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Abstract 5 
 6 

Injecting CO2 into a subsurface formation causes a buildup of pressure in the vicinity of 7 

the injection well. While a large injection rate can reduce the cost associated with 8 

injection, an indefinitely large injection rate can result in excessive formation damage. To 9 

obtain an optimal injection rate without exceeding the safe pressure limits, one will like 10 

to have some knowledge of the transient pressure buildup characteristics resulting from a 11 

particular injection rate. While elaborate numerical simulations can provide reliable 12 

pressure buildup predictions, they require extensive knowledge about the formation, 13 

which is normally not available at the start of an injection process. To alleviate this 14 

problem, using some simplifying assumptions, we have developed a solution to predict 15 

the transient buildup of pressure resulting from injection of supercritical carbon dioxide 16 

from a partially penetrating well into a gas reservoir. The solution in space and time is 17 

first obtained in the Fourier-Laplace transform space, and then inverted back into real 18 

space (in cylindrical coordinates) and time. We use the solution to study pressure 19 

transient characteristics for different formation permeabilities and anisotropy ratios. 20 

Results obtained using the solution compared well with those from numerical 21 

simulations. 22 

 23 

Keywords: carbon dioxide; storage; sequestration; pressure buildup; supercritical; 24 

analytical solution; gas reservoir 25 

 26 

1.  Introduction 27 

 28 

Capturing carbon dioxide from flue gases and injecting them into deep subsurface 29 

formations, a process commonly known as geologic storage, has been receiving 30 

increasing attention as a viable option for mitigating atmospheric emissions and reversing 31 

the global trends of rising surface temperatures (IPCC, 2005). Geologic storage aims to 32 

prevent CO2 from entering the atmosphere by storing it permanently in three main 33 

subsurface formations – deep saline aquifers, unminable coal beds, and depleted natural 34 

gas reservoirs (Gunter et al., 1996; Bachu, 2000; Gale, 2004; IPCC, 2005; Hepple and 35 

Benson, 2005; Holloway, 2005; Oldenburg, 2006; Bachu, 2008; Birkholzer and Zhou, 36 

2009, Vilarrasa et al., 2010a). Of these three main subsurface formations, natural gas 37 
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 2 

reservoirs currently appear to be quite appealing (see Ferronato et al., 2010 and 38 

references therein).   39 

 40 

Injection of CO2 into deep geological formations is achieved by pumping it down into an 41 

injection well. While the actual geological storage zone can be quite thick (ranging from 42 

a few meters to tens of meters), only a small part of the injection well (typically, a few 43 

meters to 10 or 20 meters) within the storage zone is perforated to allow the injected CO2 44 

to enter the storage zone. The thickness of the perforated zone depends on the 45 

permeability and thickness of the formation. Injection raises the pressure in the 46 

immediate vicinity of the well, enabling CO2 to enter the pore spaces initially occupied by 47 

the formation fluids. The spatial and temporal distribution of pressure buildup in the 48 

formation will obviously depend on the rate of injection, the permeability, porosity, and 49 

thickness of the storage formation, the perforation thickness, and other geological 50 

features (such as presence of faults or permeability barriers) of the storage formation. 51 

 52 

In this paper, we offer a solution to predict the pressure buildup resulting from injection 53 

of CO2 into a natural gas reservoir where the injection well is partially perforated. Over 54 

the years, a large number of analytical and semi-analytical solutions have been developed 55 

for flow of gases through porous and permeable formations, a comprehensive review of 56 

which is beyond the scope of this paper. To the best of our knowledge, the governing 57 

equations for pressure-driven isothermal flow of gases in porous media, assuming ideal 58 

gas behavior, were first developed by Leibenzon (1929), and later by Muskat (1946).  59 

Later, Al-Hussainy et al. (1966) investigated the flow of real gases (i.e., gases that do not 60 

follow the ideal gas law) through porous media using the concept of a pseudo gas 61 

pressure. The pseudo pressure concept (Al-Hussainy et al., 1966) has since become a 62 

useful tool in studies of gas reservoir engineering. The mass balance equation in Al-63 

Hussainy et al. (1966, equation 18) is non-linear and rigorously valid for arbitrary 64 

pressure gradients.  It also recognizes the pressure-dependence of viscosity   and 65 

compressibility  
gc  of real gases, even though they linearize the governing equations by 66 

imposing the assumption that gc  is constant. For constant rate of production from a gas 67 
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reservoir, Al-Hussainy et al. (1966) postulated that evaluating the product gc at initial 68 

reservoir pressure provided reasonable engineering results. For gas injection problems, it 69 

has been noted that evaluating gc  about half way between the extremes might be quite 70 

good (Al-Hussainy et al., 1966; Tartakovsky, 2000).  71 

 72 

More recently and with immediate relevance to subsurface injection of CO2, Saripalli and 73 

McGrail (2002) developed semi-analytical solutions for modeling deep well injection of 74 

CO2 into brine formations. As observed latter by Mathias et al. (2009a,b), a limitation of 75 

these semi-analytical solutions is that they are developed assuming that both the 76 

geological formations and the fluids are incompressible. Subsequently, Mathias et al. 77 

(2009a) developed an approximate similarity solution, which describes the spatial and 78 

temporal distribution of pressure resulting from CO2 injection in brine aquifers, and these 79 

pressure buildup results were latter used (Mathias et al., 2009b) for assisting in selection 80 

of CO2 sequestration sites. Zhou and Birkholzer (2011) analyzed the magnitude of 81 

pressure perturbation and brine migration induced by geologic carbon sequestration 82 

assuming a full-scale deployment scenario in which enough CO2 was captured and stored 83 

to make relevant contributions to global climate change mitigation. Analytical solutions 84 

have also been obtained for estimating risks of pressure buildup resulting from CO2 85 

injection (see Oruganti et al., 2011) and for pressure buildup in overlying formations 86 

