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C A N C E R

Spatial 3D genome organization reveals intratumor 
heterogeneity in primary glioblastoma samples
Qixuan Wang1†, Juan Wang1†, Radhika Mathur2, Mark W. Youngblood1,3, Qiushi Jin1, Ye Hou1,4, 
Lena Ann Stasiak1, Yu Luan1, Hengqiang Zhao1, Stephanie Hilz2,5, Chibo Hong2, Susan M. Chang2, 
Janine M. Lupo2, Joanna J. Phillips2, Joseph F. Costello2*‡, Feng Yue1*‡

Glioblastoma (GBM) is the most prevalent malignant brain tumor with poor prognosis. Although chromatin intra-
tumoral heterogeneity is a characteristic feature of GBM, most current studies are conducted at a single tumor 
site. To investigate the GBM-specific 3D genome organization and its heterogeneity, we conducted Hi-C experi-
ments in 21 GBM samples from nine patients, along with three normal brain samples. We identified genome sub-
compartmentalization and chromatin interactions specific to GBM, as well as extensive intertumoral and 
intratumoral heterogeneity at these levels. We identified copy number variants (CNVs) and structural variations 
(SVs) and demonstrated how they disrupted 3D genome structures. SVs could not only induce enhancer hijacking 
but also cause the loss of enhancers to the same gene, both of which contributed to gene dysregulation. Our find-
ings provide insights into the GBM-specific 3D genome organization and the intratumoral heterogeneity of this 
organization and open avenues for understanding this devastating disease.

INTRODUCTION
Glioblastoma multiforme (GBM) is an aggressive and highly lethal 
brain tumor, comprising approximately 57% of all gliomas (1–3). In-
tratumoral heterogeneity (ITH), a well-established feature in GBM, 
denotes the presence of diverse tumor cell populations within a sin-
gle tumor sample and constitutes a major contributor to therapeutic 
resistance and treatment failure (4–7). ITH of chromatin is a charac-
teristic of GBM that has long been observed under the microscope, 
but the molecular underpinnings and consequences on gene expres-
sion are poorly understood.

The three-dimensional (3D) organization of the genome, which 
refers to the spatial organization and interactions of chromatin within 
the nucleus of a cell, plays a crucial role in transcriptional regulation 
through multiple levels of chromatin folding, including chromosome 
territories (8), A/B compartments (9), topologically associating do-
mains (TADs) (10, 11), and chromatin loops. Genome-wide chroma-
tin folding structures can be captured using a variety of 3C-based 
technologies such as Hi-C (9), Chromatin Interaction Analysis with 
Paired-End Tag (ChIA-PET) (12), Hi-C chromatin immunoprecipita-
tion (HiChIP) (13), or micro-C (14). When comparing 3D genome 
organization in cancer samples with normal samples, the widespread 
of copy number variations (CNVs) and structure variations (SVs) in 
cancer genomes added another layer of complexity. In particular, 
SVs—such as deletion, inversion, and translocations—can juxtapose 
enhancers or silencers from distance or even from another chromo-
some in proximity to near potent cancer-related genes and influence 
their expression, termed enhancer or silencer hijacking (15–21). In a 

recent work, Papantonis and colleagues (22) generated the Hi-C maps 
and studied enhancer hijacking in a variety of GBM cell lines, but so 
far, the study of 3D genome organization in GBM using primary pa-
tient samples has been limited.

Therefore, in this work, we conducted Hi-C experiments in a co-
hort of 21 tumor samples from nine primary GBM patients and three 
normal brain samples, generating the most comprehensive and high-
est resolution 3D genome dataset in GBM to date. To the best of our 
knowledge, this work represents the first large-scale 3D genome pro-
filing in different regions of the same tumor in any cancer type. We 
sought to investigate GBM-specific 3D genome organization and the 
heterogeneity of the organization both between and within tumors.

RESULTS
Hi-C data generation in primary GBM samples
To comprehensively study 3D genome interactions of GBM patients, 
we performed 24 Hi-C experiments in nine patients with IDH wild-
type GBM and three normal brain samples (Fig. 1A). By sampling mul-
tiple regions within the same patients, we sought to investigate 
intratumoral diversity, in addition to comparisons between patients. 
For patients 530, 524, and 529, we selected nine, three, and three sam-
ples, respectively, using a 3D spatial sampling method (details in Mate-
rials and Methods). The location and relative distance from centroid 
[defined as distance to tumor centroid/(distance to tumor centroid + 
distance to tumor periphery)] of the selected samples in these three pa-
tients are shown in the lower panel of Fig. 1 (A and B). Specimen loca-
tions were selected to optimize diversity in tumor evolution. For 
example, the tumor samples of P530 belong to two distinct lobes of the 
brain: temporal (sample #2, #4, and #5) and frontal (sample #10, #13, 
#14, #15, #18, and #19). Sample 4 and sample 18 of P530 correspond to 
regions that are physically closer to the tumor centroid, whereas the 
other samples of P530 were obtained from regions closer to the tumor 
periphery (Fig. 1B). In P524, all the three samples are located near the 
tumor periphery. For P529, sample 8 and sample 1 are closer to the tu-
mor centroid and periphery, respectively, while sample 6 is located in 
between. In the remaining cohort of six patients with GBM, we 
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generated a single Hi-C library for each case and used the data for inter-
tumoral comparisons. On average, we generated ~700 million paired-
end reads for each Hi-C library (table S1). We show an example region 
of Hi-C data across all the 24 samples in Fig. 1C. For 12 of the Hi-C 
samples, we also have the RNA sequencing (RNA-seq) and Assay for 
Transposase-Accessible Chromatin using sequencing (ATAC-seq) in 
the same region and thus can study the effect of 3D genome organiza-
tion on gene regulation for these spatially mapped samples.

