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Abstract

Empirical evidence from both utility and psychophysical experiments sug-
gests that people respond quite differently—perhaps discontinuously—to stimulus
pairs when one consequence or signal is set to “zero.” Such stimuli are called
unitary. The author’s earlier theories assumed otherwise. In particular, the key
property of segregation relating gambles and joint receipts (or presentations) in-
volves unitary stimuli. Also, the representation of unitary stimuli was assumed
to be separable (i.e., multiplicative). The theories developed here do not invoke
separability and segregation simultaneously. In the commutative case with iden-
tity e, which is relevant to utility, a class of representations more general than
rank-dependent utility (RDU) is found when V is an additive representation of
joint receipt, namely,

V (x,C; y) = V (y) +MC [V (x)− V (y)] (x % y Â e),

where MC(0) = 0 andMC(R) is strictly increasing in R. This form and its nat-
ural generalization to gambles of order n > 2, which is also axiomatized, appear
to encompass models of configural weights and decision affect. For joint receipts
that either are non-commutative with a one-sided identity or are idempotent
with no identity, which are the cases relevant to psychophysics, the results for
non-unitary stimuli include the prediction of a conjoint additive representation
and a prediction of constant bias independent of signal intensity.

Keywords: distributivity, generalized RDU, increasing increments, segrega-
tion, unitary stimuli
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Increasing Increment Generalizations of Rank-Dependent Theories

In various closely related theoretical developments both in utility theory
(Aczél, et al. 2002; Luce, 2000) and in psychophysics (Luce, 2002a,b) rank-
dependent representations play a key role. In the notation of utility theory,
binary rank-dependent utility (RDU) has the form

U(x,C; y) =


U(x)W (C) + U(y)[1−W (C)], x Â y % e
U(x), x ∼ y % e
U(x)[1−W (C)] + U(y)W (C)], y Â x % e

, (1)

where % denotes weak preference; e is no change from the status quo; x, y are
from a set D0 of valued consequences; C is a chance event from an algebra E
of events and C is its complement; (x,C; y) denotes a gamble in the case of
utility in which, when the underlying chance experiment is run and the event C
occurs, then the consequence is x, whereas when C occurs, then the consequence
is y. The utility function U is an order-preserving mapping from the domain
D1 of binary gambles and their joint receipts (see Section 1.1 below) either
onto R+ = [0,∞[ or, in the bounded case, onto [0, k[ , where k > 0, with
U(e) = 0. The function W maps E into R+ (and usually onto [0, 1] in the utility
interpretation and onto R+ in the psychophysical interpretation, see below) with
W (∅) = 0.
Although the present formulation is cast in the symbols of utility theory,

using the reinterpretation of Luce (2002a,b) makes it also relevant to psy-
chophysics. In that case, the symbols x, y refer to physical intensities measured
as differences between the actual intensity and that of the threshold, so 0 corre-
sponds to the threshold intensity and plays the role of e. (Observational error
of whatever sort is not modelled.) The event C is replaced by the real interval
[0, p], p > 0, and the respondent is asked to report the intensity z for which
the intensity “interval” [y, z] stands subjectively in the ratio p to the interval
[y, x]. This experimental method is a generalization of the well known method
of magnitude production, which is the case of y = 0. The notation x◦p y := z is
used, which is analogous to the alternative gamble notation x ◦C y := (x,C; y).
(This notation proves useful in formulating Theorems 3 and 4.)
Note that if RDU, (1), holds and preserves the order %, then several behav-

ioral properties are necessarily satisfied. First, % must be a weak order and so
∼:=% ∩ ¹ is an equivalence relation. So we assume:

Assumption 1. % is a weak order.

Assumption 2. Complementarity : For all x, y ∈ D0, x ≺ y, C ∈ E,

(x,C; y) ∼ (y, C;x). (2)

Given this assumption, it is sufficient to state things just for the case x % y % e,
i.e., the case of gains.
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Note that RDU also implies idempotence:

(x,C;x) ∼ x (x ∈ D0, C ∈ E). (3)

See Luce and Marley (2000) for some of what happens when (3) is violated. I do
not, however, invoke it as an underlying assumption because of the psychophysi-
cal interpretation of the primitives in which idempotence is not necessarily true.
Because both the utility and psychophysical interpretations are possible,

from here on the more neutral term “stimulus,” rather than gamble, is used for
(x,C; y). Moreover, treating C as a parameter, these are referred to as binary
stimuli, where the binary refers to the x, y pair.
For x Â y % e, (1) can be rewritten

U(x,C; y)− U(y)

U(x)− U(y)
=W (C),

which makes clear that under the mappings of U and W a certain simple pro-
portionality exists between the “interval” from the lesser consequence to the
gamble and the “interval” between the two consequences.
For utility, the theory for strict losses is formally identical to that for gains.

The case of mixed gambles, a gain and a loss, is discussed briefly in Section 2.5.
For psychophysics, only the gains case arises. So I focus primarily on gains.
RDU also implies that the binary stimulus (x,C; y) is strictly monotonic

increasing in the two consequences, i.e., for events C with 0 < W (C) < 1,

x Â x0 ⇔ (x,C; y) Â (x0, C; y) (4)

y Â y0 ⇔ (x,C; y) Â (x,C; y0). (5)

For greater detail, see Luce (2000). However, because in the psychophysical
interpretation p is not restricted to [0, 1], one is forced to replace right strictly
increasing monotonicity, (5), by the much weaker right substitutability,

y ∼ y0 ⇒ (x,C; y) ∼ (x,C; y0). (6)

For greater detail, see Aczél, et al. (2002). In addition it is plausible to suppose
that (x,C; y) is not a constant over any non-trivial interval of y values. In the
functional equation literature, such non-constancy is termed philandering.
As a result of these considerations:

Assumption 3. Stimuli satisfy left strictly increasing monotonicity and right
substitutability and right philandering for y Â e,.

Magnitude production data on auditory signals, collected by Steingrimsson
(2002), suggest that respondents may deal with x ◦p 0 differently from x ◦p y,
y > 0. And considerable data on gambles reported by Michael Birnbaum and
his colleagues (see especially Mellers, et al. 1992, and see Birnbaum, 1997, for
a summary) make clear that respondents respond quite differently when y = e
from when y Â e–in particular, for money lotteries with probabilities p near
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1, consequence monotonicity, (5), is violated in the sense that for some p0 and
some y Â e,

(x, p; e) Â (x, p; y) (p0 ≤ p < 1).

I suspect that subjects shift their strategy when they encounter unitary ele-
ments, e.g., by calculating an approximation to expected value which is far
easier to do mentally for unitary binary gambles than for non-unitary ones. In
any event, there are good empirical reasons to avoid mixing unitary stimuli of
the form (x,C; e) and non-unitary ones in developing the theory for general
binary stimuli (x,C; y) and to have a distinct theory for (x,C; e). My previous
work has depended on examining the relations among unitary and non-unitary
stimuli and so must be modified to accommodate these findings.
Note that by RDU, (1),

U(x,C; e) = U(x)W (C). (7)

This representation of unitary stimuli is called separable. An obvious accommo-
dation to the behavioral discontinuity at e is to change the representation of
separability to a different weight function, and so (1) becomes

U(x,C; y) =

½
U(x)W (C) + U(y)[1−W (C)] (x % y, y Â e)
U(x)W0(C) (x % y, y = e)

, (8)

where the function W0 6= W. However, the change to (8) is, by itself, not ade-
quate as will be shown in Proposition 3 in Section 2.4.
This article investigates what happens when two important properties of

the earlier theories are dropped. First, we do not impose separability of unitary
gambles but do continue to assume segregation (defined in Section 1.2). Next,
we drop segregation, which involves mixed unitary and non-unitary stimuli,
and replace it by the closely related distributivity property (defined in Section
1.3) that avoids the unitary ones. There are six substantive sections plus three
appendices. Section 1 introduces additional major ideas of the earlier model:
joint receipt, segregation, distributivity, simple decomposability, and two new
types of rank-dependent representations. Sections 2-3 explore what can happen
by simply dropping separability from the structure and retaining segregation.
These are, respectively, concerned with the case of commutative joint receipts
(defined in Section 1.1) which is relevant in a utility context and with the non-
commutative case in either a utility or a psychophysical context. Two important
results are applications of Theorem 2 to induced operations (see Assumption 5)
in Sections 3.2 and 3.3. Sections 4-5 do the comparable thing when separability
plays no role and segregation is replaced by distributivity. The binary gener-
alization of rank-dependent utility is extended to general gambles in Section
4.3. The concluding Section 6 has three parts. The first concerns important
predictions about the representation. The theories of Theorems 1 and 5 and
the corollaries of Theorems 3 and 4 all predict that the Thomsen condition of
additive conjoint measurement holds for joint receipt. It should be checked ex-
perimentally. And those of non-commutative case, corollaries of Theorems 3 and
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4, predict in some cases a constant bias independent of signal level. Second, with
a separable representation of unitary stimuli, we consider the condition needed
to be sure that the same utility function is involved for both unitary and non-
unitary stimuli. And third, the results are summarized. Appendix A proves the
results involving segregation. Appendix B lists two results of Lundberg (2002)
concerning the distributivity and a related functional equation. These are used
in the proofs of Theorems 5 and 7 in Appendix C.

1 Additional Important Concepts

1.1 Joint receipt

In addition to the binary stimuli, the theory also involves the concept of joint
receipt, i.e., of having or receiving two valued things at once, denoted f ⊕ g,
where f, g are stimuli. We make the following general assumptions about ⊕ :
Assumption 4. ⊕ is strictly monotonically increasing in each variable.
It is not, however, assumed that ⊕ is necessarily a closed operation. For the

utility context, closure may be plausible, but for the psychophysical one, it may
not be in a direct sense. For example, suppose that x⊕ y means that intensity
x is presented to the left ear and intensity y to the right, then (x⊕y)⊕z has no
natural meaning. However, certain closely related defined operations are closed
and permit the construction of a representation of ⊕. To that end, we introduce:
Assumption 5. For each x, y, the following three indifferences can all be solved

for the z terms:

x⊕ y ∼ zl ⊕ e ∼ e⊕ zr ∼ zs ⊕ zs. (9)

This solvability assumption permits the following definitions:

x⊕l y := zl, x⊕r y := zr, x⊕s y := zs. (10)

It is easy to verify the following facts: each ⊕i, i = l, r, s, is a closed operation;
each ⊕i is strictly monotonic increasing in each variable (because ⊕ is); e is a
right identity of ⊕l, i.e.,

x⊕l e ∼ x (x ∈ D), (11)

and a left identity of of ⊕r, i.e.,
e⊕r y ∼ y (y ∈ D). (12)

The operation ⊕s is idempotent, i.e.,
x⊕s x ∼ x (x ∈ D). (13)

We assume that in addition to pure consequences and first and second order
binary stimuli we also have the comparable joint receipts. This extended domain
is denoted D and Assumptions 1-5 apply to it.
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1.2 Segregation

In the earlier work the property of right segregation

(x,C; e)⊕ y ∼ (x⊕ y, C; e⊕ y) (x % e, y % e) (14)

was assumed to hold but with the added assumption that e is a left identity
of ⊕ and so e ⊕ y = y. (A parallel theory holds if e is a right identity and left
segregation holds in which y appears on the left.) Note that segregation involves
a unitary stimulus on the left and a non-unitary one on the right when y Â e.
In the case where ⊕ is commutative and associative, e is a two-sided identity

of ⊕, and RDU and segregation hold, then U over ⊕ turns out to have the
following p-additive form:

U(f ⊕ g) = U(f) + U(g) + δU(f)U(g). (15)

(For a proof see Luce, 2000, Theorem 4.4.4, pp. 151-152). It is often convenient
to work with the representation onto R+ := [0,∞[ that is defined by the non-
linear transformation

V (x) :=

½
sgn(δ) ln[1 + δU(x)], (δ 6= 0)
U(x), (δ = 0)

, (16)

which, when U is p-additive, is easily shown to be additive over ⊕:
V (x⊕ y) = V (x) + V (y) (x % e, y % e). (17)

Note that if ⊕ is a closed operation, then V is unbounded even though the
p-additive form for U is bounded for any δ < 0. Note, also, that V (e) = 0.
Conversely, assume (17), and define U over ⊕ by

U(x) :=

½
1
δ [exp(sgn(δ)V (x))]− 1, (δ 6= 0)
U(x), (δ = 0)

, (18)

Then U is p-additive, (15).
The function U associated with the RDU representation is called a utility

function whereas V is called a value function.
The commutative case was generalized to the non-commutative one in Luce

(2002a,b) in order to accommodate a psychophysical interpretation of the prim-
itives, and so I treat that case here as well. In the non-commutative case the
additive value function is replaced by a form of additive conjoint representation.