(Zeidouni et al., 2011). Further, Mathias et al. (2011) presented an explicit approximate 87 

solution for estimating pressure buildup due to injection of CO2 into closed brine 88 

aquifers of finite radial extent. 89 

 90 

Note that the analytical or semi-analytical solutions described above pertain to pressure 91 

buildup resulting from CO2 injection in a brine aquifer. The focus of this paper, on the 92 

other hand, is on pressure buildup in a gas reservoir. Additionally, some of these previous 93 

works (Zhou et al., 2009; Mathias et al., 2009a,b) have assumed that the gas 94 

compressibility is constant and independent of pressure. As has been noted earlier (e.g., 95 

Al-Hussainy et al., 1966), compressibility of gases, whether behaving ideally or 96 

otherwise, is a function of pressure. In some of those works (Mathias et al., 2009a,b), it 97 

has been further assumed that the gas compressibility is comparable to the 98 
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compressibility of water. As has been noted by Vilarrasa et al. (2010b), CO2 99 

compressibility is one to two orders magnitude larger than that of the rock or water. They 100 

(Vilarrasa et al., 2010b) therefore investigate the impact of CO2 compressibility on CO2 101 

storage. They propose a method to account for compressibility effects and viscosity 102 

variations, and apply it to the analytical solutions of Nordbotten et al. (2005) and Dentz 103 

and Tartakovsky (2009). They, however, do so without actually specifying a relationship 104 

(such as an equation of state) between density (or, compressibility) and pressure. Instead, 105 

they iteratively solve a non-linear integral equation to obtain the mean density within a 106 

plume volume.  107 

 108 

In this paper, we show that a   solution can be obtained through specification of a suitable 109 

equation of state. Moreover, our conceptual model accounts for the partial penetration of 110 

the injection well. The effect of partial penetration of the injection well has been studied 111 

in the groundwater literature (e.g., Dougherty and Babu, 1984; Hyder at al., 1994; Yang 112 

et al., 2006; Yeh et al., 2008). However, to the best of our knowledge, it has not been 113 

included in a solution in the context of CO2 injection and subsurface sequestration. 114 

Finally, the solution (for head distribution in a groundwater aquifer containing a partially 115 

penetrating well) provided by Dougherty and Babu (1984), is in Laplace-domain. 116 

Dougherty and Babu (1984) used a numerical inversion scheme to obtain the solution in 117 

real time. By adopting the approach developed by Yeh et al. (2003) and Yang et al. 118 

(2006) in this paper, we avoid the errors that might be introduced by the numerical 119 

inversion scheme. 120 

 121 

One major difficulty in developing an analytical or semi-analytical solution involving 122 

injection of CO2 is that under most formation conditions it behaves as a supercritical 123 

fluid, which has a density similar to that of a liquid, while its viscosity is similar to that of 124 

a gas. It has been generally concluded (Garcia, 2003; Pruess, 2005) that Altunin’s 125 

correlations (Altunin, 1975) provide reasonably accurate estimates of CO2 physical 126 

properties. However, these correlations have complex functional forms making them 127 

difficult to use for our purposes. We thus propose to use the Pitzer’s correlations, after 128 

introducing some correction terms to make them consistent with Altunin’s correlations.  129 
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  130 

The rest of the paper is organized as follows. In section 2, we describe the conceptual 131 

model for migration of CO2 after being injected into the formation. In Section 3, we 132 

discuss the Pitzer’s correlations for computing the physical properties of carbon dioxide, 133 

compare the Pitzer’s correlations with Altunin’s correlations, and introduce corrections 134 

terms to the Pitzer’s correlations so that their predictions are more consistent with 135 

Altunin’s correlations. In Section 4, we develop the governing equations along with the 136 

initial and boundary conditions specifying the CO2 injection problem. The solution 137 

procedure in Fourier and Laplace transform space is outlined in Section 5. Section 5 also 138 

discusses the inversion of the Fourier and Laplace transform space solution to real time. 139 

In Section 6, we present the details of the numerical simulations, which were used to 140 

verify the solutions. Section 7 discusses the results for some typical injection scenarios 141 

and parametric studies involving different formation parameters, which are followed by a 142 

summary of the paper in Section 8. 143 

 144 

2. Conceptual Model 145 

 146 

When CO2 is injected into the storage formation, different transport mechanisms control 147 

its migration thereafter. Depending upon the nature of the fluids already residing in the 148 

formation, these transport mechanisms may include fluid flow under pressure gradient 149 

created by the injection process, buoyancy caused by density difference between the 150 

injected and formation fluids, diffusion, dispersion and fingering (arising from formation 151 

heterogeneities and mobility contrast between the fluids), capillarity (resulting from 152 

different wetting characteristics of the fluids concerned), dissolution into the formation 153 

fluid, mineralization, and adsorption of CO2 (IPCC, 2005).  154 

 155 

For developing an explicit solution, some simplifying assumptions are needed such that 156 

the processes that have minor affects or are not important can be excluded from the 157 

conceptual model. For example, we exclude processes such as mineralization and 158 

adsorption because these processes occur over a long temporal scale, whereas our 159 

primary objective is to obtain pressure buildup during or immediately after injection. We 160 

also exclude dispersion processes by considering a homogeneous (even though 161 
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anisotropic) formation. This is again justified because dispersion seems to play an 162 

important role only over large times.  163 

 164 

The buoyancy forces that drive vertical flow depend on the type of the fluid in the 165 

formation. When CO2 is injected into a natural gas reservoir, the magnitude of the density 166 

difference between the injected gas and the in-situ gas phase depends on formation 167 

pressure and temperature, which may lead to significant buoyancy forces. However, note 168 

that our objective is to estimate pressure buildup near an injection well, which is 169 

dominated by viscous forces and not buoyancy forces (which are important farther away). 170 

