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ABSTRACT 

THE TWO-DIMENSIONAL TRIANGULAR LATTICE AND ITS APPLICATION 

TO LITHIUM-INTERCALATED LAYERED COMPOUNDS 

by Roberto Osorio de Cerqueira 

The tri~ngular lattice gas is examined as a model for 

lithium intercalation in transition-metal dichalcogenides. 

Order-disorder phase diagrams for the lithium atoms and 

thermodynamic functions are computed by means of the cluster-

variation method in its single-site (mean-field) and triangle 

approximations. 

The single-site three-sublattice approximation with 

nearest-neighbor interactions is examined first. It gives 

the correct physical picture for features of the incremental 

capacity versus concentration curves of systems like LixTiS 2 . 

It is found that minima are associated with ordered struc-

tures and sharp maxima (divergences) are caused by the 

coexistence of ordered and disordered phases over small 

concentration intervals. 

The triangle approximation, with two-particle repulsions 

and three-particle attractions, is discussed. It accounts 

for values of x where peaks in the incremental capacity of 

Lix TiS 2 are o_bserved. 

Finally a singl~-site approximation is applied to a model 

with different site energies randomly distributed over the 

lattice. It is intended to represent intercalated Li in 

Li Ta Til S2. Ground-state diagrams--in the space of x x y -y 
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and a site energy parame~er--show different sequences of 

ordered phases. Finite-temperature results show additional 

minima in the incremental capacity curves due to nearly 

complete filling of chemical types of sites. The model is 

good for values of y where the experimental results suggest 

a disordered distribution of Li atoms. 
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I. THE MATERIALS AND THE MODEL 

A. INTRODUCTION 

Good rechargeable batteries are being searched for use 

in electric vehicles and in energy storage during off-peak 

consumption periods and from solar sources. l ,2 These 

batteries should be able to undergo at least about 10 3 

recharge cycles, should have an energy density3 greater 

than 10 2 watts-hour/kg and, of course, should be economic-

ally viable. 

The interest In lithium intercalation compounds has 

been recently enhanced by the search for such batteries. The 

cl~ice of lithium as the intercalated species is a natural one, 

due to its lowest mass among the metals and high reactivity.4 

Among the layered intercalation materials, the most 

. I d' d' h . 2 5 extenslve y stu le In t e past have been the graphlte ' 

compounds. The free energy of formation of lithium-graphite 

compounds, however, is too small to provide a sufficient 

voltage for a practical battery. 

On the other hand, the process of intercalation of 

lithium In several transition-metal dichalcogenides can 

provide an emf of several volts. The progress achieved 

in the last decade 4 ,6 in the investigation of these inter-

calates has been facilitated by the availability of the 

dichalcogenides as single crystals and by their chemical 

stability. 

The following sections of this chapter will focus on 
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the transition-metal dichalcogenides and their Li inter-

calates, with emphasis on the Li Ta Til S2 series. The x y -y 

interactions between the Li atoms and the applicability of 

a lattice gas model to the problem of ordering of these 

atoms will be discussed next. 

Chapter II presents a formulation of the cluster-variation 

approximation to the lattice gas problem. The single-site 

and the nearest-neighbor triangle basic clusters are con-

sidered in Chapters III and IV respectively, as models for 

Finally, in Chapter V, a theory is presented for 

the effects of a random distribution of different species 

of host atoms, as in Ta Til S2. Y -y 

B. LAYERED TRANSITION METAL DICHALCOGENIDES AND 

THEIR INTERCALATES 

Layered transition-metal dichalcogenides are compounds 

represented by MX 2 , where M is a transition metal of groups 

IVB (Ti, Zr, Hf), VB (V, Nb, Ta) or VIB (Cr, Mo, W) and X 

is a chalcogen of group VIlA (S, Se, Te). In both the 

intercalated and non-intercalated forms, the MX 2 compounds 

have interesting physical properties 7 that are dominated by 

their essentially two-dimensional crystal structure. For 

instance, they frequently grow in the form of thin platelets 

that can be cleaved into samples with a thickness of only 

a few angstI·oms; their electric and thermal conductivities 

are much larger within the basal plane then along the per-

8 9 
pendicular direction; the formation of charge density waves ' 



-3-

lS favored by essentially cylindrical Fermi surfaces typical 

of two-dimensional systems. 

Th . f h MX 6 9-11 . e structure 0 t e 2 compounds ' conslsts of 

strongly bound X-M-X sandwiches that are stacked one on 

another and separated by considerably weaker van der Waals 

gaps. In each M or X layer the atoms are distributed in 

a two-dimensional triangular lattice. The different crystal 

structures of the MX2 compounds can then be described by 

means of the ABC stacking notation (where the fcc lattice 

is described by the ABC unit and the hcp lattice by the AB 

unit). We denote the positions of the X atoms by capital 

letters and the position of the M atoms by lowercase letters. 

The most common structures are then the IT pQlytype of TiS 2 

(with unit sequence AbC) and the 2H polytypes of NbS 2 (AbA CbC) 

and of MoS 2 (AbA BaB). In the IT polytype the metal atoms 

have an octahedral coordination of six chalcogens while in 

the 2H polytypes they have trigonal prismatic coordination. 

Band-structure calculations 7 ,12 have been performed 

for several of the transition-metal dichalcogenides. A 

schematic illustration of the density-of-states distribution 

for the IT polytypes of the MX 2 compounds is given in Fig. 1.1. 

For metal atoms of the group IVB, a small gap separates 

completely filled bands, derived predominantly from the £ 

orbitals of the X atom, from completely empty d bands. This 

leads to a semiconductor behavior, such as the one observed13 

in TiS 2 , where the band gap is of the order of 0.5 eVe On 
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the other hand, for metal atoms of the group VB the additional 

electron partially fills the ~ band, which leads to ,metallic 

behavior at high temperatures 14 for the IT form of TaS 2 . 

This compound, however, also becomes a semiconductor below 

a critical temperature of about'350 K due to additional 

band gaps caused by charge-density waves. 8 

Several types of monoatomic species and organic and 

. . 1 1 15 h b f 11· 1 d lnorganlc mo ecu es ave een success u y lnterca ate 

into the van der Waals gaps of the transition metal dechal-

cogenides. The sites available for intercalation of atoms, 

denoted by lowercase letters ln parenthesis, are usually 

the octahedral sites [Ctb)A] or the tetrahedral sites [C(a)A 

or C(c)A]. The octahedral sites form a triangular lattice 

with nearest-neighbor separation a (the lattice constant 

for the M or X triangular layer) while the projection of 

the tetrahedral sites (not exactly coplanar) on the basal 

plane forms a honeycomb hexagonal lattice with nearest­

neighbor distance a/l3. 

Among such intercalation materials, LixTiS 2 has been 

the most extensively studied. In this dissertation we will 

concentrate on the range O~x:l, where neutron diffraction 

" 16" d" h h L" f" 1 experlments ln lcate t at tel atoms pre erentla ly 

occupy the octahedral sites. 17 Recent measurements suggest 

an occupation of the tetrahedral sites at the level of only 

a few percent for x>O.5, while essentially no tetrahedral 

sites are occupied for smaller concentrations" Lithium has 
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f · d 18 f < <3 . also been success ully lntercalate or l_x_ , wlth a 

predominant occupation of the tetrahedral sites. 

Intercalation frequently causes dramatic changes ln 

the physical properties of the host lattice. The intro­

duction of alkali metals has been observed19 to induce 

metallic behavior ln several of the MX2 compounds. Such 

metallic behavior ln LiTiS 2 has been observed by the nuclear 

magnetic resonance (NMR) experiments of Silbernagel and 

Whittingham20 and theoretically confirmed by the band-structure 

21 calculation of McCanny, who used a semi-empirical tight-

binding method. He interprets the results of intercalation 

as a predominantly rigid-band, partial filling of the lowest 

unoccupied states (a Ti d band) by a Li electron. The same 

NMR experiments indicate that the ionization is essentially 

complete in Lix TiS 2 for small x, while 10 to 20% of an 

electron remains in the neighborhood of a Li atom at x=l. 

Upon intercalation the layers of the host atom move 

apart and an increase of the interlayer spacing can be 

observed 22 by X-ray diffraction techniques. An lncrease of 

about 10% is observed in the c axis from TiS 2 (5.697 ~) to 
o • 

LiTiS 2 (6.195 N, whl1e the a axis increases by only 1%. 

