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Metalearners for estimating heterogeneous treatment
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Contributed by Bin Yu, December 18, 2018 (sent for review March 16, 2018; reviewed by Jake Bowers and Dylan Small)

There is growing interest in estimating and analyzing hetero-
geneous treatment effects in experimental and observational
studies. We describe a number of metaalgorithms that can take
advantage of any supervised learning or regression method in
machine learning and statistics to estimate the conditional aver-
age treatment effect (CATE) function. Metaalgorithms build on
base algorithms—such as random forests (RFs), Bayesian addi-
tive regression trees (BARTs), or neural networks—to estimate the
CATE, a function that the base algorithms are not designed to
estimate directly. We introduce a metaalgorithm, the X-learner,
that is provably efficient when the number of units in one treat-
ment group is much larger than in the other and can exploit
structural properties of the CATE function. For example, if the
CATE function is linear and the response functions in treat-
ment and control are Lipschitz-continuous, the X-learner can
still achieve the parametric rate under regularity conditions. We
then introduce versions of the X-learner that use RF and BART
as base learners. In extensive simulation studies, the X-learner
performs favorably, although none of the metalearners is uni-
formly the best. In two persuasion field experiments from political
science, we demonstrate how our X-learner can be used to
target treatment regimes and to shed light on underlying mech-
anisms. A software package is provided that implements our
methods.

observational studies | randomized controlled trials | conditional average
treatment effect | heterogeneous treatment effects | minimax optimality

W ith the rise of large datasets containing fine-grained
information about humans and their behavior, re-

searchers, businesses, and policymakers are increasingly inter-
ested in how treatment effects vary across individuals and con-
texts. They wish to go beyond the information provided by
estimating the average treatment effect (ATE) in randomized
experiments and observational studies. Instead, they often seek
to estimate the conditional ATE (CATE) to personalize treat-
ment regimes and to better understand causal mechanisms. We
introduce an estimator called the X-learner, and we character-
ize it and many other CATE estimators within a unified met-
alearner framework. Their performance is compared by using
broad simulations, theory, and two datasets from randomized
field experiments in political science.

In the first randomized experiment, we estimate the effect of
a mailer on voter turnout (1), and, in the second, we measure
the effect of door-to-door conversations on prejudice against
gender-nonconforming individuals (2). In both experiments, the
treatment effect is found to be nonconstant, and we quantify this
heterogeneity by estimating the CATE. We obtain insights into
the underlying mechanisms, and the results allow us to better
target the treatment.

To estimate the CATE, we build on regression or super-
vised learning methods in statistics and machine learning, which
are successfully used in a wide range of applications. Specifi-
cally, we study metaalgorithms (or metalearners) for estimat-
ing the CATE in a binary treatment setting. Metaalgorithms
decompose estimating the CATE into several subregression

problems that can be solved with any regression or supervised
learning method.

The most common metaalgorithm for estimating heteroge-
neous treatment effects takes two steps. First, it uses so-called
base learners to estimate the conditional expectations of the
outcomes separately for units under control and those under
treatment. Second, it takes the difference between these esti-
mates. This approach has been analyzed when the base learners
are linear-regression (3) or tree-based methods (4). When used
with trees, this has been called the “two-tree” estimator, and we
will therefore refer to the general mechanism of estimating the
response functions separately as the “T-learner,” with “T” being
short for “two.”

Closely related to the T-learner is the idea of estimating the
outcome by using all of the features and the treatment indica-
tor, without giving the treatment indicator a special role. The
predicted CATE for an individual unit is then the difference
between the predicted values when the treatment-assignment
indicator is changed from control to treatment, with all other
features held fixed. This metaalgorithm has been studied with
Bayesian additive regression trees (BARTs) (5, 6) and regression
trees (4) as the base learners. We refer to this metaalgorithm as
the “S-learner,” since it uses a “single” estimator.

Not all methods that aim to capture the heterogeneity of treat-
ment effects fall in the class of metaalgorithms. For example,
some researchers analyze heterogeneity by estimating ATEs for
meaningful subgroups (7). Another example is causal forests
(8). Since causal forests are random forest (RF)-based esti-
mators, they can be compared with metalearners with RFs
in simulation studies. We will see that causal forests and the
metalearners used with RFs perform comparably well, but the
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metalearners with other base learners can significantly outper-
form causal forests.

The main contribution of this work is the introduction of a
metaalgorithm: the X-learner, which builds on the T-learner and
uses each observation in the training set in an “X”-like shape.
Suppose that we could observe the individual treatment effects
(ITEs) directly. We could then estimate the CATE function by
regressing the difference of ITEs on the covariates. Structural
knowledge about the CATE function (e.g., linearity, sparsity,
or smoothness) could be taken into account by either picking a
particular regression estimator for CATE or using an adaptive
estimator that could learn these structural features. Obviously,
we do not observe ITEs because we observe the outcome either
under control or under treatment, but never both. The X-learner
uses the observed outcomes to estimate the unobserved ITEs. It
then estimates the CATE function in a second step as if the ITEs
were observed.

The X-learner has two key advantages over other estimators
of the CATE. First, it can provably adapt to structural properties
such as the sparsity or smoothness of the CATE. This is par-
ticularly useful since the CATE is often zero or approximately
linear (9, 10). Secondly, it is particularly effective when the num-
ber of units in one treatment group (usually the control group)
is much larger than in the other. This occurs because (con-
trol) outcomes and covariates are easy to obtain by using data
collected by administrative agencies, electronic medical record
systems, or online platforms. This is the case in our first data
example, where election-turnout decisions in the United States
are recorded by local election administrators for all registered
individuals.

The rest of the paper is organized as follows. We start with
a formal introduction of the metalearners and provide intu-
itions for why we can expect the X-learner to perform well
when the CATE is smoother than the response-outcome func-
tions and when the sample sizes between treatment and control
are unequal. We then present the results of an extensive sim-
ulation study and provide advice for practitioners before we
present theoretical results on the convergence rate for different
metalearners. Finally, we examine two field experiments using
several metaalgorithms and illustrate how the X-learner can find
useful heterogeneity with fewer observations.