Consequently, we exclude buoyancy from our conceptual model. This exclusion is likely 171 

to produce a conservative estimate of the maximum extent of pressure buildup. This is 172 

because buoyancy drives fluids away vertically from the point of injection into the 173 

formation. Thus, the predicted pressure without buoyancy at the point of injection is 174 

larger than the actual pressure (when buoyancy is included). Additionally, when 175 

buoyancy is ignored, the model results provide the maximum limit of horizontal 176 

migration of the injected CO2 (i.e., the actual horizontal spreading may be less when 177 

buoyancy is included). Even though the viscosity of pure CO2 can be significantly larger 178 

than that of pure CH4 (Oldenburg and Doughty, 2010), for the sake of consistency, we 179 

assume that the viscosity of the resident gas phase is similar to that of the injected gas.  180 

 181 

Figure 1 schematically (not to scale) shows the essential elements of the conceptual 182 

model. The storage formation is conceptualized as an infinite circular cylinder ( R ) 183 

which has a thickness of L. The origin of the coordinate system is located at the centre in 184 

the bottom plane of the circular cylinder, as shown in Figure 1. CO2 is injected through 185 

an injection borehole with radius wr , which extends all the way to the ground surface. 186 

Note that the flow and transport processes inside the injection borehole are not explicitly 187 

modeled. As shown in Figure 1, the injection borehole is perforated between 1b (the 188 

height of the bottom of perforated zone from the origin) and 2b (the height of the top of 189 

the perforated zone from the origin). The thickness of the perforated zone thus is 190 

 12 bb  , which is considerably smaller than the thickness of the storage formation, L. It 191 
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is assumed that CO2 enters the formation through the perforated zone at a mass flow rate 192 

of m  (in units of kg s
-1

) for a specified period of time, injt .  193 

 194 

It is assumed that the storage formation is overlain and underlain by thick impervious 195 

rocks. In other words, no flow boundary conditions are applied at the top and bottom 196 

boundaries of the storage formation. At the radial boundaries (which are assumed to be 197 

located at a large distance from the injection borehole), constant pressure  iPP  is 198 

assumed. It is also assumed that the entire injection process happens under isothermal 199 

conditions. Because the average geothermal gradient in most cases is about 25
o
C per 200 

kilometer (IPCC, 2005), for a storage formation, which is about 100 m thick, the 201 

temperature difference between the top and bottom of the formation is of the order of 202 

2.5
o
C. Thus, assuming an isothermal operation is justified. Because we assume 203 

isothermal conditions, all thermal effects including Joule-Thompson effects (Oldenburg, 204 

2007) are ignored. It is also assumed that the storage formation was initially (i.e., before 205 

injection commenced) maintained at a uniform pressure of iP . Recognizing that most 206 

subsurface formations exhibit anisotropy in their permeabilites, it is assumed that the 207 

storage formation has a horizontal permeability of rk  and a vertical permeability of zk , 208 

with an anisotropy ratio of rz kk . Finally, because we are focusing on injecting CO2 209 

into a natural gas reservoir, capillarity is not included in the model. 210 

 211 

 212 

3. Physical Properties of Carbon Dioxide 213 

 214 

We begin with the generalized Pitzer correlations (Smith and Van Ness, 1981) for 215 

computing the physical properties of CO2. The generalized Pitzer correlations are based 216 

on the virial equation of state (EOS), i.e., 217 

                                 321 PDPCPB
RT

PV
Z   .                                              (1) 218 

In Equation 1, V is volume, T is temperature, R is the universal gas constant, and B , C  , 219 

D , etc., are the virial coefficients. The simplest correlation proposed by Pitzer is for the 220 
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second virial coefficient ( B ). It is based on Equation 1 (when truncated after the second 221 

term) and can be expressed as 222 

                                                       
RT

BP
Z 1                                                                  (2) 223 

where we have used the notation
RT

B
B  . The range of P and T over which the above 224 

generalized correlations can be used can be obtained from the condition  225 

                                                              2
c

r
V

V
V .                                                        (3) 226 

where cV is the critical volume of carbon dioxide. 227 

 228 

The relative simplicity of the generalized Pitzer’s correlations does much to use them. 229 

However, we need to first test whether these correlations are useful for determining 230 

properties of supercritical CO2, and if so, how they compare against other EOSs such as 231 

the Altunin’s correlations. To check the range over which Pitzer’s correlations can be 232 

used for CO2, we show Vr as a function of P at three different temperatures (31.04
o
C, 233 

which is the critical temperature of CO2, 55.04
o
C, and 75.04

o
C) in Figure 2. Note that the 234 

values of the reduced volume were obtained from the CO2TAB file distributed with the 235 

TOUGH2/ECO2N software (Pruess, 2005). Note also that the reduced volumes in 236 

TOUGH2/ECO2N are calculated using Altunin’s correlations. The horizontal dashed line 237 

in Figure 2 represents Vr = 2. From Figure 2, we observe that, when T = 31.04
o
C, Pitzer’s 238 

correlations can be used all the way up to the critical pressure (72.8 atm), beyond which 239 

Vr becomes smaller than 2.0. However, as the temperature is increased, Pitzer’s 240 

correlations can be used even beyond the critical pressure. For example, when 241 

temperature is 75.04
o
C, Pitzer’s correlations can be used up to a pressure of 100 atm 242 

without any correction terms. 243 

 244 

Next, we compare the densities calculated by Altunin’s correlations with those from the 245 

generalized Pitzer’s correlations. Figure 3a shows the difference between the density 246 

calculated using Altunin’s correlations    and that obtained from generalized Pitzer’s 247 

correlations  P  as a function of pressure at different temperatures (T = 45
o
C, 55

o
C, 248 
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65
o
C, 75

o
C, and 85

o
C).  Because we are interested only in supercritical CO2, the plots are 249 

shown only for temperatures larger than the critical temperature (31.04
o
C). We can make 250 

a number of observations from Figure 3a. First, densities predicted by generalized 251 

Pitzer’s correlations are always smaller compared to those predicted by Altunin’s 252 

correlations (i.e., Pitzer’s correlations underpredict CO2 densities). Second, at pressures 253 

smaller than the critical pressure (72.8 atm), the difference between the two is small 254 

irrespective of temperature. Third, the difference between Altunin’s predictions and 255 