During the intercalation (and removal) process the host 

matrix retains its structure. This accounts for the very 

high reversibility of batteries where Lix TiS 2 is used as a 

cathode. In the next section we discuss how the electro-

chemical properties of such batteries can be relevant to 
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the study of the possibility of ordering of the Li lons 

for arbitrary values of their concentration x. 

c. THE Li/Ta Til S2 BATTERY Y -y 

The lightest anQ less expensive of all transition-metal 

dichalcogenides is TiS 2 . It also has the highest Li self-

d .ff . 23 1 uSlon rate. 

The [Li/TiS 2] electrochemical cell consists of a Li 

anode and a TiS 2 cathode, connected by an external circuit 

and an electrolyte based on an organic solvent, usually 

dioxolane-LiCl0 4 . During discharge Li ions travel through 

the electrolyte and are intercalated in TiS 2 , preferentially 

occupying the interlayer sites of octahedral coordination of 

six sulfur atoms, while electrons (one per Li ion) travel 

through the external circuit and are donated to the TiS 2 

conduction band. The resulting cell reaction is thus 

xLi + TiS 2 ~ Lix TiS 2 

with the following steps4 taking place: 

. .+ XLl ~ XLl + x e 

(on the anode) and 

xLi+ + x e- + Ti 4+(S2-)2 

~ Li~ Ti(4-X)+(S2-)2 

(in the cathode). These cells have a high energy density 

of 480 watts-hour/kg and are also highly reversible, with 

essentially no change of structure of the TiS 2 host during 

discharge and charge. 

By means of a new battery cycling technique, which he 

,0, 
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24 
calls electrochemical potential spectroscopy, Thompson 

24 25 has performed accurate measurements ' of the voltage V 

versus concentration x relationship in such cells. The 

data (Fig. L2)show well defined peaks in the incremental 

capacity (-3x/aV) at constant temperature; the main peaks 

appear at x = 1/9, 1/4 and 6/7. Thompson has suggested 

that these peaks are associated with the formation of two­

dimensional ordered superlattices of the Li+ ions at those 

concentrations. 

When one electron is transferred from the Li anode to 

the Lix TiS 2 cathode and one Li+ ion is simultaneously inter­

calated, the work done on the electron (eV) equals the 

change in free energy of the Li+ ion between the anode and 

the cathode, i.e., the difference between the Li+ chemical 

potential in the two environments. If the anode is considered 

a Li+ reservoir, the voltage V is then given by 

1 
V = e (constant - ~l) (1.1) 

where ~l is the Li+ chemical potential in Lix TiS 2 0 

f .. h· 26 With the use 0 elementary statlstlcal mec anlcs, 

we can relate the incremental capacity to the mean-square 

fluctuation of the Li concentration ~ by 

(1.2) 
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where N is the total number of octahedral sites available 

for Li occupation in the cathode. Peaks in (-ax/aV) 

should therefore be associated with order-disorder phase 

transitions, where the fluctuations in the composition 

become appreciable. As we show in the next chapters, these 

transitions do not usually occur at concentrations ~here 

perfectly ordered structures are expected. 

Lithium has also been intercalated in the Ta Til S2 
Y -y 

series 27 (O~y~l), of which TiS 2 is a special case. The 

atoms of Ta and Ti are supposedly randomly distributed in 

the host compound,28 which belongs to the IT polytype. The 

results for the voltage-composition relations and the incre-

mental capacity curves are plotted in Fig.l.2 for several 

values of y. The vOltage-composition relations show that 

the voltage is lowered on the Ta-rich end. Smooth incremantal 

capacity curves suggest absence of Li ordering for O.1~y~O.5 

while on the Ta-rich end possible divergences indicate forma-

tion of two-phase regions. 

D. THE LATTICE GAS MODEL AND THE INTERACTIONS BETWEEN 

INTERCALATE ATOMS 

A 1 · d 1 b· d 29 f 1· attlce gas mo e can e lnterprete as a orma lsm 

that describes an interstitial solution in a solid as a sub-

stitutional solution composed of the interstitial atoms and 

their vacancies. The lattice ~s considered rigid, in analogy 

with the Ising model of magnetism, independently of the 

concentration of atoms. The Ising model for antiferromag-

~. 
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netism is mathematically equivalent 30 to the lattice gas 

with nearest-neighbor repulsion. Occupied sites are equl-

valent to up spins and vacancies to down splns. The chemical 

potential plays the role of the magnetic field and the one-

half-concentration lattice gas can be identified with the 

zero-field Ising model. This isomorphism becomes apparent 

when we try to relate the grand partition function of the 

lattice gas to the partition function of the Ising model. 

Several points must be kept in mind in regards to the 

applicability of a two-dimensional triangular lattice gas 

model to the Li+ ions intercalated~ in the transition-metal 

dichalcogenides: 

(1) We assume that only the octahedral sites, which 

make themselves a two-dimensional triangular network, are 

occupied. A possible low, but finite, occupation of the 

tetrahedral sites is neglected. 

(2) A two-dimensional model is applied on the basis 

that no evidence for staging (i.e., long-range order along 

the c axis) has been found either by X_ray 31,32 or by 

d Off 0 16 h 0 1 h h h neutron 1 ractlon tec nlques, a t oug t e appearance 

32 of some imperfect ordering along the c axis has been suggested. 

(3) The picture33 of Li ions residing in deep potential 

wells centered on the lattice gas sites.is supported by 

23 measurements giving an activation energy for Li diffusion 

of about 003 eV, i. e., about 10 times ,larger than kB Troom ' 

where T =300 K. room 
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(4), Small changes. in the host due to the intercalation 

process appear mainly as changes in the strength of the 

interactions of the atoms, which can be incorporated in 

parameters of a rigid-lattice model. 

We take the predominant interaction to be a Coulombic 

repulsion between two Li i6ns, strongly screened by the 

electrons in the host. The purely Coulombic interaction 

between two ions separated by the Li-Li distance a=3.46 A in 

LiTiS 2 is e 2 /a=4.2 eV. On the other hand, anticipating the 

results of Chapter IV, a reasonable fit of the incremental 

capacity curve of LixTiS 2 by a lattice gas model requires 

a nearest-neighbor repulsion of SkBTroom=0.13 eV, i.e., 30 

times less than the purely Coulombic interaction. It is 

this strong screening that leads us to neglect interactions 

other than nearest-neighbor. 

Intercalate atoms also interact through forces mediated 

by a strain field produced by dilation of the host structure 

during intercalation. Including elastic energy ln a rigid­

plate harmonic approximation, Dahn, Dahn and Haering 34 

have obtained a good approximation for the incremental 

capacity of Lix TiS 2 , particularly for x>O.S. Their model, 

however, uses- three adjustable parameters to fit the experi­

mental data and still fails on the peak at x = 1/9 by about 

70%. A more accurate description of elastic contributions 

to the energy should certainly take into account the dis­

creteness of the host lattice. 
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In the following chapters we concentrate on the 

application of the cluster-variation method 35 (CVM)-~of 

which the mean-field approximation is a special case--to 

the t.wo-dimensional triangular lattice gas as a model for 

Li TiS 2 and Li Ta Til S2. A complementary approach to the x x y -y 

problem is the renormalization group method, 36 which has 

been applied by Berlinsky et a1 37 to Lix TiS 2 . This approach 

leads to accurate order-disorder phase diagrams (within the 

limitations of the physical model, of course) and to the 

correct behavior of thermodynamic functions near critical 

points. Nevertheless, recent Monte-Carlo simulations 38 

support our contention that the CVM approximation for a 

triangle as a basic cluster is better throughout most of the 

range of the thermodynamic parameters, where long-range 

fluctuations are not important. 
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Figure 1.1 

Schematic representation of the band structure of IT poly­

types of the MX2 compounds. The Fermi level is indicated 

for the cases of group-IVB and group-VB M atoms. 
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Figure 1.2 

(a) Voltage-composition relation and (b) incremental 

capacity curves for Li Ta Til S2' from Ref. 27. x y -y 

7 
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II. FORMULATION OF THE CLUSTER-VARIATION METHOD FOR THE 

LATTICE GAS MODEL 

A. THE METHOD 

Kikuchi l has developed the cluster-variation method 

(CVM) as a hierarchy of selfconsistent approximations for 

the combinatorial factors in the entropy of a lattice. The 

description of correlations between lattice sites is limited 

by the size of the chosen basic cluster, while long-range 

order can be introduced by dividing the lattice into a number 

·of sublattices consistent with the ground state. The method 

can be equally applied to different types of solid solutions, 

e.g., metallic alloys, impurity solutions, and magnetic 

systems. In this chapter we concentrate on the formulation 

of CVM to the triangular lattice-gas problem. 

