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ABSTRACT OF THE DISSERTATION

pyEDA: An Open-Source and Versatile Feature Extraction Python Toolkit for
Electrodermal Activity

By

Seyed Amir Hossein Aqajari

Master of Science in Computer Engineering

University of California, Irvine, 2021

Professor Amir M. Rahmani, Chair

Electrodermal Activity (EDA), also known as Galvanic Skin Response (GSR), measures

changes in perspiration by detecting the changes in electrical conductivity of skin. The

changes in perspiration is one of the examples of physiological response to a stimulus such

as stress, emotion, pain, etc. Previous studies have already shown that EDA is one of the

leading indicators for a stimulus. However, the EDA signal itself is not trivial to analyze. To

detect different stimuli in human subjects, variety of features are extracted from EDA signals

such as the number of peaks, max peak amplitude, to name a few, showing the prevalence

of this signal in bio-medical as well as ubiquitous and wearable computing research. In this

paper, we present an open-source Python toolkit for EDA signal preprocessing and statistical

and automatic feature extraction. To the best of our knowledge, this is the first effort for

developing a versatile and generic tool to extract any number of automatic features from EDA

signals. Our online toolkit is evaluated using different machine learning algorithms applied

to Wearable Stress and Affect Detection (WESAD) dataset which is publicly available. Our

results show that our proposed pipeline outperforms the state of the art accuracy using

either statistical or automatic extracted features on a same dataset. Based on our results,

in all of our four machine learning algorithms, we achieve a higher validation accuracy using

automatic features compared with statistical features.
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Chapter 1

Introduction

Physiological signals can be used to extract valuable information measuring the functional

state of various physiological systems [2]. Many studies have validated the effect of different

stimuli on the functioning of the physiological systems in the human body such as emotion,

stress, and sleep [3, 4, 5, 6, 7, 8].

Table 1.1: Comparing the existing toolkits compared with pyEDA for preprocessing and
feature extraction of EDA signals.

Existing Works Statistical Features Automatic Features Generic Python
pyEDA ✓ ✓ ✓ ✓
TEAP ✓ × × ×

PhysioLab ✓ × × ×
ANSLAB ✓ × × ×
NeuroKit ✓ × × ✓
Pysiology ✓ × × ✓

The Electrodermal Activity (EDA), also known as galvanic skin response (GSR), is one of

these physiological signals widely used in biomedical and digital health research to detect

certain stimuli in human subjects. EDA measures the changes in electrical conductivity of

skin. These changes reflect the intensity of the individual’s emotional state – or emotional

arousal [9].
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Numerous prediction models are constructed to predict a stimulus based on raw EDA signals

[10, 11]. The EDA signals collected from commercially available devices are usually raw and

have motion artifacts that are common in natural, uncontrolled settings that involve body

gestures and movements. Therefore, the raw EDA itself cannot be used in these prediction

models directly. First, several signal processing steps are needed to remove noise and extract

the clean signal. Next, a variety of features are extracted from the clean EDA signal. These

features can then be fed to machine learning algorithms to build prediction models detecting

different types of stimuli.

Traditional methods extract statistical features such as the number of peaks, max peak ampli-

tude, average, standard deviation, etc., from the EDA signal for prediction models. However,

with rapid development of AI and machine learning algorithms, various automatic methods

are implemented to extract automatic features from the signal using neural networks [12, 13].

In many situations, these methods outperform the traditional methods’ performance in pre-

diction accuracy. Needless to say, an open-source tool providing automatic and statistical

set of features extracted from EDA signal can significantly facilitate the research studies

in EDA signal processing. Its worth mentioning that these neural network techniques are

not limited only to automatic feature extraction from the signals. Zargari et al. used com-

bination of convolutional neural network and recurrent neural network to accurately track

in-mouth nutrient sensors position [14]. Mehrabadi et al. used convolutional neural net-

work to detect existence of COVID-19 in patients with ARDS [15]. Recently in [16], the

author employed a deep neural network to predict daily cases of COVID-19 leveraged by

Google trends. Ashrafiamiri et al. used deep neural networks to secure autonomous driving

[17]. In [18], the author employed deep neural networks to implement a defense adversar-

ial network. Recently, generative adversarial networks which consist of two different neural

networks competing with each other are also employed for the purpose of signal translation

or noise removal [19, 20].
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The existing open-source tools for EDA signal processing only focus on the statistical features

and do not take into account the embedding features extracted using automatic methods