1.3 Distributivity

A very natural generalization of right segregation is:

(x,C; y)⊕ z ∼ (x⊕ z, C; y ⊕ z) (x % y Â e, z % e). (19)

Property (19), which avoids unitary stimuli, is called right distributivity. (Left
distributivity inverts the order of z under the operation ⊕.
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As we will see in Theorem 1, in a fairly general context, including the earlier
RDU theory, right distributivity is implied by right segregation and not con-
versely because right distributivity is restricted to y Â e. In that sense, it is
a weaker property. But three independent variables are involved rather than
the two of segregation. In that sense it is a stronger property. The balance
between the two is not a priori clear, but it turns out (Theorem 5 and 7) that
it yields the same representations as that of Theorems 1 and 2, but without
forcing separability. The proof, unfortunately, is a great deal more complex.

1.4 Event commutativity

The property
((x,C; y),D; y) ∼ ((x,D; y), C; y), (20)

where the stimuli are independently realized, is called event commutativity. It
has played a fairly significant role in earlier versions of the theory, in large part,
because RDU satisfies it and because it has received some empirical support
in utility theory (Luce, 2000) and in psychophysics for y = e (Ellermeier &
Faulhammer, 2000). We will investigate it in the present context.1

1.5 Simple decomposability

For both stimuli and their joint receipt, a simplifying assumption is made that
is called simple decomposability. This may be stated in terms of either U or V.
Here we state it for V which has the advantage that the range of V is [0,∞[ .
Informally, it is the assumption that V (x ⊕ y) and V (x,C; y) depend on x, y

only via V (x), V (y). Formally, there exists a function F : [0,∞[×[0,∞[ onto−→
[0,∞[ and, for each C ∈ E , an algebra of events, there exists a function GC :

]0,∞[× ]0,∞[ onto−→ ]0,∞[ , such that

V (x⊕ y) = F [V (x), V (y)], (x % e, y % e) (21)

V (x,C; y) =

½
GC [V (x), V (y)] (x % y Â e)
GC [V (y), V (x)] (y % x Â e)

, (22)

where F is strictly increasing in both variables because ⊕ is (Assumption 5),
and GC is strictly increasing in the first variable because (x,C; y) is, and we
postulate that it is continuous and philandering in the second (Assumption 4).
Equation (18) for δ 6= 0 together with (21) yields

U(x⊕ y) =
1

δ
[exp sgn(δ)V (x⊕ y)− 1]

=
1

δ
(exp sgn(δ)[V (x), V (y)]− 1)

=
1

δ
(expF [sgn(δ) ln[1 + δU(x)], sgn(δ) ln[1 + δU(y)]− 1)

= F ∗[U(x), U(y)],
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where F ∗ is defined in the obvious way in terms of F and δ. A similar calculation
shows that U(x,C; y) = G∗C [U(x), U(y)]. In the case of non-commutative joint
receipt, I invoke decomposability in terms of U.
Note that if e is a left identity of ⊕, then F (0, Y ) = Y, if e is a right

identity, then F (X, 0) = X, and if ⊕ is idempotent F (X,X) = X. If the stimuli
are idempotent then, GC(X,X) = X. Further, if U is p-additive, then it is
decomposable.

1.6 Increasing Utility and Value Increments

The following decomposable representations of gambles, which generalize RDU,
will play a substantial role in what follows.
An increasing value increments representation (abbreviated IVI ) holds iff

there is a strictly increasing function LC : R+
into−→ R+, such that, for x % y,

V (x,C; y) = LC [V (x)− V (y)] + V (y), (23)

where LC(Z) = V [V −1(Z), C; e].
In parallel, we say increasing utility increments (IUI) holds if there is a

strictly increasing function MC : [0, k[
into−→ [0, k[ , such that, for x % y,

U(x,C; y) =MC [U(x)− U(y)] + U(y), (24)

with MC(Z) = U [U−1(Z), C; e].
An important special case arises when LC is decomposable in the following

sense: there exists a strictly increasing functionW : E onto−→W (E), whereW (E) =
[0, 1] in the utility interpretation and = R+ in the utility one, and a function
L : R+ ×W (E) onto−→ R+ such that

LC(R) = L[R,W (C)],

and there exists a strictly increasing function l : R+
into−→ R+ such that

l[V (x,C; y)− V (y)] = l[V (x)− V (y)]W (C), (25)

where LC(R) = l−1[l(R)W (C)]. The form (25) is called proportional increasing
value increments (PIVI). If the parallel form holds for U, i.e.,

m[U(x,C; y)− U(y)] = m[U(x)− U(y)]W (C), (26)

we call it PIUI. Note that, with Z = U(x)− U(y),W = W (c), (24)) with (26)
gives

MC(Z) = m−1(ZW ). (27)

Two related observations about the PIVI (PIUI) representation are impor-
tant. First, for non-linear l (m) unitary gambles are not separable, (7), in the
representation V (U) but are in lV (mU). Second, if l (m) is a power function
with exponent βl > 0 (βm > 0), then the representation separable in V with
the weighting function W 1/βl (W 1/βm). Thus, in these cases we may well have
the more general form of RDU, (8).
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2 IVI, Segregation, and Additive Joint Receipt

2.1 The basic result

We begin by exploring several aspects of the interplay of p-additivity, (15) and
segregation, (14), and in Corollary 2 the corresponding impact of separability,
(7), on the results.

Theorem 1. Suppose that a structure of binary stimuli and joint receipts sat-
isfies the following: Assumptions 1-4; there exists an additive representa-
tion V over ⊕ [and a p-additive representation U defined in terms of V
by (18)]; and the representation of stimuli is decomposable, (22).

(1) The following three statements are equivalent:

(a) Segregation holds.

(b) The representation V is an IVI one, (23).

(c) There is a family of functions lC : [1,∞[ into−→ [1,∞[ when δ > 0 and

[0, 1[
into−→ [0, 1[ when δ < 0 such that

δU(x,C; y) + 1 = lC

µ
δU(x) + 1

δU(y) + 1

¶
[δU(y) + 1] (28)

(2) The IVI representation, (23), implies that right and left distributivity both
hold.

(3) The following three statements are equivalent:

(a) IVI, (23), and event commutativity, (20), both hold.

(b) The functions of the IVI representation, (23), satisfy

LC (LD) = LD (LC) . (29)

(c) The PIVI representation, (25), holds.

The proofs of this Theorem, along with four related propositions, and of
Theorems 3 and 4 are given in Appendix A. The proofs of Theorems 5-7 are in
Appendix C.

2.2 Qualitative version of LC

A.A. J.Marley suggested that I investigate the following qualitative formulation.
Assume that for x Â y, there exists a solution z to the indifference x ∼ z ⊕ y.
Define the “subtraction” operation ª by

xª y ∼ z ⇔ x ∼ z ⊕ y (x % y). (30)
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With that, suppose that for each C ∈ E, there exists a function ΦC : D0 into−→ D0
that is strictly increasing in the first argument such that for all x % y Â e

(x,C; y) ∼ y ⊕ ΦC (xª y) . (31)

The function ΦC plays a qualitative role that is close to the numerical one MC ,
as the following result shows.

Proposition 1. Suppose that the assumptions of Theorem 1 hold and that ª,
(30), is defined.

(1) Then the property (31) implies right distributivity, (19).

(2) Any two of IVI, i.e., (23), (31), and

LC [V (z)] = V [ΦC(z)] (32)

imply the third.

(3) If segregation, (14), holds, then (31) implies for all z ∈ D

ΦC (z) ∼ (z, C; e).

The latter assertion means that ΦC generalizes the concept of unitary stim-
uli.

2.3 The IUI representation

Proposition 2. Suppose that the conditions of Theorem 1 and IVI, (23) hold.
Let U be related to V by (16). Then IUI holds with a function LC :

[0, k[
into−→ [0, k[ iff either

(1) δ = 0, in which case U = V and MC = LC , and RDU holds over stimuli
with x % y Â e iff

LC(R) = RW (C) (R ≥ 0), (33)

or

(2) δ 6= 0 in which case

MC(R) = RW (C) (34)

⇔ LC(R) = ln [1 +W (C) (expR− 1)] (R ≥ 0), (35)

which is RDU for (U,W ).
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2.4 Forcing the RDU Representation

Proposition 3. Suppose that the assumptions of Theorem 1 and IVI, (23) hold.

(1) The following three statements are equivalent:

(a) U satisfies separability.

(b) The stronger form of RDU, (1), holds.

(c) The function lC is of the form: lC(R) = (R− 1)W (C) + 1.

(2) Suppose that IUI holds. Then segregation iff RDU, (1), holds.

This means that under the assumptions of Theorem 1 we cannot have the
desired representation (U,W,W0) of (8) with W 6= W0. Therefore, to avoid
that unwanted conclusion, we must either not invoke separability or abandon
segregation and, in general, anything that invokes unitary stimuli of the form
(x,C; e), and instead develop the theory using only strict gains, (x,C; y), x %
y Â e. Note that the restriction y Â e pertains to (x,C; y) but definitely not
to x ⊕ y. A theory for (x,C; e) must be dealt with separately, for instance, by
invoking conjoint measurement, but then steps must be taken to insure that
the same utility function works for unitary and non-unitary stimuli (see Section
6.2).
Consider the following second form of separability that arises when RDU

holds for non-unitary stimuli, where the limit on the left exists by continuity:

lim
y&e

U(x,C; y) = U(x)W (C), (36)

and W 6=W0.

Proposition 4. Suppose that the following are satisfied: the assumptions of
Theorem 1 and IVI, (23); V is additive; separability, (7); and the separable
limit, (36), exists. Then there exists a representation (U,W,W0) such that
U over ⊕ is p-additive and the representation over stimuli is an RDU one
in the sense of (8).

