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Abstract Let (M,ω) be a symplectic 4-manifold. A semitoric integrable system on (M,ω)

is a pair of smooth functions J,H ∈ C∞(M,R) for which J generates a Hamiltonian
S1-action and the Poisson brackets {J,H } vanish. We shall introduce new global symplec-
tic invariants for these systems; some of these invariants encode topological or geometric
aspects, while others encode analytical information about the singularities and how they
stand with respect to the system. Our goal is to prove that a semitoric system is completely
determined by the invariants we introduce.

1 Introduction

Atiyah [1, Theorem 1] and Guillemin-Sternberg [11] proved that the image μ(M) under the
momentum map μ := (μ1, . . . ,μn) : M → R

n of a Hamiltonian action of an n-dimensional
torus on a compact connected symplectic manifold (M,ω) is a convex polytope, called
the momentum polytope. Delzant [3] showed that if the dimension of the torus is half the
dimension of M , the momentum polytope, which in this case is called Delzant polytope,
determines the isomorphism type of M . Moreover, he showed that M is a toric variety.
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These theorems establish remarkable and deep connections between Hamiltonian dynamics,
symplectic geometry, Kähler manifolds and toric varieties in algebraic geometry. Through
the analysis of the quantization of such systems, one may also mention important links
with the representation theory of Lie groups and Lie algebras, semiclassics, and microlocal
analysis.

Nevertheless, at least from the viewpoint of symplectic geometry, the situation described
by the momentum polytope is very rigid. There are at least three natural directions for further
mathematical exploration: (i) replacing the manifold M by an orbifold; (ii) allowing more
general actions than Hamiltonian ones, (iii) replacing the torus T by a non-abelian and/or
non-compact Lie group G.

Following (i) Lerman-Tolman generalized Delzant’s classification to orbifolds in
[16, Theorems 7.4, 8.1]. Regarding (ii) Pelayo generalized Delzant’s result to the case when
M is 4-dimensional and T acts symplectically, but not necessarily Hamiltonianly [22, Theo-
rem 8.2.1]. This result relies on the generalization of Delzant’s theorem for symplectic torus
actions with coisotropic principal orbits by Duistermaat-Pelayo earlier [6, Theorems 9.4,
9.6], and for symplectic torus actions with symplectic principal orbits by Pelayo [22, The-
orem 7.4.1]. Regarding (iii), results for non-abelian compact Lie groups G are relatively
complete, see Kirwan [15], Lerman-Meinrenken-Tolman-Woodward [17], Sjamaar [24] and
Guillemin-Sjamaar [10]. When T is replaced by a non-compact group G the theory is hard;
even in the proper and Hamiltonian case, the symplectic local normal form for a proper
action requires extensive work, see Marle [18, 19] and Guillemin-Sternberg [12, Sect. 41];
in the non-Hamiltonian symplectic case this normal form is recent work of Benoist [2,
Proposition 1.9] and Ortega-Ratiu [21].

The seemingly most simple non-compact case to study is that of a Hamiltonian action
of the abelian group R

n on a 2n-dimensional symplectic manifold. But of course, this is
nothing less than the goal of the theory of integrable systems. The role of the momen-
tum map is in this case played by a map of the form F := (f1, . . . , fn) : M → R

n, where
fi : M → R is smooth, the Poisson brackets {fi, fj } identically vanish on M , and the dif-
ferentials df1, . . . ,dfn are almost-everywhere linearly independent. In this article we study
the case of an integrable system f1 := J,f2 := H , where M is 4-dimensional and the com-
ponent J generates a Hamiltonian S1-action: these are called semitoric. Semitoric systems
form an important class of integrable systems, commonly found in simple physical models.
Indeed, a semitoric system can be viewed as a Hamiltonian system in the presence of an S1-
symmetry [23]. One of the incentives for this work is that it is much simpler to understand
the integrable system on its whole rather than writing a theory of Hamiltonian systems on
Hamiltonian S1-manifolds.

It is well established in the integrable systems community that the most simple and nat-
ural object, which tells much about the structure of the integrable system under study, is the
so-called bifurcation diagram. This is nothing but the image in R

2 of F = (J,H) or, more
precisely, the set of critical values of F . In this article, we are going to show that the arrange-
ment of such critical values is indeed important, but other crucial ingredients are needed to
understand F , which are more subtle and cannot be detected from the bifurcation diagram
itself. Our goal is to construct a collection of new global symplectic invariants for semitoric
integrable systems which completely determine a semitoric system up to isomorphisms. We
will build on a number of remarkable results by other authors in integrable systems, includ-
ing Arnold, Atiyah, Dufour-Molino, Eliasson, Duistermaat, Guillemin-Sternberg, Miranda-
Zung and Vũ Ngo.c, to which we shall make references throughout the text, and to whom
this paper owes much credit.

The paper is structured as follows; in Sect. 2 we define semitoric systems, explain the
conditions which appear in the definition and announce our main result; in Sects. 3, 4 and 5
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we construct the new symplectic invariants. Specifically, in Sect. 3 we study the analytical
invariants, in Sect. 4 we study the combinatorial invariants, and in Sect. 5 we study the
geometric invariants. In Sect. 6 we state the aforementioned theorem, which we prove in
Sect. 7. The paper concludes with a short appendix, Sect. 8, in which we prove a very slight
modification of a result of Miranda-Zung which we need earlier.

2 Semitoric systems

First we introduce the precise definition of semitoric integrable system.

Definition 2.1 Let (M,ω) be a connected symplectic 4-dimensional manifold. A semitoric
integrable system on M is an integrable system J,H ∈ C∞(M,R) for which

(1) the component J is a proper momentum map for a Hamiltonian circle action on M ;
(2) the map F := (J,H) : M → R

2 has only non-degenerate singularities in the sense of
Williamson, without real-hyperbolic blocks.

We also use the terminology 4-dimensional semitoric integrable system to refer to the triple
(M,ω, (J,H)).

We recall that the first point in Definition 2.1 means that the preimage by J of a compact
set is compact in M (which is of course automatic if M is compact), and the second point
means that, whenever m is a critical point of F , there exists a 2 by 2 matrix B such that,
if we denote F̃ = B ◦ (F − F(m)), one of the following happens, in some local symplectic
coordinates centered at m:

(1) F̃ (x, y, ξ, η) = (η + O(η2), 1
2 (x2 + ξ 2) + O((x, ξ)3),

(2) F̃ (x, y, ξ, η) = 1
2 (x2 + ξ 2, y2 + η2) + O((x, ξ, y, η)3),

(3) F̃ (x, y, ξ, η) = (xξ + yη, xη − yξ) + O((x, ξ, y, η)3).

The first case is called a transversally—or codimension 1—elliptic singularity; the second
case is an elliptic-elliptic singularity. The terminology elliptic singularity may be used for
any of these two cases. Finally, the last case is called a focus-focus singularity.

In [26], Vũ Ngo.c proved a version of the Atiyah-Guillemin-Sternberg theorem: to a 4-
dimensional semitoric integrable system one may meaningfully associate a family of con-
vex polygons which generalizes the momentum polygon that one has in the presence of a
Hamiltonian 2-torus action. If two such systems are isomorphic, then these two families of
polygons are equal.

In view of this, a natural goal is to try to understand whether a semitoric integrable sys-
tem on a symplectic 4-manifold could possibly be determined by this family of polygons;
as it turns out this is one of five invariants we associate to such a system. Precisely, the
invariants are the following: (i) the number of singularities invariant: an integer counting
the number of isolated singularities; (ii) the singularity type invariant: which classifies lo-
cally the type of singularity; (iii) the polygon invariant: a family of weighted rational convex
polygons (generalizing the Delzant polygon and which may be viewed as a bifurcation di-
agram); (iv) the volume invariant: numbers measuring volumes of certain submanifolds at
the singularities; (v) the twisting index invariant: integers measuring how twisted the system
is around singularities. Our goal in this paper is to prove an integrable system is completely
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determined, up to isomorphisms, by these invariants. In other words, we shall prove that:

(M,ω1, (J1,H1)) and (M,ω2, (J2,H2)) are isomorphic

⇐⇒ they have the same invariants (i)–(v).

Here the word isomorphism is used in the sense that there exists a symplectomorphism

ϕ : M1 → M2, such that ϕ∗(J2,H2) = (J1, f (J1,H1))

for some smooth function f such that ∂f

∂H1
never vanishes (see Theorem 6.2).

One could say that (i) and (ii) are analytical invariants, (iii) is a combinatorial/group-
theoretic invariant, and (iv), (v) are geometric invariants.

3 Analytic invariants of a semitoric system

We describe invariants of a semitoric system encoding analytic information about the sin-
gularities. Throughout this section (M,ω, (J,H)) is a 4-dimensional semitoric integrable
system.