Impact of extensive SVs on PC-based A/B 
compartment accuracy
The genome can be partitioned into A and B compartments, where 
A compartment is more associated with open chromatin regions, 

while B compartment is related to condensed regions (9, 23). Re-
cently, it has been shown that there are cancer- and subtype-specific 
compartment changes that can distinguish distinct pathologies, 
such as in colon cancer (24), prostate cancer (25), or leukemia (18). 
To profile the genome compartmentalization of GBM, we first de-
rived the first principal component (PC1) value of the Hi-C matri-
ces at 100-kb resolution for each sample and then assigned each bin 
into A (PC1 value > 0) or B compartments (PC1 value < 0).

However, we observed that complex SV events would disrupt PC1 
value calculation (the second track in fig. S1, A and B). For example, 
there are extensive SVs in sample P475, and the PC1 values for these 
regions are mostly missing (fig. S1A). Similarly, in sample P524_9, 
the derived PC1 values are also missing at SV-affected regions (fig. 
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Fig. 1. Study design. (A) Study design including the number of patients and samples in this study and location of each spatially mapped samples within the brain. The 
yellow region is the whole tumor (T2-weighted hyperintense region) and the green region is the contrast-enhancing lesion (T1-weighted post-contrast). People icon was 
generated from BioRender. (B) Relative distance from centroid of each sample in P530, P524, and P529. Relative distance from centroid is defined as distance to tumor 
centroid/(distance to tumor centroid + distance to tumor periphery). (C) Local Hi-C contact patterns and corresponding subcompartment for the 24 samples on a repre-
sentative region of chr2: 130,000,000–190,000,000. Example regions with variable subcompartments were highlighted in gray.
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S1B), potentially leading to missed or wrong assigned A/B compart-
ments. The main reason is that when PC1 values are derived (9), the 
approach does not include consideration for CNVs and SVs, but this 
alteration of the genome might alter the correlations step in PC cal-
culation and lead to the inaccurate PC1 inference.

Identification of subcompartment with CALDER
Therefore, we investigated whether subcompartments (26, 27) were 
less affected by SVs. In particular, we run the CALDER software (27) 
to identify subcompartments at 100-kb resolution (Fig. 2A and fig. 
S1, A and B). First, we noticed that CALDER were able to define 
subcompartments in the regions where PC1 failed to provide anno-
tations (third and fourth tracks in fig. S1, A and B). In general, 
CALDER first calculates a correlation matrix based on a compressed 
Hi-C map and then identifies domains using TopDom based on the 
correlation matrix. The domains would then be clustered and as-
signed into eight subcompartments: A1.1, A1.2, A2.1, A2.2, B1.1, 
B1.2, B2.1, and B2.2. We found that the Hi-C map compressing, do-
main identification, and clustering steps largely mitigated the influ-
ences from SVs, confirming what the authors suggested in their 
paper (27). Specifically, we observed that at the complex SVs regions, 
CALDER was able to call meaningful subcompartments at most of 
the regions (fig. S1, A and B). To evaluate the accuracy of subcom-
partment, we further compared its states with both gene expression 
(Fig. 2B and fig. S1, C to E) and ATAC-seq signals (Fig. 2C and fig. 
S1, F to H). Both gene expression and ATAC-seq read counts exhib-
ited patterns consistent with the subcompartments, confirming the 
reliability of subcompartment identification in each sample. In addi-
tion, we checked whether subcompartments in normal sample were 
associated with histone modifications using public normal brain his-
tone marks ChIP-seq data (28). We observed that subcomartment 
A1.1, A1.2, A2.1, and A2.2 were more enriched with active enhanc-
ers (H3K27ac and H3K4me1), active promoters (H3K4me3 and 
H3K9ac), and transcribed gene markers (H3K36me3), while B1.1, 
B1.2, B2.1, and B2.2 were more enriched with polycomb repressed 
(H3K27me3) and heterochromatin markers (H3K9me3) (fig. S1I).

