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DISSIMILARITY MEASURES FOR
UNCONRSTRAINED SORTING DATA

MICHAEL L. BURTON
University of California, Irvine

ABSTRACT

In this article, three dissimilarity measures for the unconstrained sorting
task are investigated., All three measures are metrics, but they differ in the
kind of compensation which they make for differences in the sizes of cells with-
in sertings. Empirical tests of the three measures are done with sorting data
for occupations names and the names of behaviors, using the maultidimensiona
scaling method.

INTRODUCTION

The unconstrained sorting task is one of several cognitive tests
which can be used to obtain judgmental data about semantic ergani-
zation. Studies of semantic organization using the unconstrained
sorting task include the work of Rosenberg and his colleagues on
implicit personality theory (Rosenberg, Nelson, and Vivekanan-
than, 1968), Burton’s study of occupation names (1972} and Mil-
ler’s work on English nouns (1969}, In each of the above studies,
& matrix of dissimilarity measures was computed from the sorting
data, and these measures were analyzed either by muitidimensiona!
scaling (Shepard 1962, 1966; Kruskal, 1964} or by hierarchical
clustering (Johnson, 1967) methods. In the unconstrained serting
task, subjects respond to verbal stimuli, which are written on cards.
They sort the cards by the criterion of similarity of meaning, 50
that stimuli which appear to the subject te be similar are placed
in the same pile. There is no restriction on the number of piles of
cards or on the number of cards per pile. In the language of set
theory, each subject, ¢, induces a partition, P, in the set S of stim-
ulus elements,

Subjects may vary considerably in the kinds of partitions
which they make. One useful distinetion is between suhjects who
have large numbers of celis in their partition, sometimes referred
to as “splitters”, and subjects who have small numbers of cells in
their partition, sometimes referred to ag “lumpers.” Boorman and
Arabie (1972} define the concept of height of a partition on & seale
from zere to one, so that g partition with a height of zero has one
cell for each stimulus element, and a partition with a height of one
has all stimulus elements in the same cell. The height of the
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partition is simply the number of pairs of elements which are
placed together in cells divided by the total number of pairs of ele-
ments in the stimulus set. However, there is more to variability
among subjects than simple differences in the height of the parti-
tion. Two partitions with the same height may differ with respect
to the location of distinctions within the partitions. For exampile,
the following two partitions of eight elements have the same
height, but make fine distinctions within different halves of the
stimulus set:

(1) (ABCD), (B}, (F}, (G), (H}

€2} (A}, (B}, (C), (D}, (EFGH}.

This paper discusses measures of dissimilarity among stimuli
which compensate in different ways for differences in the sizes of
the celis of partitions. It discusses s class of measureg which are
metrics and which are sums of dissimilarity measures for individu-
al subjects. The dissimilarity measures for individual subjects vary
in the kinds of adjustments which they make for the size of cell
into which the individual places any two elements. An empirical
study is done of three measures of dissimilarity, one of which com-
putes increments to dissimilarity which are inversely related to cell
size, the second of which computes increments to dissimilarity
which are invariant under cell size, and the third of which com-
putes increments to dissimilarity which have a positive relationship
to cell size. The measures are inter-correlated, and comparisons are
made among them in terms of the results of multidimensional seal-
ing analysis.

COMPENSATION POR DIFFERENCES IN CELL SIZES

Al of the measures proposed in this study are additive across
subjects. The distance between x and ¥ is the sum of distances he-
tween & and y for all subjects. For every subject, 4, 2 and y are
either in some cell, ¢; or are in different celis. If they are in ¢y
the size of ¢; may vary between 2 and N. If the cell size is small,
the subject has made a relatively fine distinction between the mem-
bers of ¢; and all other members of S. It seems reasonable to argue
in this case that the average similarity among members of ¢ is
refatively iarge, althongh some individusal similarities may be small.
If the cell size is large, the subject has made a relatively gross dis-
tinction between the members of ¢; and all other members of S.
It seems reasonabie to argue in this case that the average similarity
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among members of ¢ is relatively small, although some individual
similarities may be large. This reasoning is best illustrated with a
hierarchical model for organization of stimuius elements, glthough
this model is only one of many which may be applicable {o semantic
organization, With a hievarchical model, a pavtition of the set is
ohtained by following the tree structure from its root {0 some node
of esch path, All elements below the node are placed in the same
cell. This process can traverse different propertions of each path
in the tree. Small cells are obtained by following the tree closer to
the end of the branch. Lavge cells are obtained by cutting the tree
closer to the heginning, A large number of partitions are consistent
with a given tree structure, some of which have onlv large cells,

some of which have only small cells, and some of which have & mix-
ture of large and small cells. In any case, small cells contain enly
elements which are highly similar fo each other, while large cells
contain elements some ¢f which have high similarity anéd soeme of
which have relatively low similarity.