(Table 1.1). Soleymani et al. [21] develop a toolbox to extract features from different sig-

nals including EDA. The author build classifiers solely using statistical features, including:

amplitude and number of peaks, mean, and standard deviation of the signal. Furthermore,

there are toolboxes that provide integrated software. PhysioLab [22] and ANSLAB [23] are

open-source tools for EDA analysis, which are implemented in Matlab. These tools aggre-

gate the information extracted from different signals including EDA. However, the feature

extraction module is limited to non-automated statistical features. Besides, researchers have

implemented toolboxes for EDA analysis in Python [24, 25]. These toolboxes also have the

same limitation since they also only consider statistical features including: number of peaks,

amplitude, rise time and decay time. It should be noted that all of these existing toolboxes

tailor the feature extraction phase to their target application (e.g., emotion recognition, pain

assessment, etc.) making them application-dependent to a certain degree.

In this work, we present pyEDA [26], an open-source tool in Python to pre-process and filter

EDA signals and extract statistical and any arbitrary number of automatic features from

them. To the best of our knowledge, this is the first work presenting a versatile user-friendly

open-source Python tool which can be used to extract any number of automatic features of

EDA signals without the need to have a background in artificial neural networks and auto-

encoders. Depending on the application, different statistical features might be conceded

for acceptable prediction accuracy to a stimulus [27]. In other words, certain features to a

stimulus may not be captured using statistical methods. For these reasons, we present a tool

to automatically extract any number of automatic features highly correlated to any type of

stimuli. Providing such a versatile and generic tool to extract automatic features of the EDA

signal is valuable for the health science and technology community. We also demonstrate the

efficacy of our tool by using the Wearable Stress and Affect Detection (WESAD) dataset [28]

and a set of machine learning algorithms to evaluate both statistical and automatic features
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extracted using pyEDA. Specifically, this work makes the following key contributions:

• Develop an open-source toolkit to extract any number of features of EDA signals.

• Build a scalable architecture to work with EDA signals with any arbitrary length.

• Enable the toolkit to perform generic automatic feature extraction.

• Evaluate the extracted features using a publicly available dataset on stress assessment

and beating the state of the art accuracy.

The rest of this work is organized as follows. Section 2 briefly outlines the EDA background.

Our proposed processing pipeline architecture is presented in Section 3. In Section 4 we

evaluate our result using the WESAD data set. Finally, Section 5 concludes the work.
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Chapter 2

Background

The autonomic nervous system automatically regulates involuntary physiologic processes

including heart rate, blood pressure, respiration, digestion, and sexual arousal without a

person’s conscious effort [29]. Disorders of the autonomic nervous system can affect any

body part or process. Autonomic disorders may be reversible or progressive [29]. Standard

functional assessment of autonomic nervous system (ANS) activity on cardiovascular con-

trol relies on spectral analysis of heart rate variability (HRV) series. However, obtaining

a reliable measure of sympathetic activity from HRV spectra has some difficulties which

limits the exploitation of sympathovagal metrics. On the other hand, electrodermal activity

(EDA) measurements have been demonstrated to provide a reliable quantifier of sympathetic

dynamics [30].

To better understand how EDA is captured, it is helpful to study the physiological charac-

teristics of the skin described in [9]. Sweat glands are small tubular structures of the skin

producing sweat. Our body has approximately three million sweat glands having different

density across the body. Sweat glands can be found in large numbers on the soles of the

feet, the palms and fingers, and on the forehead and cheeks. They produce moisture through
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pores towards the surface of the skin, whenever they are triggered. When the balance of

positive and negative ions in this secreted fluid changes, the electrical current flows more

readily. This results in decreased skin resistance, or in other words, increased skin conduc-

tance. Electrodermal Activity (EDA) is a term used for this change. EDA is also known as

Galvanic Skin Response (GSR), Skin Conductance (SC), Electrodermal Response (EDR),

and Psychogalvanic Reflex (PGR).

Although one of the main purposes of sweating is thermoregulation, sweating is also trig-

gered whenever a person is exposed to a stimulus such as emotionally loaded images. This

type of sweating is called emotional sweating. Sweat secretion, which reflects the changes in

arousal, is driven unconsciously by the automatic nervous system (ANS) in order to meet be-

havioral requests. A number of commercially available devices (e.g., RespiBAN professional,

Empatica E4, Fitbit Sense, and Shimmer3 GSR+) can be used to collect EDA signals.

According to [9], EDA signals consist of two main components: Skin Conductance Level

(SCL) and Skin Conductance Response (SCR). The SCL changes slightly on a time scale of

tens of seconds to minutes. Depending on hydration, skin dryness or automatic regulation of

an individual respondent, the rising and declining SCL is continuously changing. SCL, which

is also called the tonic level of EDA signal, can differ significantly across different individuals.