Compartment dynamics across different patients
First, we performed genome-wide classification based on subcom-
partments using Uniform Manifold Approximation and Projection 
(UMAP) (Fig. 2D), which revealed six clusters of these 24 samples 
and notably suggested unique patterns within individual tumors. 
We observed that all temporal region samples (#2, #4, and #5) of 
patent P530 were in the same cluster, while the frontal region sam-
ples were further divided into two different clusters. Sample 1 of 
P524 was grouped in the same cluster with the three normal brain 
samples (NU0820, NU1650, and NU1265), potentially due to its low 
tumor purity [~0.04, predicted by whole exome sequencing (WES) 
data]. We also performed clustering analysis of the Hi-C data using 
t-distributed stochastic neighbor embedding (t-SNE), and the result 
was largely similar (fig. S2A). To investigate whether Hi-C and 
RNA-seq generate similar clustering results, we used gene expres-
sion to cluster 18 samples in which we have matching RNA-seq data 
using both UMAP (fig. S2B) and t-SNE (fig. S2C). We observed that 
UMAP and t-SNE with RNA-seq data generated identical clusters. 
When we compared the clusters based on Hi-C versus RNA-seq, the 
results were similar except that P524_4 was in different clusters. This 
suggests that subcompartments are robust features that can be used 
to reflect sample specificity.

Next, we investigated the compartment dynamics across differ-
ent samples. We defined the top, middle, and bottom variable bins 
across all 24 samples according to their subcompartment annota-
tion. Unexpectedly, we found that the top 10% most variable bins 
were mostly in sub–B compartment (Fig. 2E, left), while the top 10% 
most invariable bins were in sub–A compartment (Fig. 2E, right). To 
validate this observation, we examined the expression of genes with-
in these regions and observed that genes in the most stable bins had 
higher expression than those located in the most variable bins (fig. 
S3B). Similarly, the fraction of ATAC-seq signals in the most stable 
bins was also higher than that in the most variable bins (fig. S3C), 
supporting the observation made by subcompartment analysis. To 
evaluate the impact of resolution on compartment analysis, we per-
formed the same analysis at 50- and 250-kb resolutions (fig. S3, D 
and E) and found the most stable regions were still mostly located in 
sub–A compartment at these resolutions. The most variable regions 
were still predominantly located in sub–B compartments at 50-kb 
resolution but were more evenly distributed between sub–A and 
sub–B compartments at the 250-kb resolution. Together, these re-
sults indicate that the transcriptionally more active regions are more 
stable, while the transcriptionally more repressive regions are more 
dynamic across different samples.

GBM sample specific sub–A/B compartments
To investigate the GBM sample–specific sub–A/B compartment, we 
compared the Hi-C data in our GBM samples with normal sample. 
We defined a region as A-to-B switch when this bin was annotated as 
any of the four A subcompartments in normal samples but was an-
notated as any of the four B subcompartments in a cancer sample. On 
average, we observed 1733 (~5.78% of the genome) A-to-B–switched 
regions and 2035 (~6.78% of the genome) B-to-A–switched regions 
(Fig. 2F). When we further dissected the sub–A to sub–B switch 
based on the eight subcompartment states, we noticed that most of 
the subcompartment switches were between neighboring states (Fig. 
2G). In addition, more of the sub–A/B switches happened between 
A2 and B1 subcompartments. For example, when comparing normal 
sample NU0820 versus P524_9, 28.5% of A2 regions switched to 
sub–B compartments, and 35% of B1 regions switched to sub–A 
compartments, whereas 5.6% of A1 regions switched to sub–B com-
partments and 7.3% of B2 regions to sub–A switches (fig. S4, A to D). 
Also, the expression of genes located in these switched regions 
showed concordant pattern (fig. S4, E and F).

Next, we investigated whether there are recurrent A/B switches 
between GBM samples and normal samples and identified 360 re-
current A-to-B–switched regions and 624 recurrent B-to-A regions 
(Fig. 2H). All samples were separated into three groups, two GBM 
groups and one normal group, and group 1 GBM samples in general 
have higher tumor purity scores than group 2 samples (table S2). 
The gene expression levels were consistent with the subcompart-
ment change pattern (Fig. 2I). Genes were either up- or down-
regulated when they were in B-to-A or A-to-B subcompartment 
switching regions. For example, CHI3L2, a gene associated with 
poor prognosis and immune infiltration in gliomas (29), its expres-
sion level was much lower when it was in B compartment in normal 
samples than its expression in GBM samples when it was in A com-
partment (Fig. 2J, top). On the contrary, tumor suppressor genes 
CAVIN2 and TMEFF2 were down-regulated in tumor samples ver-
sus normal samples, and the expression patterns were consistent 
with their A/B compartment annotations (Fig. 2J, bottom).
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Fig. 2. Subcompartment analysis. (A) Barplot of number of each subcompartment in each sample. (B and C) Boxplot of gene expression (B) and ATAC-seq read counts 
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Intratumor heterogeneity in sub–A/B compartments
Next, we focused on the three patients (P524, P529, and P530) with 
spatially mapped samples to further investigate the intratumoral 
heterogeneity in sub–A/B compartmentalization. Within the same 
patient, genome-wide sub–A/B switch also occurred (fig. S5, A to 
E), and genes located in these compartment-switching regions 
showed concordant expression changes (fig. S5F). Genes located in 
A-to-B regions were more associated with immune process regula-
tion, while genes located in B-to-A regions were more related to 
synapse organization, transmission, and neuron development and 
differentiation (fig. S5G).