From this reasoning, one can conclude that a most accurate
measure of gimilarity would compute a larger increment to similar-
ity when two elements ave in a small cell than when thev are in
a large cell, beeause the only possible estimate of the similarity of
two elemenis is an estimate of the average similarvity of all pairs
of elements in the cell in which thev are included. By the reasoning
above, large cells have lower average similarity than small eells. It
follows that an accurate distance measure should compute 3 small
decrement to distanee for small cells and a larger decrement to
distance for larger cells,

It is also possible to argue that adjustments should be made
in the case where ¥ and v are in different cells. Here, the relevant
fact is the total proportion of pairs of elements which are in dif-
ferent ceils. If this proportion is low (height of the partition ap-
proaches one}, one can argue that elements which are in different
cells are move different on the average than if this proportion i
high (height of partition approaches zere). Thus, one of the mea-
sures discussed below makes two adjustments, one in the case
where # and ¥ are in the same cell and the other in the case where
x and y are in different cells.

DEFINTTION OF A SET 0F METRICS

In this section are defined a set of metfrics for sorting data.
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In the following section, three dissimilarity measures are defined
which belong to that set,

Let T be the number of subjects who do the sorting. Each sub-
ject induces a partition, P, of the set § of stimulus elements. De-
fine

§ P;| = cardinality of the partition for sukject 1
c; = cellj of P,

Ny =gizeof ¢y .

The proposed set of metries takes the form

T
f1} Dyy = .Z Dijoy

g=1

where D), , is defined by the equation

Doy = Au if subject ¢ placed 2 and y in ¢
F21 = B, if subject ¢ placed x and y in different cells
=01z =y%.

Subject to the consgtraints

[31 B, > Max 4,
;
r4] Ay>0 .

It is intended that A, be a function of ny; It makes possible
the first compensation discussed in the previous section. B; can be
a tunction of the number of pairs of elements which are not in-
cluded in any cell, making possible the second compensation dis-
cussed in the previous section. Note that, if stimulus # is the only
member of g cell, then Dy, = B forall w4,

In order te prove that D, , is a metric it is necessary only to
prove that Dy, is a metrie, since the sum of metrics is a metrie.
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To prove that D, is a metric requires proof of pesitivity, sym-
metry and the triangle inequality. Positivity is emmed Ly equa-
tions [8] and [4]. Symmetry is obvious from equation [2]. Rather
than prove the itrisngie inequalify, I shall prove the ultrametric
inequality, which implies the triangle inequality:
For any two peints, z and y, and for any third point, z,

rey
7]
boand

dix, vy <max {d(z, 2}, d{y, x} 1.

Following Millers” strategy for proof of the triangle inequality

£1969), it is possible to distinguish five possible situations for any
x, ¥, and z

1. x, v, and 7z are all in ¢;. In this case,
Doy =Diijoe = Doy = As

C‘Iearlv the ui'tr xmetric inequality is satisfied since D,
qual to the maximum of the other two distances.
2‘ x, %, and z are all in different cells. In the second case,

By = Dz = Dyyy . = B

iy 18

The ultrametric inequality iz satisfied by the same reason-
ing as in the first case.
3. zand ¥, are in ¢, and z is in g differvent cell. In this case
B,f{}'z,z = D(&,}y,z = Bi
Doy = Aus
Clearly, D, is less than or equal fo the maximum of the
other two distances.
4. x and 7 are in ¢; and ¥ is in a different cell, In this case,
Diiyay = Doty = By
D(@)z,g = A,’_-;.
ere D, equal to the maximum of the other two
H D,y is equal to th ximy f the oft X
distances.
5. v and z are in ¢, and x is in a different cell. In this case
Doy =D, =By
Dis = A,,».
Here again D, is equal fo the maximum of the other two
distances.
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Although the distances Dy, , satisfy the ultrametric inequality,
it can be shown by a counter-example that D, , does not necessarily
satisfy the ultrametric inequelity. In this example, there are two
subjects doing the sorting. The first subject sorts ¥ and z together
into ¢ and puts z in a third cell. The second subject sorts & and z
together into ¢y and puts ¥ in a third cell. The distance measures
from these two sortings are