Due to this, the actual tonic level on its own is not completely informative. SCR, which is also

known as the phasic component of EDA, rides on top of the tonic changes and shows much

faster alterations. Variations in the phasic component of a EDA signal are visible as EDA

bursts or EDA peaks. The phasic component is sensitive to specific emotionally arousing

stimulus events (event-related SCRs, ER-SCRs). These bursts can occur between 1-5 seconds

after the onset of emotional stimuli. Quite the opposite, non-specific skin conductance

responses (NS-SCRs) are not a consequence of any eliciting stimulus. These responses happen

at a rate of 1-3 per minute spontaneously. There is a need for a flexible and usable processing

toolchain that can be used to efficiently analyze these EDA signals. In the following, we

6



describe our pyEDA processing pipeline architecture that is designed to meet these needs.
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Chapter 3

Proposed Pipeline Architecture

Figure 3.1 shows the proposed processing pipeline architecture for pyEDA to analyze the

EDA data. There are two different stages in this pipeline: The pre-processing stage and the

feature extraction stage. As shown in this figure, the pre-processing stage consists of two

different modules. In the pre-processing stage, the signals are cleaned and prepared for the

feature extraction stage. Then, the feature extraction stage uses two different procedures to

extract the features from the pre-processed data. We use traditional manual statistical fea-

ture extraction as well as automatic feature extraction methods in our proposed architecture.

In the following, we explain each stage of the pipeline in detail.

Preprocessing Feature Extraction

Downsampling
Moving 
Average

cvxEDA
Statistical 
Feature 

Extraction

 Automatic Feature 
Extraction

Preprocessed
EDA Signal

Phasic
Components Statistical 

Features

Automatic
Features

Figure 3.1: Proposed Processing Pipeline Architecture for pyEDA
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3.1 Pre-processing

In this stage, we use down-sampling and moving averaging to pre-process the data. At the

end of this stage, a pre-processed EDA signal is ready and accessible for further analysis and

feature extraction.

The EDA data is usually sampled at much higher frequency than needed. Therefore, down-

sampling is done to reduce memory footprint and processing time of the data with a negligible

risk of losing important information in the signal. In the pre-processing stage, the raw EDA

data is down-sampled to the lower sampling rate. Based on the studies conducted in [9],

the EDA data can safely be down-sampled to 20 Hz or even less if the data originally was

collected at 128 Hz.

A raw EDA signal varies before or after a peak. This is due to individual differences in the

tonic component of EDA or due to the noise caused by movements or respiration artifacts

[9]. After down-sampling the data, a moving average across a 1-second window is first used

to smooth the data and reduce artifacts such as body gestures and movements, which are

common in everyday settings.

3.2 Statistical Feature Extraction

The number of peaks, the mean of EDA, and the max peak amplitude are three statistical

features extracted in our pipeline. Calculating the mean of EDA is straightforward. To

calculate the other two features, we need to extract the EDA peaks that are induced by

eliciting stimulus. A number of signal processing steps are required to derive EDA peaks

that are a consequence of eliciting stimulus [9]:

1. The phasic component is extracted from the pre-processed EDA signal.
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2. A low-pass Butterworth filter is applied on the phasic data to remove line noise. A

cutoff frequency of 5 Hz divided by sampling rate is typically used.

3. Onsets and offsets are identified from the phasic data.

4. The maximum amplitude value within each onset-offset is considered as a peak if and

only if its difference with the amplitude value at onset is higher than the threshold,

which typically is 0.005 µS.

One of the major tasks in analyzing the EDA signal is to correctly extract the phasic com-

ponent of the signal from the original signal. In this paper, we use the cvxEDA algorithm to

decompose the original signal into a sparse phasic component and a smooth tonic component.

The cvxEDA algorithm is a novel algorithm presented in [31] for the EDA analysis based

on maximum a posteriori probability, convex optimization, and sparsity. This algorithm has

a desirable capability of properly describing the activity of the autonomic nervous system

in response to affective stimulation. This model describes the recorded EDA as the sum of

three terms: the phasic component, the tonic component, and an additive white Gaussian

noise term incorporating model prediction errors, measurement errors, and artifacts. We use

this algorithm to extract the phasic component of the pre-processed EDA signal for further

analysis.