Note that each of the conditions (7), (23), and (36) is necessary if RDU in
the form of (8) is satisfied.
Given this result, the important open question is how to get the IVI repre-

sentation without invoking segregation. It turns out the distributivity is just
what is needed (Sections 4 and 5).

2.5 Mixed binary gambles

Luce (2000) worked out two possible theories for binary gambles where x Â
e Â y, which are called mixed. One assumption was an generalization of right
segregation, namely,

(x,C; y) ∼
½
(xª y,C; e)⊕ y, (x,C; y) % e
(e,C; y ª x)⊕ x, (x,C; y) ≺ e

.
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The other, called duplex decomposition, is non-rational but has found some
experimental support (see Luce, 2000)

(x,C; y) ∼ (x,C; e)⊕ (e, C; y).

Later direct study of these properties by Cho, et al. (2002) make clear that
between them they account for, at most, 3/4 of the data and perhaps as little
as 1/2, depending upon what criterion one uses for accepting noisy data as
supporting an indifference.
Formulas are given in Luce (2000) for the utility of these cases for both

δ = 0 and δ 6= 0 using, of course, the utility functions U derived for both
gains and losses and the corresponding weighting function W+,W−. Because
both expressions are in terms of unitary gambles on the right, according to the
present results we should merely replace the weights by W+

0 ,W
−
0 . However, the

direct data suggests that we should probably seek a better theory.

3 IUI, Segregation, and Non-Commutative Joint
Receipt

3.1 IUI and Right Segregation

We turn next to a result somewhat parallel to Theorem 1 but explicitly rejects
the assumption that ⊕ has an additive representation. Thus, we deal only with
the utility function U.

Theorem 2. Suppose that a structure of binary gambles and joint receipts sat-
isfy Assumptions 1-4 and there is a utility function U with a decomposable
representation F for ⊕, and an IUI representation MC for gambles. De-
fine H(X,Y ) := F (X,Y )− F (0, Y ).

(1) Suppose that right segregation, (14), holds. Then H and MC satisfy the
following functional equation:

H[MC(X), Y ] =MC [H(X,Y )]. (37)

(2) Any two of the following statements implies the third:

(a) Right segregation, (14) holds.

(b) PIUI, (26), holds with the functions m and W.

(c) The operation ⊕ has the representation

m[U(x⊕ y)− U(e⊕ y)] = m[U(x)]σr[U(y)], (38)

where σr[U(y)] > 0.
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(3) If e⊕ e ∼ e, then (38) becomes

m[U(x⊕ y)− U(e⊕ y)] = m[U(x⊕ e)]σ∗r [U(y)], (39)

where σ∗r [U(y)] = σr[U(y)]/σr(0)

(4) Assume that (2)(a)-(c) are satisfied. Then the following statements are
equivalent:

(a) RDU, (1), holds.

(b) m(X) = aX, a > 0 which is equivalent to

F (X,Y ) = Xσr(Y ) + F (0, Y )

= F (X, 0)σ∗r(Y ) + F (0, Y ) [σ∗r(Y ) = σr(Y )/σr(0)]

⇔ U(x⊕ y) = U(x)σr[U(y)] + U(e⊕ y)

= U(x⊕ e)σ∗r [U(y)] + U(e⊕ y). (40)

(c) Separability, (7), is satisfied.

(d) Right distributivity, (57), holds.

(5) If (38) holds, ⊕ is commutative, and e is an identity, then m and σr satisfy
the following functional equation:

m−1 [m(X)σr(Y )] + Y = m−1 [m(Y )σr(X)] +X (41)

Note that (37) is weak functional equation that asserts that in terms of the
first independent variable, H and MC are commutative for each choice of Y.
Equation (41) is a good deal stronger, but it has not been solved. One solution
is

m(X) = αXβ, g(Y ) = (1 + δY )β

which yields the p-additive form

F (X,Y ) = X + Y + δXY.

A second solution is
m(X) = a exp(X), g(y) = b,

in which case it is easy to see that

F (X,Y ) = X + Y + ln b.

The assumption that e is an identity of ⊕ implies ln b = 0, i.e., b = 1, which
is the additive form. An important issue is whether there other solutions. I do
not know the answer.
Using Parts (2) and (4), we see that right segregation can hold without

right distributivity holding if we have a non-trivial PIUI generalization of RDU.
This is of importance because some unpublished psychophysical data suggest
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that segregation may be approximately correct whereas general distributivity
may not be.
There is a comparable result if left rather than right segregation holds. For

example, we have in that case (38) replaced by

m [U(x⊕ y)− U(x⊕ e)] = σl[U(x)]m[U(y)]. (42)

Corollary. If (38) holds with m a power function with exponent βm and if ⊕
is idempotent, (13), then

U(x⊕ y) = U(x)σr[U(y)]
1/βm + U(y)

³
1− σr[U(y)]

1/βm
´
. (43)

3.2 Segregation and RDU for Induced ⊕l,⊕r

Two ear intensity data suggest that the defined operations ⊕l and ⊕r, see (10),
are rarely, if ever, actually commutative (Steingrimsson, 2002), which also means
that ⊕ is not commutative. So we explore this case recalling that e is a right
identity of ⊕l and a left identity of ⊕r.
Theorem 3. Suppose that Assumptions 1-5 hold for (D,%,⊕, ◦C). Let ⊕,⊕l,⊕r

be related by (10); ◦C,l, ◦C,r are defined in terms of ◦C by
(x ◦C,l y)⊕ e : = (x⊕ e) ◦C (y ⊕ e) (44)

e⊕ (u ◦C,r v) : = (e⊕ u) ◦C (e⊕ v), (45)

and Ul, Ur are defined in terms of U by

Ul(x) = U(x⊕ e) (46)

Ur(x) = U(e⊕ x), (47)

and conversely. Then (Ul,W,⊕l, ◦C,l) satisfies the properties of Part (2) of
the left analogue of Theorem 2 and (Ur,W,⊕r, ◦C,r) satisfies the properties
of Part (2) of Theorem 2 iff the following conditions are satisfied for all
x, y, z ∈ D0:

(1) (U,W ) forms a PIUI representation of ◦C in the following sense: for x⊕
y Â u⊕ v,

m (U [(x⊕ y) ◦C (u⊕ v)]− U(u⊕ v))

= m[U(x⊕ y)− U(u⊕ v)]W (C). (48)

(2) The representation of the operation ⊕ satisfies:
m[U(x⊕ y)− U(e⊕ y)] = m[U(e⊕ x)]σr[U(e⊕ y], (49)

m[U(x⊕ y)− U(x⊕ e)] = m[U(y ⊕ e)]σl[U(x⊕ e], (50)

e⊕ e ∼ e, (51)

where σr and σl are positive and continuous.
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(3) There exists a constant γm > 0 such that

m[U(x⊕ e)]

m[U(e⊕ x)]
= γm. (52)

Corollary. Suppose that the properties (1)-(3) hold.

(1) If m is a power function with exponent βm, then for some constants γ > 0
and δ,

U [(x⊕ y) ◦C (u⊕ v)]− U(u⊕ v)

= [U(x⊕ y)− U(u⊕ v)][W (C)]1/βm (x⊕ y % u⊕ v Â e),(53)

U(x⊕ y) = U(x⊕ e) + U(e⊕ y) + δU(x⊕ e)U(e⊕ y), (54)

U(x⊕ e) = γU(e⊕ x) (γ = γ1/βmm ). (55)

(2) If βm = 1, then the pair (◦C ,⊕) satisfies left and right distributivity in the
following sense

(z ⊕ x) ◦C (z ⊕ y) ∼ z ⊕ (x ◦C,r y), (56)

(x⊕ z) ◦C (y ⊕ z) ∼ (x ◦C,l y)⊕ z. (57)

The formulation of the results in the Corollary, which is better than my
original version, was pointed out to me by E.Dzhafarov. If we adjoin

U(x⊕ y, C; e) = U(x⊕ y)W0(C) (58)

to (53) we have the general RDU representation (8).
Equation (54) is a p-additive form, but that fact does not imply that ⊕ is

commutative unless γ = 1 nor does it imply that ⊕ is bisymmetric in the form
(x⊕ y)⊕ (u⊕ v) ∼ (x⊕ u)⊕ (y ⊕ v). (59)

In the commutative case with e an identity, (54) reduces to classical p-additivity,
(15). The asymmetry in the situation is caught by (55) whereas (54) is decep-
tively symmetric. By recasting the latter into either the left or right form, the
asymmetry becomes more transparent:

U [e⊕ (x⊕r y)] = U(x⊕ y)

= U(x⊕ e) + U(e⊕ y) + δU(x⊕ e)U(e⊕ y)

= γU(e⊕ x) + U(e⊕ y) + δγU(e⊕ x)U(e⊕ y),

which, using (46) and (47), is equivalent to

Ur(x⊕r y) = γUr(x) + Ur(y) + δγUr(x)Ur(y).

Luce (2002a) studied only the cases where ⊕r is bisymmetric, (59), which
property is satisfied iff either γ = 1 (the commutative case) or δ = 0 (the
weighted additive case). If U is written in terms of F, (21), and if it is assumed
that F is a homogeneous function, then Aczél, et al. (2002) showed that only
these two cases can arise.
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3.3 Segregation and RDU for Induced ⊕s

We next take up the assumption that it is the induced symmetric operation ⊕s
that exhibits both right and left segregation.

Theorem 4. Suppose that Assumptions 1-5 hold for (D,%,⊕, ◦C). Let ⊕,⊕s
be related by (9) and (10); ◦C,s is defined in terms of ◦C by

(x ◦C,s y)⊕ (x ◦C,s y) := (x⊕ x) ◦C (y ⊕ y); (60)

and define U in terms of Us and conversely by

U(x⊕ y) := Us(x⊕s y). (61)

Then (Us,W,⊕s, ◦C,s) satisfies the Part (2) of Theorem 2 for both right
and left segregation iff the following conditions are satisfied by (U,W,⊕, ◦C):

(1) (U,W ) satisfies PIUI in the sense of (48).

(2) (U,⊕) satisfies (38) and (42)
(3) Equation (51), e⊕ e ∼ e, holds.

Corollary. Suppose that the properties of (1)-(3) hold.

(1) If m is a power function with exponent βm, then either

U(x⊕ y) = U(x⊕ e) + U(e⊕ y), (62)

or there exists a constant η ∈ ]0, 1[ such that U(x⊕ y) satisfies

U(x⊕ y) = ηU(x⊕ x) + (1− η)U(y ⊕ y). (63)

(2) Equation (63) holds iff (62) and the ratio condition (55) hold. In that case,
γ = η/(1− η).]