Previous studies have revealed that GBMs are located in both fron-
tal and temporal regions in the brain (30); however, the difference of 
epigenetic regulatory programs between these two regions has not 
been well characterized. Taking advantage of our spatially mapped 
samples from the temporal and frontal lobes in P530 (three samples 
from temporal and six from frontal lobe), we investigated whether 
there were region-specific 3D genome and epigenomic features. In 
this section, we focused on the subcompartment analysis. We identi-
fied 797 sub–A to sub–B and 922 sub–B to sub–A compartment 
switch bins among these lobes (Fig. 2K). Genes located in the sub–
A/B switching regions showed consistent changes of expression pat-
terns with the subcompartment switches (Fig. 2L). In particular, we 
noticed that oncogene ETV1 was located in P530 temporal-specific A 
regions and exhibited higher expression levels in temporal region 
than in frontal region (fig. S6A). We also observed frontal-specific A 
compartment genes, such as NAV3 (fig. S6A). Gene Ontology shows 
that genes located in A-to-B–switched regions between temporal and 
frontal region samples were more associated with regulation of syn-
apse structure or activity and dendrite development, whereas genes 
located in B-to-A–switched regions were more related to leukocyte 
migration and immune response (fig. S6B), suggesting a potentially 
higher tumor infiltration in the frontal regions from patient P530.

Next, we asked whether the within patient sample differences 
would be larger or smaller than the between patient sample differ-
ences. To do this, we used samples from P529, P524, and P530 as 
three within patient groups and the rest of the samples as between 
patient group. We calculated the adjusted stratum-adjusted correla-
tion coefficient (SCC) score using HiCRep software (31) for samples 
in each group. We observed that the SCC scores in between patients’ 
group were generally lower than those in the other three groups 
(within patient) (fig. S7), indicating potential larger differences be-
tween different patients.

GBM-specific chromatin interactions
To further investigate the chromatin loop level features in GBM, we 
identified chromatin loops at 10-kb resolution for each sample using 
the Peakachu software (32). On average, we identified 22,721 chro-
matin loops from GBM samples (Fig. 3A and table S3). For samples 
with ATAC-seq data, we stratified loops into enhancer-promoter (E-
P) loops, promoter-promoter (P-P) loops, and promoter-none (P-
N) loops. We found that genes with only E-P loops, only P-P loops, 
or both E-P and P-P loops showed significant higher expression 
comparing to genes with P-N loops (Fig. 3B and fig. S8A). In addi-
tion, we found that the number of enhancers is positively correlated 
with gene expression (Fig. 3C and fig. S8B). These results indicate 
that E-P and P-P loops can both contribute to gene expression acti-
vation, and more enhancers in the E-P loops would increase the ac-
tivation effect.

We further identified GBM-specific chromatin loops as loops 
that were in each GBM sample but not in all three normal samples 
(fig. S9, A and B, and table S4). On average, we identified 726 GBM-
specific loops per sample. For the samples with ATAC-seq data, we 
further identified GBM sample–specific E-P loops (on average, 138 
loops) (Fig. 3, D and E). Genes with GBM-specific E-P loops showed 
higher expression in GBM sample than in normal samples (Fig. 3F). 
Gene Ontology showed that these genes were related to nervous sys-
tem development, immune response, and axon development and 
guidance (fig. S9C).

Intratumor heterogeneity in chromatin interactions at 
ultrahigh resolution
To study region specific features, we aggregated all temporal speci-
mens (sample #2, #4, and #5) into a single “temporal region com-
bined” sample and combined all frontal specimens (sample #10, 
#13, #14, #15, #18, and #19) into a “frontal region combined” sam-
ple. Collectively, this aggregated more than 6 billion reads into two 
regional samples (4.46 billion in frontal versus 2.58 billion in tem-
poral), enabling an ultrahigh-resolution view of 3D genome struc-
tures with a 2-kb resolution (Fig. 3G).

On the basis of this ultrahigh-resolution 3D genome datasets, we 
identified 1282 P530 temporal region–specific and 1311 frontal region–
specific chromatin loops (table S5) with concordant gene expression 
patterns (Fig. 3H and fig. S10A). We noticed a P530 temporal re-
gion–specific chromatin loop near API5, with higher expression in 
temporal region samples than in frontal region samples (Fig. 3I, 
left). High expression of API5 has been associated with worse GBM 
patient survival (33). In addition, a unique loop near SELL was ob-
served in the frontal region samples, aligning with increased expres-
sion of this gene in frontal region samples in comparison to the 
temporal region samples (Fig. 3I, right). These results indicate intra-
tumoral heterogeneity of chromatin loops between the temporal 
and frontal regions.