To calculate the number of peaks corresponding to events related to SCRs, we need to find

the maximum amplitude value within each onset-offset window in the original EDA signal

[9]. Onsets are all the points in which the phasic component of the signal crosses above the

onset threshold, which is typically 0.01 µS. To find the corresponding offset of the computed

onset, we check for the point in which the phasic component of the EDA signal crosses below

the offset threshold, which is typically 0 µS. For each window, the time difference between

its onset and offset needs to be above the duration threshold of 1s. Any peaks before this

duration threshold are considered as nonspecific skin conductance responses and does not
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need to be extracted.

The clean EDA data, the peaks, and the tonic and phasic components of signal can be used

to easily extract extra statistical features if needed.

3.3 Automatic Feature Extraction

Feature extraction becomes increasingly important when the data is high dimensional. There

have been several studies which attempt to create classification models based on statistical

features extracted from physiological signals such as EDA. However, there is no study sug-

gesting which specific set of statistical features is informative for any type of EDA analytics

regardless of the final application (e.g., assessing stress, emotion, pain, risk of seizure, etc.).

Therefore, using automatic feature extraction and selection to find the most important set

of features for any type of application can be significantly important.

An autoencoder is a type of unsupervised artificial neural network which is used to learn

efficient data coding [32, 33]. The aim of an autoencoder is to efficiently learn how to com-

press and encode the data to reduce the dimensional representation. This lower dimensional

representation can be regarded as an abstract set of features of the original high dimensional

data. An autoencoder consists of two different parts: the encoder and the decoder. These

two parts can be defined as two different functions as follows:

ϕ : X → Y (3.1)

ψ : Y → X ′ (3.2)

Given one hidden layer for encoder and decoder parts in the simplest case: Function (3.1)

can be defined as y = σ(Wx+b). σ is an element-wised activation function such as sigmoid.
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W is a weight matrix and b is a bias vector of the encoder part. x is ∈ X and y is ∈ Y .

Function (3.2) can be defined as x′ = σ(W ′y+b′). σ is an element-wised activation function

such as sigmoid. W ′ is a weight matrix and b′ is a bias vector of the decoder part. x′ is

∈ X ′ and y is ∈ Y .

Autoencoders are trained to minimize the following reconstruction loss:

loss(x,x′) = ∥x− x′∥2 (3.3)

Weights and biases are initialized randomly, and then iteratively updated based on the

reconstruction loss computed in (3.3) during training through Backpropagation. The image

y represents a latent code or latent representation of the input x. It can be directly used as

the set of features of input x for classification.

Figure 3.2 shows the architecture of the autoencoder implemented in our pipeline for auto-

matic feature extraction. First, a linear layer (L1) is used to downsample the input EDA

signal with Input Shape length to a length that is the closest power of 2 (CP2). This was

done to make the model scalable to an arbitrary input size. The encoder half of the network

consists of three 1-D convolutional layers (C1, C2, and C3) and a linear layer (L2) which

flatten and downsamples the input vector to a lower-dimensional latent vector. The number

of dimensions of this latent vector (Feature Size) corresponds to the number of automatic

features extracted and was set prior to training the network. The decoder half of the net-

work consists of three 1-D de-convolutional layers (DeC1, DeC2, and DeC3) to reconstruct

the input signal from the latent vector. A final linear layer (L3) is then used to flatten and

reconstruct the signal to its original dimension. Both encoder and decoder networks have

ReLU (Rectified Linear Unit) activation between layers.

It is worth mentioning that the number of extracted features are fed to our tool as an input

12
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Figure 3.2: The architecture of the proposed autoencoder.

parameter before training the model (in this paper the number of features is 64). We use

PyTorch library to implement our autoencoder architecture. PyTorch is an open source

machine learning library based on the Torch library, used for applications such as computer

vision and natural language processing [34].
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Chapter 4

Experimental Results

4.1 Dataset

Wearable Stress and Affect Detection (WESAD) is a publicly available multimodal dataset

for stress and affect detection [28]. In this data set, physiological and motion data are

recorded from Empatica E4 and RaspbiAN professional devices from 15 subjects during a

lab study.

The goal of this dataset is to elicit three affective states (neutral, stress, amusement) in the

participants. There are two different versions of the study protocol in this dataset. These

protocols consist of six different tasks labeled as Baseline, Amuesment, Medi I, Stress, Rest,

and Medi II. They distinguish two different classification tasks based on these protocols.

First, they define a three-class problem: baseline vs. stress vs. amusement. Second, they

define a binary classification: baseline vs. stress. In this paper, we focus on creating a binary

classification to detect stress. We consider EDA data in the Baseline section labeled as ”not-

stressed” (0), and EDA data in the Stress section labeled as ”stressed” (1) to create our

model. Our model is created based on the EDA data collected from Empatica E4 wristband
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[35].