(3) If βm = 1, then distributivity holds in the sense that

(z ⊕ x) ◦C (z ⊕ y) ∼ z ⊕ (x ◦C,s y) (64)

(x⊕ z) ◦C (y ⊕ z) ∼ (x ◦C,s y)⊕ z. (65)

Given the difference between (62) and the p-additive form of (54), it is
clear that symmetric segregation of ⊕s neither implies nor is implied by the
left segregation of ⊕l and the right segregation of ⊕r. On the other hand, as is
shown in Luce (2002b), one form of segregation for ⊕s and one for either ⊕l or
⊕r implies that all four hold and so (62) and (55) are satisfied.
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4 IVI, Distributivity, and Commutative Joint
Receipt

4.1 Forcing utility to be additive over ⊕
Luce (1996; see also 2000) has studied the property called joint-receipt decom-
posability: For each x ∈ D and C ∈ E, there exists D = D(x,C) ∈ E such that
for all y ∈ D

(x⊕ y, C; e) ∼ (x,C; e)⊕ (y,D; e). (66)

where each of the stimuli is realized independently. Note that all three of the
stimuli are unitary ones and so, at least, it does not mix unitary and non-unitary
ones.
This concept played the following role in the earlier work. It is not difficult

to show that if (U,W ) is separable over unitary stimuli of the form (x,C; e),
i.e., UW is order preserving of these stimuli, and if U is p-additive over ⊕, (15),
then joint-receipt decomposition is satisfied. Somewhat more difficult to prove
is the fact that if U∗W ∗ is order preserving over unitary stimuli, if ⊕ has a
p-additive representation U∗∗, and if joint receipt decomposability holds, then
there exist (U,W ) such that both UW is order preserving over unitary stimuli
and U is p-additive over ⊕, where, of course, for some β > 0 UW = (U∗W ∗)β .
The import of the following result is that generalizing segregation is a delicate

matter and without care it can lead to results that are stronger than one might
wish. Indeed, the conclusion one draws is that when unitary stimuli are part of
the overall structure and joint-receipt decomposability holds, then one may not
assume both right segregation and right distributivity unless one is prepared
to accept that the utility function satisfying RDU is also additive over joint
receipt.
Because we will now avoid unitary stimuli, this means that GC is not de-

fined at 0. Of course, because of the assumed continuity, we may continuously
extend GC to include 0; however we may not interpret this extension as giving
V (x,C; e). Such an extension may seem an odd thing to do; however, some of
the mathematics I use assumes that the domains are [0, k[ , not ]0, k[ .

Proposition 5. 2 Suppose that the following are satisfied: Assumptions 1-4;
stimuli are idempotent, (3); ⊕ is commutative and e is its identity; an
order-preserving mapping V of the domain D of binary stimuli and joint
receipts onto [0,∞[ exists; and the functions F,GC defined by (21) and
(22) exist and are continuous in each of the variables. If right distributivity,
(19), right segregation, (14), and joint-receipt decomposability, (66), all

hold, then V is additive over ⊕, (17), and there exists W : E into−→ [0, 1]
such that (V,W ) is an RDU representation, (8).

Note that by Assumptions 3 and 4, F is strictly increasing in each variable,
and GC is strictly increasing in x and philandering in y.
The objection to this result is that it ties RDU together with an additive

representation of ⊕, which for various empirical reasons is widely regarded as

18



wrong. As in the earlier work, we would like the U of an RDU representation
to be p-additive over ⊕, not purely additive.
So, the conclusion is that in the presence of right distributivity, we should

avoid assuming both segregation and joint-receipt decomposability. Having in-
vestigated segregation in Sections 2 and 3, we now drop it in favor of distribu-
tivity.

4.2 The basic result for binary stimuli

Theorem 5. Suppose the following are satisfied: Assumptions 1-4; ⊕ is com-
mutative and e is its identity ; V is an order-preserving mapping of the
domain D onto [0,∞[ , and the functions F,GC defined by (21), (22) ex-
ist and are continuous in each of the variables. Consider the following
three statements:

(1) V is additive over ⊕, (17).
(2) Right distributivity, (19), is satisfied.

(3) For each C ∈ E, there exists a function LC : R+
into−→ R+ , that is strictly

increasing such that IVI, (23), holds.

Then: (1) and (2) imply (3); (1) and (3) imply (2); and (2) and (3) imply
that there exists V ∗ and L∗C such that

V ∗(x⊕ y) = V ∗(x) + V ∗(y),
V ∗(x,C; y) = V ∗(y) + L∗C [V

∗(x)− V ∗(y)].

Observe that IVI was also derived in Theorem 1 except that its domain of
application here is limited to y Â e whereas in Theorem 1 it holds for y %
e. Also, the proof of Theorem 5 is a good deal more complex than that of
Theorem 1 in that it rests on a rather deep mathematical result. Because the
resulting representation is again IVI, Propositions 1-4 apply here as well as when
segregation is assumed.
Note that from statements (2) and (3) one does not claim that V itself is

additive, but rather that there is a V ∗ that is both additive and of the same
form as (23).
An example of (23) that does not reduce to U satisfying RDU is for LC(Z) =

ZW (C), which means that V itself satisfies RDU.
In the next subsection we explore the generalization of (23) to stimuli of

order n > 2.
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4.3 Generalization of IVI to general gambles3

The form of (23) may be of considerable interest in decision making. A natural
generalization of it to gambles of order n is

V (x1, C1; ...;xi, Ci; ...;xn, Cn)− V (xn) =
n−1X
i=1

L
(i)
C [V (xi)− V (xn)] (xn Â e)

(67)

where C = (C1, ..., Ci, ..., Cn), each L
(i)
C : R+

onto−→ R+ is strictly increasing, and
L
(i)
C (0) = 0. As is easily seen, if V is additive over ⊕, this form implies a natural
generalization of right distributivity

(x1, C1; ...;xi, Ci; ...;xn, Cn)⊕ z

∼ (x1 ⊕ z, C1; ...;xi ⊕ z, Ci; ...;xn ⊕ z, Cn) (xn Â e). (68)

However, this generalization of distributivity does not, by itself, imply (67). So
more than generalized right distributivity is required to insure that (67) holds.
We continue to suppose that gambles are decomposable in the sense that

there exists a function GC : Rn+
onto−→ R+ such that

V (x1, C1; ...;xi, Ci; ...;xn, Cn) = GC[V (x1); ...;V (xn)]. (69)

Theorem 6. Suppose that the following conditions are satisfied: % is a weak
order on general gambles of order n > 2 and their joint receipts; gambles
are idempotent and strictly monotonic increasing over each subset of con-
sequences; V is additive over ⊕; GC is decomposable in the sense of (69);
and generalized right distributivity for xn Â e, (68). Then, the represen-
tation V satisfies (67).

Note that it is perfectly reasonable to suppose that a degenerate stimulus of
order n is actually one of order n− 1 in the following sense

(x1, C1; ...;xi−1, Ci−1;xi, ∅;xi+1, Ci+1; ...;xn, Cn)

∼ (x1, C1; ...;xi−1, Ci−1;xi+1, Ci+1; ...;xn, Cn).

Given that, we see that

L
(i)
{C1,..,Cj ,∅,Cj+1,...,Cn} = L

(i)
{C1,..,Cj ,Cj+1,...,Cn} (i 6= j).

Thus, knowing the functions for gambles of order n means that they are deter-
mined for all orders smaller than n.

4.4 Special cases

The representation (67) is of interest because, with U = V, it encompasses
several models in the literature including, of course, the standard RDU model.
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For example, when n = 3, and (C,D,E) is a partition of Ω,

U(x,C; y,D; z,E)

= U(x)W (C) + U(y)[W (C ∪D)−W (C)] + U(z)[1−W (C ∪D)]
= [U(x)− U(z)]W (C) + [U(y)− U(z)][W (C ∪D)−W (C)] + U(z).

More interesting is the fact that Birnbaum’s (1997, and many references there)
configural weight models are also examples. The general class of models was
written in the following form4 for n = 2, 3 by Birnbaum, et al. (1992):

U(x, p; y, q) =
BU(x) +AU(y)

A+B
(p+ q = 1)

= [U(x)− U(y)]
B

A+B
+ U(y)

U(x, p; y, q; z, r) =
CU(x) +BU(y) +AU(z)

A+B + C
(p+ q + r = 1)

= [U(x)− U(z)]
C

A+B + C
+ [U(y)− U(z)]

B

A+B + C
+ U(z),

where A,B,C are functions of the probability distribution (p, q, r). A case dis-
cussed by Birnbaum (1997) [see also Birbaum & Navarrete, 1998, and Birnbaum
& Stegner (1979, Eq. (10)], called the RAM model, entails setting

A = aS(r), B = (1− a)[1− S(q)], C = (1− a)[1− S(p)],

where S : [0, 1] onto−→ [0, 1] is strictly increasing. If we write W (p) = 1−S(1− p),
α = a/(1− a), and define

Wp,q,α(s) :=
W (s)

W (p) +W (q) + α[1−W (p+ q)]
(s = p, q),

then the RAM expressions become

U(x, p; y, 1− p) = [U(x)− U(y)]Wp,0,α(p) + U(y),

U(x, p; y, q; z, r) = [U(x)− U(z)]Wp,q,α(p) + [U(y)− U(z)]Wp,q,α(q) + U(z),

In terms of (67) we see that

Lp,q(X) = XWp,q,α.

Another class of models of this form has arisen in decision affect theory
(Mellers, et al. 1997; Mellers, 2000).
Given (67), I do not yet know of specific behavioral constraints that limit it

to the particular forms postulated by Birnbaum and his colleagues.
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5 IVI, Distributivity, and Non-Commutative Joint
Receipt

We turn to the analogue of Theorem 2 with right distributivity playing the role
of right segregation.

Theorem 7. Suppose that the following are satisfied: Assumptions 1-4; ⊕ is
not commutative; U : D onto−→ R+ is order preserving ; and the functions
F,GC defined in terms of U by (21) and (22) exist and are continuous in
the x, y variables. Then any two of the following three statements imply
the third :

(1) Right distributivity, (19), is satisfied.

(2) The function U forms a generalized left-weighted representation of the op-
eration ⊕ in the sense that there is a positive, increasing, real function σ∗r
such that (40) is satisfied.

(3) There exists a function W : E into−→ [0,∞[ such that (U,W ) forms an RDU
representation, (8), for binary stimuli with x % y Â e.

The form arrived in Part (2) is the same as Part (2)(c) of Theorem 2. There
is a comparable result for left distributivity. Thus, we can also get Theorems 3
and 4 and their corollaries by assuming right and left distributivity rather than
right and left segregation.

6 Concluding Remarks

6.1 Joint receipt and the Thomsen condition

The following additive conjoint representation of ⊕ occurs in Theorems 1 and
5 and in the Corollaries to Theorems 3 and 4:

Φ(x⊕ y) = Φ1(x) +Φ2(y). (70)

It is well known that this implies the important Thomsen condition:

x⊕ v ∼ y ⊕ w
y ⊕ u ∼ z ⊕ v

¾
=⇒ x⊕ u ∼ z ⊕ w (71)

(Krantz, et al. 1971, Ch. 6).
Clearly, (71) is an essential property to verify experimentally. In the case of

loudness, the literature is mixed on this point. Falmagne, Iverson, and Marcovici
(1979) and Levelt, Riemersma, and Bunt (1972) support it, whereas Falmagne
(1976) with just one respondent and Gigerenzer and Strube (1983) with 12 do
not support it. More data are currently being collected.
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6.2 Extensions of U to unitary stimuli

Just as in the theory based on segregation, we have the problem of knowing
when it is possible to use the U constructed using distributivity (Theorems
5 and 7) to construct a conjoint measurement representation U(x)W0(C) of
unitary stimuli (x,C; e). Actually, nothing is changed at all from the case of
segregation because all that is involved is the form of U(x ⊕ y), which is the
same as in the earlier theories. In particular, when it is p-additive, (15), as in the
case of commutative and associative ⊕ (Theorem 5), the necessary and sufficient
condition is joint-receipt decomposability, (66) (Luce, 1996, 2000). We do not
know the full answer for the generalized weighted additive representation, (40),
of Theorem 2 nor for the generalized weighted average representation, (43),
of the Corollary to Theorem 2. All we know are the special cases where the
weighting functions, σr and σl, are constant. In those cases, the necessary and
sufficient condition is simple joint-receipt decomposability which is (66) with D
an independent realization of C, meaning that W0(D) = W0(C) (Luce, 2002a,
Aczél, et al. 2002). No attempt has yet been made to extend the current theory
to non-idempotent stimuli as was done by Luce and Marley (2000) for RDU.