By = An
Ditvoy = Dsee =B

Then

D.y=B; + By
Dx)z = B, + Ag;
Dy, = A+ B,

Clearly, D, is greater than or equal to the maximum of D,, and
By

DEFINTTION 0F THREE DISSIMILARITY MEASURES

The first measure, Z,,, iz related to the concept of height of
a partition (Boorman and Arabie, 1972). The height of P, H,, is
defined by the formula

:;-P{» ,E t [ 4 1
(61 Hi= % Hy= L2HNG - 2) 0]
j:l { E,’ [21’{1\’ “2} ;}

H, has a value of zero if all elements of § are in different cells and
a vaiue of one if all elemenis of § are in a single cell. Hy; is the
contribution to H, for ¢, and is the proportion of pairs of elements
which are found within ¢; @, =1 = H, iz the proportion of pairs
of elements which are not in the same eell.
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To define Z,, we first define the similar ity measure for each
subject Syj., by the equation

= —Log, H;; if rand yarein

&
(71 S ‘z if x and y arein
ey = Logy different ceils

for subject
L= Loge (NU/2HN -2}l + e} o=
Here ¢ is any number greater than zero, For the purposes of this
discussion, we allow ¢ to be one. A value greater than zero for e
ensures that the similarity of an element to itself will be greater

than the maximum similarity of an element te any other element.
Define

C=Logs (NI/[SUN =2}1] + 1},
Then
Doy =C = Siijey
Using this formula,
;4»,_7' = + Log: f{{j
= Log, {(NI/[2H{N -2} + 1} +
Log, {(No) VI2ZHNy = 2) 1) ~

Log, {NI/[2UN — 2} 1]}
=TLog, {(N} /IZHN: — 2) i1}

= — Loge[1l — Hi]

B = C - Log: ( -2 ) ’"f_'i\lw-z}‘}})

T{N,
N N —=2}1]
= C — Logy ({IN}/[2 ,<‘,\:’_2}J}__
SN 121N, - 23 Ty +
Log: (NUVE2UN - 2} 11}

=2 Logy {INI/[2HN — 2) 11} —
Loga (INI/[21(N - 2) 1]} -
S (N 121N = 21T,
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The maximum value of 4; is C, and occurs when the height of P;
is one. The minimum value of B, is also € and occurs when the
height of P, is zero. Since the minimum value of B; is equal to the
maximum value of Ay, and since 4, is greater than zereo, equations
3 and 4 are satisfied, and Z,, is a metric.

Sy has an information theovetic flavor. Hy; is the probabili-
ty that any two elements, chosen at random, will be ineluded in
¢;. Thus, when 2 and y are included in ¢y, S, is the Logy of the
probability that the two elements are in ¢, Similarly, @ is the
probability that any two elements, chosen at random, will be found
to be in different cells from each other. Thus, when z and ¥ are
placed in different cells, S, is a negative number egual to the
Log, of the probability that any two elements will be in different
cells. The magnitude of Log, @ decreases as ¢ increases, If the
subject makes no diseriminations among elements by placing them
all in the same cell, or if the subject places each element in a
separate cell, P; provides no information about the internal sfruc-
ture of the set S, In either of these two cases Sy, is the same for
all x ané g, and Dy, , is uniformly egual to C.

The second and third measures are two cases from a general
formula

Seiey = (Ny}¢ if x and y are in ¢y

if x and ¥ are in different cells

8] =0 for subject ¢

= Max (N,}¢+: ifa=y,

where « is any number and ¢ is any number greater than zero. Let
C=Max (N} + e
« measures the degree of compensation for differences in cell
size:
For « <0, small cells make higher increments to similarity
than large cells,
For « = §, all cells make the same inecrement to similarity.
For « >0, large cells make higher increments fo similarity
than small cells.