3.1 Cardinality of singular set invariant

It is clear from the definition that a semitoric integrable system has only two types of singu-
larities: elliptic (of codimension 0 or 1) and focus-focus. This can easily be inferred from the
bifurcation diagram. In fact, Vũ Ngo.c proves in [26, Proposition 2.9, Theorem 3.4, Corol-
lary 5.10] the following statement:

Proposition 3.1 The semitoric system (M,ω, (J,H)) admits a finite number mf of focus-
focus critical values c1, . . . , cmf

, and, denoting by B = F(M) ⊂ R
2 the image of F , where

F = (J,H):

(a) the set of regular values of F is Br = IntB \ {c1, . . . , cmf
};

(b) the topological boundary of B consists of all images of elliptic singularities;
(c) the fibers of F are connected.

Critical points, together with their singularity types, are obviously invariant by diffeo-
morphism. Thus mf is invariant under isomorphism of semitoric systems. Let us state this
fact explicitely for further reference.

Lemma 3.2 Let (M1,ω1, (J1,H1)), (M2,ω2, (J2,H2)) be isomorphic 4-dimensional semi-
toric integrable systems and let mi

f be the number of focus-focus points of (Mi,ωi, (Ji,Hi)),
where i ∈ {1,2}. Then m1

f = m2
f .

One may argue that mf is a combinatorial invariant, since it is an integer; we have put
it in this section because we need it for the construction of the true analytic invariant of the
system, defined in Sect. 3.2: the singularity type invariant.

Remark 3.1 We will later use the fact that B can be viewed as an affine manifold with cor-
ners. The manifold boundary then corresponds to transversally elliptic singularities, while
corners correspond to elliptic-elliptic singularities.
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Fig. 1 The singular foliation F
associated to F near the critical
fiber Fm, where S1(A) denotes
the S1-orbit for the S1-action
generated by H2

3.2 Singularity type invariant

Let F , mf and c1, . . . , cmf
be as in Proposition 3.1 We consider here the preimage by F of

a focus-focus critical value ci , where i ∈ {1, . . . ,mf }. Throughout the whole article, we will
make the following assumption, which, according to Zung [27], is generic:

The critical fiber Fm := F−1(ci) contains only one critical point m. (3.1)

In fact, we will make for simplicity an even stronger (but still generic) assumption:

If m is a focus-focus critical point for F,

then m is the unique critical point of the level set J−1(J (m)). (3.2)

If the assumption (3.1) is satisfied, then (3.2) is equivalent to saying that the values
J (c1), . . . , J (cmf

) are pairwise distinct.
Thanks to (3.2), we may—and always will—assume throughout the article that the criti-

cal values ci ’s are ordered by their J -values:

J (c1) < J (c2) < · · · < J(cmf
). (3.3)

Definition 3.3 A semitoric system will be called simple when the hypothesis (3.2) is satis-
fied.

Notice that if two semitoric systems are isomorphic and one is simple, then the other one
is simple as well. Moreover, the order of the focus-focus critical values, as defined in (3.3),
is preserved under isomorphism.

Let F denote the associated singular foliation, the leaves of which are by definition the
connected components of the level sets F−1(c), c ∈ R

2. Eliasson’s theorem [8, 9] describes
a neighborhood U of a focus-focus point m in a singular foliation of focus-focus type:
there exist symplectic coordinates (x, y, ξ, η) in U in which the foliation F consists of the
connected components of the level sets of the map (q1, q2), given by

q1 = xξ + yη, q2 = xη − yξ. (3.4)

(We say that q is a momentum map for the foliation F .) Here the critical point m corresponds
to coordinates (0,0,0,0). Let us fix a point A′ ∈ Fm ∩ (U \ {m}), let � denote a small 2-
dimensional surface transversal to F at the point A′, and let � be the open neighborhood of
Fm which consists of the leaves which intersect the surface �.
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Since the Liouville foliation in a small neighborhood of � is regular for both momentum
maps F and q = (q1, q2), there must be a local diffeomorphism ϕ of R

2 such that q =
ϕ ◦ F , and hence we can define a global momentum map 	 = ϕ ◦ F for the foliation, which
agrees with q on U . Write 	 := (H1,H2) and 
z := 	−1(z). Note that 
0 = Fm. It follows
from (3.4) that near m the H2-orbits must be periodic of primitive period 2π for any point
in a (non-trivial) trajectory of XH1 .

Suppose that A ∈ 
z for some regular value z. We define τ1(z), which is a strictly positive
number, as the time it takes the Hamiltonian flow associated to H1 leaving from A to meet
the Hamiltonian flow associated to H2 which passes through A, and let τ2(z) ∈ R/2πZ be
the time that it takes to go from this intersection point back to A along the Hamiltonian flow
line of H2, hence closing the trajectory. Write z = (z1, z2) = z1 + i z2, and let ln z for a fixed
determination of the logarithmic function on the complex plane. We moreover define the
following two functions: {

σ1(z) = τ1(z) + �(ln z),

σ2(z) = τ2(z) − 
(ln z),
(3.5)

where � and 
 respectively stand for the real an imaginary parts of a complex number.
In his article [25, Proposition 3.1], Vũ Ngo.c proved that σ1 and σ2 extend to smooth and
single-valued functions in a neighbourhood of 0 and that the differential 1-form

σ := σ1dz1 + σ2dz2 (3.6)

is closed. Notice that if follows from the smoothness of σ2 that one may choose the lift of τ2

to R such that σ2(0) ∈ [0,2π). This is the convention used throughout.

Definition 3.4 [25, Definition 3.1] Let Si be the unique smooth function defined around
0 ∈ R

2 such that {
dSi = σ,

Si(0) = 0,
(3.7)

where σ is the one-form given by (3.6). The Taylor expansion of Si at (0,0) is denoted
by (Si)

∞. We say that (Si)
∞ is the Taylor series invariant of (M,ω, (J,H)) at the focus-

focus point ci , where i ∈ {1, . . . ,mf }.

The Taylor expansion (S)∞ is a formal power series in two variables with vanishing
constant term.

Lemma 3.5 Let (M1,ω1, (J1,H1)), (M2,ω2, (J2,H2)) be isomorphic 4-dimensional simple

semitoric integrable systems and let ((S
j

i )∞)
mi

f

i=1 be the tuple of Taylor series invariants at
the ordered focus-focus critical points of (Mj ,ωj , (Jj ,Hj )), where j ∈ {1,2}. Then the tuple

((S1
i )

∞)
m1

f

i=1 is equal to the tuple ((S2
i )

∞)
m2

f

i=1.

This result was proven in [26].

4 Combinatorial invariants of a semitoric system

The Atiyah-Guillemin-Sternberg and Delzant theorems tell us that a lot of the information
of some completely integrable systems coming from Hamiltonian torus actions is encoded
combinatorially by polytopes; see Fig. 2.
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Fig. 2 Momentum polytope of
CP

2 (left), a Hirzebruch surface
(center) and (CP

1)2 (right), all
of which determine the
isomorphism type of the
manifold

Although 4-dimensional semitoric systems are not induced by torus actions, some of the
information of the system may be combinatorially encoded by a certain equivalence class
of rational convex polygons endowed with a collection of vertical weighted lines. This is in
fact a way of encoding the affine structure induced by the integrable system. Throughout
this section (M,ω, (J,H)) is a simple 4-dimensional simple semitoric integrable system
with mf isolated focus-focus singular values, ordered according to (3.3).

4.1 Affine structures

Recall that a map X ⊂ R
m → Y ⊂ R

m is integral-affine on X if it is of the form Aij (·)+ bij ,

where Aij ∈ GL(m,Z) and bij ∈ R
m.

An integral-affine smooth m-dimensional manifold is a smooth m-dimensional manifold
X for which the coordinate changes are integral-affine, i.e. if ϕi : Ui ⊂ R

m → X are the
charts associated to X, for all i, j we have that ϕi ◦ ϕ−1

j , whereever defined, is an integral
affine map. We allow manifolds with boundary and corners, in which case the charts take
their values in [0,+∞)k × R

m−k for some integer k ∈ {0, . . . ,m}.
A map f : X → Y between integral affine manifolds is integral-affine if for each point

x ∈ X there are charts ϕx : Ux → X around x and ψy : Vy → Y around y := f (x) such that
ψ−1

y ◦ f ◦ ϕx is integral-affine.
As a consequence of the action-angle theorem, any proper Lagrangian fibration

F : M → B naturally defines an integral-affine structure on the base B . This affine structure
can be characterized by the following fact: a local diffeomorphism g : (B,b) → (Rn,0) is
integral-affine if and only if the Hamiltonian flows of the n coordinate functions of g ◦F are
periodic of primitive period equal to 2π . Thus, an integrable system with proper momentum
map F = (J,H) defines an integral-affine structure on the set Br of regular values of F . In
our case, this structure will in fact extend to the boundary of Br . Although Br is a subset
of R

2, the integral-affine structure of Br is in general different from the induced canonical
integral-affine structure of R

2.
The integral-affine structure of Br encodes much of the topology of the integrable system

(see [27]) but, as we will see, is far from encoding all its symplectic geometry.