Framework and Definitions
We use the Neyman–Rubin potential outcome framework (11,
12) and assume a superpopulation or distribution P from which
a realization of N independent random variables is given as the
training data. That is, (Yi(0),Yi(1),Xi ,Wi)∼P , where Xi ∈Rd

is a d -dimensional covariate or feature vector, Wi ∈{0, 1} is the
treatment-assignment indicator (to be defined precisely later),
Yi(0)∈R is the potential outcome of unit i when i is assigned
to the control group, and Yi(1) is the potential outcome when i
is assigned to the treatment group. With this definition, the ATE
is defined as

ATE :=E[Y (1)−Y (0)].

It is also useful to define the response under control, µ0, and the
response under treatment, µ1, as

µ0(x ) :=E[Y (0)|X = x ] and µ1(x ) :=E[Y (1)|X = x ].

Furthermore, we use the following representation of P :

X ∼Λ,

W ∼Bern(e(X )),

Y (0) =µ0(X ) + ε(0),

Y (1) =µ1(X ) + ε(1),

[1]

where Λ is the marginal distribution of X , ε(0), and ε(1) are
zero-mean random variables and independent of X and W , and
e(x ) =P(W = 1|X = x ) is the propensity score.

The fundamental problem of causal inference is that for
each unit in the training dataset, we observe either the poten-
tial outcome under control (Wi = 0) or the potential outcome
under treatment (Wi = 1) but never both. Hence, we denote the
observed data as

D= (Yi ,Xi ,Wi)1≤i≤N ,

with Yi =Yi(Wi). Note that the distribution of D is specified by
P . To avoid the problem that, with a small but nonzero probabil-
ity all units are under control or under treatment, we will analyze
the behavior of different estimators conditional on the number of
treated units. That is, for a fixed n with 0<n <N , we condition
on the event that

N∑
i=1

Wi =n.

This will enable us to state the performance of an estimator in
terms of the number of treated units n and the number of control
units m =N −n .

For a new unit i with covariate vector xi , to decide whether to
give the unit the treatment, we wish to estimate the ITE of unit
i , Di , which is defined as

Di :=Yi(1)−Yi(0).

However, we do not observe Di for any unit, and Di is not iden-
tifiable without strong additional assumptions in the sense that
one can construct data-generating processes with the same dis-
tribution of the observed data, but a different Di (SI Appendix,
Example SI1). Instead, we will estimate the CATE function,
which is defined as

τ(x ) :=E [D |X = x ]=E [Y (1)−Y (0)|X = x ],

and we note that the best estimator for the CATE is also the
best estimator for the ITE in terms of the mean squared error
(MSE). To see that, let τ̂i be an estimator for Di and decompose
the MSE at xi

E
[
(Di − τ̂i)2|Xi = xi

]
=E

[
(Di − τ(xi))

2|Xi = xi
]

+E
[
(τ(xi)− τ̂i)2]. [2]

Since we cannot influence the first term in the last expression,
the estimator that minimizes the MSE for the ITE of i also
minimizes the MSE for the CATE at xi .

In this work, we are interested in estimators with a small
expected mean squared error (EMSE) for estimating the CATE,

EMSE(P, τ̂) =E
[
(τ(X )− τ̂(X ))2].

The expectation is here taken over τ̂ and X ∼Λ, where X is
independent of τ̂ .

To aid our ability to estimate τ , we need to assume that there
are no hidden confounders (13):

Condition 1:
(ε(0), ε(1))⊥W |X .

This assumption is, however, not sufficient to identify the CATE.
One additional assumption that is often made to obtain identifi-
ability of the CATE in the support of X is to assume that the
propensity score is bounded away from 0 and 1.

Condition 2: There exists emin and emax, such that for all x in
the support of X ,

0< emin < e(x )< emax < 1.
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Metaalgorithms
In this section, we formally define a metaalgorithm (or met-
alearner) for the CATE as the result of combining supervised
learning or regression estimators (i.e., base learners) in a spe-
cific manner while allowing the base learners to take any form.
Metaalgorithms thus have the flexibility to appropriately lever-
age different sources of prior information in separate subprob-
lems of the CATE estimation problem: They can be chosen to fit
a particular type of data, and they can directly take advantage of
existing data-analysis pipelines.

We first review both S- and T-learners, and we then propose
the X-learner, which is a metaalgorithm that can take advantage
of unbalanced designs (i.e., the control or the treated group is
much larger than the other group) and existing structures of the
CATE (e.g., smoothness or sparsity). Obviously, flexibility is a
gain only if the base learners in the metaalgorithm match the
features of the data and the underlying model well.

The T-learner takes two steps. First, the control response
function,

µ0(x ) =E[Y (0)|X = x ],

is estimated by a base learner, which could be any super-
vised learning or regression estimator using the observations in
the control group, {(Xi ,Yi)}Wi=0. We denote the estimated
function as µ̂0. Second, we estimate the treatment response
function,

µ1(x ) =E[Y (1)|X = x ],

with a potentially different base learner, using the treated obser-
vations and denoting the estimator by µ̂1. A T-learner is then
obtained as

τ̂T (x ) = µ̂1(x )− µ̂0(x ). [3]

Pseudocode for this T-learner can be found in SI Appendix,
Algorithm SI1.

In the S-learner, the treatment indicator is included as a fea-
ture similar to all of the other features without the indicator
being given any special role. We thus estimate the combined
response function,

µ(x ,w) :=E[Y obs|X = x ,W =w ],

using any base learner (supervised machine learning or regres-
sion algorithm) on the entire dataset. We denote the estimator
as µ̂. The CATE estimator is then given by

τ̂S (x ) = µ̂(x , 1)− µ̂(x , 0), [4]

and pseudocode is provided in SI Appendix, Algorithm SI2.
There are other metaalgorithms in the literature, but we do

not discuss them here in detail because of limited space. For
example, one may transform the outcomes so that any regression
method can estimate the CATE directly (SI Appendix, Algo-
rithm SI4) (4, 14, 15). In our simulations, this algorithm performs
poorly, and we do not discuss it further, but it may do well in
other settings.