Intratumoral heterogeneity in chromatin interactions were also 
evident in other patients. We identified 602 P524_9-specific loops as 
validated by the aggregate peak analysis (APA) plots in fig. 
S10B. Figure S10C showed an example of sample P524_9-specific 
loop near the ETV1 and AGMO genes, whose expression were high-
er in P524_9 than in both P524_1 and normal samples (fig. S10D). 
The genes located in P524_9-specific E-P loop anchors also showed 
higher expression in P524_9 than in both P524_1 and normal sam-
ples (fig. S10E). These results demonstrated the intratumoral het-
erogeneity of chromatin interactions in patients with GBM and 
indicated its potential roles in leading to heterogeneity in transcrip-
tion regulation.

TAD boundary disruption by CNVs and SVs
To explore 3D genome features at TADs level, we used cooltools (34) 
software to compute the insulation scores at 40-kb resolution and 
defined TAD boundaries. For each sample, we identified ~3000 
TADs (Fig. 4A). Next, we investigated whether CNV disrupted TAD 
structures. First, we derived CNV profiles using the Hi-C data for all 
21 GBM samples with the NeoLoopFinder software (35), and their 
profiles were depicted in Fig. 4B and fig. S11. We observed the sig-
nature CNVs of GBM in most of the samples, such as chr7 amplifi-
cation or the loss of chr10. To study the impact of CNVs on TADs, 
we compared the CNVs called from cancer samples with the TADs 
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Fig. 3. GBM-specific chromatin interactions and intratumoral heterogeneity in chromatin interactions. (A) Barplot showing number of predicted chromatin loops 
in each sample. (B) Boxplot of expression of genes located in E-P only, P-P only, E-P, and P-P overlap and P-N loop anchors in P524_9. The numbers of genes in each cate-
gory were labeled on top. P values calculated using two-sided paired Wilcoxon rank-sum test. (C) Boxplot of expression of genes with different numbers of enhancers (1, 
2, 3, and ≥4) in P524_9. The numbers of genes in each category were labeled on top. (D) Barplot showing number of GBM sample–specific E-P loops in each sample. 
(E) Aggregate peak analysis (APA) showing interaction frequency of P530 sample–specific E-P loops at three normal samples and each P530 sample at 10-kb resolution. 
The numbers of specific E-P loops were labeled on the left side. (F) Boxplot showing expression of genes located in P530_2 (left)– and P530_19 (right)–specific E-P loop 
anchors in normal sample (average of three normal samples) and P530_2 and P530_19. The number of genes was labeled on top. P values calculated using two-sided 
paired Wilcoxon rank-sum test. (G) Multiresolution Knight-Ruiz (KR) matrix-balance normalized Hi-C maps of example regions on chr3 of P530_temporal region combined 
sample. (H) APA showing interaction frequency of P530 temporal and frontal region combined specific loops at three normal samples, P530 temporal and frontal region 
combined sample, and each individual P530 sample, respectively, at 10-kb resolution. The numbers of specific loops were labeled on the left side. (I) KR balanced Hi-C map 
at chr11: 43,000,000 to 44,000,000 (left) and chr1: 169,000,000 to 170,000,000 (right) showing P530 temporal region– and frontal region–specific chromatin interactions 
near API5 and SELL. ATAC-seq and RNA-seq signal in temporal (purple) and frontal region samples (orange) for these regions were shown in the bottom panel.
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Fig. 4. The impact of SVs and CNVs on 3D genome. (A) Barplot showing number of TADs in each sample. (B) Hi-C data inferred CNV profiles for P475, P498, and P524_9. 
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identified from normal samples. Majority of the two breakpoints of 
the same CNVs were located in different TADs in normal sample 
(fig. S12A), suggesting that they disrupted the TAD boundaries. We 
showed three such examples in Fig. 4C and fig. S12B, where CNVs 
disrupted the TAD boundaries defined in NU1650. The scenarios 
included both amplifications (Fig. 4C, left and fig. S12B) and a dele-
tion (Fig. 4C, right).

We performed a similar analysis to investigate how SVs affected 
TAD boundaries. SVs have been shown to play an important role in 
cancer progression (36). To detect SV events in patients with GBM, 
we used our recently developed method EagleC (37). Most of the 
SVs (including deletion, duplication, and inversion) expanded 
across different TADs (Fig. 4D), suggesting that they disrupted 
TAD boundaries. Next, we dissect how SVs disrupted TAD bound-
aries according to their type: 61.37% of the deletions, 82.79% of the 
duplications, and 90.95% of the inversions potentially disrupted 
TAD boundaries (Fig. 4E and fig. S12C). We also wanted to note 
that this analysis was based on SVs identified by Hi-C, which tends 
to capture large scale SVs.