Pitzer’s correlations (with respect to density) decreases with increasing temperature. 256 

Finally, note that the difference in densities predicted by the Altunin’s and Pitzer’s 257 

correlations initially increases with increase in pressure, passes through a peak, and then 258 

decreases thereafter. We may call the pressure at which the density difference reaches a 259 

peak as the turnover pressure, toP , which is different at different temperatures. 260 

 261 

It is our hypothesis that, if suitable correction terms are used, the Pitzer’s correlations can 262 

be extended to obtain density values at pressures as large as toP . In other words, we 263 

propose a relationship of the form 264 

                                   to
n

n
nP PPPa  


,

3

0
                                                              (4) 265 

                                                                             266 

where  is the density of supercritical CO2 predicted by Altunin’s correlations, P  is the 267 

same predicted by Pitzer’s correlations, P is pressure, and the coefficients  na  are 268 

functions of temperature. The values of the coefficients na at different temperatures are 269 

given in Table 1, which also provides the range of pressure over which Equation 4 can be 270 

used. For sake of completeness, we show the actual and fitted density differences at 271 

different temperatures in Figure 3b.  272 

 273 

4. Governing Equations and Boundary Conditions 274 
 275 

The balance equation for flow of carbon dioxide under isothermal conditions can be 276 

described as 277 
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 

ttt

zzzzzrrrrr

zrrzrr

rqrrqrzqrzqrt













22

2222
 .                          (5) 278 

 279 

At the limit 0,,  tzr , Equation 5 can be written as  280 

                                    
t

q
z

rq
rr

zr


















1
.                                                   (6) 281 

Assuming Darcy flow regime, we can write
r

Pk
q r

r






, and 
z

Pk
q z

z






. Introducing 282 

rq and zq in Equation 6, we obtain 283 

                                
tkz

P

zr

P
r

rr r 



































 


1
                                            (7) 284 

where  
r

z

k

k
 is the ratio of the vertical and horizontal permeabilities (hereafter referred 285 

to as anisotropy ratio). In writing Equation 7, we have assumed that the viscosity of 286 

carbon dioxide is constant over the pressure range typically encountered during injection 287 

in a gas reservoir.  288 

 289 

In Equations 5 through 7,  TP, is the true density of CO2 (as obtained from, say, 290 

Altunin’s correlations), which is different from ),( TPP  — the Pitzer density (see 291 

Equation 4). By definition 292 

                                                         
ZRT

PM
P                                                                (8) 293 

where M is the molecular weight of carbon dioxide (0.044 kg/mol). Eliminating Z 294 

between Equations 2 and 8, we obtain an expression relating P to P  295 

                                                   
P

P

BM

RT
P






 .                                                             (9) 296 

Combining Equations 4 and 9, we obtain the relationship  297 

                                        

n

P

P

n

nP
BM

RT
a 










 

 




3

0

.                                                 (10) 298 

Introducing Equation 10 into Equation 7, we get 299 
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
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 .       (11)                                                                                300 

After changing the differentials 
r

P




 and 

z

P




to 

r

P




 and 

z

P




, respectively, we can 301 

write Equation 11 as 302 
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11

304 

. (12) 305 

To simplify Equation 12, we introduce a new variable, PBM   , which transforms 306 

Equation 12 into 307 

 





















 














































 
















































 





















3

1
10

3

1
212

0

2

3

1
212

0

2

1

n

n

n

nn
n

rn

n

n

nn
n

n

n

n

nn
n

M

B

TRa
BaM

tMRTk

B

z

M

B

TRaBaM

z

r

M

B

TRaBaM
r

rr


























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. (13) 309 

 310 

Equation 13 can be further simplified if we define 311 

                                                 











 



4

1
ln

n
n

ndM





                                          (14a) 312 

where we have defined 313 

                                          
2

33
3

22
2

101
B

TRa

B

TRa
RTaBad                               (14b) 314 

                                     















2

33
3
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2
2

3

2 B

TRa

B

TRaRTa
Md                                 (14c) 315 
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                                              














2

33

3

22

22

3
3

1

B

TRa

B

TRa
Md                                      (14d) 316 

                                                         
2

33

3

3

4
4 B

TRaM
d                                                  (14e) 317 

 318 

Using this definition of  , Equation 13 is finally written as 319 

                               
tzzr

r
rr 



































 






 11
                                                 (15)  320 

where   (which has units of diffusivity, m
2
/s) is defined as  321 

                                     322 
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   

   




































4

2

2

33
3

3

22
2

2

1

5

3

2

33
3

4

222
2

3

1

2

0

2

32
1



























M

B

TRMaM

B

TRMaRTMa

M

B

TRaM

B

TRa
M
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B
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                          . (16) 324 

Note that equation 15 is obtained by linearization of Equation 13. Al-Hussainy et al. 325 

(1966) used a similar linearization procedure while developing their gas flow equations in 326 

terms of the pseudo-reduced pressure (see Section 1 for more discussion on this). In 327 

addition, one can write the compressibility factor of CO2 328 
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  329 

 . (17a) 330 

An alternative expression for compressibility factor can also be obtained (in terms of 331 

pressure and temperature), which is 332 

                                      
 


















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n
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n
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RTBP

MRT

c .                                             (17b) 333 

 334 
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 335 

We now need to develop an expression for   as a function of either pressure or density. 336 

Observe that 337 

                                 
Z

M
Z

BZ

M
BMBM P  1 .                                     (18) 338 

Combining the definition of   with Equation 18, we have 339 

                                



















 



4

1

ln
n

n

n
M

Z
d

Z

M
Z  .                                                   (19) 340 

It is now easy to see that 341 

 342 

                                    Me
ZCZCZCZC

Ze 
 







 4
4

3
3

2
21

                            (20) 343 

 344 

where 
M

d
C 1

1 1 , 
2

2
2

M

d
C  , 

3

3
3

M

d
C  , and 

4

4
4

M

d
C  . Thus, once   is known from 345 

Equation 15, Z can be obtained by solving Equation 20.  tzrP ,,  can then be obtained 346 

from 347 

                                              1,,,,  tzrZ
B

RT
tzrP                                                  (21) 348 

The initial and boundary conditions for pressure are 349 

                                             iPzrP )0,,(  ,                                                                  (22a) 350 