X-Learner. We propose the X-learner and provide an illustrative
example to highlight its motivations. The basic idea of the X-
learner can be described in three stages:

1. Estimate the response functions

µ0(x ) =E[Y (0)|X = x ], and [5]
µ1(x ) =E[Y (1)|X = x ], [6]

using any supervised learning or regression algorithm and
denote the estimated functions µ̂0 and µ̂1. The algorithms
used are referred to as the base learners for the first stage.

2. Impute the treatment effects for the individuals in the treated
group, based on the control-outcome estimator, and the treat-
ment effects for the individuals in the control group, based on
the treatment-outcome estimator. That is, we define

D̃1
i :=Y 1

i − µ̂0(X 1
i ), and [7]

D̃0
i := µ̂1(X 0

i )−Y 0
i , [8]

and we call these the imputed treatment effects. Note
that if µ̂0 =µ0 and µ̂1 =µ1, then τ(x ) =E[D̃1|X = x ] =

E[D̃0|X = x ].
Use any supervised learning or regression method(s) to esti-
mate τ(x ) in two ways: using the imputed treatment effects as
the response variable in the treatment group to obtain τ̂1(x )
and similarly in the control group to obtain τ̂0(x ). Call the
supervised learning or regression algorithms base learners of
the second stage.

3. Define the CATE estimate by a weighted average of the two
estimates in stage 2:

τ̂(x ) = g(x )τ̂0(x ) + (1− g(x ))τ̂1(x ), [9]

where g ∈ [0, 1] is a weight function.

See SI Appendix, Algorithm SI3 for pseudocode.
Remark 1: τ̂0 and τ̂1 are both estimators for τ , while g is cho-

sen to combine these estimators to one improved estimator τ̂ .
Based on our experience, we observe that it is good to use an
estimate of the propensity score for g , so that g = ê , but it also
makes sense to choose g = 1 or 0, if the number of treated units
is very large or small compared with the number of control units.
For some estimators, it might even be possible to estimate the
covariance matrix of τ̂1 and τ̂0. One may then wish to choose g
to minimize the variance of τ̂ .

Intuition Behind the Metalearners.
The X-learner can use information from the control group

to derive better estimators for the treatment group and vice
versa. We will illustrate this using a simple example. Suppose
that we want to study a treatment, and we are interested in
estimating the CATE as a function of one covariate x . We
observe, however, very few units in the treatment group and
many units in the control group. This situation often arises with
the growth of administrative and online data sources: Data on
control units are often far more plentiful than data on treated
units. Fig. 1A shows the outcome for units in the treatment
group (circles) and the outcome of units in the untreated group
(crosses). In this example, the CATE is constant and equal
to one.

For the moment, let us look only at the treated outcome.
When we estimate µ1(x ) =E[Y (1)|X = x ], we must be careful
not to overfit the data since we observe only 10 data points. We
might decide to use a linear model, µ̂1(x ) (dashed line) to esti-
mate µ1. For the control group, we noticed that observations
with x ∈ [0, 0.5] seemed to be different, and we ended up model-
ing µ0(x ) =E[Y (0)|X = x ] with a piecewise linear function with
jumps at 0 and 0.5 (solid line). This is a relatively complex func-
tion, but we are not worried about overfitting since we observe
many data points.

The T-learner would now use estimator τ̂T (x ) = µ̂1(x )−
µ̂0(x ) (Fig. 1C, solid line), which is a relatively complicated
function with jumps at 0 and 0.5, while the true τ(x ) is a con-
stant. This is, however, problematic because we are estimating
a complex CATE function, based on 10 observations in the
treated group.

When choosing an estimator for the treatment group, we cor-
rectly avoided overfitting, and we found a good estimator for
the treatment-response function, and, as a result, we chose a

4158 | www.pnas.org/cgi/doi/10.1073/pnas.1804597116 Künzel et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1804597116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1804597116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1804597116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1804597116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1804597116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1804597116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1804597116


ST
A

TI
ST

IC
S

PO
LI

TI
CA

L
SC

IE
N

CE
S

A

B

C

Fig. 1. Intuition behind the X-learner with an unbalanced design. (A) Observed outcome and first-stage base learners. (B) Imputed treatment effects and
second-stage base learners. (C) ITEs and CATE estimators.

relatively complex estimator for the CATE, namely, the quantity
of interest. We could have selected a piecewise linear function
with jumps at 0 and 0.5, but this, of course, would have been
unreasonable when looking only at the treated group. If, how-
ever, we were to also take the control group into account, this
function would be a natural choice. In other words, we should
change our objective for µ̂1 and µ̂0. We want to estimate µ̂1

and µ̂0 in such a way that their difference is a good estimator
for τ .

The X-learner enabled us to do exactly that. It allowed us to
use structural information about the CATE to make efficient use
of an unbalanced design. The first stage of the X-learner is the
same as the first stage of the T-learner, but in its second stage,
the estimator for the controls is subtracted from the observed
treated outcomes, and, similarly, the observed control outcomes
are subtracted from estimated treatment outcomes to obtain the
imputed treatment effects,

D̃1
i :=Y 1

i − µ̂0(X 1
i ),

D̃0
i := µ̂1(X 0

i )−Y 0
i .

Here, we used the notation that Y 0
i and Y 1

i are the i th observed
outcome of the control and the treated group, respectively.
X 1

i , X 0
i are the corresponding feature vectors. Fig. 1B shows

the imputed treatment effects, D̃ . By choosing a simple—here,
linear—function to estimate τ1(x ) =E[D̃1|X 1 = x ], we effec-
tively estimated a model for µ1(x ) =E[Y 1|X 1 = x ], which has

a similar shape to µ̂0. By choosing a relatively poor model
for µ1(x ), D̃0 (the red crosses in Fig. 1B) are relatively
far away from τ(x ), which is constant and equal to 1. The
model for τ0(x ) =E[D̃0|X = x ] will thus be relatively poor.
However, our final estimator combines these two estimators
according to

τ̂(x ) = g(x )τ̂0(x ) + (1− g(x ))τ̂1(x ).