4.2 Machine Learning based Classification Algorithms

To demonstrate the efficacy of the pyEDA toolkit, we use it to build machine learning

based stress and affect models using the WESAD dataset and evaluate the performance of

our extracted features. We use four different machine learning algorithms: (1) K-nearest-

neighbor (kNN) with k between 1 to 10, (2) Näıve Bayes Gaussian classifier, (3) Random

Forest with depth between 1 to 10, and (4) support vector machine (SVM). The kNN method

uses k number of nearest data-points and predicts the result based on a majority vote [36].

The Näıve Bayes Gaussian classifier predicts the result based on the probabilities of each

feature’s Gaussian distribution [37]. The SVM tries to find the best hyper-plane to divide

the data points into different classes [38]. The Random Forest classifier fits a number of

decision tree classifiers on various sub-samples of the dataset and uses averaging to improve

the predictive accuracy and control over-fitting [39]. We use the scikit-learn software for

classification and prediction. The scikit-learn is an open-source machine learning library for

the Python programming language [40].

4.3 Stress Models Accuracy

We build our stress model based on four different machine learning algorithms (kNN, Naive

Bayes, Random Forest, and SVM). We train two different models based on the input features

for each machine learning algorithm and report their accuracy: (1) The first model trains

the data using only statistical features. (2) The second model trains the data using only

automatic features. We consider 30 percent of the data (5 subjects) as test and the rest as

training. Figure 4.1 shows the accuracy of the four different classifiers used based on two
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Figure 4.1: Validation accuracy on two different set of features using different machine
learning algorithms.

different set of features. The best accuracy for the Statistical-feature based model belongs

to the random forest with depth equals to 1, which is 90%. The best accuracy for the

automatic-feature based model belongs to the NaiveBayes classifer which is equal to 97%. In

[28], they achieve the accuracy of 79.71% using AdaBoost classifier for EDA signals collected

from Empatica E4 wristband. Table 4.1 shows the summary of our results in compared with

the state of the art. The results show that our proposed pipeline outperforms their method

in extracting related features for creating stress models (for both automatic and statistical

features).

Table 4.1: The summary of our results in compared with the state of the arts

Existing works ML algorithm Features Accuracy
Schmidt et al. [28] AdaBoost statistical features 79.71%

pyEDA RandomForest statistical features 90%
pyEDA NaiveBayes automatic features 97%

Table 4.2 shows the statistical features extracted from EDA signal in Schmidt et al. work.

According to this table, they are extracting around 14 different statistical features. However,

our model still beats their accuracy using only three statistical features. This indicates that
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Table 4.2: The summary of extracted features from EDA in Schmidt et al. work

Statistical Extracted Features
Mean, STD, Min and Max value, Slope and Dynamic range,

Mean and STD of SCR/SCL, correlation between SCL and time,
sum of SCR startle magnitudes and response durations, and Area under the identified SCRs

increasing the number of statistical features extracted from the signal without any proper

feature selection algorithm might mislead the model and reduces the accuracy of the model.

Our results show that, in all four machine learning algorithms, we achieve a higher accuracy

using automatically extracted features compared with statistical features. To detect other

types of stimulus than stress, one might need to add some extra statistical features with

propoer feature selection methods to achieve an acceptable accuracy. However, automatic

feature extraction module in our tool can still be used to extract the most important features

regardless of the stimulus. This is the main advantage of our open-source tool in comparison

with other tools for EDA feature extraction.
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Chapter 5

Conclusion

In this work, we presented a user-friendly open-source toolkit in Python, to extract statistical

and automatic features from EDA data. To the best of our knowledge, this is the first work

presenting an versatile open-soruce tool (pyEDA) to extract automatic features for EDA

data. The pyEDA employs autoencoders to automatically extract any arbitrary number of

features representing the lower dimensional representation of the input data. These features

can directly be used in machine learning algorithms for classification and stimulus detection.

There is no previous study claiming what statistical features of EDA data are the best

features to detect different types of stimuli. Different types of stimuli can have different

effects on EDA signal, therefore the type of statistical features to extract from the signal

can be different in each scenario. As a result, presenting a toolkit which is able to extract

both statistical and automatic features of EDA data can facilitate and accelerate research

in EDA signal analysis.
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[22] John Edison Muñoz, Elvio Rubio Gouveia, Mónica S Cameirão, and Sergi Bermúdez
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