6.3 Summary

This article provides a way to accommodate the empirical findings of both util-
ity theory and psychophysics in which respondents fail to respond to unitary
elements (x,C; e) as if they are limiting cases of (x,C; y) as y approaches e
from above. This meant either dropping separability while retaining right (left)
segregation (Sections 2 and 3) or replacing right (left) segregation by the, in
some ways, stronger property of right (left) distributivity (Sections 4 and 5).
Right distributivity is stronger than segregation in the sense that three rather
than two variables are involved, but it is weaker in that two of these three
variables are required to be Â e–see (19). Three cases, already treated in the
literature using both separability and segregation, were explored under both of
these weaker assumptions for cases where joint receipt ⊕ is commutative and
associative and has an identity e; where ⊕ is non-commutative but has either
a left or right identity but not both5; and where ⊕ is non-commutative and
has neither a left nor a right identity but is idempotent. In the commutative
case a new class of representations, (23), resulted (Theorems 1 and 5). It in-
cludes the usual rank-dependent representation as a special case (Proposition
3). For utility theory, the general form of the binary case was generalized (The-
orem 6) to stimuli with more than two consequences, which generalization may
prove useful in providing a theoretical background for such phenomena as re-
gret, disappointment, and configural weighting. By contrast, except for unitary
elements, (x,C; e), the representations in the two non-commutative cases did
not change. This means that one can simply bypass the use of 0 intensities
in the psychophysical applications because, for the most part, psychophysical
interpretations of ⊕ appear to be non-commutative. Moreover, there seemed
little point in exploring a generalization of Theorems 2, 3, 4, and 7 to stimuli of
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order n > 2 which seems to lack a clear interpretation for psychophysics.

Notes
∗ Some of this material is based upon work supported by the National Science

Foundation under Grant Number SES-0136431 to the University of California,
Irvine.
Drs. János Aczél and A.A. J.Marley have both commented in detail on ver-

sions of this manuscript, correcting errors and ambiguities and making many
very useful suggestions. Dr. Ehtibar Dzhafarov, in comments on a draft of Luce
(2002b), has greatly improved the formulation of the results when both right and
left segregation are assumed, as in Theorems 3 and 4. And thanks to Dr.Anders
Lundberg who, at my urging, modified his earlier results so as to get the two
propositions summarized in Appendix B; these underlie Theorems 5 and 7.
1. Doing so, as well as developing Proposition 1 and the property (31)

below, was suggested by A.A. J.Marley (personal communications, December,
2001, and January 2002).
2. Conversations with A.A. J.Marley during the week of March 25, 2002, led

me to prove this result. I appreciate the hospitality of the Hanse-Wissenschaftskolleg
for that week.
3. Because there is no very clear psychophysical interpretation of stimuli of

order n > 2, but of course there is a utility one, I revert in this and the next
subsection to the term “gamble.”
4. Because they wrote 0 < x < y < z, their order of A,B,C was the natural

one. Here, with the reverse convention, they seem to be in an unnatural order.
Note in this context that these symbols represent numerical functions of the
event partition, not events themselves.
5. Only the left identity case was described explicitly.
6. Note that in the following statements e denotes the exponential con-

stant, not no change from the status quo. The two uses can be distinguished
in terms of whether an expression pertains to the underlying structure or to its
representation.
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Theorem 1.
Proof: (1)(a)⇔(b) Suppose IVI, then

V [(x,C; e)⊕ y] = V (x,C; e) + V (y)

= LC [V (x)] + V (y)

= LC [V (x) + V (y)− V (y)] + V (y)

= LC [V (x⊕ y)− V (y)] + V (y)

= V (x⊕ y,C; y),

thereby proving segregation.
Conversely, from segregation, decomposability, and additivity and setting

X = V (x), Y = V (y),

GC(X + Y, Y )− Y = GC(X, 0),

or rewriting
GC(R,S) = lC(R− S) + S (R ≥ S),

where lC(R) = GC(R, 0), which is IVI

(b)⇔(c) Using (16), we see that IVI is equivalent to

sgn(δ) ln[1 + δU(x,C; y)] = LC

µ
ln
1 + δU(x)

1 + δU(y)

¶
+ sgn(δ) ln[1 + δU(y)]

⇐⇒ 1 + δU(x,C; y)

1 + δU(y)
= expLC

µ
ln
1 + δU(x)

1 + δU(y)

¶
,

which is (28) with lC(R) = expLC(lnR). Note that for δ > 0,

1 ≤ 1 + δU(x)

1 + δU(y)
<∞,

and for δ < 0,

0 ≤ 1− |δ|U(x)
1− |δ|U(y) < 1.

(2) Suppose IVI. Then

V [(x,C; y)⊕ z] = V (x,C; y) + V (z)

= LC [V (x)− V (y)]W (C) + V (y) + V (z)

= LC [V (x) + V (z)− V (y)− V (z)]W (C) + V (y ⊕ z)

= LC [V (x⊕ z)− V (y ⊕ z)W (C) + V (y ⊕ z)

= V (x⊕ z, C; y ⊕ z),

which is right distributivity. The left follows by commutativity.
(3)(a)⇔(c) Assume PIVI. It is clearly a special case of IVI, and

V ((x,C; y),D; y)− V (y) = l−1 (l[V (x,C; y)− V (y)]W (D))

= l−1 (l[V (x)− V (y)]W (D)W (C)) ,
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which is clearly commutative in C and D and so event commutativity holds.
The converse is immediate.
(a)⇔(b) Applying IVI, (23), twice

V ((x,C; y),D; y) = V (y) + LD [V (x,C; y)− V (y)]

= V (y) + LD (LC [V (x)− V (y)]) ,

and so clearly event commutativity holds iff (29). ¤
Proposition 1.
Proof:
(1) Because V is additive, ⊕ is commutative and associative which in turn

is known to imply
xª y ∼ (x⊕ z)ª (y ⊕ z).

Using (31) and the commutativity and associativity of ⊕,

(x⊕ z, C; y ⊕ z) ∼ (y ⊕ z)⊕ ΦC [(x⊕ z)ª (y ⊕ z)]

∼ [y ⊕ ΦC(xª y)]⊕ z

∼ (x,C; y)⊕ z,

which is right distributivity.
(2). Suppose that (23) and (31) hold. Let z ∼ xª y. Then

V (y) + V [ΦC(z)] = V [y ⊕ ΦC(xª y)]

= V (x,C; y)

= V (y) + LC [V (x)− V (y)]

= V (y) + LC [V (z)],

whence (32).
Suppose that (23) and (32) hold. Then

V (x,C; y) = V (y) + LC [V (x)− V (y)]

= V (y) + LC [V (z)]

= V (y) + VC [Φ(z)]

= V [y ⊕ ΦC(xª y)],

whence (31).
Suppose that (31) and (32) hold. Then

V (x,C; y) = V (y ⊕ ΦC [xª y)]

= V (y) + V [ΦC(z)]

= V (y) + LC [V (z)]

= V (y) + LC [V (x)− V (y)],

whence (23).
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(3) Assuming segregation and (31) we have

y ⊕ Φ(xª y,C) ∼ (x,C; y)

∼ (xª y, C; e)⊕ y.

By commutativity and monotonicity, the result follows. ¤
Proposition 2.
Proof: The result is obvious for δ = 0. So consider δ 6= 0. By the definition of
V in terms of U , (16), and taking exponentials in (23), we see that

U(x,C; y) =MC [U(x)− U(y)] + U(y)

is equivalent to

1 + δMC [U(x)− U(y)] + δU(y) = 1 + δU(x,C; y)

= [1 + δU(y)] expLC

µ
ln
1 + δU(x)

1 + δU(y)

¶
.

Let X = 1 + δU(x), Y = 1 + δU(y), Z = (X − Y )/δ, eLC = exp(LC) − 1, then
with minor rearranging

δMC(Z) = Y

·
expLC

µ
ln

Y + δZ

Y

¶
− 1
¸

= Y eLC µ1 + δZ

Y

¶
.

Because the left side is independent of Y and the right side is differentiable,
differentiate it with respect to Y,

0 = eLC µ1 + δZ

Y

¶
− Y eL0C µ1 + δZ

Y

¶
δZ

Y 2

⇐⇒ eLC(R) = eL0C(R)(R− 1) µ
R = 1 +

δZ

Y

¶
⇐⇒ d

dR
ln eLC(R) =

1

R− 1
⇐⇒ eLC (R) = W (C)(R− 1),

where lnW (C) is the constant of integration. Returning to the lC notation,
mC(Z) = ZW (C), i.e., RDU. ¤.
Proposition 3.
Proof: (1) Assume that the IVI representation holds and set y = e in (28).
This with Part (a), separability, implies that

δXW (C) + 1 = lC(δX + 1)

⇔ lC(R) = (R− 1)W (C) + 1,
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which is the form of Part (c) of the Proposition. Part (c) when substituted
yields RDU, which is Part (b). Clearly, Part (b), RDU, implies separability,
which is Part (a).
(2) Suppose IUI. Consider the left side of the right segregation property

U [(x,C; e)⊕ y] = U(x,C; e)[1 + δU(y)] + U(y)

= MC [U(x)][1 + δU(y)] + U(y),

and the right side,

U(x⊕ y, C; y) = MC [U(x⊕ y)− U(y)] + U(y)

= MC [U(x)(1 + δU(y))] + U(y).

Setting U(x) = 1, W (C) =MC(1), and R = 1+ δU(y), we see that segregation
holds iff

MC(R) = RW (C)

⇔ U(x,C; y)− U(y) = [U(x)− U(y)]W (C),

which is RDU. ¤
Proposition 4.
Proof: Define V by (16). Then by (36),

lim
y&e

V (x,C; y) = lim
y&e

sgn(δ) ln[1 + δU(x,C; y)]

= sgn(δ) ln

·
1 + δ lim

y&e
U(x,C; y)

¸
= sgn(δ) ln[1 + δU(x)W (C)].

And by (23) and the continuity of LC ,

lim
y&e

V (x,C; y) = lim
y&e

(V (y) + LC [V (x)− V (y)])

= V (e) + lim
y&e

LC [V (x)− V (y)]

= LC [V (x)].