If we choose g(x ) = ê(x ), an estimator for the propensity score,
τ̂ will be very similar to τ̂1(x ), since we have many more obser-
vations in the control group; i.e., ê(x ) is small. Fig. 1C shows the
T-learner and the X-learner.

It is difficult to assess the general behavior of the S-learner
in this example because we must choose a base learner. For
example, when we use RF as the base learner for this dataset,
the S-learner’s first split is on the treatment indicator in 97.5%
of all trees in our simulations because the treatment assign-
ment is very predictive of the observed outcome, Y (see also SI
Appendix, Fig. S10). From there on, the S- and T-learner were the
same, and we observed them to perform similarly poorly in this
example.

Simulation Results
In this section, we conducted a broad simulation study to com-
pare the different metalearners. In particular, we summarize
our findings and provide general remarks on the strengths and
weaknesses of the S-, T-, and X-learners, while deferring the
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details to SI Appendix. The simulations are key to providing
an understanding of the performance of the methods we con-
sider for model classes that are not covered by our theoretical
results.

Our simulation study is designed to consider a range of situ-
ations. We include conditions under which the S- or T-learner
is likely to perform the best, as well as simulation setups pro-
posed by previous researchers (8). We consider cases where
the treatment effect is zero for all units (and so pooling the
treatment and control groups would be beneficial) and cases
where the treatment and control response functions are com-
pletely different (and so pooling would be harmful). We consider
cases with and without confounding∗ and cases with equal and
unequal sample sizes across treatment conditions. All simula-
tions discussed in this section are based on synthetic data. For
details, please see SI Appendix, section SI1. We provide addi-
tional simulations based on actual data when we discuss our
applications.

We compared the S-, T-, and X-learners with RF and BART
as base learners. We implemented a version of RF for which
the tree structure is independent of the leaf prediction given
the observed features, the so-called honest RF in an R pack-
age called hte (16). This version of RF is particularly accessible
from a theoretical point of view; it performs well in noisy set-
tings; and it is better suited for inference (8, 17). For BART,
our software used the dbarts (18) implementation for the base
learner.

Comparing different base learners enabled us to demonstrate
two things. On the one hand, it shows that the conclusions we
draw about the S-, T-, and X-learner are not specific to a par-
ticular base learner, and, on the other hand, it demonstrates
that the choice of base learners can make a large difference
in prediction accuracy. The latter is an important advantage of
metalearners since subject knowledge can be used to choose
base learners that perform well. For example, in SI Appendix,
Simulations SI2 and SI4, the response functions are globally lin-
ear, and we observe that estimators that act globally such as
BART have a significant advantage in these situations or when
the dataset is small. If, however, there is no global structure or
when the dataset is large, then more local estimators such as
RF seem to have an advantage (SI Appendix, Simulations SI3
and SI5).

We observe that the choice of metalearner can make a large
difference, and, for each metalearner, there exist cases where it
is the best-performing estimator.

The S-learner treats the treatment indicator like any other pre-
dictor. For some base learners, such as k -nearest neighbors, it
is not a sensible estimator, but for others, it can perform well.
Since the treatment indicator is given no special role, algorithms
such as the lasso and RFs can completely ignore the treatment
assignment by not choosing/splitting on it. This is beneficial if
the CATE is in many places 0 (SI Appendix, Simulations SI4
and SI5), but—as we will see in our second data example—the
S-learner can be biased toward 0.

The T-learner, on the other hand, does not combine the
treated and control groups. This can be a disadvantage when
the treatment effect is simple because, by not pooling the data,
it is more difficult for the T-learner to mimic a behavior that
appears in both the control- and treatment-response functions
(e.g., SI Appendix, Simulation SI4). If, however, the treatment
effect is very complicated, and there are no common trends in µ0

and µ1, then the T-learner performs especially well (SI Appendix,
Simulations SI2 and SI3).

*Confounding here refers to the existence of an unobserved covariate that influences
both the treatment variable, W , and at least one of the potential outcomes Y(0), Y(1).

The X-learner performs particularly well when there are struc-
tural assumptions on the CATE or when one of the treatment
groups is much larger than the other (SI Appendix, Simulations
SI1 and SI2). In the case where the CATE is 0, it usually does not
perform as well as the S-learner, but it is significantly better than
the T-learner (SI Appendix, Simulations SI4–6), and in the case of
a very complex CATE, it performs better than the S-learner, and
it often outperforms even the T-learner (SI Appendix, Simula-
tions SI2 and SI3). These simulation results lead us to the conclu-
sion that, unless one has a strong belief that the CATE is mostly
0, then, as a rule of thumb, one should use the X-learner with
BART for small datasets and RF for bigger ones. In the sequel,
we will further support these claims with additional theoretical
results and empirical evidence from real data and data-inspired
simulations.

Comparison of Convergence Rates. In this section, we provide con-
ditions under which the X-learner can be proven to outperform
the T-learner in terms of pointwise estimation rate. These results
can be viewed as attempts to rigorously formulate intuitions
regarding when the X-learner is desirable. They corroborate
our intuition that the X-learner outperforms the T-learner when
one group is much larger than the other group and when the
CATE function has a simpler form than those of the underlying
response functions themselves.

Let us start by reviewing some of the basic results in the field
of minimax nonparametric regression estimation (19). In the
standard regression problem, one observes N independent and
identically distributed tuples (Xi ,Yi)i ∈Rd×N ×RN generated
from some distribution P , and one is interested in estimat-
ing the conditional expectation of Y given some feature vector
x , µ(x ) =E[Y |X = x ]. The error of an estimator µ̂N can be
evaluated by the EMSE,

EMSE(P, µ̂N ) =E[(µ̂N (X )−µ(X ))2].