                                                  00 



z

z

P
 ,                                                                 (22b) 351 

                                                  0



Lz

z

P
,                                                                 (22c) 352 

                                              iPtzP  ),,( ,                                                                 (22d) 353 

and 354 

                                2112 )(2 bzUbzUm
r

Pk
bbr

wrr
r

w 



 




 .                     (22e) 355 

where  zU is defined as the unit step function such that 356 
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 









z

zzU

,1

,0
                                                       (22f) 357 

In other words, this translates to non-zero carbon dioxide injection into the storage 358 

formation through the perforated zone, and zero injection of the same through other parts 359 

of the injection well. 360 

 361 

For the transformed compressible factor,  tzr ,, , the initial and boundary conditions 362 

become 363 

                                                    izr  )0,,( ,                                                             (23a) 364 

                                                        00 



z

z


,                                                           (23b) 365 

                                                         0



Lz

z


,                                                          (23c) 366 

                                                      itz   ),,( ,                                                          (23d) 367 

and 368 

                      
 

    21

12

2

2
bzUbzU

MRTkbbr

Bm

r rw

rr w








 



 
.                       (23e) 369 

 370 

 371 

5. Solution Scheme 372 
 373 

Equation 15 is cast into dimensionless form by defining the dimensionless variables 374 

i

i

D






 , 

wr

r
 , 

wr

z
 , and 

2

wr

t
  , which results in  375 

                               
















 
























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









 DDD1
                                             (24) 376 

.                                    377 

The initial and boundary conditions in the dimensionless space are 378 

                                                               0)0,,( D ,                                               (25a) 379 

                                                                        00 







D ,                                         (25b) 380 
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                                                                         0



 DL

D





,                                     (25c) 381 

                                                                        0),,(  D ,                                     (25d) 382 

and 383 

                                                        211 BUBUmD
D 




  






  .                (25e) 384 

In Equation 25c, 
w

D
r

L
L   is the dimensionless reservoir thickness, and in Equation 25e, 385 

 
2122

B

MRTk
bb

m
m

i
r

D




 




 , 
wr

b
B 1

1  , and 
wr

b
B 2

2  .  12 BB   is the dimensionless 386 

perforation thickness. 387 

 388 

To solve Equation 24, we first define the finite Fourier cosine transform of   ,,D  as 389 

                                    dn

L

DnD

D

cos,,,,
~

0

       DL0                     (26) 390 

where 
D

n
L

n
  .  In the Fourier cosine transform space, Equation 24 can be rewritten as 391 

                                        

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




 


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~
1 2  .                                            (27) 392 

 393 

Note that in developing Equation 27, we have used the property  394 

                             Dn
D

L
DnD

D
F 


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
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
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















                                    (28) 395 

in conjunction with the conditions specified in Equations 25b and 25c. We next define 396 

the Laplace transform such that 397 

                                         


 d
p

ep nDnD


 



,,
~

,,
~̂

0

.                                       (29) 398 

In the Laplace transform space, Equation 28 becomes 399 
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                                            D
D q
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




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


                                                         (30) 400 

where 2

1 npq  . Note that in writing Equation 30, we have used the initial 401 

condition given by Equation 25a. Note also that in the Fourier-Laplace-transform space 402 

the boundary condition given in Equation 25e becomes  403 

                                          121 sinsin

~̂

BB
p

m

d

d
nn

n

DD 



 


 .                              (31) 404 

 405 

The detailed procedure for obtaining the solution for Equation 31 can be found in Yeh et 406 

al. (2003) and Yang et al. (2006). Here we provide the solution without providing the 407 

intermediate steps. The solution of Equation 31 can be written as 408 

                     
      

 11
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12 sinsin
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


.                                  (32) 409 

Performing an inverse Fourier transform (Yeh et al., 2003; Yang et al., 2006), we obtain 410 

the following in the Laplace transform space 411 

 
   

 
 
 

    
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m
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,,ˆ 12

1 111
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1

012 



 






412 

. (33) 413 

 414 

A solution in real-time space can now be obtained using the procedures elaborated in (see 415 

Appendix A). This solution is 416 

       
   
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(34) 418 

where 419 

                              
       

    22

1

2

1

1010

0

2

1 1,
u

du

uJuY

uYuJuJuYuef D










  


 ,                   (35) 420 

and 421 
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
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


0
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1
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n

n

D
u

du

uJuY

uYuJuJuYu
ef




 .               (36) 422 

 423 

6. Numerical Simulations 424 

 425 

We performed numerical simulations to obtain an estimate of pressure buildup for a 426 

specified injection rate and formation properties. Results from these numerical 427 

simulations can be useful in validating and verifying the results from our solution 428 

scheme. The numerical simulations are carried out using the ECO2N module (Pruess, 429 

2005) of the TOUGH2 numerical simulator (Pruess et al., 1999). ECO2N is a fluid 430 

property module for mixtures of water, NaCl, and CO2, and is specifically developed for 431 

use with TOUGH2, which is a general purpose simulator for nonisothermal flows of 432 

multicomponent, multiphase fluids in porous and fractured formations. For our purpose, 433 

we developed a two-dimensional, radial mesh representing the storage formation. The 434 

formation is 100 m thick (in the vertical direction). The wellbore radius is assumed to be 435 

0.1 m and the perforation thickness is assumed to be 10 m. These perforations are located 436 

between 45 m and 55 m from the bottom of the formation. Note that the wellbore is not 437 

modeled explicitly. The mesh is refined near the wellbore, however, it coarsens farther 438 

away from the injection point. 439 

 440 

To realize a constant pressure outer boundary, we inserted an element with large volume 441 

at a large distance (approximately 10,000 kilometer) from the injection well. The top and 442 

bottom boundaries are assumed to be closed boundaries. Because most gas reservoirs are 443 

low-pressure formations, often below 1MPa, we assume that the storage formation is 444 

initially at 0.5 MPa. We also assume that the formation porosity is 0.1 and permeability is 445 