SVs, subcompartment, and gene expression
Next, we explored whether there is a higher occurrence of SVs with-
in A or B compartments by comparing all SV breakpoints in each 
GBM sample with the subcompartment annotations from normal 
samples. SVs were more enriched in B compartment for three sam-
ples in P530, but not in the other six samples (Fig. 4F and fig. S13A). 
Similarly, SVs were more enriched for A compartment in P475, 
P519, P521, and P524_4, but not in other samples. Overall, we did 
not observe any clear pattern (Fig. 4F and fig. S13A).

Next, we asked whether the relationship between compartment 
switches and gene expression was influenced by SVs. We first identi-
fied A/B-switched regions between the normal sample and each 
GBM sample. We then categorized genes located in these regions 
into two groups based on whether they were within 500 kb of SV 
breakpoints (genes close to SVs) or outside 500 kb (genes not near 
SVs) in each sample. We found that the change of expression of 
genes away from SVs was correlated with A/B compartment switch-
es (Fig. 4G and fig. S13B), consistent with previous reports. How-
ever, for genes close to SVs, the relationship between compartment 
switch and gene expression change was not clear (Fig. 4G and fig. 
S13B), suggesting potential influences by local chromatin state and 
a more complex relationship.

On the basis of the CNVs and SVs derived from Hi-C data, we 
were able to construct phylogenetic tree for three patients (P524, 
P529, and P530) with multiple Hi-C samples (Fig. 5A and fig. S14). 
The results based on CNVs (Fig. 5A) or SVs (fig. S14) were highly 
similar. Samples of P530 were separated into two subclones, one 
subclone contains three samples from temporal region and the other 
one contains six samples from frontal region (Fig. 5A). Similarly, we 
identified two clones in P529 and P524. The phylogenetic recon-
structions based on CNVs and SVs resembled those based on muta-
tions in Mathur et al. (38). These results demonstrated that we could 
use Hi-C data to perform phylogenetic analysis.

As we have multiple samples from P530, and we further explored 
the P530 donor-specific, region-specific, and sample-specific SVs. 
To define P530 donor-specific SVs, we used the SVs found in all 
nine samples from P530, but not in any other samples. In total, we 
identified 3 P530 donor-specific SVs, 12 P530 temporal region-
specific SVs, and 13 P530 frontal region-specific SVs (table S6). We 

did not find any P530 sample-specific SVs, which is consistent with 
the phylogenetic tree analysis (fig. S14).

Enhancer hijacking and amputation in patients with GBM
To further investigate the influences of SVs on gene expression, we 
predicted SV-induced neo-loops for each sample using NeoLoop-
Finder (fig. S15A) (35). Then, we checked whether there were 
cancer-related genes located in the neo-loop anchors and observed 
a variable percentage (ranging from 10.81 to 75%) across different 
samples (fig. S15, B and C). In total, we identified 41 recurrent 
cancer-related genes (present in at least two samples) within neo-
loop anchors, 4 of which were present across different patients (fig. 
S15D). Figure S15 (E and F) showed that oncogene MELK was lo-
cated at neo-loop anchors resulting from inversion and deletion 
events in P524_9 and P498.

Next, we further investigated the impact of enhancer hijacking 
on gene expression. Unexpectedly, we find many cases where the 
same targe gene was involved in both enhancer hijacking (gain of 
enhancer) and enhancer amputation (the loss of its previous en-
hancers). We described such scenarios in Fig. 5 (B and C): (i) The E1 
enhancer was deleted due to a deletion event (Fig. 5B) and (ii) due 
to inversion or translocation, the E1 enhancer was moved away 
from its original target gene G1 and no longer control its expression 
(Fig. 5C). In both cases, gene 1 gained another enhancer (E2) either 
due to either deletion or translocation.

As shown in Fig. 5 (D and E), P524_9 has a ~ 7-Mb deletion on 
chromosome 14 (Fig. 5D, black circle) near the ZFP36L1 gene, 
which has been shown to play an important role in glioma cell pro-
liferation regulation (39, 40). We examined Hi-C data in P524_1 
and did not observe the deletion in this sample (fig. S16, A and B), 
suggesting that this was a sample-specific deletion. We reconstruct-
ed the Hi-C map of P524_9 and observed a neo-TAD formation in 
P524_9 (Fig. 5E), which enabled the linkage between the ZFP36L1 
gene and a gained block of enhancers. In this scenario, the expres-
sion of ZFP36L1 was increased compared with P524_1 {6.87 versus 
5.81, log2[transcripts per million (tpm) + 1] transformed}.

In another example, there was a region-specific deletion on chr11 
in P530_5 (fig. S16C, black circle) near DLG2, a known tumor sup-
pressor in osteosarcoma and neuroblastoma (41–44). This deletion 
was not observed in sample P530_13. The deleted region contained 
several enhancers (marked gray rectangular in fig. S16D), likely 
linked to DLG2. After reconstructing the Hi-C map in P530_5, we 
detected a potential enhancer hijacking event in P530_5 (fig. S16E). 
However, despite this gained linked enhancer, the expression of 
DLG2 in P530_5 was still decreased compared with P530_13 [2.56 
versus 3.8, log2(tpm + 1) transformed], potentially due to the loss of 
multiple enhancers in the original genomic loci.