4.2 Generalized toric map

We start with two definitions that we shall need. Let I be the subgroup of the affine group
Aff(2,Z) in dimension 2 of those transformations which leave a vertical line invariant, or
equivalently, an element of I is a vertical translation composed with a matrix T k , where
k ∈ Z and

T k :=
(

1 0
k 1

)
∈ GL(2,Z). (4.1)

Let � ⊂ R
2 be a vertical line in the plane, not necessarily through the origin, which splits it

into two half-spaces, and let n ∈ Z. Fix an origin in �. Let tn� : R
2 → R

2 be the identity on
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the left half-space, and T n on the right half-space. By definition tn� is piecewise affine. Let
�i be a vertical line through the focus-focus value ci = (xi, yi), where 1 ≤ i ≤ mf , and for
any tuple �n := (n1, . . . , nmf

) ∈ Z
mf we set

t�n := t
n1
�1

◦ · · · ◦ t
nmf

�mf
. (4.2)

The map t�n is piecewise affine.
In [26, Theorem 3.8] Vũ Ngo. c describes how to associate to (M,ω,F = (J,H)) a ra-

tional convex polygon: the image of a certain almost everywhere integral-affine homeomor-
phism f : F(M) ⊂ R

2 → � ⊂ R
2. Here, B := F(M) is equipped with the natural integral-

affine structure induced by the system, while R
2 on the right hand-side is endowed with its

canonical integral-affine structure.
Given a sign εi ∈ {−1,+1}, let �

εi

i ⊂ �i be the vertical half line starting at ci at extending
in the direction of εi : upwards if εi = 1, downwards if εi = −1. Let

��ε :=
mf⋃
i=1

�
εi

i .

In this text we shall use the following terminology.

Definition 4.1 A convex polygonal set � is the intersection in R
2 of (finitely or infinitely

many) closed half-planes such that on each compact subset of the intersection there is at most
a finite number of corner points. We say that � is rational if each edge is directed along a
vector with rational coefficients. For brevity, in this paper we usually write “polygon” instead
of “convex polygonal set”.

Notice that such a “convex polygon” is not necessarily compact.

Theorem 4.2 ([26, Theorem 3.8]) For �ε ∈ {−1,+1}mf there is a homeomorphism
f = fε : B → R

2 such that

(1) f |(B\��ε ) is a diffeomorphism into its image � := f (B).
(2) f |(Br \��ε ) is affine: it sends the integral affine structure of Br to the standard structure

of R
2.

(3) f preserves J : i.e. f (x, y) = (x, f (2)(x, y)).
(4) For any i ∈ {1, . . . ,mf } and any c ∈ �

εi

i \ {ci} there is an open ball D around c such
that f |(Br \l�ε ) has a smooth extension on each domain {(x, y) ∈ D |≤ xi} and {(x, y) ∈
D | x ≥ xi}. One has the formula:

lim
(x,y)→c

x<xi

df (x, y) = T k(c) lim
(x,y)→c

x>xi

df (x, y),

where k(c) is the multiplicity of c.
(5) The image of f is a rational convex polygon.

Such an f is unique modulo a left composition by a transformation in I.

In order to arrive at the rational convex polygon � in the proof of Theorem 4.2 one cuts
the image (J,H)(M) ⊂ R

2, which is in general not convex, along each of the vertical lines
�i , i ∈ {1, . . . ,mf }. One must make a choice of “cut direction” for each vertical line �i , that
is to say that one has to choose whether to cut the set (J,H)(M) along the half-vertical-
line �+1

i which starts at ci going upwards, or along the half-vertical-line �−1
i which starts at
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ci going downwards. Precisely, the definitions of f and � in Theorem 4.2 depend on two
choices in the proof:

(a) an initial set of action variables f0 of the form (J,K) near a regular Liouville torus
in [26, Step 2, proof of Theorem 3.8]. If we choose f1 instead of f0 then f has to be
composed on the left by a transformation in I. Naturally, the new polygon is obtained
from the initial one by the same transformation;

(b) a tuple �ε of 1 and −1. If we choose �ε ′ instead of �ε we get f ′ = t�u ◦ f (and thus �′ =
t�u(�)) with ui = (εi − ε ′

i )/2, by [26, Proposition 4.1, expression (11)].

Definition 4.3 Let (M,ω, (J,H)) be a simple semitoric integrable system and let f a
choice of homeomorphism as in Theorem 4.2. We say that:

(i) the map f ◦ (J,H) is a generalized toric momentum map for (M,ω, (J,H));
(ii) the rational convex polygon � := f

(
(J,H)(M)

)
is a generalized toric momentum poly-

gon for (M,ω, (J,H)).

For simplicity sometimes we omit the word “generalized” in Definition 4.3.

4.3 Semitoric polygon invariant

Let Polyg(R2) be the space of rational convex polygons in R
2. Let Vert(R2) be the set of

vertical lines in R
2, i.e.

Vert(R2) = {
�λ := {(x, y) ∈ R

2|x = λ}|λ ∈ R
}
.

Definition 4.4 A weighted polygon of complexity s is a triple of the form

�weight =
(
�,(�λj

)s
j=1, (εj )

s
j=1

)

where s is a non-negative integer and:

• � ∈ Polyg(R2);
• �λj

∈ Vert(R2) for every j ∈ {1, . . . , s};
• εj ∈ {−1,1} for every j ∈ {1, . . . , s};
• mins∈� π1(s) < λ1 < · · · < λs < maxs∈� π1(s), where π1 : R

2 → R is the canonical pro-
jection π1(x, y) = x.

We denote by W Polygs(R
2) the space of all weighted polygons of complexity s.

See Fig. 3 for an example of weighted polygon.

Fig. 3 A weighted polygon of
complexity 2
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For any s ∈ N, let

Gs := {−1,+1}s (4.3)

and let

G := {T k|k ∈ Z}, (4.4)

where T is the 2 by 2 matrix (4.1). Consider the action of the product group Gs × G on the
space W Polygs(R

2): the product

((ε ′
j )

s
j=1, T

k) · (�,(�λj
)s
j=1, (εj )

s
j=1

)

is defined to be

(
t�u(T k(�)), (�λj

)s
j=1, (ε

′
j εj )

s
j=1

)
, (4.5)

where �u = ((εi − ε ′
i )/2)s

i=1, and t�u is a map of the form (4.2).

Definition 4.5 Let � be a rational convex polygon obtained from the momentum image
(J,H)(M) according to the proof of Theorem 4.2 by cutting along the vertical half-lines
�

ε1
1 , . . . , �

εmf
mf

. The semitoric polygon invariant of (M,ω, (J,H)) is the (Gmf
× G)-orbit

(Gmf
× G) · (�,(�j )

mf

j=1, (εj )
mf

j=1

) ∈ W Polygmf
(R2)/(Gmf

× G), (4.6)

where W Polygmf
(R2) is as in Definition 4.4 and the action of Gmf

× G on W Polygmf
(R2)

is given by (4.5).

It follows now from Theorem 4.2 that the semitoric polygon invariant does not depend
on the isomorphism class of the system.

Lemma 4.6 Let (M1,ω1, (J1,H1)), (M2,ω2, (J2,H2)) be isomorphic 4-dimensional semi-
toric integrable systems. Then the semitoric polygon invariant of (M1,ω1, (J1,H1)) is equal
to the semitoric polygon invariant of (M2,ω2, (J2,H2)).

5 Geometric invariants of a semitoric system

The invariants we have described so far are not enough to determine whether two
4-dimensional semitoric systems are isomorphic. In this section we introduce two global
geometric invariants, which encode a mixture of information about local and global behav-
ior. Throughout, (M,ω, (J,H)) is a 4-dimensional semitoric integrable system with mf

isolated focus-focus singular values.

5.1 The volume invariant

The invariant we introduce next is easy to define using the combinatorial ingredients we
have by now introduced. Consider a focus-focus critical point mi whose image by (J,H) is
ci for i ∈ {1, . . . ,mf }, and let � be a rational convex polygon corresponding to the system
(M,ω, (J,H)), cf. Definition 4.5.
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Lemma 5.1 If μ is a toric momentum map for the simple semitoric system (M,ω, (J,H))

corresponding to �, cf. Definition 4.3, then the image μ(mi), where i ∈ {1, . . . ,mf }, is a
point lying in the interior of the polygon �, along the line �i . The vertical distance

hi := μ(mi) − min
s∈�i∩�

π2(s) > 0 (5.1)

between μ(mi) and the point of intersection of �i with the image polytope with lowest
y-coordinate, is independent of the choice of momentum map μ. Here π2 : R

2 → R is the
canonical projection π2(x, y) = y.

Lemma 5.1 follows from the fact that two different toric momentum maps only differ by
piecewise affine transformations, which all act on any fixed vertical line as translations.

Definition 5.2 We say that the vertical distance (5.1) between μ(mi) and the point of inter-
section of �i with the image polytope that has the lowest y-coordinate is the height of the
focus-focus critical value ci , where i ∈ {1, . . . ,mf }.

Remark 5.1 One can give a geometrical meaning to the height of the focus-focus critical
values. Let Yi = J−1(ci). This singular manifold splits into two parts, Y +

i and Y −
i defined

as Yi ∩ {H > H(mi)} and Yi ∩ {H < H(mi)}, respectively. The height of the focus-focus
critical value ci is simply the Liouville volume of Y −

i .