For a fixed P , there are always estimators that have a very
small EMSE. For example, choosing µ̂N ≡µ would have no
error. However, P , and thus µ would be unknown. Instead,
one usually wants to find an estimator that achieves a small
EMSE for a relevant set of distributions (such a set is relevant
if it captures domain knowledge or prior information about the
problem). To make this problem feasible, a typical approach
is the minimax approach, where one analyzes the worst per-
formance of an estimator over a family, F , of distributions
(20). The goal is to find an estimator that has a small EMSE
for all distributions in this family. For example, if F0 is the
family of distributions P such that X ∼Unif[0, 1], Y =βX + ε,
ε∼N (0, 1), and β ∈R, then it is well known that the ordinary
least squares (OLS) estimator achieves the optimal paramet-
ric rate. That is, there exists a constant C ∈R such that for
all P ∈F0,

EMSE(P, µ̂OLS
N )≤CN−1.

If, however, F1 is the family of all distributions P such that
X ∼Unif[0, 1], Y ∼µ(X ) + ε, and µ is a Lipschitz continuous
function with a bounded Lipschitz constant, then there exists no
estimator that achieves the parametric rate uniformly for all pos-
sible distributions in F1. To be precise, we can at most expect to
find an estimator that achieves a rate of N−2/3 and that there
exists a constant C ′, such that

lim inf
N→∞

inf
µ̂N

sup
P∈F1

EMSE(P, µ̂N )

N−2/3
>C ′> 0.

The Nadaraya–Watson and the k -nearest neighbors estimators
can achieve this optimal rate (19, 21).
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Crucially, the fastest rate of convergence that holds uni-
formly for a family F is a property of the family to which the
underlying data-generating distribution belongs. It will be use-
ful for us to define sets of families for which particular rates are
achieved.

Definition 1 (families with bounded minimax rate): For a ∈
(0, 1], we define S(a) to be the set of all families, F , with a
minimax rate of at most N−a .

Note that for any family F ∈S(a), there exists an estimator µ̂
and a constant C such that for all N ≥ 1,

sup
P∈F

EMSE(P, µ̂N )≤CN−a .

From the examples above, it is clear that F0 ∈S(1) and
F1 ∈S(2/3).

Even though the minimax rate of the EMSE is not very practi-
cal since one rarely knows that the true data-generating process
is in some reasonable family of distributions, it is nevertheless
one of the very few useful theoretical tools to compare different
nonparametric estimators. If for a big class of distributions, the
worst EMSE of an estimator µ̂A is smaller than the worst EMSE
of an estimator µ̂B , then one might prefer estimator µ̂A over esti-
mator µ̂B . Furthermore, if the estimator of choice does not have
a small error for a family that we believe based on domain infor-
mation could be relevant in practice, then we might expect µ̂ to
have a large EMSE in real data.

Implication for CATE Estimation. Let us now apply the mini-
max approach to the problem of estimating the CATE. Recall
that we assume a superpopulation, P , of random variables
(Y (0),Y (1),X ,W ) according to [1], and we observe N out-
comes, (Xi ,Wi ,Y

obs
i )Ni=1. To avoid the problem that with a small

but nonzero probability all units are treated or untreated, we
analyze the EMSE of an estimator given that there are 0<n <N
treated units,

EMSE(P, τ̂mn) =E

[
(τ(X )− τ̂mn(X ))2

∣∣∣∣∣
N∑
i=1

Wi =n

]
.

The expectation is taken over the observed data,†

(Xi ,Wi ,Yi)
N
i=1, given that we observe n treated units,

and over X , which is distributed according to P .
As in Definition 1, we characterize families of superpopula-

tions by the rates at which the response functions and the CATE
function can be estimated.

Definition 2 (superpopulations with given rates): For aµ, aτ ∈
(0, 1], we define S(aµ, aτ ) to be the set of all families of distri-
butions P of (Y (0),Y (1),X ,W ) such that ignorability holds
(Condition 1), the overlab condition (Condition 2) is satisfied,
and the following conditions hold:

1. The distribution of (X ,Y (0)) given W = 0 is in a family F0 ∈
S(aµ);

2. The distribution of (X ,Y (1)) given W = 1 is in a family F1 ∈
S(aµ);

3. The distribution of (X ,µ1(X )−Y (0)) given W = 0 is in a
family Fτ0 ∈S(aτ ); and

4. The distribution of (X ,Y (1)−µ0(X )) given W = 1 is in a
family Fτ1 ∈S(aτ ).

A simple example of a family in S(2/3, 1) is the set of dis-
tributions P for which X ∼Unif([0, 1]), W ∼Bern(1/2), µ0 is
any Lipschitz continuous function, τ is linear, and ε(0), ε(1) are
independent and standard normal-distributed.

†Refer to SI Appendix, section SI7 for a careful treatment of the distributions involved.

We can also build on existing results from the literature to
characterize many families in terms of smoothness conditions on
the CATE and on the response functions.

Example 1: Let C > 0 be an arbitrary constant and consider
the family, F2, of distributions for which X has compact support
in Rd , the propensity score e is bounded away from 0 and 1 (Con-
dition 2), µ0,µ1 are C Lipschitz continuous, and the variance of
ε is bounded. Then it follows (19) that

F2 ∈S
(

2d

2 + d
,

2d

2 + d

)
.

Note that we don’t have any assumptions on X , apart from its
support being bounded. If we are willing to make assumptions on
the density (e.g., X is uniformly distributed), then we can char-
acterize many distributions by the smoothness conditions of µ0,
µ1, and τ .

Definition 3 [(p,C) -smooth functions (19)]: Let p = k +β for
some k ∈N and 0<β≤ 1, and let C > 0. A function f :Rd −→
R is called (p,C ) -smooth if for every α= (α1, . . . ,αd), αi ∈
N,
∑d

j=1 αj = k , the partial derivative ∂k f

∂x
α1
1 ...∂x

αd
d

exists and

satisfies∣∣∣∣ ∂k f

∂xα1
1 . . . ∂x

αd
d

(x )− ∂k f

∂xα1
1 . . . ∂x

αd
d

(z )

∣∣∣∣≤C‖x − z‖β .