Equating these two expressions for limy&e V (x,C; y), taking the exponential,
and writing X = δU(x) gives

1 +XW (C) = expLC [ln(1 +X)].
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Returning to (23), letting Y = δU(y), substituting the definition of U in terms
of V, (18), taking the exponential, and using the above equation,

1 + δU(x,C; y) = (1 + Y ) expLC

·
ln

µ
1 +X

1 + Y

¶¸
= (1 + Y ) expLC

·
ln

µ
1 +

X − Y

1 + Y

¶¸
= (1 + Y )

·
1 +

X − Y

1 + Y
W (C)

¸
= 1 + Y + (X − Y )W (C)

= 1 + δU(y) + δ[U(x)− U(y)]W (C),

whence RDU. ¤
Theorem 2.
Proof: (1) By right segregation and IUI we have

F (MC [U(x)], U(y)]) = F [U(x,C; e), U(y)]

= U [(x,C; e)⊕ y]

= U(x⊕ y, C; e⊕ y)

= MC [U(x⊕ y)− U(e⊕ y)] + U(e⊕ y)

= MC (F [U(x), U(y)]− F [0, U(y)]) + F [0, U(y)].

Set X = U(x), Y = U(y), and H(X,Y ) = F (X,Y )− F (0, Y ), and we have the
functional equation (37).
(2) (a) & (b)⇒(c) Clearly PIUI, (26), means IUI, (24), is satisfied. So,

with right segregation and decomposability, we know from Part (1) that (37)
holds. Setting X = U(x), Y = U(y),W = W (C) in (37) and using the PIUI
form (26) and (27), then (37) reduces to

H[m−1(XW ), Y ] = m−1
¡
mH[m−1(X), Y ]W

¢
.

Let K(X,Y ) = mH[m−1(X), Y ] and that last display reduces to

K(XW,Y ) = K(X,Y )W,

whence K(X,Y ) = σr(Y )X, where the subscript r reflects the fact we are using
right segregation. Note that by strict monotonic increasing in X, σr(Y ) > 0.
Substituting this expression back into the definition relating K to H, we obtain
(38).
(a) & (c)⇒(b) Assume right segregation, (14,) and (38). By Part (1), (38)

and (37) yield

m−1 [mMC(X)σr(Y )] =MC

¡
m−1[m(X)σr(Y )]

¢
.

Let NC(X) = m
¡
MC [m

−1(X)]
¢
, then

NC [m(X)]σr(Y ) = NC [m(X)σr(Y )].
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We show that NC(R) = RW (C), where W (C) = 1
aNC(a) and a is any number

such that
b = inf

Y

a

σr(Y )
< 1 < sup

Y

a

σr(Y )
= B.

Because σr is continuous, for X ∈ ]b,B[ we may choose Y such that Xσr(Y ) =
a. So, with W (C) = 1

aNC(a), we have NC(X) = XW (C). Now, for X ∈ ]b,B[ ,
consider Z = X/σr(Y ) which lies in the interval

¤
b
B ,

B
b

£
and so

XW (C) = NC(X) = NC [Zσr(Y )] = NC(Z)σr(Y ),

so

NC(Z) =
X

σr(Y )
W (C) = ZW (C).

Note that b
B < b < B < B

b . By induction this can be done for any Z ∈¤
b
Bn ,

B
bn

£
which converges to ]0,∞[ . With the form of NC determined, we sub-

stitute back and get
MC(R) = m−1[m(R)W (C)],

which yields (26), PIUI.
(b) & (c)⇒(a) Using PIUI and (38), we calculate both sides of right seg-

regation:

U [(x,C; e)⊕ y] = m−1 (m[U(x,C; e)]σr[U(y)]) + U(e⊕ y)

= m−1 (m[U(x)]W (C)σr[U(y)]) + U(e⊕ y).

U(x⊕ y, C; e⊕ y) = m−1 (m[U(x⊕ y)− U(e⊕ y)]W (C)) + U(e⊕ y)

= m−1 (m[U(x)]σr[U(y)]W (C)) + U(e⊕ y),

which are clearly equal.
(3) Substitute y ∼ e and e⊕ e ∼ e in (38) and we see that

m[U(x⊕ e)] = m[U(x)]σr(0),

and (39) immediately follows.
(4) (a)⇔(b) Using PIUI and RDU

m[U(x)− U(y)]W (C) = m[U(x,C; y)− U(y)]

= m ([U(x)− U(y)]W (C)) .

So by the usual arguments, m(X) = aX, a > 0. The converse is immediate.
(a)⇔(c) The implication is immediate. By PIUI and separability we see

m[U(x)]W (C) = m[U(x,C; e)] = m[U(x)W (C)],

so by the standard argument m is linear, whence RDU.
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(b)⇔(d) Assuming PIUI and (38) we calculate the two sides of right dis-
tributivity:

U [(x,C; y)⊕ z]

= m−1 (m[U(x,C; y)]σr[U(z)]) + U(e⊕ y)

= m−1 ([m[U(x)− U(y)]W (C) + U(y)]σr[U(z)]) + U(e⊕ z).

U(x⊕ z, C; y ⊕ z)

= m−1 (m[U(x⊕ z)− U(y ⊕ z)]W (C)) + U(y ⊕ z)

= m−1
£
m
¡
m−1 (m[U(x)]σr[U(z)])−m

£
m−1 (m[U(y)]σr[U(z)])

¤¢
W (C)

¤
+m−1 (m[U(y)]σr[U(z)]) + U(e⊕ z).

Clearly if m is linear, the two sides are equal. Conversely, assuming that they
are equal, set x = y and see that

m−1(Y Z) = m−1[m(Y )Z]

and so m(Y ) = Y, i.e., (b) with a = 1.
(5) This result is completely routine from (38). ¤

Corollary to Theorem 2.
Proof: If m is a power function with exponent βm, then (38) with x = y and
the assumption that ⊕ is idempotent yields

U(y) = U(y ⊕ y) = U(y)σr[U(y)]
1/βm + U(e⊕ y),

so in (38) we may replace U(e⊕ y) = U(y)
¡
1− σr[U(y)]

1/βm
¢
. ¤

Theorem 3.
Proof: We first suppose that the induced operations satisfy the properties of
Part (2) of Theorem 2 and of its left analogue.
(1) Consider

U [(x⊕ y) ◦C (u⊕ v)] = U ([e⊕ (x⊕r y] ◦C [e⊕ (u⊕r v]) (10)

= U (e⊕ [(x⊕r y) ◦C,r (u⊕r v)]) (45)

= Ur[(x⊕r y) ◦C,r (u⊕r v)] (47)

= m−1 (m[Ur(x⊕r y)− Ur(u⊕r v)]W (C)) + Ur(u⊕r v) [(26) for ◦C,r]
= m−1 [m (U [e⊕ (x⊕r y)]− U [e⊕ (u⊕r v)])W (C)] + U [e⊕ (u⊕r v)]

(47)

= m−1 (m [U(x⊕ y)− U(u⊕ v)]W (C)) + U(u⊕ v), (10)

which is (48).
(2) Observe that by the definition of U in (47) and using (9), (10), and (40)

for ⊕r,
U(x⊕ y) = U [e⊕ (x⊕r y)] (9),(10)

= Ur(x⊕r y) (47)

= m−1 (m[Ur(x)][σr[Ur(y)]) + Ur(y) [(40) for⊕r]
= m−1 (m[U(e⊕ x)]σr[U(e⊕ y)]) + U(e⊕ y) (47),(9),(10)
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which is (49). The proof for (50) is similar.
Next, set x = y = e in (49),

U(e⊕ e) = m−1 (m[U(e⊕ e)]σr[U(e⊕ e)]) + U(e⊕ e)

⇐⇒ 0 = m(0) = m[U(e⊕ e)]σr[U(e⊕ e)].

By Theorem 2(2)(c), σr > 0, so we conclude U(e ⊕ e) = 0 = U(e), whence
e⊕ e ∼ e.
(3) This follows by setting y = e in (49) and use (51)
Conversely, suppose that conditions (1)-(3) hold. We prove, first, that

(Ur,W,⊕r, ◦c,r) satisfies the three conditions of Theorem 2. First, PIUI:

m [Ur(x ◦C,r y)− Ur(y)] = m (U [e⊕ (x ◦C,r y)]− U(e⊕ y)) (47)

= m (U [(e⊕ x) ◦C (e⊕ y)]− U(e⊕ y)) (45)

= m[U(e⊕ x)− U(e⊕ y)]W (C) (53)

= m[Ur(x)− Ur(y)]W (C) + Ur(y) (47),

which is PIUI for Ur.
Next, we show that Ur satisfies (49):

m [Ur(x⊕r y)− Ur(y)] = m (U [e⊕ (x⊕r y)]− U(e⊕ y)) (47)

= m [U(x⊕ y)− U(e⊕ y)] (10)

= m[U(e⊕ x)]σr[U(e⊕ y)] (49)

= m[Ur(x)]σr[Ur(y)] (47)

= m[Ur(e⊕r x)][Ur(y)] (12),

which was to be shown.
Right segregation follows from what has just been shown and Theorem 2.
By (52),

γ =
m[U(x⊕ e)]

m[U(e⊕ x)]
=

m[Ul(x)]

m[Ur(x)]
=

m[Ul(x⊕l e)]
m[Ur(e⊕r x)] ,

which is the ratio condition, (55), for the induced operations.
A parallel proof holds for (Ul,W,⊕l, ◦c,l). ¤

Corollary to Theorem 3.
Proof: (1) Assume m is a power function with exponent βm. Equation (53)
follows immediately from (48) and (55) follows immediately from (52). To show
(54), consider

U(x⊕ y) = σr[U(e⊕ y)]1/βmU(e⊕ x) + U(e⊕ y) (49) (72)

= U(x⊕ e) + σl[U(x⊕ e)]1/βmU(y ⊕ e) (50)

= γU(e⊕ x) + σl[γU(e⊕ x)]1/βmU(e⊕ y), [(52) with γ = γ1/βmm ]

whence

0 =
³
γ − σr[U(e⊕ y)]1/βm

´
U(e⊕ x) +

³
σl[γU(e⊕ x)]1/βm − 1

´
U(e⊕ y).
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Choose e⊕ x Â e, e⊕ y Â e,

γ − σr[U(e⊕ y)]1/βm

U(e⊕ y)
=

σl[γU(e⊕ x)]1/βm − 1
U(e⊕ x)

= −γδ,

a constant defining δ. Observe that the equality of the first and third expression
gives

σr[U(e⊕ y)]1/βm = γ[1 + δU(e⊕ y)].

Substituting this into (72),

U(x⊕ y) = σr[U(e⊕ y)]1/βmU(e⊕ x) + U(e⊕ y)

= γ[1 + δU(e⊕ y)]U(e⊕ x) + U(e⊕ y)

= U(x⊕ e) + U(e⊕ y) + δU(x⊕ e)U(e⊕ y),

which is (54).
(2) Assume βm = 1. We show right distributivity:

U [(x⊕ z) ◦C (y ⊕ z)] = [U(x⊕ z)− U(y ⊕ z)]W (C) + U(y ⊕ z) (53)

= ([U(x⊕ e)− U(y ⊕ e)]W (C) + U(y ⊕ e)) [1 + δU(e⊕ z)]

+U(e⊕ z) (54)

= U [(x⊕ e) ◦C (y ⊕ e)][1 + δU(e⊕ z)] + U(e⊕ z) (53)

= U [(x ◦C,l y)⊕ e][1 + δU(e⊕ z)] + U(e⊕ z) (44)

= U [(x ◦C,l y)⊕ z] (54).