Last, there was a translocation between chr1 and chr11 in 
P530_18, but not in P530_4. We reconstructed Hi-C map in P530_18 
and detected a potential enhancer-hijacking event involved with 
ZBED6, which has been associated with breast cancer susceptibility 
and cell growth of human colorectal cancer cells (45–47). This trans-
location led to potential gain of several enhancers for ZBED6 from 
chr11 (Fig. 5F, gray rectangular shade). Again, despite the newly 
formed enhancer-hijacking events, the expression of ZBED6 was 
decreased when compared with P530_4 where there was no SV in 
this region or enhancer hijacking [1.17 versus 2.87, log2(tpm + 1) 
transformed]. When we checked the upstream of the translocation 
breakpoint on chr1 in P530_4, we found that the SV also led to 
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potential loss of several enhancers for ZBED6 (Fig. 5G, gray rectan-
gular). In this case, the trade-off between enhancers gain (hijacking) 
and enhancer loss (amputation) resulted in the decrease expression 
of ZBED6.

DISCUSSION
In this study, we explored GBM-specific, intertumor and intratumor 
heterogeneity at multiple 3D genome levels across 24 Hi-C samples 
from nine patients with GBM and three normal brain samples. We 
also generated the ultradeep sequencing Hi-C dataset (more than 
6 billion reads) in primary GBM, which enabled us to explore 3D 
genomic interactions at frontal and temporal brain regions at kilo-
base resolution. In addition, we systematically identified the CNV 
and SV profiles across all the patient samples and evaluated their im-
pacts on the 3D genome and transcriptional regulation. We identi-
fied both enhancer hijacking and amputation events and the complex 
relationship between two mechanisms in gene dysregulations.

We also investigated whether the estimated tumor purities could 
compound bulk Hi-C analysis. To do so, we performed deconvolu-
tion analysis using the bulk RNA-seq data with BayesPrism (48), 
and the results showed variable cell-type compositions in each sam-
ple (fig. S17). Specifically, we noticed that in the P530 frontal re-
gions, there are also relatively large populations of myeloid (7.97%) 
and oligo cells (13.16%). Hence, we acknowledge that variations in 
the composition of cell populations between two samples might 
contribute to sample-specific 3D genome features. To fully address 
this concern, further studies could either adopt single-cell Hi-C ex-
periments or design smart algorithms to take advantage of bulk Hi-
C and single RNA/ATAC-seq data from the same sample to mitigate 
this potential bias.

We identified structural variations using Hi-C data and predict-
ed both enhancer hijacking (gain of enhancers) and amputation 
events (loss of enhancers) in patients with GBM. While prior re-
search mainly focused on the impact of gaining regulatory elements, 
such as enhancer or silencer hijacking (15–21), our study introduces 
an alternative perspective. Systematically cataloging and investigat-
ing the impact of SV-induce loss of enhancers would lead to impor-
tant breakthroughs in cancer studies.

MATERIALS AND METHODS
Ethics approval and consent to participate
GBM sample use was approved by the University of California San 
Francisco’s Committee on Human Research and the University of 
California, San Francisco’s (UCSF’s) Institutional Review Board (IRB). 
All patients provided informed written consent. Samples were also 
obtained from Northwestern University. All patients participating 
in this study underwent informed consent for molecular analysis of 
collected surgical specimens, and procedures were approved by the 
Northwestern University Institutional Review Board (IRB number: 
STU00095863). An honest broker was used to de-identify subjects 
before analysis to maintain patient privacy.

Sample acquisition and cataloging
Spatially distinct GBM samples were acquired during surgical resec-
tion at the discretion of each patient’s treating neurosurgeon. Locations 
were selected to maximize diversity across each tumor and were re-
corded on the basis of stereotactic registration to a pre-operative 

magnetic resonance imaging (MRI) (BrainLAB). All specimens (tu-
mor and blood) were collected and preserved by biorepository 
staff at UCSF.

When adequate material was available, flash-frozen tissue was 
divided for DNA/RNA extraction, ATAC-seq, and Hi-C. Sample in-
formation and additional methods regarding 3D MRI modeling and 
spatial analysis are provided in our companion paper (38).

Hi-C experiments
Hi-C experiments were conducted using the Arima Hi-C Kit with 
minor modifications. Approximately 10 to 20 mg of frozen tumor or 
brain tissue was submerged in liquid nitrogen and then pulverized 
using a mortar and pestle until the sample resembled a fine powder. 
Samples were then cross-linked using 2% formaldehyde, followed 
by quenching with glycine. The remaining steps were completed ac-
cording to the manufacturer’s protocol (Arima Genomics). Quality 
control was assessed before deep sequencing, which targeted 500 to 
1200 million reads per sample on the Illumina platform.

