  bacteria  can

physically alter the wettability of the leaf surface by producing biosurfactants32,33 (Bunster et al.

1989;  Schreiber  et  al.  2005).  Furthermore,  bacterial-dependency  on  high  RH  to  establish

apoplastic infection while suppressing host immunity has also been demonstrated recently34 (Xin

et al. 2016). These observations emphasize that RH participates in multiple steps of molecular

plant-pathogen interaction and influences its outcome.

In contrast to high RH that aids plant susceptibility and counteracts stomatal defense, several

other abiotic factors may favor a robust stomatal defense. In particular, absence of light may lead

to stomatal closure; indeed, most stomata of C3 and C4 plants are closed at night. This suggests
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that bacterial penetration of leaves through stomata would be minimal at night. Interestingly, the

clock  proteins  CIRCADIAN  CLOCK  ASSOCIATED  1  (CCA1)  and  LATE  ELONGATED

HYPOCOTYL (LHY)  not  only  control  the  circadian  stomatal  movement,  but  they  are  also

required for flagellin-mediated immune response35 (Zhang et al. 2013). Disruption of the clock

activity through CCA1 and LHY resulted in stomata that are  less responsive to dark and  P.

syringae pv. maculicola, thus rendering Arabidopsis plants more susceptible to infection at night.

Furthermore, surface-inoculated plants, but not syringe-infiltrated plants, are more resistant to

bacterium infection at dusk than at dawn35 (Zhang et al. 2013). These findings mechanistically

link stomatal defense and the circadian clock. 

Interestingly, the levels of the two most well-known hormones associated with biotic stress, JA

and SA, naturally oscillate throughout a 24 h cycle. While the JA level peaks in the daytime, the

SA level is highest during the  night in whole leaves36,37 (Goodspeed et al. 2012;  Grundy et al.

2015).  These  oscillations  are  under  the  control  of  the  clock  and  several  clock-associated

proteins3  7 (Grundy et  al.  2015).  If  the  JA/SA hormone  balance  determines  the  opening and

closing of stomata (Fig. 1), then one would assume that inducing JA signaling at night could

promote  stomatal  opening.  Previously,  others  and  we  have  determined  that  coronatine,  a

molecular mimic of JA-Ile, overcomes bacterium-triggered stomatal closure by upregulating JA

signaling and repressing SA signaling4,38 (Melotto et al. 2006; Zhang et al. 2015). Consistently,

Pst  DC3000 senses  the  leaf  surface,  produces  coronatine,  and  opens  dark-closed  stomata39

(Panchal et al. 2016). It remains to be determined whether coronatine disrupts the natural guard

cell  circadian movement  by  actively  suppressing  CCA  and  LHY1  mediated  signaling.

Nonetheless,  it  is  evident  that  a  stomatal  defense-favoring  environmental  condition  such  as
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darkness can be overcome by a virulent pathogen that shifts the hormone balance in guard cell

towards JA3,  39 (Fig. 2).
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