Since isomorphic systems share the same set of momentum polygons, we have the fol-
lowing result.

Lemma 5.3 Let (M1,ω1, (J1,H1)), (M2,ω2, (J2,H2)) be isomorphic simple 4-dimensional

semitoric integrable systems and let (h
j

i )
mi

f

i=1 be the tuple of heights of focus-focus critical

values of (Mj ,ωj , (Jj ,Hj )), j ∈ {1,2}. Then the tuple (h1
i )

m1
f

i=1 is equal to the tuple (h2
i )

m2
f

i=1.

The volume invariant is very easy to compute from a weighted polygon, and hence it is a
quick way to rule out that two semitoric integrable systems are not isomorphic.

5.2 The twisting-index invariant

For clarity, we divide the construction of the twisting index invariant into five steps. Let

�weight :=
(
�,(�j )

mf

j=1, (εj )
mf

j=1

) ∈ W Polygmf
(R2), (5.2)

be a weighted polygon as in expression (4.6), representing the orbit given by the semitoric
polygon invariant of the system (M,ω, (J,H)), cf. Definition 4.5, where recall that the
polygon � is obtained from the momentum image (J,H)(M) according to the proof of
Theorem 4.2 by cutting along the vertical lines �1, . . . , �mf

in the direction of ε1, . . . , εmf
,

i.e. upwards if εi is +1 and downwards otherwise. Write F = (J,H), c1, . . . , cmf
for the

focus-focus critical values.
In the first three steps we define for each i ∈ {1, . . . ,mf }, an integer ki that we shall

call the twisting index of the focus-focus value ci , on which we built to construct the actual
invariant associated to (M,ω, (J,H)) in Step 5.
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Step 1: an application of Eliasson’s theorem. Let (e1, e2) be the canonical basis of R
2. Let

� = �+1
i ⊂ R

2 be the vertical half-line starting at ci and pointing in the direction of εie2.
Let us apply Eliasson’s theorem in a small neighbourhood W = Wi of the focus-focus

critical point mi = F−1(ci): there exists a local symplectomorphism φ : (R4,0) → W , and
a local diffeomorphism g of (R2,0) such that

F ◦ φ = g ◦ q, (5.3)

where q is the quadratic momentum map given by (3.4). Since the second component,
q2 ◦ φ−1, has a 2π -periodic Hamiltonian flow, it must be equal to J in W , up to a sign.
Composing if necessary φ by the canonical transformation (x, ξ) �→ (−x,−ξ), one can
always assume that q2 = J ◦ φ in W . This means that g is of the form

g(q1, q2) = (q2, g2(q1, q2)). (5.4)

Moreover, upon composing φ by the canonical transformation (x, y, ξ, η) �→
(−ξ,−η,x, y), which changes (q1, q2) into (−q1, q2), one can always assume that

∂g2

∂q1
(0) > 0. (5.5)

In particular, near the origin � is transformed by g−1 into the positive real axis if εi = 1, or
the negative real axis if εi = −1.

Step 2: the smooth vector field Xp . Let us now fix the origin of angular polar coordinates in
R

2 on the positive real axis. Let V = F(W) and define F̃ = (H1,H2) = g−1 ◦ F on F−1(V )

(notice that H2 = J ). Now recall from Sect. 3.2 that near any regular torus there exists a
Hamiltonian vector field Xp , whose flow is 2π -periodic, defined by

2π Xp = (τ1 ◦ F̃ )XH1 + (τ2 ◦ F̃ )XJ , (5.6)

where τ1 and τ2 are functions on R
2 \ {0} satisfying (3.5), with σ1(0) > 0. In fact τ2 is

multivalued, but we determine it completely in polar coordinates with angle in [0,2π) by
requiring continuity in the angle variable and σ2(0) ∈ [0,2π). In case εi = 1, this defines Xp

as a smooth vector field on F−1(V \ �). In case εi = −1 we keep the same τ2-value on the
negative real axis, but extend it by continuity in the angular interval [π,3π). In this way Xp

is again a smooth vector field on F−1(V \ �).

Step 3: twisting index of a weighted polygon at a focus-focus singularity. Let μ be the
generalized toric momentum map, cf. Definition 4.3, associated to the polygon �. On
F −1(V \ �), μ is smooth, and its components (μ1,μ2) = (J,μ2) are smooth Hamiltoni-
ans, whose vector fields (XJ , Xμ2) are tangent to the foliation, have a 2π -periodic flow, and
are a.e. independent. Since the couple (XJ , Xp) shares the same properties, there must be
a matrix A ∈ GL(2,Z) such that (XJ , Xμ2) = A(XJ , Xp). This is equivalent to saying that
there exists an integer ki ∈ Z such that

Xμ2 = ki XJ + Xp. (5.7)

Proposition 5.4 For a fixed weighted polygon �weight as in (5.2), the integer ki in (5.7) is
well defined for each i ∈ {1, . . . ,mf }, i.e. it does not depend on
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(a) the choice of the periodic Hamiltonian Xp ;
(b) the transformations involved in Eliasson’s normal form (5.3), with the sign con-

straints (5.4) and (5.5).

Proof It follows from [25, Lemma 4.1] that changing the transformations involved in Elias-
son’s normal form [8, 9] can only modify g2—and hence H1—by a flat term. Suppose X ′

p is
another admissible choice for a Hamiltonian of the form

2π X ′
p = (τ ′

1 ◦ F̃ ′)XH ′
1
+ (τ ′

2 ◦ F̃ ′)XJ .

Since X ′
p has a 2π -periodic flow, there must be coprime integers a, b in Z such that

X ′
p = aXp + bXJ . (5.8)

Inserting (5.6), we see that there exist functions Z1 and Z2 that vanish at all orders at the
origin such that

2π X ′
p = (aτ1 ◦ F̃ + Z1)XH ′

1
+ (aτ2 ◦ F̃ + 2πb + Z2)XJ .

From this we see that, up to a flat function, τ ′
1 = aτ1 and τ ′

2 = aτ2 + 2πb. Because of
the logarithmic asymptotics required in (3.5), the first equation requires a = 1. But then, the
second equation with the restriction that both σ2(0) and σ ′

2(0) must be in [0,2π) implies that
b = 0. Recalling (5.8) we obtain X ′

p = Xp , which shows that ki is indeed well-defined. �

Definition 5.5 Let �weight be a fixed weighted polygon as in (5.2). For each i ∈ {1, . . . ,mf },
the integer ki defined in (5.7) is called the twisting index of �weight at the focus-focus critical
value ci .

The integer ki in Definition 5.5 is still not the relevant object that we intend to associate
to the semitoric system, but we shall build on its definition to construct the actual invariant.

Step 4: the privileged momentum map. We explain how there is a reasonable way to
“choose” a momentum map for (M,ω, (J,H)).

Lemma 5.6 There exists a unique smooth function Hp on F−1(V \ �) the Hamiltonian
vector field of which is Xp and such that limm→mi

Hp = 0.

Proof Near a regular torus Xp is a Hamiltonian vector field of a function of the form
f (H1, J ), and by construction ∂if = τi/2π, i ∈ {1,2}. Therefore, using (3.5) we can check
that 2πf (z) = S(c) − �(z ln z − z) + Const, where S is smooth at the origin, which shows
that f has a limit as z ∈ R

2 \ ([0,∞) × {0}) tends to the origin. In fact, f has a continuous
extension to R

2, entailing that Hp extends to a continuous function on F−1(V ). �

Definition 5.7 Let (M,ω, (J,H)) be a 4-dimensional simple semitoric integrable system,
and let Hp be the unique smooth function defined in Lemma 5.6. We say that the toric
momentum map ν := (J,Hp) is the privileged momentum map for (J,H) around the focus-
focus value ci , for each i ∈ {1, . . . ,mf }.

The map ν in Definition 5.7 depends on the cut �, that is to say, on the sign εi . Moreover,
we have the following.
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(a) If ki is the twisting index of ci , one has

μ = T ki ν on F−1(V ). (5.9)

(b) If we transform the polygon � by a global affine transformation in T r ∈ I this has no
effect on the privileged momentum map ν, whereas it changes μ into T rμ.

From the characterization (5.9), it follows that all the twisting indices ki are replaced by
ki + r .

With this preparation we are now ready to define the twisting index invariant.

Step 5: the twisting index invariant. We give the definition of the twisting index invariant
as an equivalence class of weighted polygons labelled by a collection of integers.

Proposition 5.8 If two weighted polygons �weight and �′
weight lie in the same Gmf

-orbit,
for the Gmf

-action induced by (4.5), then the twisting indexes ki, k
′
i associated to �weight

and �′
weight at their respective focus-focus critical values ci, c

′
i are equal, for each i ∈

{1, . . . ,mf }.

Proof For εi = ±1, we denote by μ± and ν±, as in (5.9) above, the generalized toric mo-
mentum map and the privileged momentum map, cf. Definition 5.7 at ci .

With the notations of Sect. 4, we have

μ− = t�i
μ+.