Left distributivity is similar. ¤
Theorem 4.
Proof: We first show that if the induced operations ◦C,s and ⊕s satisfy the
three properties of Theorem 2, (2), then the above assertions (1)-(3) of The-
orem 4 hold. Recall that it follows immediately from its definition that ⊕s is
idempotent, (13).
(1) Let r, t be defined by x⊕ y ∼ r ⊕ r, u⊕ v ∼ t⊕ t. Then

m (U [(x⊕ y) ◦C (u⊕ v)]− U(u⊕ v))

= m (U [(r ⊕ r) ◦C (t⊕ t)]− U(t⊕ t)) (def. r, t)

= m (U [(r ◦C,s t)⊕ (r ◦C,s t)]− U(t⊕ t)) (60)

= m (Us[(r ◦C,s t)⊕s (r ◦C,s t)]− Us(t⊕s t)) (61)

= m [Us(r ◦C,s t)− Us(t)] (13)

= m[Us(r)− Us(t)]W (C) (PIUI of ◦C,s )
= m [U(r ⊕ r)− U(s⊕ s)]W (C)) (61)

= m [U(x⊕ y)− U(u⊕ v)]W (C) (def. r, t)

PIUI as defined by (48). The converse is immediate.
(2) Given (61) it is immediate that (38) holds for ⊕s iff it holds for ⊕. A

similar remark holds for (42).
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(3) First, observe that by idempotence of ⊕s
U(e⊕ e) = Us(e⊕ e) = Us(e) = 0 = U(e),

so e⊕e ∼ e. By Part (3) of Theorem 2 we have (52). The converse is immediate.
¤
Corollary to Theorem 4.
Proof: (1) By Parts (2) and (3) of Theorem 4, we have by Theorem 2 that
(39) is satisfied. If σ∗r [U(e⊕ y)] ≡ 1 in that equation, then (62) is satisfied. So,
suppose that is not the case. Applying the Corollary to Theorem 2 to ⊕s and
also the left analogue of that Corollary, yields

U(x⊕ y) = Us(x⊕s y)
= Us(x)σr[Us(y)]

1/βm + Us(y)
h
1− σr[Us(y)]

1/βm

i
= Us(x)

h
1− σl[Us(x)]

1/βm

i
+ Us(y)σl[Us(x)]

1/βm .

Thus, from the equality of the last two expressions,

0 = [Us(x)− Us(y)]
h
σr[Us(y)]

1/βm + σl[Us(x)]
1/βm − 1

i
.

For x not equivalent to y, the first factor is non-zero, so the right one, which de-
pends on both x and y,must be 0, in which case it follows that η = σr[Us(y)]

1/βm

is a constant and so using the idempotence of ⊕s,

U(x⊕ y) = ηUs(x⊕s x) + (1− η)Us(y ⊕s y)
= ηU(x⊕ x) + (1− η)U(y ⊕ y).

(2) Using this result,

U(x⊕ e) = ηU(x⊕ x) + 0,

U(e⊕ x) = 0 + (1− η)U(x⊕ x),

whence both (62) and the ratio condition, (55), with γ = η/(1− η).
(3) Assume βm = 1.We show right distributivity:

U [(x⊕ z) ◦C (y ⊕ z)] = [U(x⊕ z)− U(y ⊕ z)]W (C) + U(y ⊕ z) (53)

= ([U(x⊕ e)− U(y ⊕ e)]W (C) + U(y ⊕ e)) [1 + δU(e⊕ z)]

+U(e⊕ z) (54)

= U [(x⊕ e) ◦C (y ⊕ e)][1 + δU(e⊕ z)] + U(e⊕ z) (53)

= U [(x ◦C,l y)⊕ e][1 + δU(e⊕ z)] + U(e⊕ z) (44)

= U [(x ◦C,l y)⊕ z], (54)

Left distributivity is similar. ¤
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Appendix B: Auxiliary Results

Using the notation of (21) and (22), right distributivity, (19), yields

F [GC(X,Y ), Z] = GC [F (X,Z), F (Y,Z)] (73)

where X,Y ∈ ]0,∞[ ,X ≥ Y,Z ∈ [0,∞[,which when C is held fixed is the (right)
distributivity equation on p. 341 of Aczél (1966). The results reported there
are largely due to Hosszú (1953, 1959) and rested on the assumption that the
unknown functions are twice continously differentable. Lundberg (1982,1985)
proved similar results without differentiability assumptions under monotonicity
conditions; however, these were somewhat stronger than is appropriate in the
current applications. Lundberg (2002) has proved the result (Proposition B-1)
under our assumptions.
Assuming continuity, as we do, (73) can be extended to the domain R+. By

the monotonicity assumptions about stimuli and joint receipt, both F and GC

are strictly increasing in both variables and are onto R+ when C is fixed.

Proposition B-1. (Lundberg, 2002) Assuming that (73) holds on the non-
negative real numbers, that F,GC both exist, F is strictly increasing in
both variables, GC is strictly increasing in the first variable and continuous
and philandering in the second, then there are two classes of solutions:

(a)

F (X,Y ) = h−1[h(X) + α(Y )] (74)

GC(X,Y ) = h−1 (h(Y ) + ψC [h(X)− h(Y )]) . (75)

(b)

F (X,Y ) = h−1[h(X)g(Y ) + α(Y )] (76)

GC(X,Y ) = h−1 (h(Y ) + a(C)[h(X)− h(Y )]) , (77)

where h, α, and ψ are strictly increasing functions, h(0) = 0, α(0) = 0,
and for some p > 0 we have ψC(pu) = pψC(u).

Corollary to Proposition B-1. Suppose that the conditions of Proposition
B-1 are satisfied. Then,

(1) If F (0, Y ) = Y (which is equivalent to e being a left identity of ⊕), then
(74) simplifies to:

F (X,Y ) = h−1[h(X) + h(Y )], (78)

and so is F symmetric and so ⊕ is commutative.
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(2). If ⊕ is commutative and has an identity e, then (76) can be sharpened to

h[F (X,Y )] = h(X) + h(Y ) + ρh(X)h(Y ), (79)

where ρ is a constant.

Proof: (1) By h(0) = 0,

h(Y ) = h[F (0, Y )] = h(0) + α(Y ) = α(Y ),

and so substitute into (74).
(2) Using h(0) = 0 and F (0, Y ) = Y, which is assumed, in the (b) solution,

we see that α(Y ) = h(Y ), so

h[F (X,Y )] = h(X)g(Y ) + h(Y ).

By the symmetry of F,
g(X)− 1
h(X)

=
g(Y )− 1
h(Y )

,

which must be a constant ρ, whence g(X) = 1 + ρh(X) and so (79). ¤
The following proposition, which improves Theorem 2 of Aczél and Luce

(2002), is needed to prove Theorems 5 and 7. It is stated as is needed, which is
slightly less general than what Lundberg (2002) has proved.

Proposition B-2. (Lundberg, 2002) Suppose the functional equation

h[Y + f(X − Y )] = h(Y ) + g[h(X)− h(Y )] (X ≥ Y ≥ 0) (80)

holds under the assumptions that, for k ∈ ]0,∞], h from [0, k[ onto a non-
negative real interval and f and g from [0, k[ onto [0, k[ are all strictly
increasing and continuous. Then, one of the following cases obtain:

(1)

h(X) = cX + d, f(X) =
1

c
g(cX) (c > 0), (81)

and if k <∞, then 0 < c ≤ 1.
(2) There exist constants a, b, c, q, r such that6

h(X) = a ln(rebX + q), (82)

f(Z) =
1

b
ln(cebZ + 1− c), (83)

g(Z) = a ln(ceZ/a + 1− c). (84)

(3) There exist constants a, b, c, q such that

h(X) = aebX + q, (85)

f(Z) =
1

b
ln(cebZ + 1− c), (86)

g(Z) = cZ. (87)
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(4) There exist constants a, c, p, q such that

h(X) = a ln(pX + q), (88)

f(Z) = cZ, (89)

g(Z) = a ln(ceZ/a + 1− c). (90)

In all cases of the constants must be such that the functions f, g, h are
non-negative and strictly increasing. When k < ∞, 0 < c ≤ 1 in cases
2-4 and, in addition, in (2) b > 0, ar > 0, in (3) b > 0, a > 0, and in (4)
ap > 0 .

Corollary to Proposition B-2. Assuming that (80) varies with both X,Y, it
is impossible for f(Z) = ecZ in cases (2) and (3), and it is impossible for
g(X) = cX in (2) and (4).

Proof: Consider, first, (83). Then,

ecZ = f(Z) =
1

b
ln[c exp(bZ) + 1− c]

⇔ ebecZ = cebZ + 1− c.

Taking the derivative yields ebecZ = cecebZ , so
cebZ

µ
1ec − 1

¶
= 1− c,

whence ec = 1. which is impossible because it eliminates the dependence on Y
in (80). The cases of (84) and (90) are similar. ¤
In the following proofs, either F or GC or both are constrained, and we seek

solutions under those constraints.

Appendix C: Distributivity Proofs

Proposition 5:
Proof: Assuming both right distributivity and right segregation means that
we are allowing the right variable of GC to have the value 0. Rewrite joint
receipt decomposability, (66), in terms of simple decomposability, (21) and (22)
to obtain

GC [F (X,Y ), 0] = F [GC(X, 0), GD(Y, 0)]. (91)

By Proposition B-1, we know that the solutions to the distributivity equation
when ⊕ is commutative take one of two forms:
(a)

F (X,Y ) = h−1[h(X) + h(Y )], (92)

GC(X,Y ) = h−1 (h(Y ) + ψC [h(X)− h(Y )]) . (93)
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(b)

h[F (X,Y )] = h(X) + h(Y ) + ρh(X)h(Y ) (94)

GC(X,Y ) = h−1 (h(Y ) + a(C)[h(X)− h(Y )]) . (95)

First, using case (a) in (91):

h−1 (ψC [h(X) + h(Y )]) = h−1 (ψC [hF (x, y)]) (92)

= h−1[h(0) + ψC [hF (X,Y )− h(0)] (h(0) = 0)

= GC [F (X,Y ), 0] (93)

= F [GC(X, 0) +GD(Y, 0)] (91)

= h−1[hGC(X, 0) + hGD(Y, 0)] (92)

= h−1 (ψC [h(X)] + ψD[h(Y )]) (93).

Applying h and setting R = h(X), S = h(Y ), we have

ψC(R+ S) = ψC(R) + ψD(S).

This is a Pexider equation with the solutions

ψC(R) = αR+ βC , ψD(R) = αR.

Substituting and taking into account ψC(0) = 0, which follows from idempo-
tence, (3) of gambles, we see that ψC(R) = αR. This is the RDU, and, of course,
the F expression is additive.
Next, consider case (b). By applying (95) and (94) to (91) yields

a(C)[h(X)+h(Y )+ρh(X)h(Y ) = a(C)h(X)+a(D)h(Y )+ρa(C)h(X)a(D)h(Y ),

whence
a(C)− a(D) + ρa(C)h(X)[1− a(D)] = 0.