We use the framework of the grand canonical ensemble: 

the chemical potential ~l and the temperature T of a given 

system are fixed by a particle reservoir which is also a 

heat bath. Each system of the ensemble is in one of the 

configurational states 0. By "configurational state" we 

mean a representative arrangement of Nx(o) particles and 

N[l-x(o)] vacancies in the lattice gas with a total energy 

E(o). The number of such equivalent arrangements is the 

statistical weight g(o). The following argument is found, 

e.g., in de Fontaine's reviewarticle 2 in the context of the 

canonical ensemble. 

The configurational grand partition function is 



Z =, I g (a) 
a 
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[Nx Co )111-E Co) ] /kBT 
e (2.1) 

In the thermodynamic limit CN-+oo), fluctuations about the 

most probable state are neglected and the sum in Eq. (2.1) 

is replaced by its maximum term 

(2.2) 

This last equivalence defines the equilibrium grand potential 

neq as the minimum of the generalized grand potential nco) 

among all possible states a, where 

, (2.3) 

and 

S(o) = kB In g (a) (2.4) 

is the configurational entropy. 

Once neq is known, as a function of ~l and T, the thermo­

dynamic properties of the system follow from the fundamental 

equality 

, (2.5) 

which assumes no variation of the total area of the lattice 

,!It 

'.' 
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gas. To obtain neq we would have, in principle, to specify 

all configurational states of the whole lattice. The CVM 

scheme consists of replacing this impossible task by a 

description of probabilities of the configurational states 

of a chosen basic cluster of sites. The main problem is 

then reduced to finding a suitable expression for g(o), 

where 0 now stands for a given set of probabilities of the 

basic cluster. The CVM formulations of g(a) take into 

account the contributions of sites outside the basic cluster 

only in an approximate manner. In general the approximation 

becomes more accurate when a larger basic cluster is chosen,3,4 

with a cost to be paid, however, that the expreSSlon for 

g(o) rapidly increases in complexity. 

Sanchez and de Fontaine 5 have devised a scheme which 

takes correlation functions (from which the cluster probab­

ilities can be obtained by a "cluster algebra") as the 

basic minimization pa'rameters. The original basic-cluster 

configurations, however, are better suited for the minimiza­

tion of nco) through the use of Kikuchi's6 "natural iteration" 

method. This is applied In Chapter IV, with the triangle 

taken as basic cluster. In the following section we derive 

the CVM expressions for the statistical weight g(o), and 

hence the grand potential nlo), with the single site and 

with the nearest-neighbor triangle as basic clusters. 

The pair approximation is equivalent to the Bethe­

Peierls 7 method and has been applied to the triangular 
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lattice with repulsive neares-t-neighbor and attractive 

second-nearest-neighbor interactions by Campbell and Schick. 8 

Because of its "one-dimensional" characteristics, however, 

this model leads to paradoxical results, like negative 

entropies close to the concentration x = 1/2 at low tempera­

tures. Another failure, apparent in all closed-packed 

lattices, is that the Bethe-Peierls method gives wrong 

results for the energy at zero temperature: the probability 

of existence of nearest-neighbor pairs of particles is zero 

for x ~ 1/2, while, as discussed in Chapter III, the correct 

result is finite for x ~- 1/3. We therefore choose not to 

apply the pair approximation to the present problem, although 

an expression for g(cr) in the pair approximation is obtained 

ln the next section as a step toward the triangle approximation. 

B. EXPRESSIONS FOR THE GRAND POTENTIAL IN DIFFERENT 

APPROXIMATIONS 

As mentioned in the previous section, long-range order 

can be described in a lattice through its representation in 

terms of appropriate sublattices. We say that long-range 

order exists when one of the sublattices is preferentially 

occupied. 

The simplest case of a CVM approximation, when a single 

site is taken as the basic cluster, is equivalent to a 

mean-field (or Bragg-Williams 9 ) model. We refer to the 

single-site approximation as the generalized mean-field 

model when a representation in terms of sublattices is intro-

.. 
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duced. Otherwise, we call it the regular mean-field 

model. Both approximations neglect all types of short-

range correlations between sites. 

In what follows we consider only the nearest-neighbor 

repulsion U, and in the case of the triangle approximation 

a three-particle interaction 1S added. The temperature T, 

the chemical potential ~l' the total energy E,the grand 

potential Q, and the entropy S are hereafter expressed in 

the dimensionless forms 

kBT ~l E Q 
T = U- , ~ = U , E: = NU 

w = NU , (2.6) 

and 

S 1 s = NkB = Nln g (2.7) 

where we have dropped the argument a for simplicity. We 

can then write Eq. (2.3) as 

W = E: - TS - ~x (2.8) 

1. Regular mean-field model 

In the simplest approximation, the set a of configura­

tional probabilities is limited to the fractional occupation 

x of the lattice. The statistical weight & is simply the 

number of different ways we can arrange Nx particles and 

N( l-x) vacancies among the N lattice sites, L e. 
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g = C.Nx n [ N (~-XTJT . 
N! (2.9) 

The mean-field approximation for the energy consists of 

taking the mean occupation x of the lattice as the mean 

distribution of atoms on the nearest-neighbor sites about 

a given occupied site. We then have 

£ = , (2.10) 

which makes use of the fact that there are three nearest-

neighbor bonds per site in the triangular lattice. The 

application of Stirling's approximation to Eq~ (2.7) yields 

for the reduced grand potential 

(2.11) 

This grand potential can be immediately minimized with 

respect to x. The minimization condition 

dW ax = 0 (2.12) 

yields for the chemical potential 

x 
lJ = 6x+Tln-­I-x 

This result is discussed 1n Chapter III. 

(2.13) 



-25~ 

2. Generalized mean-field model 

We now introduce a sub lattice representation for the 

description of long-range order. As illustrated in Fig. 2.1, 

the triangular lattice 1S divided into three interpenetrating 

sublattices, a, S, and y, such that any site in one of them, 

say a, has three nearest neighbors in each of the other two 

sublattices,S and y. This representation can be justified 

by the work of Kanamori and Kaburagi,lO who found the ground-

state structures for the triangular lattice gas with various 

pairwise interactions. In our notation, for nearest-neighbor 

repulsions only, we have the following equilibrium config-

urations: for x = 1/3 the a sublattice full, n = 1, with a 

empty Sand y sublattices, nS = ny = 0; for x = 2/3 the a 

and S sublattices full~ na = nS = 1, and the y sublattice 

empty, ny = O. We define by nv (v = a, S, y) the probability 

that a lattice site of suolattice v is occupied by an atom. 

We thus have 

(2.14) 

The statistical weight ~ is taken to be the product of 

the mean-field statistical weights of the three sublattices: 

(2.15) 

In the mean-field model, the interaction energy is approx-
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imated by 

The reduced grand potential now becomes 

+ ~ I [nv In nv + (l-nv ) In(l-nv )] 
v 

(2.16) 

(2.17) 

The minimization of w with respect to na , n
B 

and ny 1S dis­

cussed in Chapter III. 

3. Triangle approximation 

The triangle approximation includes nearest-neighbor 

correlations between sites. In addition, it allows in a 

natural way the introduction of three-particle interactions, 

whose physical meaning is discussed in Chapter IV. 