Example 2: Let C1,C2 be arbitrary constants and consider
the family, F3, of distributions for which X ∼Unif([0, 1]d),
e ≡ c ∈ (0, 1), ε is 2D normally distributed, µ0 and µ1 are
(pµ,C1)-smooth, and τ is (pτ ,C2)-smooth.‡ Then it follows
(19, 24) that

F3 ∈S
(

2d

2pµ + d
,

2d

2pτ + d

)
.

Let us intuitively understand the difference between the T- and
X-learners. The T-learner splits the problem of estimating the
CATE into the two subproblems of estimating µ0 and µ1 sep-
arately. By appropriately choosing the base learners, we can
expect to achieve the minimax optimal rates of m−aµ and n−aµ ,
respectively,

sup
P0∈F0

EMSE(P0, µ̂m
0 )≤Cm−aµ , and

sup
P1∈F1

EMSE(P1, µ̂n
1 ) ≤Cn−aµ ,

[10]

where C is some constant. Those rates translate immediately to
rates for estimating τ ,

sup
P∈F

EMSE(P, τ̂nmT )≤Cτ
(
m−aµ +n−aµ

)
.

In general, we cannot expect to do better than this when using an
estimation strategy that falls in the class of T-learners, because
the subproblems in Eq. 10 are treated completely independently,
and there is nothing to be learned from the treatment group
about the control group and vice versa.

In SI Appendix, section SI8, we present a careful analysis of
this result, and we prove the following theorem.

Theorem 1 (Minimax Rates of the T-Learner). For a family of super-
populations, F ∈S(aµ, aτ ), there exist base learners to be used
in the T-learner so that the corresponding T-learner estimates the
CATE at a rate

‡The assumption that X is uniformly distributed and the propensity score is constant can
be generalized if one uses a slightly different risk (22–24).
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O(m−aµ +n−aµ). [11]

The X-learner, on the other hand, can be seen as a locally
weighted average of the two estimators, τ̂0 and τ̂1 (Eq. 9). Take,
for the moment, τ̂1. It consists of an estimator for the outcome
under control, which achieves a rate of m−aµ , and an estima-
tor for the imputed treatment effects, which should intuitively
achieve a rate of n−aτ . We therefore expect that under some
conditions on F ∈S(aµ, aτ ), there exist base learners such that
τ̂0 and τ̂1 in the X-learner achieve the rates

O(m−aτ +n−aµ) and O(m−aµ +n−aτ ), [12]

respectively.
Even though it is theoretically possible that aτ is similar to

aµ, our experience with real data suggests that it is often larger
(i.e., the treatment effect is simpler to estimate than the poten-
tial outcomes), because the CATE function is often smoother or
sparsely related to the feature vector. In this case, the X-learner
converges at a faster rate than the T-learner.

Remark 2 (unbalanced groups): In many real-world applica-
tions, we observe that the number of control units is much larger
than the number of treated units, m�n . This happens, for
example, if we test a new treatment and we have a large num-
ber of previous (untreated) observations that can be used as
the control group. In that case, the bound on the EMSE of the
T-learner will be dominated by the regression problem for the
treated response function,

sup
P∈F

EMSE(P, τ̂nmT )≤C1n
−aµ . [13]

The EMSE of the X-learner, however, will be dominated by the
regression problem for the imputed treatment effects and it will
achieve a faster rate of n−aτ ,

sup
P∈F

EMSE(P, τ̂nmX )≤C2n
−aτ . [14]

This is a substantial improvement on [13] when aτ > aµ, and it
demonstrates that, in contrast to the T-learner, the X-learner can
exploit structural conditions on the treatment effect. We there-
fore expect the X-learner to perform particularly well when one
of the treatment groups is larger than the other. This can also be
seen in our extensive simulation study presented in SI Appendix,
section SI1 and in the field experiment on social pressure on
voter turnout presented in Applications.

Example When the CATE Is Linear. It turns out to be mathematically
very challenging to give a satisfying statement of the extra con-
ditions needed on F in [12]. However, they are satisfied under
weak conditions when the CATE is Lipschitz continuous (cf. SI
Appendix, section SI9.3) and, as we discuss in the rest of this sec-
tion, when the CATE is linear. We emphasize that we believe
that this result holds in much greater generality.

Let us discuss the result in the following families of distri-
butions with a linear CATE, but without assumptions on the
response functions other than that they can be estimated at some
rate a .

Condition 3: The treatment effect is linear, τ(x ) = xTβ, with
β ∈Rd .

Condition 4: There exists an estimator µ̂m
0 and constants

C0, a > 0 with

EMSE(P, µ̂m
0 ) =E[(µ0(X )− µ̂m

0 (X ))2|W = 0]≤C0m
−a .

To help our analysis, we also assume that the noise terms
are independent given X and that the feature values are well
behaved.

Condition 5: The error terms εi are independent given X , with
E[εi |X = x ] = 0 and Var[εi |X = x ]≤σ2.

Condition 6: X has finite second moments,

E[‖X ‖22]≤CX ,

and the eigenvalues of the sample covariance matrix of X 1 are
well conditioned, in the sense that there exists an n0 ∈N and a
constant CΣ ∈R such that for all n >n0,

P
(
γ−1

min(Σ̂n)≤CΣ

)
= 1. [15]

Under these conditions, we can prove that the X-learner achieves
a rate of O(m−a +n−1).

Theorem 2. Assume that we observe m control units and n treated
units from a superpopulation that satisfies Conditions 1–6; then τ̂1
of the X-learner with µ̂m

0 in the first stage and OLS in the second
stage achieves a rate of O(m−a +n−1). Specifically, for all n >
n0,m > 1,

EMSE(P, τ̂mn
1 )≤C (m−a +n−1),

with C = max
(

emax−emaxemin
emin−emaxemin

C0,σ2d
)
CXCΣ.

We note that an equivalent statement also holds for the
pointwise MSE (SI Appendix, Theorem SI2) and for τ̂0.