1×10
-14

 m
2
. The imposed injection rate is 250,000 tons/year and it is assumed that 446 

injection continues for 30 years. Formation temperature is assumed to be 55
o
C. Assuming 447 

a geothermal gradient of 0.03
o
C, and a surface temperature of 20

o
C, a formation 448 

temperature of 55
o
C corresponds to a formation depth of 1167 m or approximately 3800 449 

ft. The parameters used in the numerical simulations and for obtaining the solutions are 450 

summarized in Table 2. 451 
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 452 

 453 

7. Results and Discussion 454 
 455 

For the first set of results obtained with the proposed solution scheme, the injection rate, 456 

initial and boundary conditions, and the formation properties (thickness, perforation 457 

thickness, permeability and porosity) are summarized in Table 2, i.e., they are identical to 458 

those used for the numerical simulations. Pressure versus time behavior at three different 459 

radial locations (r = 0.1, 1.0, and 10.0 meters) are shown in Figure 4. These locations are 460 

selected because they are close to the injection well, and are expected to experience the 461 

largest increase in pressure and also the largest pressure gradient. For locations very close 462 

to the borehole (r = 0.1 or 1.0 m), pressure increases rapidly over the first few thousands 463 

to ten thousand seconds of carbon dioxide injection, Thereafter, pressure changes less 464 

rapidly before a steady state is attained. Farther from the borehole (e.g., r = 10.0 m), 465 

increase in pressure happens at a slower rate and the maximum rise in pressure is also 466 

smaller.  467 

 468 

In Figure 4, we also compare the analytical solutions (solid lines) with the numerical 469 

simulation results (symbols). The analytical solutions generally compare well with the 470 

numerical simulation results, particularly after about 4-6 hours. By the end of the 30 471 

years injection period, both the analytical solutions and the simulation results predict that 472 

the maximum pressure is expected to be about 11.5 MPa (starting at 0.5 MPa), which is 473 

within the range of applicability of the corrected Pitzer’s correlations at 55
o
C. The good 474 

match between the analytical solutions and the simulation results provide confidence in 475 

the modeling approach presented in this paper. 476 

 477 

The impact of permeability anisotropy on pressure buildup resulting from carbon dioxide 478 

injection is illustrated in Figures 5 and 6. Figure 5 shows pressure as a function of radial 479 

distance at one year after injection started for different anisotropy ratios (α = 10
-2

, 10
-1

, 1, 480 

10
1
, and 10

2
). Note that Figure 4 was developed for α = 1, i.e., when the formation 481 

permeability was isotropic. When α = 0.1, i.e., when the vertical permeability is one-tenth 482 

that of the radial (or horizontal) permeability, it becomes relatively more difficult to 483 



 19 

move vertically than horizontally. Thus, at any specified time, more of the injected mass 484 

of carbon dioxide reaches a fixed radial location when α = 0.1 (compared to the situation 485 

when α = 1). Consequently, the increase in pressure at a fixed radial location at a 486 

specified time is more when α = 0.1 (compared to the situation when α = 1). This trend is 487 

expected to be even more pronounced when α is reduced further (see plot for α = 0.01 in 488 

Figure 5). The converse is true when vertical permeability is more than radial 489 

permeability, as illustrated by the plots for α = 10 and 100 in Figure 5. When 1 , 490 

because more carbon dioxide flows in the vertical direction relative to the radial 491 

direction, pressure buildup along the radial direction is relatively less severe (compared 492 

to the isotropic case). 493 

 494 

Pressure as a function of time corresponding to different anisotropy ratios is shown in 495 

Figure 6. Note that the pressure buildup curves in Figure 6 correspond to a radial location 496 

of r = 10.0 m. As α is gradually reduced from 100 to 0.01 (i.e., as vertical permeability is 497 

reduced by four orders of magnitude keeping the radial permeability constant), it is 498 

observed that pressure rises more and more at any specified time and at a fixed radial 499 

location. These results can be easily explained following the same arguments provided 500 

for explaining Figure 5. 501 

 502 

One of the key factors influencing the extent of pressure buildup is the formation 503 

permeability. This is illustrated in Figures 7, which shows pressure as a function of radial 504 

distance at 1 year (Figure 7a) and 30 years (Figure 7b) for different radial permeabilities 505 

(kr = 110
-13

, 110
-14

, and 110
-15

 m
2
). The solid lines in Figures 7a and 7b correspond to 506 

analytical solutions, while the symbols represent results from numerical simulation. For 507 

Figure 7, we assume that the formation is isotropic (α = 1). When the formation is highly 508 

permeable (kr = 110
-13

 m
2
), the increase in pressure is limited, and the analytical 509 

solutions match well with the simulation results. As permeability is reduced by an order 510 

of magnitude (kr = 110
-14

 m
2
), significant buildup in pressure happens, particularly close 511 

to the injection borehole. The match between the analytical and simulation results is still 512 

quite good. However, when permeability is reduced by another order of magnitude (kr = 513 

110
-15

 m
2
), the analytical solution deviates from the simulation results, particularly close 514 
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to the injection well. This is because the expected pressure buildup close to the injection 515 

well for this case exceeds the range of applicability of the corrected Pitzer’s correlations.  516 