We define as our basic cluster a closed triangle con-

taining nearest-neighbor points belonging to the three 

different sublattice of Fig. 2.1. To each lattice site we 

associate a number i such that i = a if the site 1S empty 

and i = 1 if the site is occupied. Accordingly, we define 

the point probabilities x~ for the i state of a point in the 

sublattice v (v = a, B or y). In the notation of the pre-



-27-

ceding sub-section (II~B-2), x~ = nv. The probability for 

an i - j bond (where i, j = 0 or 1) between nearest-neighbor 

vv' sites on the sublattices v and v'is denoted by y., . 
lJ 

Finally the probability for an i - j - k configuration on 

an equilateral nearest~neighbor triangle containing points 

on the sublattices Cl, 8 and y, in this order, is denoted by 

Zijk. The following relations hold between the configuration 

probabilities for the different clusters: 

yC:~ = 
lJ LZ. 'k 

k lJ 

ex x. 
l = I z'·k 

jk lJ 

y~y = 
}k 

Iz, ·k ' lJ 
l 

x~ = L z,. k ' 
J ik lJ 

(2.1Ba) 

(2.1Bb) 

xk
y = \ Z 

L ijk· (2.1Bc) 
ij 

Various schemes can be used for obtaining CVM approximations 

for the statistical weight in the expression for the entropy. 

Here we use the "pseudo-assembly method",ll which gives the 

same results as the originall CVM formulation. In the follow-

lng, for the sake of clarity, we temporarily drop the sublattice 

indices. 

Let us first reconsider the single-site approximation. 

We can rewrite Eq. (2.9) as 

N! = {slte} , (2.19) 
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where we define the CVM symbol 

{site} - II (Nx.)! 1. (2.20) 
i 

Here Xo = 1 - x and xl = x are the probabilities for finding 

a vacancy or an atom, respectively, on a given lattice site. 

The subscript of g, and Q is the number of sites in the cluster 

under consideration. The meaning of the superscript, which 

can also be interpreted as an exponent, will become clear in 

the following discussion. 

Given the pair probabilities y .. , let us now consider lJ 
a general distribution of pair configurations on the 3N 

nearest-neighbor bonds of the lattice. The number of such 

arrangements in a triangular lattice is 

where 

3 (3N)! 

Q(2) = II (3Ny .. )! . . 1.J 
1.J 

= [ N! )3 
{ pair} , 

{ pair} == II -(}ry ij n- . 
ij 

(2.21) 

_._. ___ (2.22) ----

The last equality 1.n Eq. (2.21) follows trivially from Stirling's 

approximation. 

As illustrated 1.n Fig. 2.2(~), the number Q 3 includes (2 ) 
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a high proportion every close to unity) of "incorrect" 

distributions, where particles and vacancies are simulta-

neously associated with the same site. We now have to 

estimate a correction factor r (2 ) «<1) such that the statis­

tical weight is 

gC2 ) ::: r Q 3 
(2) (2) (2 . 23) 

To do this we consider the "pseudo-assembly" of Fig. 2.2(b), 

where SlX particles or vacanCles are assigned to each site. 

6 There are Q(l) possible arrangements on the 6N sites of this 

pseudo-assembly. 1 
Of these, the number Q(l)' given by Eq. (2.19), 

are "correct" arrangements, in the sense that no particles 

and vacancies are simultaneously assigned to a given site, 

as illustrated in Fig. 2.2(c). Thus we have a proportion 

-5 
Q (1) of "correct" arrangements in the pseudo-assembly. 

The fundamental conceptual step in the CVM approximation 

is to take the proportion of "correct" arrangements in the 

pseudo-assembly as the right proportion of "correct" arrange-

ments for the distribution of the basic-cluster configurations. 

In the pair. approximation, this amounts to take 

-5 (2.24) r(2) = Q(l) 

and 

-5 3 
g(2) = Q(1) Q(2) 

(2.25) 

= 
{site}5 

(N! ) 2 {pair} 3 
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Let us now consider a general distribution of triangle 

configurations on the 2N nearest-neighbor triangles of the 

lattice, as illustrated in Fig. 2.3Ca). The number of such 

arrangments 1S 

where 

2 
Q (3) 

= [ N! )2 
{triangle} 

{ triangle} = II ( Nw o· • k) ! 
ijk 1] 

(2.26) 

(2.27) 

Here Wijk is the i-j-k configuration triangle probability 

without sublattice considerations, as opposed to the ~o.k of 
1J 

Eq. (2.18). We now consider the pseudo-assembly of Fig. 2.3(b), 

where two pair configurations are assigned to each lattice 

bond. The number of "correct" arrangements of these pairs, 

F~g. 2.3Cc), is approximated by Eq. (2.25), while the number 

of total arrangements is 

(2.28) 

6 
Here Q(2) 1S the number of'ways. of distributing 6N pair con-

figurations (3N double pairs) of any kind on the lattice bonds, 

6 12 -6 
while Q(l)/Q(l) =Q(l) is the correction factor for obtaining 

only configurations of the type of Fig. 2.3(b), where pairs 

on neighboring bonds that have been split from the same triangle 

converge to a well defined (either a particle or a vacancy) 

"pair site". (Good distributions in this sense have six well 
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defined "pair sites" out of twelve possible "pair sites" 

per lattice site.) We thus take the correction factor for 

the triangle cluster 

(2.29) 

The CVM approximation for the statistical weight is then 

(2.30) 

= 
{triangle}2{site} 

We now return to the three-sublattice representation. 

A little reflection shows that the three lattice triangles 

that differ by a cyclic combination of the lattice indices 

ought to contribute equally to the statistical weight. We 

thus replace 

{site} +- II II 
~. v 

{triangle}2 +- II (2NZ~J·k)! 
ijk -"-

C2.31a) 

(2.31b) 

(2.31c) 
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The statistical weight is then Vlritten as 

g = 
.TI. (NyC: ~)! (NY ~Y)! (Nyy<:t)! 
l..J l..J l..J l..J (2.32) 
TI (2 N z .. k)! TI TI ( N3 x': )! 

ij k .. l..J \) l.. l.. 

In the triangle approximatlon the reduced interaction 

energy is 

, ( 2. 33) 

where the value U¢ was added for each fully-occupied nearest-

neighbor triangle of sites. The reduced grand potential can 

then be expressed as 

+T {2 L L(z. 'k' 
ijk l..] 

- L L(yC:B.' - L ·L(Y~Yk·' - L L(ykYC:j 
i j l..] j k J k i l.. 

(2.34) 

+ 1/3 [I L(x':' + r L(X]B., + kL L(x~']} 
l.. l.. j 

, 

where the operator L, defined as 

L (u) = u (in u - 1) , (2.35) 
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results from using Stirling's approximation in the expression 

for the entropy. The eight triangle configuration probab­

ilities Zijk are taken as independent variables for the 

minimization of w, for given ~, T and~. This is examined In 

Chapter IV. 
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Figure 2.1 

Representation of the triangular, lattice with its three 

interprenetrating sublattices. 
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Figure 2.2 

The pseudo-assembly method for the pa~r approximation: 

(a) general distribution of pair configurations on lattice 

bonds; (b) pseudo-assembly of par~icles and vacancies on 
, 

sites; (c) "correct" distribution of pairs. 
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Figure 2.3 

The pseudo-assembly method for the triangle approximation: 

(a) general distribution of triangle configurations on the 

lattice triangles; (b) pseudo-assembly of pair configura-

tions on lattice bonds; (c) "correct" distribution of triangles. 
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III.· MEAN-FIELD THEORY FOR Li TiS 2 ----------------------~--~x---

A. CALCULATION 

In this chapter we develdp in detail the three-sub lattice 

mean-field model of the triangular lattice gas introduced 

in sub-section II-B-2. The results are compared with the 

experimental data of Thompson l for Lix TiS 2 . Features like 

max~ma and minima of the incremental capacity curve are inter-

preted in terms of the behavior of the variables of our model. 

We start with the reduced grand potential of Eq. (2.17), 

which we rewrite as 

9 2 + I y(n
v

) w = "2 x , (3.1) 
v 

where 

y(nv ) 1 2 T 
In £n = - "2 (n

v
) + "3 nv v 

(3.2) 

The notation is that of Chapter II. Nearest-neighbor pairwise 

repulsions are the only contribution to the energy. For given 

~ and T, at the equilibrium state we must have 

aw 
anv 

= 3x + y' (nv ) = 0 (3.3) 

where 
n 

y' (nv ) + T £n v ~ = -n "3 I-n j v v 
(3.4) 

Eqs. (3.3) and (3.4) can be solved by ass~gn~ng values to 
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A -. -3x + ~ 

and solving the equation 

2 by a Newton-Raphson procedure. 