This example also supports Remark 2, because if there are
many control units, m ≥n1/a , then the X-learner achieves the
parametric rate in n ,

EMSE(P, τ̂mn
1 )≤Cn−1.

In fact, as SI Appendix, Theorem SI3 shows, even if the number
of control units is of the same order as the number of treated
units, we can often achieve the parametric rate.

Applications
In this section, we consider two data examples. In the first
example, we consider a large Get-Out-the-Vote experiment
that explored if social pressure can be used to increase voter
turnout in elections in the United States (1). In the second
example, we consider an experiment that explored if door-to-
door canvassing can be used to durably reduce transphobia in
Miami (2). In both examples, the original authors failed to
find evidence of heterogeneous treatment effects when using
simple linear models without basis expansion, and subsequent
researchers and policymakers have been acutely interested in
treatment-effect heterogeneity that could be used to better tar-
get the interventions. We use our honest RF implementation
(16) because of the importance of obtaining useful confidence
intervals in these applications. Confidence intervals are obtained
by using a bootstrap procedure (SI Appendix, Algorithm SI6).
We have evaluated several bootstrap procedures, and we have
found that the results for all of them were very similar. We
explain this particular bootstrap choice in detail in SI Appendix,
section SI3.

Social Pressure and Voter Turnout. In a large field experiment,
Gerber et al. (1) show that substantially higher turnout was
observed among registered voters who received a mailing
promising to publicize their turnout to their neighbors. In the
United States, whether someone is registered to vote and their
past voting turnout are a matter of public record. Of course,
how individuals voted is private. The experiment has been highly
influential both in the scholarly literature and in political prac-
tice. In our reanalysis, we focus on two treatment conditions:
the control group, which was assigned to 191,243 individuals, and
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Fig. 2. Social pressure and voter turnout. Potential voters are grouped by the number of elections they participated in, ranging from 0 (potential voters
who did not vote during the past five elections) to 5 (voters who participated in all five past elections). The width of each group is proportional to the size
of the group. (Upper) Positive values correspond to the percentage of voters for which the predicted CATE is significantly positive, while negative values
correspond to the percentage of voters for which the predicted CATE is significantly negative. (Lower) The plot shows the CATE estimate distribution for
each bin.

the “neighbors” treatment group, which was assigned to 38,218
individuals. Note the unequal sample sizes. The experiment was
conducted in Michigan before the August 2006 primary elec-
tion, which was a statewide election with a wide range of offices
and proposals on the ballot. The authors randomly assigned
households with registered voters to receive mailers. The out-
come, whether someone voted, was observed in the primary
election. The neighbors mailing opened with a message that
states “DO YOUR CIVIC DUTY—VOTE!” It then contin-
ued by not only listing the household’s voting records but also
the voting records of those living nearby. The mailer informed
individuals that “we intend to mail an updated chart” after the
primary.

The study consists of seven key individual-level covariates,
most of which are discrete: gender, age, and whether the reg-
istered individual voted in the primary elections in 2000, 2002,
and 2004 or the general election in 2000 and 2002. The sam-
ple was restricted to voters who had voted in the 2004 general
election. The outcome of interest is turnout in the 2006 primary
election, which is an indicator variable. Because compliance is
not observed, all estimates are of the intention-to-treat effect,
which is identified by the randomization. The ATE estimated
by the authors is 0.081 with a SE of (0.003). Increasing voter
turnout by 8.1% using a simple mailer is a substantive effect,
especially considering that many individuals may never have seen
the mailer.

Fig. 2 presents the estimated treatment effects, using X-RF
where the potential voters are grouped by their voting history.
Fig. 2, Upper shows the proportion of voters with a significant
positive (blue) and a significant negative (red) CATE esti-
mate. We can see that there is evidence of a negative backlash
among a small number of people who voted only once in the
past five elections before the general election in 2004. Applied
researchers have observed a backlash from these mailers; e.g.,
some recipients called their Secretary of State’s office or local
election registrar to complain (25, 26). Fig. 2, Lower shows the
distribution of CATE estimates for each of the subgroups. Hav-
ing estimates of the heterogeneity enables campaigns to better
target the mailers in the future. For example, if the number

of mailers is limited, one should target potential voters who
voted three times during the past five elections, since this group
has the highest ATE and it is a very big group of potential
voters.§

S-, T-, and X-RF all provide similar CATE estimates. This is
unsurprising given the very large sample size, the small number
of covariates, and their distributions. For example, the correla-
tion between the CATE estimates of S- and T-RF is 0.99 (results
for S- and T-RF can be found in SI Appendix, Fig. S9).

We conducted a data-inspired simulation study to see how
these estimators would behave in smaller samples. We take
the CATE estimates produced by T-RF, and we assume that
they are the truth. We can then impute the potential outcomes
under both treatment and control for every observation. We
then sample training data from the complete data and pre-
dict the CATE estimates for the test data using S-, T-, and
X-RF. We keep the unequal treatment proportion observed
in the full data fixed—i.e., P(W = 1) = 0.167. Fig. 3 presents
the results of this simulation. They show that, in small sam-
ples, both X- and S-RF outperform T-RF, with X-RF per-
forming the best, as one may conjecture, given the unequal
sample sizes.

Reducing Transphobia: A Field Experiment on Door-to-Door Canvass-
ing. In an experiment that received widespread media attention,
Broockman et al. (2, 27) show that brief (10 min) but high-
quality door-to-door conversations can markedly reduce preju-
dice against gender-nonconforming individuals for at least 3 mo.
There are important methodological differences between this
example and our previous one. The experiment is a placebo-
controlled experiment with a parallel survey that measures
attitudes, which are the outcomes of interest. The authors

§In praxis, it is not necessary to identify a particular subgroup. Instead, one can simply
target units for which the predicted CATE is large. If the goal of our analysis were to
find subgroups with different treatment effects, one should validate those subgroup
estimates. We suggest either splitting the data and letting the X-learner use part of the
data to find subgroups and the other part to validate the subgroup estimates or to use
the suggested subgroups to conduct further experiments.
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Fig. 3. RMSE, bias, and variance for a simulation based on the social
pressure and voter turnout experiment.

follow the design of ref. 28. The authors first recruited reg-
istered voters (n = 68,378) via mail for an unrelated online
survey to measure baseline outcomes. They then randomly
assigned respondents of the baseline survey to either the treat-
ment group (n = 913) or the placebo group that was targeted
with a conversation about recycling (n = 912). Randomization
was conducted at the household level (n = 1,295), and because
the design uses a placebo control, the estimand of interest
is the complier-average-treatment effect. Outcomes were mea-
sured by the online survey 3 d, 3 wk, 6 wk, and 3 mo after
the door-to-door conversations. We analyze results for the first
follow-up.