On the other hand, from the definition of τ2 in each case, we see that Xp,− = Xp,+ on the
left-hand side of � (that is to say, J < 0), while

Xp,− = Xp,+ + 2π XJ

on the right hand side (J > 0). This means that ν− = t�i
ν+. From the characterization of the

twisting index by (5.9), using that t�i
commutes with T , we see that ki,+ = ki,−. �

Recall the groups Gs and G given by (4.3) and (4.4) respectively, and the action of Gs × G
on W Polygs(R

2), cf. Definition 4.5. Consider the action of the product group Gs × G on the
space W Polygs(R

2) × Z
ms : the product

((ε ′
j )

s
j=1, T

k) �
(
�,(�λj

)s
j=1, (εj )

s
j=1, (ki)

s
i=1

)
is defined to be

(
t�u(T k(�)), (�λj

)s
j=1, (ε

′
j εj )

s
j=1, (ki + k)s

i=1

)
. (5.10)

where �u = (εi − ε ′
i )/2)s

i=1. Here T is the 2 by 2 matrix (4.1) and t�u is of the form (4.2).

Definition 5.9 The twisting-index invariant of (M,ω, (J,H)) is the (Gmf
× G)-orbit of

weighted polygon labelled by twisting indexes at the focus-focus singularities of the system
given by

(Gmf
× G) �

(
�,(�j )

mf

j=1, (εj )
mf

j=1, (ki)
mf

i=1

) ∈ (W Polygmf
(R2) × Z

mf )/(Gmf
× G), (5.11)

where W Polygmf
(R2) is defined in Definition 4.4 and the action of Gmf

× G on

W Polygmf
(R2) × Z

mf is given by (5.10).
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Here again, our definition is invariant under isomorphism.

Lemma 5.10 Let (M1,ω1, (J1,H1)), (M2,ω2, (J2,H2)) be isomorphic 4-dimensional sim-
ple semitoric integrable systems. Then their corresponding twisting-index invariants are
equal.

Remark 5.2 We would like to emphasize again that the twisting index is not a semiglobal
invariant of the singular fibration in a neighbourhood of the focus-focus fibre. Such semi-
global fibrations are completely classified in [25], and the twisting index does not play any
role there. It is instead a global invariant characterizing the way the fibers near a particular
focus-focus point stand with respect to the rest of the fibration.

6 Main theorem: statement

We consider a simple semitoric system and assign to it a list of invariants as above. The
general idea is simple: the complete invariant is just a rational convex polygon having a
finite number of distinguished interior points (the focus-focus critical values), each of them
being decorated by a Taylor series and an integer (the twisting index).

The technical difficulty is that the polygon is in fact not unique. One could remove part of
the trouble by fixing all the signs εi in Theorem 4.2 to be positive, but this would hide a key
feature (and motivation); indeed, switching from one polygon to another is what is expected
to happen during a generic bifurcation of semitoric systems (see [26]). Thus we do no want
to fix the signs, and instead deal with equivalence classes. Then the vertical positions of the
focus-focus critical values may change, and only their heights (with respect to the bottom
line of the polygon) are well defined. What’s more, the twisting indices themselves are
relevant only modulo the addition of a common integer.

After these considerations, the list of invariants we propose is the following. Recall that
the focus-focus points are ordered according to (3.3).

Definition 6.1 Let (M,ω, (J,H)) be a 4-dimensional simple semitoric integrable system.
The list of invariants of (M,ω, (J,H)) consists of the following items.

(i) The integer number 0 ≤ mf < ∞ of focus-focus singular points, see Sect. 3.1.
(ii) The mf -tuple ((Si)

∞)
mf

i=1, where (Si)
∞ is the Taylor series of the ith focus-focus point,

see Sect. 3.2.
(iii) The semitoric polygon invariant: the (Gmf

× G)-orbit

(Gmf
× G) · �weight ∈ W Polyg(R2)/(Gmf

× G)

of the weighted polygon �weight := (�, (�j )
mf

j=1, (εj )
mf

j=1), cf. Definition 4.5.

(iv) The mf -tuple of positive real numbers (hi)
mf

i=1, where hi is the height of the ith focus-
focus point, see Sect. 5.1.

(v) The twisting-index invariant: the (Gmf
× G)-orbit

(Gmf
× G) �

(
�weight, (ki)

mf

i=1

) ∈ (W Polyg(R2) × Z
mf )/(Gmf

× G)

of the weighted polygon labelled by the twisting-indexes (�weight, (ki)
mf

i=1), cf. Defini-
tion 5.9.
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In the above list invariant (v) determines invariant (iii), so we could have ignored the
latter. We have kept this list as it appears naturally in the construction of the invariants.
Indeed the definition of invariant (iii) is needed to construct invariant (v). One may also
argue that it is worthwhile for practical purposes to list (iii), as it is easier to compute than
(v) and hence if two systems do not have the same invariant (iii) we know they are not
isomorphic without having to compute (v). Notice that all these invariants are based upon
the standard affine plane R

2, which makes them relatively easy to visualize, even when their
effect on the system (M,ω, (J,H)) may be delicate to understand.

Recall that if (M1,ω1, (J1,H1)) and (M2,ω2, (J2,H2)) are 4-dimensional semitoric in-
tegrable systems, we say that they are isomorphic if there exists a symplectomorphism

ϕ : M1 → M2, such that ϕ∗(J2,H2) = (J1, f (J1,H1))

for some smooth function f such that ∂f

∂H1
never vanishes. Our main theorem is the follow-

ing.

Theorem 6.2 Two 4-dimensional simple semitoric integrable systems (M1,ω1, (J1,H1))

and (M2,ω2, (J2,H2)) are isomorphic if and only if the list of invariants (i)–(v), as in Defin-
ition 6.1, of (M1,ω1, (J1,H1)) is equal to the list of invariants (i)–(v) of (M2,ω2, (J2,H2)).

The proof of Theorem 6.2 is sufficiently involved that is better organized in an indepen-
dent section. In the proof we use notable results of several authors, in particular Eliasson,
Duistermaat, Dufour-Molino, Liouville-Mineur-Arnold and Vũ Ngo. c. We combine these
results with new ideas to construct explicitly an isomorphism between two semitoric in-
tegrable systems that have the same invariants, in the spirit of Delzant’s proof [3] for the
case when the system defines a Hamiltonian 2-torus action. Because in our context we have
focus-focus singularities a number of delicate problems arise that one has to deal with to
construct such an isomorphism. As a matter of fact, it is remarkable how the behavior of the
system near a particular singularity has a subtle global effect on the system.

Remark 6.1 When the system is in fact toric, then there is no focus-focus point, and the
whole list of invariants breaks down to a mere rational convex polygon defined modulo I.
This is of course the usual Delzant polygon; the action of I reflects the fact that the definition
of isomorphism is less strict that in Delzant’s situation.

Example 6.3 The simplest non-toric, non-compact example is probably the “coupled spin-
oscillator” model described in [26, Sect. 6.2]. In this case M = S2 ×R

2, where S2 is viewed
as the unit sphere in R

3 with coordinates (x, y, z), and the second factor R
2 is equipped with

coordinates (u, v). We define

J := (u2 + v2)/2 + z and H := 1

2
(ux + vy).

For the standard product symplectic structure on M , the system (J,H) is a simple semitoric
system, with one single focus-focus point at ((0,0,1), (0,0)) ∈ S2 ×R

2, and hence mf = 1.
The image of the momentum map (J,H) is depicted in Fig. 4.

Because there is only one focus-focus point, the twisting-index invariant contains no
information. One can take for instance k1 = 0.

The remaining list of invariants is depicted in Fig. 4, except for the Taylor series invariant
(S1) which, even in this simple example, is difficult to compute explicitly; in rather special
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Fig. 4 The coupled spin-oscillator example. The middle figure shows the image of the initial moment map

F = (J,H). Its boundary is the parameterized curve (j (s) = s2−3
2s

, h(s) = ± s2−1
2s3/2 ), s ∈ [1,∞). The image

is the connected component of the origin. The system is a simple semitoric system with one focus-focus
point whose image is (1,0). The invariants are depicted on the right hand-side. Since mf = 1, the class of
generalized polygons for this system consists of two polygons

cases the first terms of the Taylor series invariant can be made explicit (see [7] for a similar
computation at a hyperbolic-hyperbolic singularity).

As shown in Fig. 4, a representative of the semitoric polygon invariant is a polygon in R
2

with exactly two vertices at (−1,0) and (1,0), and from these two points leave straight lines
with slope 1 (the other possible polygon representative has vertices at (−1,0) and (1,2)).
One finds this polygon simply by combining the information about the isotropy weights
at the left corner of the polygon (an elliptic-elliptic critical value) [26, Proposition 6.1],
together with the formula given in [26, Theorem 5.3], in which the relation between isotropy
weights and the slopes of the edges of the polygon is described using the Duistermaat-
Heckman function.

Finally, the height of the focus-focus point of the system in the polygon is equal to
half of the Liouville volume of the submanifold of M given by the equation J = 1. This
is because the functions H and J are symmetric about the J -axis of R

2 in the sense
that J (x, y, z,u, v) = J (x, y, z,−u,−v) and H(x,y, z,u, v) = −H(x,y, z,−u,−v). Here
there is no need to compute anything because the volume of the submanifold given by J = 1
in M is just the length of the vertical slice of the polygon at J = 1, which is 2, and hence
the height of the focus-focus point of the system is h1 = 1, and the image of the focus-focus
point in the polygon is (1,1).