(3.5) 

(3.6) 

For T<Tc = 3/4, Eq. (3.6) has three different roots between 

o and 1 whenever A is such that gCu+)< A<g(U_), where 

( 3 • 7 ) 

The three roots, which we call u l ' u 2 and u 3 ' can be assigned 

in ten different ways to the three sublattice probabilities 

n· • y For instance, we can have the triplets 

( 3. 8) 

Comparison of the resulting grand potentials as functions 

of the chemical potential for the ten triplets leads to the 

phase diagram of Fig. 3.1. The complete phase diagram displays 

a mirror symmetry about the line x = 1/2. This is a con-

sequence of the pairwise, concentration-independent nature 

of the assumed interactions, which leads to a particle-vacancy 
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symmetry. As noted by Van Baal,3 this is independent of 

the order of the approximation. .We define the different 

regions in the phase diagram as: the disordered phase (3), 

where nO. = nS = ny; the ordered phases (12), where nO. > nS = ny, 

(21), where nO. = nS > ny, and (111), where nO. > nS > ny . The 

(21) phase is the mirror image of phase (12) about x = 1/2. 

In the present approximation the particle-vacancy symmetry 

is translated by the relations 

n (x = xO) = 1 a. - nyCx = 1 - xO) (3.9) 

arid 

nS (..x = xO) = 1 - nSCx = 1 - xO) (3~lO) 

It can then be readily shown the 

lJ (x = x O) = 6 - 11 Cx =1 - x O) (3.11) 

and 

(3.12) 

An alternative method for solving the lattice-gas problem 

1S to consider the concentration x as the thermodynamic para-

meter instead of the (reduced) chemical potential lJ. Because 

of the constraint of Eq. (2.14), only two of the three sub-

lattice probabilities are independent variational parameters 

for the minimization of the reduced free energy 

F 
f - . NU = e: - T S (3.13) 
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The reduced chemical potential V is then given by the 

derivative (af/ax). This procedure is in fact more convenient 

for the phases t3l, (12) and (21), where at least two of 

the sublattice probabilities are taken to be equal. This 

leads to a minimization equation of only one variable. 

B. RESULTS AND DISCUSSION 

A physical insight into the meaning of the different 

phases" may be gained by considering the behavior of the 

lattice gas at T = O. The reduced free energy is then given 

by the broken line ln Fig. 3.2. If we increase the concen­

tration of occupied sites, only the a sublattice is being 

filled in the interval 0 < x < 1/3, where na = 3x, n B = ny = o. 

The B sublattice is filled in the interval 1/3 < x < 2/3, 

where n = 1, n B = 3x - 1, n = o . Finally the y sub lattice a y 

is filled in the interval 2/3 < x < 1, where n = n B = 1, 
a 

n = 3x - 2 . Thus at T = o , for 1/3 < x < 2/3 the system y 

is ln the (Ill) phase; otherwise it is in the (12) or the 

(21) phase. As the temperature increases, the entropy term 

in the free energy reduces the range of existence of the (Ill) 

phase and induces the appearance of a completely disordered 

phase (3), which emerges from the x = 0 and x = 1 extremes 

of the allowed range of concentrations and occupies the 

whole concentration range· when the reduced temperature exceeds 

the critical value TC = 3/4. 

The zero-temperature picture discussed above is only 

valid in the present mean-field approximation, where an 
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ordered phase is artificially required to avoid nearest-

neighbor pairs. In the next chapter, however, we show 

that short-range correlations can actually lead to long­

r~nge disorder even at T = o. 

The phases (3) and (12) or (21) are connected by a 

first-order transition; the phases (12) or (21) and (Ill) 

are connected by a second-order phase transition. For a 

given T < Tc there is a small interval of values of x in 

each half of the phase diagram where the phases (3) and (12) 

or (21) coexist in a heterogeneous mixture. In this region 

f is a linear function of ~, defined by the common tangent 

to the f-versus-x curves for the two coexisting phases, and 

both the chemical potential and the grand potential are con-

stant. The incremental capacity (-ax/aV) is given in our 

dimensionless units by (ax/a~). At T = 0 this function is 

zero at x = 0, 1/3, 2/3, 1, and infinite otherwise. It is 

more convenient to use the function (T·aX/aV) which has 

slope ±l at x = 0, 1 for any value of T. This function is 

plotted in Fig. 3.3 for several temperatures. For T > 

we have the regular mean-field result from Eq. (2.13), 

ax 
T -

a~ 
, 

i.e. a smooth, structureless curve. 

(3.14) 

Our incremental capacity diverges over the small inter-

vals of x where the phases (3) and (12) or (21) coexist. On 
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the other hand, no singularities occur at values of the 

concentration where ordered arrangements of the particles 

are expected. On the contrary, at small values of T, there 

are minima of (dX/d~) near x = 1/3 and 2/3, where ordered 

configurations exist. This is intuitively expected: a 

significant change ln the chemical potential should be 

required to modify the structure at those concentrations. 

·4 We thus confirm the conclusions of Berlinsky et al con-

cerning the meaning of minima and maxima of the incremental 

capacity. In our model, however, this function diverges 

over small ~-intervals, rather than only at isolated points. 

C. CONCLUSIONS 

In this chapter we have studied the order-disorder phase 

diagram for a three-sublattice representation of a triangular 

lattice gas with a nearest-neighbor repulsive interaction. 

A single-site approximation has been used as the first step 

towards a more sophisticated triangle cluster approximation, 

discussed in Chapter IV, In spite of its simplicity the 

approximation used here can account qualititavely for the 

experimental" features in the incremental capacity of systems 

like LixTiS 2 , 

We have found that mlnlma of the incremental capacity 

occur at the concentrations where ordered structures form 

and divergences are associated with the coexistence of two 

phases (one ordered and the other one disordered) and do not 

necessarily occur at concentrations that can be expressed 
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as rational numbers of small denominator. Smooth maxima 

(e.g. at x = 1/2 at any temperature and at x ~ 1/2 and 

x ~ 5/6 at very low temperatures in our model) can appear 

at concentrations that are not structurally meaningful and 

are not related to ordering effects. 
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Figure 3.1 

Phase diagram for the triangular lattice gas in the ex, -r) 

plane. The dashed line is the locus of equal free energies 

for the (3) and (12) phases. 

c •. 
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Figure 3.2 

Reduced energy f as a function of concentration x foroT = O. 
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Figure 3.3 

Generalized mean-field result for the reduced incremental 

capacity multiplied by reduced temperature CT·dX/d~) as 

a function of concentration x for Ca) T+O, Cb) T=O.25, 

Cc) T=O.5, Cd) T=O.7. The dashed lines represent the 

regular mean-field result of Eq. (3.14). In Ca) this coin­

cides with the horizontal axis. 
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IV. TRIANGLE-CLUSTER APPROXIMATION TOR LixTiS 2 

A. CALCULATION 

In this chapter we develop the cluster-variation model 

for the triangular lattice gas introduced in sub-section 

II-B-3. The basic cluster is a nearest-neighbor three-

sublattice triangle. The approximation was first used by 

1 Burley to study antiferromagnetic behavior in an Ising 

model. While Burley assumed the distribution of spins on 

two of the sublattices to be equal, we give a more general 

solution,2 including the possibility of three different 

site occupancies. Furthermore, we incorporate interactions 

between three particles in the model. This removes the 

artificial symmetry about x = 0.5 found in the phase diagram 

of the preceding chapter. We thus have here. two adjustable 

parameters, namely the temperature and the three-body 

potential. 

The expression for the interaction energy ln Eq. (2.33) 

contains the nearest~neighbor repulsion U and the additional 

energy U~ fo~ each closed nearest-neighbor triangle of atoms. 

We take ~ to be negative in order to simulate the decreasing 

degree of ionization of the Li atoms in LixTiS 2 as. x increases 

from 0 to 1. Nuclear-magnetic-resonance data3 suggest that, 

while the ionization is essentially complete at small x, 

10 to 20% of an electron remains in the neighborhood of a 

Li atom at x = 1. Simple electrostatic arguments then sug-

gest that ~ takes values between (-0.3) and (-0.55). 
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Ground-state structures are found by minimizing the 

energy of Eq. (2.33) with respect to the triangle variables 

{zijk}' subject to the constraint of Eq. (2.l8a) and an 

additional relation obtained from a well defined concentra-

tion: 

x = ~(x~ + x~ + xI) (4.1) 

This is a typical problem of linear programming. 4 Ordered 

structures, corresponding to discontinuities in (dE/dX), 

result at x = 1/3 and 2/3, as in the generalized mean-field 

approximation,. for ¢ > -1/2. The structure at x = 2/3 

disappears for ¢ < -1/2; the one at x = 1/3 for ¢ < -3/2: 

then the separation of all available particles into a phase 

of completely filled sites coexisting with a phase of empty 

sites becomes energetically favorable. 