 517 

Figure 8 shows essentially the same results as Figure 7, except it shows pressure as a 518 

function of time at a radial location of r = 10.0 m (Figure 8a) and 0.1 m (Figure 8b) for 519 

three different radial permeabilities (kr = 110
-13

, 110
-14

, and 110
-15

 m
2
). At r = 10.0 m 520 

(Figure 8a), the match between the analytical solutions and simulation results is good, 521 

even at smaller permeabilities. On the other hand, at r = 0.1 m (figure 8b), the match 522 

between the analytical solution and the simulation results is good when permeabilities are 523 

large (kr = 110
-13 

and 110
-14

 m
2
). At smaller permeabilities (e.g., kr = 110

-15 
m

2
), a 524 

maximum difference of 18% in predicted pressure buildup exists between our approach 525 

and the numerical simulations at r = 0.1 m (where the pressure perturbations are expected 526 

to be the maximum). Farther away (as shown in Figure 8a), the difference between the 527 

two approaches is smaller. 528 

 529 

 530 

 531 

8. Summary 532 

  533 

In this paper, we offer an explicit solution to predict the extent of pressure buildup 534 

resulting from CO2 injection into a gas reservoir. This solution is not formation-specific, 535 

and is general in nature. It is also more appropriate than empirical relationships based on 536 

oil and gas operations. These analytical solutions are thus useful in providing guidelines, 537 

particularly before start of the injection process. 538 

 539 

The storage formation is conceptualized as an infinite cylinder, which has a finite 540 

thickness. CO2 is injected through a borehole, which extends all the way to the ground 541 

surface. It is assumed that the thickness of the perforated zone is considerably smaller 542 

than the thickness of the formation. It is also assumed that CO2 enters the formation 543 

through the perforated zone at a constant flow rate for a specified period of time. No flow 544 

boundary conditions are applied at the top and bottom boundaries of the storage 545 
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formation, and constant pressure condition is assumed at the radial boundaries. It is 546 

assumed that the entire injection process happens under isothermal conditions. It is also 547 

assumed that the storage formation was initially maintained at a uniform pressure. 548 

Formation permeabilities are assumed to be anisotropic, consistent with most subsurface 549 

storage formations. Finally, because we are focusing on injecting CO2 into gas reservoirs, 550 

capillarity is not included in the model. To obtain maximum limits on pressure buildup 551 

near the injection well or on the extent of horizontal spreading, we excluded the effects of 552 

buoyancy from the conceptual models.  553 

 554 

An appropriate equation of state is needed to estimate the physical properties of 555 

supercritical carbon dioxide. In this paper, we use Pitzer’s correlations, after introducing 556 

correction terms to make them consistent with Altunin’s correlations, which have been 557 

found to provide accurate estimates of CO2 properties. We investigate the difference 558 

between density values predicted by the Pitzer’s correlations and Altunin’s correlations, 559 

and showed that the difference is a function of pressure. We fitted the difference in 560 

density as a polynomial function of pressure, and obtained the fitting coefficients at 561 

different temperatures. 562 

 563 

The differential equation controlling the spread of CO2 was obtained from mass balance 564 

conditions. The solution to the differential equation was first obtained in the Fourier-565 

Laplace space, and then inverted back to real time and space. Typical pressure buildup 566 

plots (both as a function of radial distance and time) are obtained for various formation 567 

permeabilities, anisotropy rartios, and temperatures. These results were compared against 568 

results from numerical simulations using the TOUGH2-ECO2N software, and a good 569 

match was observed, providing confidence in the solution procedure developed in this 570 

paper. 571 

 572 

Appendix A 573 

The convolution theorem (Hildebrand, 1976, p.63) states that 574 

                                   



0

1 )()( dGFpgpfL                                                  (A.1) 575 
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Let the Laplace-domain solution of Equation 33 be expressed as  576 
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where    pKpKSA 10 /  and     11110 / qKpqqKSB  . 578 

The Laplace inversion of AS  can be expressed as 579 

                                                pgpfLSLS AA 11

11                                            (A.3) 580 

where f1(p) equals 1/p and g1(p) represents the term in AS  except 1/p. Applying the 581 

Bromwich integral with L
-1

{f1(p)} = F() = 1 yields [Hildebrand, 1976, p.624] 582 
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(A.4) 584 

where p is a complex variable, i is an imaginary unit, and  is a large, real, and positive 585 

constant so that all the poles lie to the left of line ( - i, + i). 586 

 587 

A single branch point with no singularity (pole) at p = 0 exists in the integrand of AS . 588 

The contour of integrand is shown in Figure 9 with a cut of p plane along a negative real 589 

axis, where  is taken sufficiently small to exclude all poles from the circle about the 590 

origin. Along the small circle EF, the integration around the origin when  approaches 591 

zero is carried out by using the Cauchy integral and the value of integration is equal to 592 

zero.  The integrals taken along BCD and GHA tend to zero when R approaches infinity. 593 

Therefore, AS  can be superseded by the sum of integrals along DE and FG. In other 594 

words, (A4) can be written as 595 
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The result of contour integral can then be obtained by following the method of Yeh et al. 597 

(2003) and Yang et al. (2006) as 598 
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Therefore, the complete solution obtained by the convolution is 600 
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The result of (A7) after the integration is 602 
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The first shifting theorem of the Laplace transforms states  604 

                                       pLeapL a 11                                                                    (A.9) 605 

Based on )()()(
2

11 nB pgpfpS  , the Laplace inversion of )( pSB is 606 
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Thus, the result of (A.10) after the integration is 608 
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Combining (A.8) and (A.11), one can then obtain the time-domain solution of Equation 610 

34 in the text. 611 

 612 

Nomenclature 613 
 614 

B  = B’RT (see below), m
3
/mol 615 

B’, C’, D’… virial coefficients (see Equation 1) 616 

b1 height of the bottom of the perforated zone, m 617 

b2 height of the top of the perforated zone, m 618 

kr permeability in the radial direction, m
2
 619 

kz permeability in the vertical direction, m
2
 620 

L thickness of the storage formation 621 

P pressure, atm 622 

Pc critical pressure, atm 623 

Pi initial pressure and pressure at an infinitely large radial distance, atm 624 

Pr reduced pressure 625 

qr volume flux of CO2 in the radial direction, m s
-1

 626 

qz volume flux of CO2 in the vertical direction, m s
-1

 627 

R universal gas constant, J mol
-1

 K
-1

 628 

r radial coordinate or radial distance from the centre of the injection 629 

borehole, m 630 

r infinitesimal radial distance, m 631 

T temperature, K 632 

Tc critical temperature, K 633 

Tr reduced temperature 634 
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t time, s 635 