Thus, either a(C) = a(D) = 1 or h(X) = a constant, both of which are impos-
sible, ruling out case (b). ¤
Theorem 5:
Proof:
(1) and (2) imply (3): We are in the situation of the right distributivity

functional equation. Thus, there are the two subcases of Proposition B-1.
Case (a). Let X = V (x), Y = V (y). By (21) with ⊕ having an additive

representation V , F (X,Y ) = X+Y , and then by (74) and h(0) = 0,we conclude
that h(X) = cX, c > 0, and so by (75)

GC(X,Y ) = Y +
1

c
ψC [c(X − Y )] = Y + LC(X − Y ),

where LC(X) := 1
cψC(cX). This is an acceptable solution.
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Case (b). For (79), following from (76), define

m(x) := ρh(X) + 1 > 0, (96)

which when substituted into that equation yields

m[F (X,Y )] = m(X)m(Y ). (97)

Because F (X,Y ) = X + Y, it follows immediately from (97) that m(X) =
exp(X), whence

h(X) =
1

ρ
[exp(X)− 1] . (98)

Substituting this into (77) yields

GC(X,Y ) = ln (exp(Y ) + a(C)[exp(X)− exp(Y )]) . (99)

Substituting the definition of V in terms of U yields that U satisfies RDU, which
is the special case of (23) with LC given by (35).
(1) and (3) imply (2): From V satisfies (23) and, as in Case (a), F (X,Y ) =

X + Y , then

V [(x,C; y)⊕ z] = V (x,C; y) + V (z)

= V (y) + LC [V (x)− V (y)] + V (z)

= V (y ⊕ z) + LC [V (x⊕ z)− V (y ⊕ z)]

= V (x⊕ z, C; y ⊕ z),

whence right distributivity.
Assume that (2) and (3) hold. Then using Case (a) of the right distributivity

equation, i.e., (78) and (75), we have

h[F (X,Y )] = h(X) + h(Y )

h[Y + LC(X − Y )] = h[GC(X,Y )] = h(Y ) + ψC [h(X)− h(Y )]. (100)

So Proposition B-2 applies, which has four subcases:
Case (1). h is linear and so F is additive.
Case (2). For h(x) = a ln

¡
rebx + q

¢
, a routine calculation using (100) with

h = f, ψ = g shows that U is p-additive over ⊕ and so V, defined in terms of U
by (16), is additive.
Case (3). For h(x) = aebx + q we see

ebF (X,Y ) = ebX + ebY − 1
from which U(x⊕ y) is additive over ⊕ and so, by (16), is V.
Case (4). For h(x) = a ln (rx+ q) , a routine calculation shows that V is

p-additive over ⊕. Thus, there is a transformation to V ∗ that is additive and
so with right distributivity holding there exist L∗C such that (V

∗, L∗C) satisfies
(23) or U∗ = V satisfies RDU which is a special case of (23).
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Case (b) of the right distributivity equation holds, i.e.,

h[F (X,Y )] = h(X)g(Y ) + α(Y )

h[GC(X,Y )] = h(Y ) + a(C)[h(X)− h(Y )].

By the Corollary to Proposition B-1, (79) holds. Thus, Proposition B-2 again
applies with its four subcases:
Case (1). A routine substitution of the linear h into (79) leads to F being

p-additive, and so we proceed as in Case (a)(4).
Case (2-4). The Corollary to Proposition B-2 rules out these possibilities.¤

Theorem 6:
Proof: First, we establish that there is an additive decomposition of gambles of
the form V (x1) ≥ ... ≥ V (xn) > 0.

f (GC[V (x1); ...;V (xn)]) =
nX
i=1

L
(i)
C [V (xi)], (101)

where f and each L
(i)
C is strictly increasing and unique up to positive affine

transformations with a common unit. To do so, we invoke Theorem 4 of Wakker
(1991) which says that in the ranked context the following conditions are suffi-
cient: weak order, essentialness of each coordinate, general strict monotonicity,
solvability, Archimedeanness, and no maximal or minimal consequences. We
have assumed weak ordering, essentialness, and general strict monotonic in-
crease for each subset of alternatives. The minimal element e corresponding
to V (e) = 0 is excluded and V is unbounded. Solvability holds because V is
onto R+. To show Archimedeanness, let

−→
Y i and

−→
Z i,
−→
Y i ≺ −→Z i denote choices of

vectors on all alternatives except for the ith, i.e.,
−→
Y i,
−→
Z i ∈ Rn−1+ , and suppose

that
min(Yi−1, Zi−1) > max(Yi+1, Zi+1).

For someXi in that interval, the vectors (Xi,
−→
Y i) and (Xi,

−→
Z i) are appropriately

rank ordered and, by strict monotonicity, (Xi,
−→
Y i) ≺ (Xi,

−→
Z i). So, a standard

sequence {Xj} is defined by

(Xi,j+1,
−→
Y i) ∼ (Xi,j ,

−→
Z i).

Such a sequence is certainly bounded by the fact Xi,j ≤ min(Yi−1, Zi−1). If it
is not finite, the by the fact it is an increasing bounded sequence, it converges
to a value, say Ai, and so

(Ai,
−→
Y i) ∼ (Ai,

−→
Z i).

But this contradicts strict monotonicity. So Archimedeanness is satisfied, and
therefore (101) is satisfied. As noted earlier, the choice of f and L

(i)
C is unique

up to positive affine transformations with a common unit. So with no loss of
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generality, we may choose the unit to be 1 and the additive constants so that
limX→0 L

(i)
C (X) = 0 and so define L

(i)
C (0) = 0.

By the additivity of V and generalized right distributivity,

V (x1, C1; ...;xi, Ci; ...;xn, Cn) + V (z)

= V [(x1, C1; ...;xi, Ci; ...;xn, Cn)⊕ z]

= V (x1 ⊕ z, C1; ...;xi ⊕ z, Ci; ...;xn ⊕ z, Cn).

Invoking the decomposability assumption

GC[V (x1); ...;V (xn)] + V (z) = GC[V (x1) + V (z); ...;V (xn) + V (z)], (102)

and substituting (101) into (102) yields

f−1
Ã

nX
i=1

L
(i)
C [V (xi)]

!
+ V (z) = f−1

Ã
nX
i=1

L
(i)
C [V (xi) + V (z)]

!
.

Because gambles are idempotent, if we set x1 ∼ ... ∼ xn ∼ x andX = V (x), Z =
V (z), then we have from (102) that

f−1(X) + Z = f−1(X + Z).

Let Y = X + Z, then

f−1(Y ) = f−1(Y − Z) + Z.

If Y = Z, then
f−1(Z) = f−1(0) + Z.

Thus, the last functional equation reduces to

nX
i=1

L
(i)
C (Xi) + Z =

nX
i=1

L
(i)
C (Xi + Z).

If we let Xi = V (xi), Yi = Xi + Z, and yi = V −1(Yi), this equation reduces to

V (y1, C1; ...; yi, Ci; ...; yn, Cn) =
nX
i=1

L
(i)
C (Yi)

=
nX
i=1

L
(i)
C (Xi + Z)

=
nX
i=1

L
(i)
C (Xi) + Z

=
nX
i=1

L
(i)
C (Yi − Z) + Z

=
nX
i=1

L
(i)
C [V (yi)− V (z)] + V (z).
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Let z ∼ yn and recall that L
(n)
C (0) = 0, we end up with (67). ¤

Theorem 7:
Proof: Throughout, we have (21) and (22) holding.
(1) and (2) imply (3): So we assume right distributivity, (19), and for

U(x⊕y) the form (40). So, as usual, there are the two cases of Proposition B-1,
(a) and (b):
Case (a). By (74) and (40),

h[F (X,Y )] = h(X) + α(Y ) = F (X, 0)σ∗r(Y ) + F (0, Y ).

From the first equality, setting X = 0 yields α(Y ) = h[F (0, Y )] and setting
Y = 0 yields h[F (X, 0)] = h(X). So, if we set R = F (X, 0), S = F (0, Y ), f(S) =
σ∗r [F−1(S)],

h[Rf(S) + S] = h(R) + h(S) = h[Sf(R) +R],

whence
f(S)− 1

S
=

f(R)− 1
R

= ρ,

and so h[F (X,Y )] = h(X)+h(Y )+ρh(X)h(Y ), which is the commutative case,
which has been ruled out.
Case (b). Using (40) and (94),

h[F (X, 0)σr(Y ) + F (0, Y )] = h[F (X,Y )] = h(X)g(Y ) + α(Y ).

Set X = 0 to get α(Y ) = h[F (0, Y )] and Y = 0 to get h[F (X, 0)] = h(X)g(0),
where g(0) > 0 since F (X, 0) is strictly increasing in X. Thus,

h[F (X, 0)σr(Y ) + F (0, Y )] = h[F (X, 0)]g∗(Y ) + h[F (0, Y )],

where g∗(Y ) = g(Y )/g(0). Set R = F (X, 0), S = F (0, Y ), f(S) = σ∗r [F−1(S)],
ϕ(S) = g∗[F−1(S)], where F−1(S) = Y iff S = F (0, Y ),

h[Rf(S) + S] = h(R)ϕ(S) + h(S) [f(0) = 1, ϕ(0) = 1, h(0) = 0].

This equation is a special case of the class of functional equations solved by
Lundberg and Ng (1975). Of their 6 subcases, our assumptions rule out all but
Cases 1 and 6. In the former, h(Z) = αZ + β, α > 0. Because h(0) = 0, β = 0.
Substituting this into (77) yields RDU. Case 6 reduces to

f(S) = aS + b, ϕ(S) = a0h(S) + 1, h(Z) = αZc (c 6= 0).

Substituting,
(bR+ S + aRS)

c
= Rc + Sc + a0αRcSc.

Differentiating first with respect to R and then with respect to S, dividing, and
simplifying yields

1 + a0αSc

Sc−1(b+ αS)
=

1 + a0αRc

Rc−1(1 + αR)
.
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Because R and S may be chosen independently, the common value must be a
constant, which is possible only if c = 1, which is as in Case 1 of Proposition
B-2.
(2) and (3) imply (1): By (2) we have (40) in the version

U(x⊕ y) = U(x)σr(y) + U(e⊕ y).

Using that and the RDU form assumed in (3), we have for the left side of
distributivity

U [(x,C; y)⊕ z] = U(x,C; y)σr(z) + U(e⊕ z)

= ([U(x)− U(y)]W (C) + U(y))σr(z) + U(e⊕ z),

and for the right side

U(x⊕ z, C; y ⊕ z) = [U(x⊕ z)− U(y ⊕ z)]W (C) + U(y ⊕ z)

= [U(x)− U(y)]σr(z)W (C) + U(y)σr(z) + U(y ⊕ z),

and these are therefore equal. Thus, (1) holds.
(1) and (3) imply (2): By the argument at the beginning of the proof, we

need only consider case (b) of the right distributivity condition. Using that plus
the assumption (3) that RDU holds, we have

h[(X − Y )W (C) + Y ] = [h(X)− h(Y )]a(C) + h(Y ).

This is (80) of Proposition B-2 with

f(Z) = ZW (C), g(Z) = za(C).

By the Corollary to B-2, Cases (2)-(4) of Proposition B-2 are ruled out. So
by Case (1) h is linear and by Part (b) of Proposition B-1 and using the usual
trick of setting X = 0 and then Y = 0,

F (X,Y ) = Xg(Y ) + Y

= F (X, 0)g(Y ) + F (0, Y ),

which is Statement (2) of the theorem. ¤
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