For finite temperatures we use Kikuchi's5 "natural 

iteration" method to minimize the grand potential of Eq. (2.34), 

given ~, T and ¢. We define 

= w + A (1 - ~ z~. k) 
. iJk 1J 

, (4.2) 

where the Lagrange multiplier A 1S used to introduce the 

constraint of Eq. (2.l8a). The equations 

dW
O 

dZ • • k 1J 
= 0 (4.3) 
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lead to the superposition expression 

, (4.4) 

where for the i-j-k triangle configuration we define the 

number of particles per lattice site, 

the energy in units of U per lattice site, 

(where 0 is Kronecker's delta) and the quantities mn 

Yo Ok = aa yay ya yo. jk Yki lJ lJ 
and 

Xo ok 
a x~ x

y 
= xo 

lJ l ] k 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

In Eq. (4.4) the triangle probabilities are expressed 

as products of (a) the probabilities for the smaller clusters, 

(b) a Gibbs factor and (c) a normalization factor exp ()"/2T). 

The Lagrange multiplier).. can be identified with the minimized 
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grand potential) through the relation 

(4.9) 

The normalization relation of Eq. (2.18a) g1ves a 

cluster-variation approximation for the grand partition 

function Z as a sum over the triangle cluster) the Gibbs 

factor being weighted by the configuration prohabilities of 

pairs and sites, in the form 

Zl/2N = expC-l/2T)= I.expr(pnook-E.ok)f2Tj 
00 k 1J 1J 1J 

(4.10) 

1/2 -1/6 
x Yo ok XO' k 1J 1J 

The natural iteration calculation proceeds in the follow-

ing steps: (a) initial values are chosen for the site and 

the pair variables (e.g.) x~ = 0.8) x~ = 0.5, xl = 0.2 for 

the ordered phases, and x~ = x~ = xl = 0.5 for the disordered 

phase; y~~ = x~ x~ etc.); (b) a value of A results from 
1J 1 J 

Eq. (4.10); (c) corresponding values for the set of triangle 

clusters {z.'k} are obtained from Eq. (4.4); (d) new values 
1.J 

v vv' for {xi} and {Yij } are derived through the summation rules 

of Eqs. (2.18b) and (2.18c); (e) steps (b)-(d) are repeated 

until a convergence criterion 1S satisfied. 

B. PHASE DIAGRAMS 

We define the regions (3), (.12), (21) and (lll) in the 
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(X~T) phase diagram as In Chapter III. For ¢ = 0, the 

particle-hole symmetry discussed there holds and the (21) 

phase is_ the mirror image of the (12) phase about x = n../2. 

This phase diagram is shown in Fig. 4.1. ~omparing it with 

the Bragg-Williams phase diagram of the preceding chapter 

we notice two qualitative differences: (a) the triangle 

cluster-variation phase diagram shows a valley at x = 1/2 

and (b) the disordered phase (3) continues to exist at T = O. 

This topological evolution of the phase diagram as the 

approximation is improved parallels that for the fcc binary 

alloy, discussed by de Fontaine.
6 

For the first effect~ we should notice that Wannier7 

has solved exactly the zero-field Ising antiferromagnet, 

and obtained a disordered stable phase. Our order-disorder 

coexistence region, which extends near x = 1/2 down to 

T = 0.25~ should, with better approximations, continue to 

lower temperatures and include the x = 1/2, T = 0 point. 

The triangle cluster approximation, though better than the 

single-site approximation, still seems to be unreliable 

around x = 1/2 at low temperatures. The difference between 

the free energies of the different phases is very small in 

this region and the (lll)"phase happens to have a higher 

entropy. 

The zero-temperature limit is usually avoided in cluster­

variation calculations. Van Baa1 8 justifies this practice 

with the argument that the approximations used in the ~ 
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description of the energy, which is the predominant part 

of the free energy at low temperatures, makes the model lose 

contact with reality In this limit. We find the zero-

temperature behavior to be of theoretical interest, however, 

to confirm the existence of the ground-state structures 

that led to the division of the lattic~ into sublattices. 

Our results show that-the concentrations x = 1/3 and 2/3 

at T = 0 are second-order transition points between the 

phase (Ill) and the phases (12) and (21), respectively. For 

x < 1/3, the phases (3) and (12) have the same energy. The 

short-range correlations included in the cluster description 

allow for the existence of a disordered phase with zero 

energy at low concentrations. The intervals where each 

phase predominates are determined by the zero-temperature-

limit entropies. The phases (3) and (12) coexist between 

x = 0.2280 and x = 0.2515. This interval corresponds to the 

first-order phase transition occuring in the lattice gas 

with infinite nearest-neighbor repulsion, treated by Burley.9 

It has been proved lO that the exact solution of the (3)-

(12) order-disorder transformation in the triangular lattice 

with nearest-neighbor repulsions yields a second-order 

transition. The validity of the cluster-variation method 

as a hierarchy of approximations for this same model has 

been confirmed by McCoy et al. ll They have shown that in 

the zero-temperature limit the value of the critical concen-

tration and the behavior of the chemical potential and grand 
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10 potential approach the exact result as the Slze of the 

basic cluster increases. 

In Fig. 4.2, the phase diagram for ¢ = -0.3 illustrates 

the asyrrunetry introduced by interactions between more than 

" 
two particles. The region of existence of the (21) phase 

is significantly reduced, although the zero-temperature 

behavior remalns the same as for ¢ = O. Below ¢ = -0.5, 

however, the (21) phase and the ordered structure at x = 2/3 

disappear altogether as discussed in the preceding section. 

Such a behavior is displayed in the phase diagram of Fig. 4.3, 

for ¢ = -0.6. As T + O~ the interval of coexistence between 

th~ phases (12) and (3) extends to the whole interval between 

x = 1/3 and x = 1. 

C. THERMODYNAMIC FUNCTIONS 

We discuss the behavior of the reduced entropy and the 

reduced incremental capacity, and compare the latter to 

experimental results for systems like Lix TiS 2 . 

The entropy at fixed temperature as a function of the 

concentration shows minima at small T where ordered structures 

occur. The negative three-particle potential increases the 

values of the entropy for x > 1/2. These two effects are 

illustrated in Fig."4.4, where results are presented for 
, 

several temperatures at ¢ = -0.3, which corresponds ~o an 

ionization of 90% at x = 1. 

In regards to the incremental capacity, our results 

also show minima at concentrations where ordered structures 
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are-expected, as in the· generalized mean-field approximation. 

We are able to account also for the peaks in the experimental 

data12 for LixTiS 2 at x = 1/9 and 1/4. For any ~ and T < 0.2 

a smooth maximum appears near x = 1/9. The point x = 1/4 

is inside the small interval where a diverging incremental 

capacity indicates an order-disorder transition. A smooth 

maximum near x = 6/7 can be reproduced for ~ = -0.3, T = 0.2. 

The negative three-particle interaction produces high values 

for the incremental capacity in the disordered phase for 

x > 1/2. In Fig. 4.5, results are presented for ~ = -0.3 

and several temperatures, together with Thompson's results 12 

for Lix TiS 2 , where the mentioned peaks are observed, and for 

Lix TaO. a Ti O• 2 S2' where minima at x = 1/3 and 2/3 occur. 13 

A nearest-neighbor approximation In a triangular lattice 

gas can thus account semi-quantitatively for the experimental 

features in the incremental capacity for lithium intercala­

tion in some transition-metal dichalcogenides. We should 

mention that a cluster-variation calculation cannot predict 

the correct analytical behavior of thermodynamic functions 

at critical points, although their location in the phase 

diagram can be predicted with satisfactory accuracy. 

D. CONCLUSIONS 

We have presented in the chapter order-disorder phase 

diagrams for the triangular lattice gas with nearest-neighbor 

pairwise repUlsive and three-particle attractive interactions. 

The main effect of the three-particle parameter is to decrease 
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the temperature range of existence of the ordered phase 

corresponding to the structure at x = 2/3, thus removing 

the particle-hole symmetry found in the preceding chapter. 