Hi-C data processing
We first used Trim Galore (www.bioinformatics.babraham.ac.uk/
projects/trim_galore/) for quality and adapter trimming of the raw 
Hi-C fastq files and then mapped them to hg19 human reference 
genome using runHiC pipeline (49). In specific, the raw sequencing 
reads were first mapped to hg19 using Burrows-Wheeler Aligner 
(bwa) (50). Then, it eliminated noise at both read level and fragment 
level. Contact matrices were then generated after binning the reads 
at 5-kb resolution. We then used the run-cool2multirescool script 
from 4DN consortium to generate the multiresolution cool files, 
spanning resolutions of 5 kb, 10 kb, 25 kb, 40 kb, 50 kb, 100 kb, 
250 kb, 500 kb, 1 Mb, 2.5 Mb, 5 Mb, and 10 Mb, and concurrently 
perform iterative correction and eigenvector decomposition (ICE) 
normalization. We also used Juicer tools (51) to generate multireso-
lution .hic files, which can be visualized in Juicebox directly.

We combined the fastq files of all temporal region samples (#2, 
#4, and #5) into a single temporal region combined fastq file to 
achieve an ultradeep resolution in analyzing the 3D genome of the 
temporal region. The fastq files of all frontal region samples (#10, 
#13, #14, #15, #18, and #19) were also combined into a single frontal 
region combined fastq file for the same purpose. The data process-
ing for these combined regional fastq files is similar to the process-
ing of above individual samples, with the exception that, for the 
combined regional samples, an additional 2-kb resolution matrix is 
stored in the .hic and .mcool files.

Compartment, subcompartment, TAD, and loop calling
We used cooltools (34) to compute PC1 values from the Hi-C matri-
ces for each sample at 100-kb resolution, subsequently assigning 
each bin into A/B compartments based on their respective PC1 val-
ues. We then used CALDER (27) to call subcompartments (A1.1, 
A1.2, A2.1, A2.2, B1.1, B1.2, B2.1, and B2.2) for each sample at 
100-kb resolution. To check the most variable and stable regions 
across all samples at other resolutions, we also called subcompart-
ment at 50- and 250-kb resolutions.

We used cooltools software to call diamond insulation scores us-
ing a 400-kb window size and a 40-kb bin size. We then defined 
TAD boundaries as the 4DN domain calling pipelines do: Local 
minima of the chromosome-wide topographic prominence track 
for log2(insulation score) exceeds a 0.2 threshold.

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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We predicted chromatin loops for each sample using a Random 
Forest classification framework called Peakachu (32). On the basis 
of the number of total intrachromosomal reads, we selected the ap-
propriate high-confidence model at 10 kb for each of the 24 indi-
vidual samples and at 2 kb for the two region combined samples of 
P530. We then used predicted probability >0.9 as cutoff to obtain 
high-confidence chromatin loops for each sample.

For GBM sample–specific chromatin loops, we selected loops in 
each GBM sample with a predicted probability below 0.3 in all three 
normal samples: NU0820, NU1265, and NU1650. In addition, we 
required that the predicted probability within a two-bin region sur-
rounding each loop was also below 0.3 in all normal samples. For 
P530 region-specific chromatin loops, we selected loops in P530 
temporal/frontal regions whose predicted probability is less than 0.5 
in the other region and all normal samples. We also required that 
the predicted probability within a one-bin region around each loop 
was also below 0.5 in the other region and all normal samples.

SV prediction and neo-loop prediction
We first used NeoLoopFinder (35) to infer the CNV profile from Hi-
C data for each sample and then eliminated the CNV effects. Contact 
matrices at three resolutions, including 5, 10, and 50 kb were used to 
predict SVs in each sample with “--balance-type CNV” parameters 
using EagleC (37). Results from the three resolutions were then inte-
grated in a nonredundant fashion. The SVs were then compared with 
the Database of Genomic Variants (DGV) to filter out germline SV 
calls. The filtered SV events were then used as input for NeoLoop-
Finder to predict neo-loops and generate the reconstructed Hi-C map.

Phylogenetic tree construction using SV or CNV
We first generated an SV binary matrix and a CNV matrix for each 
patient. In the SV matrix, each row is an SV event, and each column 
is a sample. The value in the matrix is 0 or 1 depending on whether 
this sample has this specific SV event. For the CNV matrix, each row 
is a 50-kb genomic region, and each column is a sample. The value 
in this matrix is the copy number of this region in each sample. We 
then calculated the Manhattan distance from the CNV matrix and 
SV binary matrix and then used ape R package (52) and ggtree R 
package (53) to generate the neighbor-joining tree for each patient.

Cell-type deconvolution using RNA-seq data
To identify the cell-type composition in each sample, we analyzed 
our RNA-seq data in 15 GBM samples with a Bayesian method 
BayesPrism (48). We used single-cell RNA-seq data of eight patients 
with high-grade gliomas (54) as reference to deconvolute our bulk 
RNA-seq data.

Supplementary Materials
The PDF file includes:
Figs. S1 to S17
Legends for tables S1 to S6

Other Supplementary Material for this manuscript includes the following:
Tables S1 to S6
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