Vr reduced volume 636 

Z compressibility factor. 637 

z vertical coordinate or vertical distance from the bottom of the storage 638 

formation, m 639 

z infinitesimal vertical distance, m 640 

 641 

Greek 642 

α  anisotropy ratio 643 

  porosity of the storage formation 644 

μ  viscosity of CO2, kg m
-1

 s
-1

 645 

   average viscosity of CO2, kg m
-1

 s
-1

 646 

ρ  density of CO2 as predicted by Altunin’s correlations, kg m
-3

 647 

ρP  density of CO2 as predicted by generalized Pitzer’s correlations, kg m
-3

 648 

a  acentric factor 649 

 650 
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 810 

 811 

Figure Captions 812 
 813 

Figure 1.  Schematic diagram showing the conceptual model used for developing the 814 

analytical solution for migration of CO2 after being injected into a natural 815 

gas storage formation. Note that the transport processes within the 816 

injection borehole has not been included in the conceptual model 817 

 818 

Figure 2. Reduced volume  rV of CO2 as a function of pressure at different 819 

temperatures. The horizontal dotted line represents 2rV . The reduced 820 

volumes have been calculated using Altunin’s correlations (1975), and 821 

have been obtained from the CO2TAB file distributed with the 822 

TOUGH2/ECO2N software (Pruess, 2005) 823 

 824 

Figure 3a. The actual difference in densities computed using Altunin’s correlations 825 

and generalized Pitzer’s correlations as a function of pressure at different 826 

temperatures 827 

 828 

 829 

Figure 3b. The actual and fitted difference in densities computed using Altunin’s 830 

correlations and generalized Pitzer’s correlations at different temperatures 831 

as a function of pressure up to the turnover pressure 832 

 833 

Figure 4. Comparison of predicted pressure buildup by the analytical approach and 834 

numerical simuations. Pressure is shown as a function of time when 835 

formation temperature is 55
o
C, formation permeability is 110

-14
 m

2
, and 836 

anisotropy ratio is unity 837 

 838 

Figure 5. Predicted pressure buildup as a function of radial distance with different 839 

anisotropy ratios, when formation temperature is 55
o
C and formation 840 

permeability is 110
-14

 m
2
 841 

 842 

Figure 6. Predicted pressure buildup as a function of time with different anisotropy 843 

ratios, when formation temperature is 55
o
C and formation permeability is 844 

110
-14

 m
2
 845 

 846 

Figure 7a. Predicted pressure buildup as a function of radial distance at 1 year with 847 

different formation horizontal (radial) permeabilities, when formation 848 

temperature is 55
o
C and anisotropy ratio is unity 849 

 850 

Figure 7ba. Predicted pressure buildup as a function of radial distance at 30 years with 851 

different formation horizontal (radial) permeabilities, when formation 852 

temperature is 55
o
C and anisotropy ratio is unity 853 

 854 
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Figure 8a. Predicted pressure buildup as a function of time at r = 10.010 m with 855 

different formation horizontal (radial) permeabilities, when formation 856 

temperature is 55
o
C and anisotropy ratio is unity 857 

 858 

Figure 8b. Predicted pressure buildup as a function of time at r = 0.10.1 m with 859 

different formation horizontal (radial) permeabilities, when formation 860 

temperature is 55
o
C and anisotropy ratio is unity 861 

 862 

Figure 9. The closed-contour integration of D̂ for the Bromwich integral 863 

 864 

 865 

Table Captions 866 
 867 

Table 1. The coefficients na  as discussed in Equation 4. These parameters provide 868 

the correction factors needed to account for difference in density values 869 

predicted by the generalized Pitzer’s correlations and those predicted by 870 

Altunin’s correlations. The rightmost column provides the range of 871 

pressure over which these relationships are valid. The upper limit of the 872 

pressure range is the toP  873 

 874 

Table 2. Geometrical and physical properties of the storage formation, initial and 875 

boundary conditions, and injection rate used in the computations.  876 
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Table 1. 1149 

No. Temperature 

(T) [
o
C] 

a0 

[kg m
-3

] 

a1 

[kg m
-3

 atm
-1

] 

a2 

[kg m
-3

 atm
-2

] 

a3 

[kg m
-3

 atm
-3

] 

Range of 

Pressure 

[atm] 

1. 45 -0.0574 0.0660 -0.0083 2.7×10
-4

 1-106 

2. 55 -0.0243 0.0280 -0.0035 1.1×10
-4

 1-126 

3. 65 -0.0209 0.0234 -0.0023 6.1×10
-5

 1-138 

 1150 

 1151 

Table 2. 1152 

 1153 

 1154 

  PPaarraammeetteerr  VVaalluuee  

IInnjjeeccttiioonn  rraattee    225500,,000000  ttoonnss//yyeeaarr  

IInnjjeeccttiioonn  ppeerriioodd    3300  yyeeaarrss  

FFoorrmmaattiioonn  tthhiicckknneessss    110000  mm  

TToopp  ooff  ffoorrmmaattiioonn    5555  mm  

BBoottttoomm  ooff  ffoorrmmaattiioonn    4455  mm  

PPeerrffoorraattiioonn  tthhiicckknneessss    1100  mm  

IInnjjeeccttiioonn  wweellll  rraaddiiuuss    00..11  mm  

IInniittiiaall  ffoorrmmaattiioonn  pprreessssuurree    55××1100
55
  PPaa  

FFoorrmmaattiioonn  tteemmppeerraattuurree    5555
oo
CC  

FFoorrmmaattiioonn  ppoorroossiittyy  00..11  

FFoorrmmaattiioonn  ppeerrmmeeaabbiilliittyy  11××1100
--1144

  mm
22
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