This is reflected In the curves for the entropy and the 

incremental capacity as functions of the concentration. The 

qualitative picture given in the preceding chapter for the 

minima and maxima of the incremental capacity is confirmed. 

Furthermore, we are able to reproduce quantitatively the 

position of maxima and minima of the experimental data. 

We thus confirm the validity of the lattice gas model 

as a first approximation for the problem of ordering of Li+ 

ions in systems like Lix TiS 2 . Better results can almost 

certainly be achieved by introducing longer-range interactions. 

The improvements, however, are limited mainly by the inaccu­

rate description of the guest-host interaction and the 

electronic contributions due to the filling of the TiS 2 

conduction band. 
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Figure 4.1 

Phase diagram in the (x, T) plane for the triangular lattice 

gas in the triangle approximation with nearest-·neighbor 

repulsions only. 

-.'? 
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Figure 4.2 

Phase diagram in the (~,T) plane for the triangle lattice 

gas with a three-particle parameter ~ = -0.3. Horizontal 

lines are drawn for T = 0.1, 0.2 and 0.3 so that the 

behavior of the constant-temperature thermodynamic functions 

of Figs. 4.4 and 4.5 can be compared with the phase diagram. 
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Figure 4.3 

Phase diagram in the (x, T) plane for the triangular lattice 

gas with a three-particle parameter ¢ =-0.6. 
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Figure 4.4 

Reduced entropy and molar entropy (in J mol -1 K- l ) 

as functions of concent~ation for a three-particle para­

meter cp = -0.3 and several values of the reduced~temperature 

T. Arrows indicate second-order transition points for 

T = 0.1. This Figure corresponds to the phase diagram of 

Figure 4.2. 
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Figure 4.5 

Reduced incremental capacity multiplied by the reduced 

temperature (:r· ax/ all) and incremental capacity ( in volts -1 

assuming T = 300K) for <p = -0.3 and (a) T = 0.1, (b) T = 0.2, 

(c) T = 0.3, (d) T = 0.4 and the experimental results for 

(e) Lix TiS 2 and (f) Lix Ta O. s Ti O. 2 S2 from Ref. 13. In 

(a) arrows indicate second-order transition points. 
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v. THE EFFECTS OF A RANDOM DISTRIBUTION OF DIFFERENT 

SPECIES OF HOST ATOMS 

A. INTRODUCTION 

As discussed in Chapter I, Thompson l has obtained 

voltage-composition relations for several values of y in 

Li/Tay Ti l _ y S 2 batteries. Strikingly different results between 

the cases y = 0 and y = I indicate different types of inter-

actions between Li ions when intercalated in TiS 2 and TaS 2 

with a possible strong contribution of crystal distortions 

for TaS 2 . 2 ,3 On the other hand, for y $ 0.5 the main effects 

of the substitution of Ta for Ti atoms in the host are lower 

values for the voltage for all x and smoother incremental 

capacity curves. It is clear that different guest-host 

interactions play an important role in the evolution of 

such incremental capacity curves as y is increased. 

In this chapter we study a general mean-field theory 

for the triangular lattice gas with different types of site 

energies randomly distributed along the lattice. As in the 

preceding chapters, the atoms interact through a nearest­

neighbor repulsion, and a three-sublattice representation 

is used. The different site energies are intended to repre-

sent different guest-host interactions. The model is 

applied to Li Ta Til S2' although it can be generalized x y -:-y 

in a straightforward way to other intercalation materials 

where different species of host atoms are randomly distributed. 
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B. GENERALIZED MEAN-FIELD THEORY FOR RANDOMLY 

DISTRIBUTED SITE ENERGIES 

In the case of Li Ta Til S2' we consider only the x y -y 

effect of the transition-metal.atoms directly above and 

below each site available for Li occupation. We divide 

the lattice into three "chemical types" with energy Ecr and 

number of sites (NPcr)' Here cr = 0,1,2 denotes the sites 

that lie between two Ti atoms [PO=(1-y)2], between one Ta 

and one Ti [Pl=2Y(1-y») , and between two Ta {P2=Y2). We 

also assume that the replacement of a Ta for a Ti contributes 

a term El to Ecr' so that 

(5.1) 

The value of EO contributes a constant voltage to the voltage­

composition relations and does not affect the form of the 

incremental capacity curves. Therefore we take EO = 0 for 

simplicity. 

Since the voltage drops in general when ~ increases, 

we can conclude that Li is less easily intercalated when Ta 

atoms replace Ti atoms. This indicates a positive value 

for El in Eq. (5.1). 
-1 

We estimate El ~ 10 eV from the 

difference between the free energies of formationl (i.e. 

the integrals of the vOltage-composition relations) of 

Li l TiS 2 and Li l TaS 2 . This is of the same order of magnitude 

of the nearest-neighbor repulsion U between the Li lons 
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required for a reasonable fitting of the incremental capac-

ity of Lix TiS 2 by the cluster-variation calculation of the 

preceding chapter. We must keep in mind that U can depend 

on y, since different host lattices contribute differently 

to the screening of the Li-Li repulsion. The dependency 

of U on x, simulated In the preceding chapter by the three-

atom interaction, is neglected in the present discussion. 

In the three-sublattice representation of Chapter II, 

each of the sublattices v has a number (NPa/3)of sites of 

chemical type a and, by definition, (Ndva /3) such sites 

that are occupied. We also define (Nco) as the total number 

of sites of chemical type a that are occupied. As In 

Chapter III, nv is the total fractional occupation of sub­

lattice v. Table 5.1 summarizes this notation. The follow-

ing constraints hold for the occupation variables d va : 

(S.2a) 

I dva = 3ca (S.2b) 
v 

I dva = nv . , (S.2c) 
a 

I dva = 3x (S.2d) 
va 

The statistical weight for the entropy, In the mean-

field approximation, is 
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( 5 • 3 ) 

while the reduced energy (in the notation of Chapter II) is 

approximated by 

where we define 

Ea 
- IT 

( 5 • 4) 

(5.5) 

Given y, ~, T and $1' the nine occupation probabilities {dva } 

are independent variables for the minimization of the reduced 

grand potential 

9 2 1 I 2 
+ I $aCa w = "2 x - ~x - "2 nv 

v a 
(5.6) 

+ .:E. I 
3 va 

[L(dva ) + L(p a - d ) -va L(Pa) ] , 

where the operator L was defined in Eq. (2.35). 

A finite-temperature minimization method for w is dis-

cussed in Section D. In the following section we examine 

the zero-temperature case. 

C. GROUND-STATE DIAGRAMS 

At zero temperature the present model can be solved by 
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minimizing the quadratic form (5.4) for the energy with the 

restrictions of Eq. (5.2), at given y, x and ~l' This 

problem can in principle be solved by the methods of "quad­

ratic programming".4 

A simpler scheme can be devised by noticing that, ln 

general, the solution defines a point in the dvo-space where 

all but one of the {dvo } either are zero or assume their 

maximum possible value po' Given y and ~l' the concentration 

(x) axis is then divided into several intervals, each of them 

having only one dvo varying (linearly) with x. This picture 

is always valid for small or large ~l' compared to unity. 

For ~l ~ 1, however, the curve (i.e., the broken line) E vs. 

x is not always concave. Lines of lower energy can then be 

drawn which are tangents to the original curve. This procedure 

defines intervals of coexistence of phases. Once this method 

is applied to many values of~l' at glven y, a phase diagram 

can be obtairted in the (x, ~l) plane. 

In practice such calculations can be simplified by the 

observation that there are only three independent sequences 

for filling the {dvo } (in the case where 0 = 0,1,2) as one 

fills the lattice from x = 0 to 1. These sequences are 

(we only keep the indices vo of d in the following discussion) vo 

aO - al - a2 - 80 - 81 - 82 - yO - yl - y2 , (a) 

aO - al - 80 - 81 - yO - yl - a2 - 82 - y2 , (b) 

ab - 80 - yO - al - a2 - 81 - 82 - yl - y2 . (c) 
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Other sequences Cdn be derived from these three basic ones. 

For instance, the sequence 

aO - SO - yO - al - Sl - yl - a2 - S2 - y2 (d) 

is indentical to sequence (c) until al is filled and to 

sequence (b) once yl starts to be filled. Between the two 

cases, filling Sl is equivalent to taking a two-phase mixture, 

with one phase following sequence (c) with aO - SO - yO - al 

filled (the rest empty) and the other phase following sequence 

(b) with aO - al - SO - Sl - yO filled (the rest empty). 