Remark 6.2 If one forgets about the function H , a semitoric system is simply called a
Hamiltonian S1-manifold. Moreover, a semitoric isomorphism is in particular an isomor-
phism of Hamiltonian S1-manifolds. In the compact case, Hamiltonian S1-manifolds have
been classified by Karshon [14]. From the view point of integrable systems, however, one
is more interested in the additional Hamiltonian H rather than in the S1-manifold itself. In
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fact, using Karshon’s classification would imply losing track of one of integrable systems’
arguably most important structure, the integral affine structure of the image of F . This is
why Karshon’s results are not used in this article. It would be nevertheless interesting to
understand how the labelled graphs she uses can be obtained from our labelled polygons. In
this process, obviously, we expect to lose much of the information about focus-focus singu-
larities. For instance, the same simple Hamiltonian S1 action on S2 × S2 can be either toric
or truly semitoric, as in the example above.

7 Proof of main theorem

The left-to-right implication follows from putting together Lemmas 3.2, 3.5, 4.6, 5.3
and 5.10. The proof of the right-to-left implication breaks into three steps. Let F1 = (J1,H1)

and let F2 = (J2,H2).

• First, we reduce to a case where the images F1(M1) and F2(M2) are equal.
• Second, we prove that this common image can be covered by open sets �α , above each

of which F1 and F2 are symplectically interwined.
• The last step is to glue together these local symplectomorphisms, in this way constructing

a global symplectomorphism φ : M1 → M2 such that F1 = F2 ◦ φ.

Step 1: first reduction The goal of this step is to reduce to a particular case where the im-
ages F1(M1) and F2(M2) are equal (see Fig. 5). For simplicity we assume that the invariants
of F1 are indexed as in Definition 6.1 with an additional upper index 1, and similarly for F2.

Because both systems have the same invariants (i), (iii) and (v), we may choose
a weighted polygon labelled by the twisting indexes (�weight, (ki)

mf

i=1), where �weight =
(�, (�j )

mf

j=1, (εj )
mf

j=1), and which is inside of the (W Polyg(R2) × Z
m1

f )/(Gm1
f

× G) =
(W Polyg(R2) × Z

m2
f )/(Gm2

f
× G)-orbit of weighted polygons labelled by twisting indexes:

(Gm1
f

× G) �
(
�1

weight, (k
1
i )

m1
f

i=1

) = (Gm2
f

× G) �
(
�2

weight, (k
2
i )

m2
f

i=1

)
, (7.1)

where we are writing �i
weight = (�i, (�i

j )
mi

f

j=1, (ε
i
j )

mi
f

j=1), for i ∈ {1,2}.

Fig. 5 In Step 1 we prove that
we can assume that the
“momentum” images F1(M1)

and F2(M2) are equal to the
same curved polygon B . To
emphasize this we index the axes
as J and H without lower indices



Semitoric integrable systems on symplectic 4-manifolds 589

Let μ1,μ2 respectively be associated toric momentum maps to F1 and F2 for the polygon
� in Theorem 4.2 and Definition 4.3. There are homeomorphisms g1, g2 : � → � such that

F1 = g1 ◦ μ1, F2 = g2 ◦ μ2.

Consider the map h := g1 ◦ g−1
2 . We wish to replace F2 by F̃2 = h ◦ F2. Then, obviously,

Image(F̃2) = g1(�) = Image(F1).

In order for F̃2 to define a semi-toric completely integrable system isomorphic to F2, we
need to prove that h(x, y) = (x, f (x, y)) for some smooth function f . In fact, it follows
from Theorem 4.2 that h has this form, but for some f which is a priori not smooth. The
crucial point here is to show that, because F1 and F2 have the same invariants, h is in fact
smooth.

Claim 7.1 The map h extends to an S1-equivariant diffeomorphism of a neighborhood of
F2(M2) into a neighborhood of F1(M1).

The map h is a already a homeomorphism. We need to show that it is a local diffeomorphism
everywhere. Let us denote by c

j

i for j ∈ {1,2} and i ∈ {1, . . . ,mf } the focus-focus critical
values of Fj . Again we let (e1, e2) be the canonical basis of R

2 and let �
j

i ⊂ R
2 be the

vertical half-line starting at c
j

i and pointing in the direction of εj e2.
Since the tuple of heights of the focus-focus points given by invariant (iv) are the same

for both systems, g−1
1 (c1

j ) = g−1
2 (c2

j ) and g−1
1 (�1

i ) = g−1
2 (�2

i ). Hence h is smooth away from
the union of all �2

i , i ∈ {1, . . . ,mf }.
Let us now fix some i ∈ {1, . . . ,mf } and let Ũz be a small ball around a point z ∈ �2

i \{c2
i }.

For simplifying notations, we shall drop the various subscripts i. Recall that Ũz inherits from
F2(M2) an integral-affine structure. Let ϕz : Uz → Ũz be an oriented affine chart, with Uz a
neighborhood of the origin in R

2, sending the vertical axis to �2. In order to show that h is
smooth on Ũz, we consider the two halves of the ball Ũz:

Ũ+
z = Ũz ∩ {x ≥ xc} and Ũ−

z = Ũz ∩ {x ≤ xc},
where xc is the abscissa of c2. Of course, the restrictions of ϕz to each half Uz ∩ {x ≥ 0}
and Uz ∩ {x ≤ 0} are admissible affine charts for Ũ+

z and Ũ−
z , respectively. Let us call these

restrictions ϕ±
z . Let y = h(z), Ṽy = h(Ũz) and Ṽ ±

y = h(Ũ±
z ). Using the natural integral-

affine structure on F1(M1), we can similarly introduce an affine chart ψy for Ṽy and the
corresponding restrictions ψ±

y . We are now going to use the following facts:

1. On each half Ũ+
z and Ũ−

z , h is an integral-affine isomorphism: Ũ±
z → Ṽ ±

y .
2. The differential dh is continuous on Ũ .

The first fact implies, by definition, that the map

ν± := (ψ±
y )−1 ◦ h ◦ ϕ±

z ,

wherever defined, is of the form A±(·) + b±, for some matrix A± ∈ GL(2,Z) and some
constant b± ∈ R

2. Evaluating the differentials at the origin, we immediately deduce from the
second fact that A+ = A−. So, ν± should be just a translation. But h itself being continuous
on the line segment �2, we must have b+ = b−. It follows that, on Ũz, h is equal to ψy ◦ L ◦
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ϕ−1
z , where L is the affine transformation A+(·) + b+ = A−(·) + b−. So h is indeed smooth

on Ũz.
We have left to show that h is smooth at a focus-focus critical value c2. The fact

that we are assuming that invariant (ii) is the same for both systems means that the cor-
responding symplectic invariants power series (S)∞ are the same for both systems im-
plies, by the semi-global result of Vũ Ngo.c [25, Theorem 2.1], that there exist a neigh-
borhood V (c1) of c1, a neighborhood V (c2) of c2, a semi-global symplectomorphism
ϕ : F−1

1 (V (c1))) → F−1
2 (V (c2)) and a local diffeomorphism g : V (c2) → V (c1) such that

F1 = g ◦ F2 ◦ ϕ. Now, from Lemma 5.6 we know that there exists a privileged toric mo-
mentum map, cf. Definition 5.7, for each system above the domain V (cj ) \ �j , j ∈ {1,2},
cf. Definition 5.7. We denote by ν1 this momentum map for the system induced by F1, and
ν2 for the system induced by F2. Since ν1 and ν2 are semi-global symplectic invariants, one
has ν1 = ν2 ◦ ϕ.

By (7.1) the focus-focus critical values c1 of the semitoric systems F1 and c2 of F2 have
the same twisting-index invariant k with respect to the common polygon �. In view of the
characterization of expression (5.9), we get

μ1 = T kν1 and μ2 = T kν2, (7.2)

and therefore

μ1 = μ2 ◦ ϕ.

Thus we can write g−1
1 F1 = g−1

2 F2 ◦ ϕ, or

F1 = h ◦ g−1 ◦ F1.

Using that F1 is a submersion on a neighborhood of any regular torus, and the fact that
h ◦ g−1 is smooth at the corresponding regular values of F1, we get that

h ◦ g−1 = Id on V (c1). (7.3)

By continuity, this also holds at c1. Hence h = g is smooth at c2, which proves the claim.

Step 2: Local symplectomorphisms From step 1 we can assume that

F1 = g1 ◦ μ1, F2 = g1 ◦ μ2 (7.4)

and hence F1(M1) = F2(M2). In this second step we prove that this common image can be
covered by open sets �α , above each of which F1 and F2 are symplectically interwined.