The final experimental sample consisted of only 501 observa-
tions. The experiment was well-powered despite its small sample
size because it included a baseline survey of respondents as well
as posttreatment surveys. The survey questions were designed to
have high over-time stability. The R2 of regressing the outcomes
of the placebo-control group on baseline covariates using OLS is
0.77. Therefore, covariate adjustment greatly reduces sampling
variation. There are 26 baseline covariates that include basic
demographics (gender, age, and ethnicity) and baseline measures
of political and social attitudes and opinions about prejudice
in general.

The authors find an ATE of 0.22 (SE: 0.072, t stat: 3.1) on
their transgender tolerance scale.¶ The scale is coded so that
a larger number implies greater tolerance. The variance of the
scale is 1.14, with a minimum observed value of −2.3 and a max-
imum of 2. This is a large effect given the scale. For example,
the estimated decrease in transgender prejudice is greater than
Americans’ average decrease in homophobia from 1998 to 2012,
when both are measured as changes in standard deviations of
their respective scales.

The authors report finding no evidence of heterogeneity in
the treatment effect that can be explained by the observed
covariates. Their analysis is based on linear models (OLS, lasso,
and elastic net) without basis expansions.‖ Fig. 4A presents

¶The authors’ transgender tolerance scale is the first principal component of combining
five −3 to +3 Likert scales. See ref. 2 for details.

‖Ref. 2 estimates the CATE using SI Appendix, Algorithm SI4.

our results for estimating the CATE, using X–RF. We find
that there is strong evidence that the positive effect that the
authors find is only found among a subset of respondents that
can be targeted based on observed covariates. The average of
our CATE estimates is within half a SD of the ATE that the
authors report.

Unlike in our previous data example, there are marked differ-
ences in the treatment effects estimated by our three learners.
Fig. 4B presents the estimates from T–RF. These estimates are
similar to those of X-RF, but with a larger spread. Fig. 4C
presents the estimates from S-RF. Note that the average CATE
estimate of S-RF is much lower than the ATE reported by the
original authors and the average CATE estimates of the other
two learners. Almost none of the CATE estimates are signifi-
cantly different from zero. Recall that the ATE in the experiment
was estimated with precision and was large both substantively
and statistically (t stat = 3.1).

In these data, S-RF shrinks the treatment estimates toward
zero. The ordering of the estimates we see in this data applica-
tion is what we have often observed in simulations: The S-learner
has the least spread around zero, the T-learner has the largest
spread, and the X-learner is somewhere in between. Unlike in
the previous example, the covariates are strongly predictive of
the outcomes, and the splits in the S-RF are mostly on the
features rather than the treatment indicator, because they are
more predictive of the observed outcomes than the treatment
assignment (cf. SI Appendix, Fig. S10).

Conclusion
This paper reviewed metaalgorithms for CATE estimation
including the S- and T-learners. It then introduced a metaalgo-
rithm, the X-learner, that can translate any supervised learning
or regression algorithm or a combination of such algorithms into
a CATE estimator. The X-learner is adaptive to various settings.
For example, both theory and data examples show that it per-
forms particularly well when one of the treatment groups is much
larger than the other or when the separate parts of the X-learner
are able to exploit the structural properties of the response and
treatment effect functions. Specifically, if the CATE function is
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Fig. 4. Histograms for the distribution of the CATE estimates in the Reduc-
ing Transphobia study. The horizontal line shows the position of the
estimated ATE. (A) X-RF. (B) T-RF. (C) S-RF.
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linear, but the response functions in the treatment and control
group satisfy only the Lipschitz-continuity condition, the X-
learner can still achieve the parametric rate if one of the groups is
much larger than the other (Theorem 2). If there are no regular-
ity conditions on the CATE function and the response functions
are Lipschitz continuous, then both the X- and T-learner obtain
the same minimax optimal rate (SI Appendix, Theorem SI5). We
conjecture that these results hold for more general model classes
than those in our theorems.

We have presented a broad set of simulations to understand
the finite sample behaviors of different implementations of these
learners, especially for model classes that are not covered by
our theoretical results. We have also examined two data appli-
cations. Although none of the metaalgorithms is always the best,
the X-learner performs well overall, especially in the real-data
examples. In practice, in finite samples, there will always be gains
to be had if one accurately judges the underlying data-generating
process. For example, if the treatment effect is simple, or even
zero, then pooling the data across treatment and control con-
ditions will be beneficial when estimating the response model
(i.e., the S-learner will perform well). However, if the treatment
effect is strongly heterogeneous and the response surfaces of
the outcomes under treatment and control are very different,

pooling the data will lead to worse finite sample performance
(i.e., the T-learner will perform well). Other situations are pos-
sible and lead to different preferred estimators. For example,
one could slightly change the S-learner so that it shrinks to the
estimated ATE instead of zero, and it would then be preferred
when the treatment effect is constant and nonzero. One hopes
that the X-learner can adapt to these different settings. The sim-
ulations and real-data studies presented have demonstrated the
X-learner’s adaptivity. However, further studies and experience
with more real datasets are necessary. To enable practitioners to
benchmark these learners on their own datasets, we have created
an easy-to-use software library called hte. It implements several
methods of selecting the best CATE estimator for a particu-
lar dataset, and it implements confidence-interval estimators for
the CATE.
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