Equations for E as a function of x for the three basic 

sequences can be obtained in a straightforward way from 

Eq. (5.4). At given Z and ~l' the three curves are then 

compared and the tangent method is used when necessary. 

This procedure leads to ground-state diagrams in the 

(x, ~l) plane like those shown in Fig. 5.1 for several values 

of~. Shaded regions represent two-phase mixtures. For 

each single-phase region the indices va give the only occupa­

tion variable (dva ) that varies with x, while all others 

equal either 0 or PaD While the diagrams are relatively 

simple for certain values of ~ like 1/2 and 1/3, they become 

quite elaborate for general values of~. The symmetry of 

the equation for the energy allows us to obtain diagrams 

for y > 1/2 from the ones for'y < 1/2. The diagram for 

(l-y) results from reversing the diagram for ~ about 
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x = 1/2; in the notation for the single-phase reglons we 

must also change a++y and 0++2. 

The fundamental feature of the phase diagrams of 

Fig. 5.1 is the stability of sequence (a) for WI « 1 and 

of sequence (d) for WI »1. In the first case the sub­

lattices are completely filled in succession. In the second 

case the division into chemical types predominates over the 

sublattice representation, and there are spatially disordered 

ground-state structures at x = PO,PO+Pl. 

In the single-phase intervals (at given ~ and WI)' the 

free energy becomes. a smooth function of x at finite T. 

The zero-temperature incremental capacity is determined by 

the limiting behavior of the entropy. Between two critical 

points, xn and x n +l ' that determine a ground-state single­

phase interval, we have 

lim 
T+O 

( 5 • 7) 

i.e., a simple parabola with roots at x = xn,xn +l and slope 

±l at these points. On the other hand, the two-phase reglons 

are expected to survive for small non-zero values of T; the 

free energy for those regions remains a linear-function of T and 

(T·aX/a~) diverges. A typical zero-temperature form of 

the incremental capacity, with one-and two-phase intervals, 

is shown in Fig. 5.2 for y = 1/3, 1/3 < WI < 1/2. 
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D. FINITE-TEMPERATURE CALCULATION 

The minimization of w in Eq. (5.6) with respect to 

the {dvo } yields the following expression after some simple 

algebraic manipulation: 

( 5 . 7 ) 

Thus, the occupation variables d vo obey a Fermi-Dirac 

distribution, with the appropriate mean-field approximation 

U[~o+3(3x-nv)] for the energy of an occupied site designated 

by the indices VOw This type of Fermi-Dirac distribution 

can be easily understood, since each site of the lattice 

can be either empty or occupied by at most one particle. 

The set of equations given by (5.7) is reducible to a 

set of equations of only one variable through a summation 

over the chemica~ types o. The result is 

n -
V 

where we define' 

A = -3x + ~ 

( 5 . 8 ) 

( 5 • 9) 

Eq. (5.8) is similar to Eq. (3.6); both have three roots in 

general. Phase diagrams in the (x, T) plane can be obtained 

in the present case, at given 1.. and ~l' by the method of 

Chapter III. 

,0 
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E. PHASE DIAGRAMS AND INCREMENTAL CAPACITY 

For y = 1/2, the phase diagram in the (x, L) plane is 

symmetric about x = 1/2, for any value of the site energy para­

meter ~l' In Fig. 5.3, the order-disorde~ curves for the 

~l = 1/4 and 4 illustrate the additional disorder introduced 

into the system by the quenched disorder in the distribution 

of different specles of host atoms. The main effect of a 

small finite ~l is a quadratic decrease of the critical tem­

perature for the order-disorder transition at x = 1/2, from 

the value LC = 0.75 at ~l = o. This last case is shown in Fig. 2.1. 

On the other hand, large values of ~l lead to topologically 

different phase diagrams; depending on the value of L, we 

can have alternate intervals of order and disorder as x 

increases from' 0 to 1. The critical temperature LC at 

x = 1/2 for y = 1/2 is plotted in Fig. 5.4 as a function of 

~l; ~c drops from 3/4 at ~l = 0 to 3/8 as ~l + 00. 

Simple physical interpretatiorn can be given to the 

features of incremental capacity curves obtained from the 

present model. We show in Fig. 5.5(a) the results for 

y = 0.8, ~l = 2, L = O.~. In this case, there is only one 

interval where spatically ordered phases are stable, between 

x ~ 0.52 and x ~ 0.82. The divergences at these points are 

due to order-disorder transitions. The two minima within 

the order interval are caused by the appearance of long­

range ordered structures when sites of the highest-energy 

chemical typ~ (0 = 2) are being filled. The other two 
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m1n1ma or dimples, at values of x close to (1_y)2 = 0.04 

2 and (l-y ) = 0.36 are caused by another type of ordering, 

associated with the nearly complete filling of the chemical 

types cr = 0 and 1. 

Because it 1S a mean-field theory, the present model 

is expected to be more accurate when the correlations 

between sites are not important, i.e., in the spatially 

disordered phase. In fact we get better agreement with 

the experimental data for Li Ta Til S2 for 0.1 < Y < 0.5, x y -y 

where smooth incremental capacity curves obtained by Thompsonl 

suggest a disordered distribution of Li ions. We show the 

results for y = 0.3 in Fig. 5.5(b), with our input para-

meters ~l = 3, T = 0.75, together with Thompson's experi­

mental data. 

F. CONCLUSIONS 

In this chapter we have studied the influence of a 

quenched random distribution of different species of host 

atoms on the order-disorder phase diagram of the intercalate 

ions. The mean-field model for the spatially disordered 

phase gives a reasonable approximation for the incremental 

capacity curves ofCthe Ti~rich end of the Li Ta Til S2 x y -y 

series. It is doubtful whether any rigid-lattice model can 

accurately describe the behavior on the Ta-rich end, where 

crystal distortions in the host may play an important role. 

Although the order-disorder phase diagrams are not 

expected to be accurate in the mean-field approximation, 
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the present model results in interesting physical features, 

like the existence of minima in the incremental capacity 

due to two different kinds of ordering of the particles. 

There is a spatial ordering that results from filling the 

sublattices one by one, and a "chemical type" ordering 

that results from filling the sites with different chemical 

environment in the sequence of the values of their site 

energles. In addition, divergences of the incremental 

capacity can also be due to two distinct kinds of coexis­

tence of ~hases: one occurring about. an order-disorder 

transition, like in Fig. 5.5Ca), and the other resulting 

from the coexistence of two ordered phases, like in Fig. 5.2. 
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Table 5.1 
Notation for the variables ln Eq. (5.2). 

= 
On sublattice \l On chemical On chemical site of 

site of type cr type cr, sublattice v 

Total number N NPcr N 
of sites 3" 3" Pcr 

Number of N Nc N 
occupied sites 3" n cr 3" dvcr v 
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Figure 5.1 

Ground-state mean-field phase diagrams ln the (x, ~l) plane 

for the triangular lattice gas with three sublattices and 

three chemical types, for Ca) y = 0.2, (b) 1/3 and (c) 0.5. 
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Figure 5.2 

Zero-temperature limit of the reduced incremental capacity 

multiplied by reduced temperature CT·'dX/'dll) for y = 1/3, 

1/3 < iJi l < 1/2. 
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Figure 5.3 

Phase diagrams in the (x, Tl plane with a site energy 

parameter WI = 1/4 and 4, for y = 1/2. For each WI' 

the disordered phase is stable above the upper curve 

and ordered phases occur below the lower curve; the 

narrow bands between the two curves are regions of order­

disorder phase coexistence. An arrow indicates the 

critical temperature TC = 3/4, the maximum T Cat x = 1/2) 

for similar curves with WI = o. 
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Figure 5.4 

Reduced critical temperature for the order-disorder transi­

tion at x = 1/2 for y = 1/2 as function of the site energy 

parameter lPl. 
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Figure 5.5 

Reduced incremental capacity multiplied by reduced tempera­

ture for (a) y = 0.8, ~l = 2, T = 0.4; (b) y = 0.3, ~l = 3, 

T = 0.75. In (b) the circles are the experimental data 

of Thompson (ref. 1) for LixTaO.3TiO.7S2. 
, 
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