Claim 7.2 There exists a locally finite open cover (�α)α∈A of F1(M1) = F2(M2) such that

1. all �α , α ∈ A are simply connected, and all intersections are simply connected;
2. for each α ∈ A, �α contains at most one critical value of rank 0 of Fi , for any i ∈ {1,2};
3. for each α ∈ A, there exists a symplectomorphism ϕα : F−1

1 (�α) → F−1
2 (�α) such that

F1 = F2 ◦ ϕα on F−1
1 (�α).

We prove this claim next. Recall that the toric momentum maps μ1 and μ2 have by
hypothesis the same image, which is the polygon �. We can define an open cover �̃α of �

with open balls, satisfying points (1) and (2). When the ball �̃α contains critical value of
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rank 0, we may assume that this critical value is located at its center. Similarly, when a ball
contains critical values of rank 1, we may assume that the set of rank 1 critical values in this
ball is a diameter. Then we just define

�α = g1(�̃α).

Notice that in doing so we ensure that the number and type of critical values of Fi in �α are
the same for i = 1 and i = 2. For proving point (3) we distinguish four cases:

(a) �i,α contains no critical point of Fi ;
(b) �i,α contains critical points of rank 1, but not of rank 0;
(c) �i,α contains a rank 0 critical point, of elliptic-elliptic type;
(d) �i,α contains a rank 0 critical point, of focus-focus type.

The reasoning for all cases follows the same lines, but we keep these cases separated for the
sake of clarity.

Case (a) Let us fix a point cα ∈ �α . By Liouville-Mineur-Arnold theorem [5], applied for
each momentum map Fi over the simply connected open set �α , there exists a symplecto-
morphism ϕ̃i,α : F−1

i (�α) → T∗
T

2 and a local diffeomorphism hi : (R2,0) → (R2, cα) such
that

Fi = hi(ξ1, ξ2) ◦ ϕ̃i,α.

Here we use the notation (x1, x2, ξ1, ξ2) for canonical coordinates in T∗
T

2, where the zero
section is given by {ξ1 = ξ2 = 0}.

In fact because of (7.4), μi = g−1
1 hi(ξ1, ξ2) ◦ ϕ̃i,α . Since both μi and (ξ1, ξ2) are toric

momentum map, this implies that g−1
1 hi is an affine map with a linear part Bi ∈ GL(2,Z).

Now we can define a linear symplectomorphism in a block-diagonal way

Si =
(

tBi 0
0 B−1

i .

)

Obviously (ξ1, ξ2) ◦ Si = B−1
i ◦ (ξ1, ξ2). From now on we replace ϕ̃i,α by Si ◦ ϕ̃i,α , which

reduces us to the case Bi = Id.
Now, let ϕα := ϕ̃−1

2,α ◦ ϕ̃1,α . We have the relation

F1 = (h1h
−1
2 ) ◦ F2 ◦ ϕ̃−1

2,α ◦ ϕ̃1,α = g1(g
−1
1 h1)(g

−1
1 h2)

−1g−1
1 ◦ ϕα.

The affine diffeomorphism (g−1
1 h1)(g

−1
1 h2)

−1 is tangent to the identity and fixes the point cα ;
hence it is the identity, and we obtain, as required:

F1 = F2 ◦ ϕα, on F−1
1 (�α).

Case (b) Above �α , the momentum map has singularities, so we cannot apply the action-
angle theorem. However, there is still a T

2-action, and it is well known that an “action-angle
with elliptic singularities” theorem holds (see [4] or [20]). Precisely, we fix a point cα ∈ �α

that is a critical value of F1 and F2, and then for each i ∈ {1,2}, there exists a symplectomor-
phism ϕ̃i,α : F−1

i (�α) → T∗
R × T∗

T
1 and a local, orientation preserving diffeomorphism

hi : (R2,0) → (R2, cα) such that

Fi = hi(q1, ξ2) ◦ ϕ̃i,α.
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Here T∗
R has canonical coordinates (x1, ξ1), q1 = (x2

1 + ξ 2
1 )/2, and T∗

T
1 has canonical

coordinates (x2, ξ2). As before, one has

μi = g−1
1 hi(q1, ξ2) ◦ ϕ̃i,α,

and g−1
1 hi is an affine map with a linear part in SL(2,Z).

Since hi must preserve the set of critical values, it must send the vertical axis
“q1 = 0” ⊂ R

2 to the set of critical values in �α . Hence g−1
1 hi sends the vertical axis to

the corresponding diameter in �̃α . Moreover, since by hypothesis the images of μ1 and μ2

are the same, the set “q1 > 0” corresponds via g−1
1 h1 and g−1

1 h2 to the same half of the
ball �̃α . In other words, the vector e2 = (0,1) is an eigenvector for the linear part B of
(g−1

1 h1)
−1g−1

1 h2, with eigenvalue 1.
Therefore, B is of the form

( 1 0
k 1

)
, for some integer k ∈ Z. Now, consider the map

S(x1, x2, ξ1, ξ2) = (x ′
1, x

′
2, ξ

′
1, ξ

′
2) given by

⎧⎪⎪⎨
⎪⎪⎩

(x ′
1 + iξ ′

1) = eikx2(x1 + iξ1),

x ′
2 = x2,

ξ ′
2 = ξ2 + kq1.

(7.5)

In complex coordinates,

dξ1 ∧ dx1 = 1

2i
dz1 ∧ dz̄1,

so it is easy to check that S is symplectic. Moreover,

(q1, ξ2) ◦ S =
(

1 0
k 1

)
(q1, ξ2) = B(q1, ξ2).

We can write

F1 = h1B
−1(q1, ξ2) ◦ S ◦ ϕ̃1,α,

and hence, letting ϕα := ϕ̃−1
2,α ◦ S ◦ ϕ̃α ,

F1 = (h1B
−1h−1

2 ) ◦ F2 ◦ ϕα.

Consider the affine map (g−1
1 h1)

−1g−1
1 h2B

−1. Its linear part is the identity, and it fixed
the origin; thus it is the identity. This implies that h1B

−1h−1
2 = Id.

Case (c) Using Eliasson’s local normal form for elliptic-elliptic singularities [8, 9], we
have the existence of a symplectomorphism ϕ̃α and a local diffeomorphism h such that

F1 = h ◦ F2 ◦ ϕ̃α.

Again, because of (7.4), μ2 = g−1
1 hg1 ◦μ1 ◦ ϕ̃α , and g−1

1 hg1 ∈ GL(2,Z). But since the image
of μ1 and the image of μ2 are the same, then g−1

1 hg1 must send the corner of the polygon to
itself. Since it is a Delzant corner, g−1

1 hg1 must be the identity.
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Case (d) From (7.4), the momentum maps F1 and F2 have the same focus-focus critical
values c1, . . . , cmf

. We wish here to interwine both systems above a small neighborhood of
each ci . In order to ease notations, let us drop the subscript i, as the construction can be
repeated for each focus-focus point.

The behaviour of the system in a neighborhood of c is given by Vũ Ngo.c’s theorem,
which we already used for the proof of Claim 7.1. Precisely [26, Theorem 2.1] gives the
existence of a neighborhood V (c) of c together with an equivariant symplectomorphism

ψ : F −1
1 (V (c)) → F−1

2 (V (c)) (7.6)

and a diffeomorphism g such that

F1 = g ◦ F2 ◦ ψ. (7.7)

Now, we may argue exactly as in (7.2)–(7.3), keeping in mind that we are now in the case
where h = Id. Hence g also must be the identity map.

This concludes the proof of Claim 7.2 and hence Step 2.

Step 3: local to global In this last step is to glue together the local symplectomorphisms of
Step 2, thus constructing a global symplectomorphism φ : M1 → M2 such that F1 = F2 ◦ φ.
For technical reasons, we introduce a slightly smaller open cover that (�α)α∈A.

Claim 7.3 There exists an open cover (�′
α)α∈A of F1(M1) = F2(M2) such that

(i) �′
α � �α ;

(ii) (�′
α)α∈A satisfies the properties of Claim 7.2, i.e. if we replace �α by �′

α therein,
Claim 7.2 holds;

(iii) If α,β ∈ A are such that �′
α ∩ �′

β �= ∅, there exists a smooth symplectomorphism:

ϕ(α,β) : F−1
1 (�′

α ∪ �′
β) → F−1

2 (�′
α ∪ �′

β)

such that
1. (ϕ(α,β))|F−1(�′

α) = ϕα ;

2. F1 = ϕ∗
(α,β)F2 on F−1

1 (�′
α ∪ �′

β).

The proof of this claim uses the Hamiltonian structure of the group of symplectomor-
phisms preserving homogeneous momentum maps, which we state below. It is due to
Miranda-Zung [20].

First we introduce some notation. Let h1, . . . , hn be n Poisson-commuting functions:
R

2n → R. Suppose that ψ : (R2n,0) → (R2n,0) is a local symplectomorphism of R
2n which

preserves the smooth map h = (h1, . . . , hn).
Let Sympl(R2n) be the group of symplectomorphisms of R

2n. Consider the set

� := {φ ∈ Sympl(R2n)|φ(0) = 0, h ◦ φ = h},
and let �0 stand for the path-connected component of the identity of �. Let g be the Lie
algebra of germs of Hamiltonian vector fields tangent to the fibration F given by h.