Define

Doy =C~ S(i):zw
416 MULTIVARIATE BEHAVIORAL RESEARCH
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Then

Az;; = - (ij),“
E;ji = C‘

Since B; > Max A4, and 4, > 0, the constraints of equations [3]
and [4] are satisfied.

The second measure, F,, is the same as is used by MMiller
{1969). Here « = 0. This measure is neutral with respect to com-
pensation for cell sizes,

For the third measure, &,,, « = 1. For this measure, if z
and ¥ are in ¢, the similarity of z to ¥ is increased by Ny Thus,
.y aSsigns more weight te larger ceils.

THE EMPIRICAL TEST

The data for the empirical test consists of two bodies of sort-
ing data, one for names of behaviors and the other for names of
occupations. In each ease the number of names is 34. The 59 sub-
jects who sorted the behavier names were students in an introdue-
tory psychology class at the University of California, Irvine, dur-
ing the spring of 1971.F The b4 subjects who sorted the occupations
names were people who responded to an advertisement at Harvard
University during the spring of 1969, and were mostly Harvard un-
dergraduates or staff.

The three measures were computed for all pairs of stimuli for
each set of data, and were then scaled in three and two dimensions
using the TORSCA multidimensional sealing program (Young and
Torgerson, 1968}, Stress figures for the computations are listed in
Table 1.

: Tabie 1
Stress Figures for ;hﬁg&z?rgrigi‘inension»fﬁ Scalings
z F ¢ z F G
Occupations 142 136 .29 217 208 187
Behavior 132 123 089 177 160 L4l
3 dimensions 2 dimension

il am indebted to Mr. Celestin Kemikimba, who assisied with this
experiment,
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Measure Z consistently produces scalings with highest stress
and Measure G consistently produces scalings with lowest stress,
for a given data set and given number of dimensions,

Table 2 lists the correlations among distances in the multidi-
mensiongl configurations., As with the stress computations, the
Measure F' appears to be intermediate to Measure Z and Measure
G. In all cases, the correlation of F to G is higher than the correla-
tion of Z to G for the same data and same number of dimensions.
Statistical tests using the » to Z transformation (Hays, 1963} pro-
duce significance levels of » < .001 for the three tests.

The correlation of Z to F is also higher in all cases than the
correlation of Z to &G {(p < .001). Both the pattern of stresses and

Tabile 2
Correlations among Secaled Distances,
for Three and Two Dimensiqns

Behaviors
z T OF G
3D 2D 3D 2D 3D 2D
, . 8P X 952 947 908 905 N.C.
2D X 964 935 023 N.C.
s 2D X 948 972 N.C.
2D X 926 N.C.
3D X NC.
" 2p I X
QOccupations
z P
3D 2D 3D 2D 3D 2D
X 904 985 891 857 830 3D P
X 908 986 872 918 2D
X 916 911 884 3D
X 908 980 2D F
X 944 2D B
X 2D

the correlation patterns are eonsistent with the logic of the dissim-
ilarity measures, for which F is intermediate to Z and & in its
treatment of cell size differences. Since the Z measure places em-
phasis on small ceils, one would predict that it would preserve fine
distinctions which are made by only part of the subjects. By con-
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trast, almost all of the variability in the G measure should be ac-
counted for by the higher-level distinctions which are made by most
subjects. If there are two major clusters within the stimulus set,
the & measure will provide little information about the internal
organization of those two clusters, whereas the £ measure could
be expected to recover the internal organization of the clusters.
Measures which assign higher weight to general categories reduce
the complexity of the data relative to measures which assign higher
weight te fine distinctions. By so doing, the & measure runs the
risk of producing a degenerate scaling solution, in which the scaled
configuration consists simply of two or more clusters which tend
to collapse to single points. When there is a degenerate solution,
stress will tend to approach zero. Thus, the lower stress figures for
the ¢ measure could be due to a tendency to collapse clusters, by
losing most of the internal structure of clusters.