Let exp : g → �0 be the exponential mapping determined by the time-1 flow of a vector
field X ∈ g. More precisely, the time-s flow φs

X of X preserves h because X is tangent to F ,
and it preserves the symplectic form because X is a Hamiltonian vector field. The mapping
φs

X fixes the origin because X vanishes there. Hence φs
XG

is contained in �0 ⊂ � since φ0
X is

the identity map.
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Claim 7.4 Suppose that each hi is a homogeneous function, meaning that for each i ∈
{1, . . . , n} there exists an integer ki ≥ 0 such that hi(tx) = tki hi(x) for all x ∈ R

n. Then:

1. The linear part ψ(1) of ψ is a symplectomorphism which preserves h.
2. There is a vector field contained in g such that its time-1 map is ψ(1) ◦ ψ−1. Moreover,

for each vector field X fulfilling this condition there is a unique local smooth function
� : (R2n,0) → R vanishing at 0 such that X = X� .

Although not explicitely written in [20], the proof of this claim is a minor extension of
the case treated therein, where all hi are quadratic functions. For completeness, we have
included a proof as an appendix.

We turn now to the proof of Claim 7.3. Because of Claim 7.2, there cannot be a critical
value of F1 of rank zero in the intersection �α ∩�β . Hence we have two cases to consider:

(1) the intersection contains no critical value;
(2) the intersection contains critical values of rank one.

Case (1) Let ϕαβ = ϕαϕ
−1
β . It is well defined as a symplectomorphism of Mαβ :=

F−1
2 (�α ∩�β) into itself. Moreover, F ∗

2 ϕαβ = F2. Since F2 is regular on Mαβ (and �α ∩�β

is simply connected), one can invoke the Liouville-Mineur-Arnold theorem [5] and assume
that Mαβ = T

n × D, with corresponding angle-action coordinates (x, ξ), where D is some
simply connected open subset of R

n, in such a way that F2 depends only the ξ variables.
The symplectomorphism ϕαβ preserves the linear momentum map ξ = (ξ1, ξ2), so we

may apply Claim 7.4 and obtain a smooth function hαβ on �α ∩ �β such that ϕαβ is the
time-1 Hamiltonian flow of hαβ ◦ F2. Let χ be a smooth function on �α ∪ �β vanishing
outside �α ∩ �β and identically equal to 1 in �′

α ∩ �′
β . Thus we may construct a smooth

function h̃αβ = χhαβ on �α ∪ �β whose restriction to a slightly smaller open set �′
α ∩ �′

β

is precisely hαβ , where �′
α � �α and �′

β � �β are chosen precisely so that this condition is

satisfied. Let ϕ̃αβ be the time-1 Hamiltonian flow of h̃αβ ◦F2. It is defined on F−1
2 (�α ∪�β),

and equal to ϕαβ on F−1
2 (�′

α ∩ �′
β).

Now consider the map ψ defined on F−1
1 (�′

α ∪ �′
β) by

ψ(m) =
{

ϕα(m) if m ∈ F−1
1 (�′

α),

ϕ̃αβ ◦ ϕβ(m) if m ∈ F−1
1 (�′

β).

It is well-defined because on F−1
1 (�′

α ∩ �′
β) one has

ϕ̃αβ ◦ ϕβ(m) = ϕαβ ◦ ϕβ(m) = ϕα(m).

Then ψ is a smooth symplectomorphism: F−1
1 (�′

α ∪�′
β) → F−1

2 (�′
α ∪�′

β). Moreover, since
F2 = ϕ̃∗

αβF2, one has F1 = ψ∗F2. Thus, in this case, we may let ϕ(α,β) = ψ .

Case (2) Again we let ϕαβ = ϕαϕ
−1
β , a symplectomorphism of Mαβ := F−1

2 (�α ∩�β) into
itself, such that F2 ◦ ϕαβ = F2.

By Miranda-Zung’s result [20, Theorem 2.1] (or Dufour-Molino [4] or Eliasson [8, 9]),
the foliation above �α ∩ �β is symplectomorphic to the linear model (q1, ξ2) on T∗

R ×
T∗

T
1, with

q1(x1, ξ1, x2, ξ2) = x2
1 + ξ 2

1 .
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This means that there exists a symplectomorphism χ : Mαβ → T∗
R × T∗

T
1 and a diffeo-

morphism h of χ(�α ∩ �β) such that

F2 ◦ χ−1 = h(q1, ξ2).

Hence we find that

h(q1, ξ2) ◦ χ = h(q1, ξ2) ◦ χ ◦ ϕαβ.

By Claim 7.4, there exists a smooth function ĥαβ = ĥαβ(q1, ξ2) whose Hamiltonian flow
connects ˆϕαβ := χ ◦ ϕαβ ◦ χ−1 to its linear part of at the origin. Now, it is easy to see that
any linear symplectomorphism preserving the moment map (q1, ξ2) is the time-1 flow of
some linear function qαβ(q1, ξ2). Since any two functions of (q1, ξ2) commute, the time-1
Hamiltonian flow of the half sum (ĥαβ + qαβ)/2 ◦ (q1, ξ2) is precisely ˆϕαβ . By naturality, the
time-1 Hamiltonian flow of

hαβ ◦ F2 = (ĥαβ + qαβ)/2 ◦ (q1, ξ2) ◦ χ,

defined on �α ∩ �β , is precisely ϕαβ . We now conclude as in case a).

Conclusion It follows from Claim 7.2 and the second point of Claim 7.3 that for any finite
subset A′ ⊂ A, there exists a symplectomorphism φA′ : F−1

1 (�A′) → F−1
2 (�A′), where

�A′ :=
⋃
α∈A′

�′
α,

such that

F1 = F2 ◦ φA′ .

Moreover, from the first point of Claim 7.3 we see that of A′′ ⊂ A is another finite subset
containing A′, then one can choose φA′′ such that (φA′′)|�A′ = φA′ .

Let (An)n∈N be an increasing sequence of finite subsets of A whose union is A. The
projective limit of the corresponding sequence (φAn) is a symplectomorphism φ : M1 → M2

such that F1 = F2 ◦ φ, which finally proves the theorem.

8 Proof of Miranda-Zung’s lemma for homogeneous maps (Claim 7.4)

Let φ ∈ �. Let gt ∈ C∞(R2n) the expansion mapping gt (x1, . . . , x2n) = t (x1, . . . , x2n) for
each t ∈ R. Consider the deformation given by the family {Sψ

t (x)}t∈[0,2) defined by

S
ψ
t (x) =

{
1/t (ψ ◦ gt )(x) t ∈ (0,2],
ψ(1)(x) t = 0.

(8.1)

This deformation is usually called “Alexander’s trick” and it is well-known to be
smooth [13]. We have to check that the deformation takes place inside of �, which amounts
to checking that h ◦ S

ψ
t = h for all t ∈ [0,2], and that it is symplectic, i.e. (S

ψ
t )∗ω = ω for

all t ∈ [0,2].
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In order to check this, let us assume that t �= 0 in what follows. Indeed, we have that1

hi ◦ 1

t
(ψ ◦ gt )(x) =

(
1

t

)ki

hi(ψ ◦ gt )(x) = 1

tki
hi(gt (x)) = 1

tki
hi(tx) = 1

tki
t ki hi(x), (8.2)

where in the first equality we have used that hi is homogeneous of degree ki , in the second
that ψ ∈ � and hence hi ◦ψ = h, and in the fourth again that hi is homogeneous of degree ki .

On the other hand, g∗
t ω = t2ω since ω is a 2-form, and therefore

(S
ψ
t )∗ω = 1/t (ψ ◦ gt )

∗ω = ω. (8.3)

It follows from (8.2) and (8.3) that S
ψ
t ∈ � for all t ∈ (0,2]. Because the definition given by

{Sψ
t }t∈(0,2] is smooth, S

ψ

0 ∈ �, and in particular ψ(1) ∈ �, which proves (1).
Let �0 be the path-connected component of the identity of �. To conclude the proof it

suffices to show that ψ(1) ◦ψ−1 ∈ �0, because once we know this (2) will follow from Theo-
rem 3.2 in Miranda-Zung2 [20]: The exponential exp : g −→ �0 is a surjective group homo-
morphism, and moreover there is an explicit right inverse given by φ ∈ �0 �−→ ∫ 1

0 Xtdt ∈ g

where Xt ∈ g is defined by Xt(Rt ) = dRt

dt
for any C1 path Rt contained in �0 connecting the

identity to φ.
As in Miranda-Zung’s proof for the case that h is quadratic homogeneous, we take Rt =

ψ(1) ◦S
(ψ−1)
t , t ∈ [0,1]. The path {Rt }t∈[0,1] ⊂ �0 connects the identity to ψ(1) ◦S

ψ−1

t . Hence
by the result above there exists a vector field X whose time-1 map is ψ(1) ◦ψ−1 and a unique
Hamiltonian mapping � which vanishes at the origin such that X = X� , and (2) follows.
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25. Vũ Ngo. c, S.: On semi-global invariants for focus-focus singularities. Topology 42(2), 365–380 (2003)
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