Figures i, 2, and 3 represent the two dimensional sealings of
behavior names for the Z, F, and & measures, respectively. For all

X vos
X stare
x ignore
X Compiain
Korarze
Arragon: 26 X X Swsar av Xisteny X $upsort
& Reject * tiarass X
X Chez* X’nre;»pn
N X fign X e K oiemsiix
X Attack
X Purish
Domingte X W oEflze
X Tuey
X e
X Tersiade

Figure 1
Twe Dimensional Scaling of Behaviors, Z Measure Stress = 177
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three scalings there is a clear first dimension, which is simply =
distinetion between friendly behaviors and unfriendly bhehaviors.
For all three measures, the internal structure of the cluster of
friendly behaviors is approximately the same, although “meet”
moves from the top of the picture with the Z measure to the hori-
zontal axis with the F measure, to the bottom of the picture for
the & measure, However, the cluster of unfriendly behaviors chang-
es radically from the Z measure to the G measure, With the G mea-
sure, it is ciear that the cluster of unfriendly behaviors has begun
to coliapse. This trend is also apparent with the F measure, al-
though the effect is much weaker, With the Z measure, it is also
possible to make a tentative interpretation of the second dimension.
Egalitarian behaviors appear to be at the top of the figure both
for friendly and unfriendly behaviors, whereas behaviors which in-
volve dominance and status differences appear to be near the bot-
tom of the figure. “Punish,” “dominate,” “obey,” “persuade,” “con-
vinee,” and “advige” take the most extreme negative values on di-

A INTY 2y &

X ke
W Srare
s % e
| X Comprect o
)( o AT
- 2 X
b XX .
’\ ) x © -
X vaoe X
A & B K argue v: X Caepoen
i
|
X X o2iiise
)'& Toreinng
, X i
X o
Figure 2

Two Dimensional Scaling of Behaviors, F Messure Stress = 160
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mension 2, and all involve attempts to change the behavior of an-
other person. The G measure pushes “punish” vp towards the hori-
zontal axis and assigns an extreme negative value to “meet”, there-
by destroying the interpretability of the second dimension.

The fact that the cluster of unfriendly behaviors collapses with
the & measure, whereas the cluster of friendly behaviers remains
intact, suggests that more subwects made fine distinciions among
the friendly behaviors than did so among the unfriendly behav-
iors. Apparentiv a large number of subjects sorted all negative be-
haviors into a single pile, while making several distinctions among
the positive behaviors. This effect can be predicted by the concept
of marked and unmarked categories. In his discussion of this con-
cept, Greenberg (1968) formulates the hypothesis that distinetions
tend to occur for the unmarked eategory which become neutralized
for the mavked category. Between two categories, the marked cate-
gory is formed from the unmarked category by the addition of a
derivational affix, Thus, “friendly” plus the prefix “un’ results in
“unfriendiy”, which is he matrked category. The concept of mark-

= X
s
35 %
ey
Xromiaate
Farsozie X
wet &
Trer X
Figure 3
Two Dimensional Scaling of Behavior, G Measure Stress = 141
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ing predicts that people will make fewer distinctions within the
marked eategory than they do within the unmarked category. The
present data tend to suppori this generalization.

The previous discussion has shown that the scaling solutions
for the F measure are intermediate between those for the Z mesa-
sure and those for the G measure, and that both the F and G
measures produce less interpretable scaling solutions, with the &
measture tending to collapse clusbers. It is also relevant to ask whe-
ther the dissimilarity measure for the F measure are intermediate
between those for the Z measure and those for the & measure;
that is, whether the observed patterns of correlation are not simply
an artifact of the scalng procedure. Table three lists the correla-
tions among the dissimilarity measures. In both cases, the correla-
tion of Z to G is lower than the correlation of Z to FF and the
correlation of F to &, and the differences in correlation are sta-
tistically significant (p < H01).

Table 8
Correlations among the Dissimilarity Measures
Behaviors o T
_ V4 F £
z X 956 822
F X 951
G 3
Ocetpations
z F G
z X 982 842
F X 028
CONCLUSIONS

The empirical investigation demonszirates statistically reliable
differences between measure G and measure Z, These differences
can be perceived in the multidimensional sealings of the behavior
names. The & measure tends to collapse the cluster of unfriendly
behavicrs, thereby reducing the stress measure as a degenerate sol-
ution is approached. Although correlations among the three mea-
sures are &ll greater than .80, and correlations among distances in
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the multidimensional configurations are alse all greater than .80,
the Z measure is clearly the most satisfactory measure for multidi-
mensional scaling purposes, because of the danger of degenerate so-
lutions with measures whieh do not compensate for cell size differ-
ences by assigning a higher weight to small cells,
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