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Abstract 
Background: Splicing is an important for regulation of gene expression in eukaryotes, and it has 

important functional links to other steps of gene expression. Two examples of these linkages 

include Ceg1, a component of the mRNA capping enzyme, and the chromatin elongation factors 

Spt4-5, both of which have recently been shown to play a role in the normal splicing of several 

genes in the yeast, S. cerevisiae.  

Principal Findings: Using a genomic approach to characterize the roles of Spt4-5 in splicing, we 

extended our observations of splicing defects in ceg1, spt4 and spt5 mutants to the entire 

collection of intron-containing genes, employing splicing-sensitive DNA microarrays. In the 

context of the complex experiment design, highlighted by 22 dye-swap array hybridizations 

comprised of both biological and technical replications, we applied four ANOVA mixed models 

and a semiparametric hierarchical mixture model. To refine selection of differentially expressed 

genes whose normal splicing depends on Ceg1 or Spt4-5, we used a more robust model-

synthesizing statistic, Differential Expression via Distance Synthesis (DEDS), to integrate all five 

models.   We further analyzed the list of differentially expressed genes and found that highly 

transcribed genes with long introns were most sensitive to the spt mutations. 

Conclusions: In this paper, we showcased splicing array technology and developed 

methodologies for their analysis in the context of a real, complex experimental design. Our result 

suggests that the Spt4-Spt5 complex may help coordinate splicing with transcription under 

conditions that present kinetic challenges to spliceosome assembly or function. 

 

Introduction 
Eukaryotic genes are fragmented into exons by intervening sequences (introns). After a gene is 

transcribed into pre-mRNA, the introns are removed from the transcript and the exons are joined 

by the spliceosome. This reaction, splicing, can also be used to create multiple transcripts from a 

single gene. For example, a particular exon may be included in one version of an mRNA, and 

skipped in another. This process of alternative splicing is subject to regulation in response to 

tissue, developmental and environmental cues [1]. In humans, most genes are subject to splicing 

and more than half are likely subject to alternative splicing, which is credited as the most 

important source for the extraordinary enrichment in complexity of the human proteome relative 

to the genome [1].  Accurate splicing is crucial for normal protein function; aberrant transcripts 
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due to splicing mutations are known causes for 15% of genetic diseases [1]. Therefore, 

elucidation of splicing mechanisms will not only help us understand the operating mechanisms 

underneath the functional complexity and diversity of higher eukaryotes, but also aid in new 

therapeutic strategies for treatments in splicing-related genetic disorders. 

 

Although the different steps of gene expression are typically studied in isolation, it is clear that 

there are important functional links between them [2, 3].  For example, the process of capping the 

5’ end of pre-mRNAs is thought to influence both transcription and splicing [4, 5]. Furthermore, 

the rate of transcription elongation appears to influence splicing and alternative splice site choice 

[6, 7].  In addition, a number of pre-mRNA processing factors are recruited to transcripts via 

interaction with RNA polymerase II [2, 3]. Thus, a comprehensive understanding of mRNA 

synthesis will require an understanding between these functional linkages of steps in gene 

expression. 

 

We have recently found evidence that the chromatin elongation factors, Spt4 and Spt5, play a role 

in RNA processing in the yeast, S. cerevisiae. Spt4 and Spt5 form a complex that regulates 

transcription elongation by RNA polymerase II. This complex is conserved across eukaryotes and 

has been proposed to both facilitate transcription by removing a nucleosomal barrier to transcript 

elongation and also suppress inappropriate transcription by reassembling nucleosomes behind 

transcribing polymerase [8]. The recent finding that Spt5 interacts physically and genetically with 

pre-mRNA capping factors suggests a role for Spt4-Spt5 in capping [9-12]. Because pre-mRNA 

capping is thought to increase the efficiency of splicing, we further analyzed splicing in spt4 and 

spt5 mutants and found that several genes were not spliced with normal efficiency [9].  Thus, the 

function of Spt4-Spt5 is linked to the processing of at least several mRNAs.  

 

Traditionally, splicing is studied on an individual gene basis by ad hoc experiments. With the 

advent of eukaryotic genomic sequences, a global genomic view of splicing is rendered 

achievable and will provide an unprecedented amount of information regarding the mechanisms 

and regulation of splicing [13].  S. cerevisiae, a simple yeast that has been used as a model to 

study eukaryotic gene expression, presents a convincing entry point to embark on this task. The 

yeast genome is completely sequenced and well annotated, and the splicing machinery of yeast is 

well conserved with that of humans.  Among the more than ~5,800 genes in the yeast genome, 

only about 250 of them possess introns and only a handful have multiple introns or are 

alternatively spliced [14].  However, these 250 intronic genes give rise to 27% of the transcripts 
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synthesized by the cell, an indication of the importance of splicing in yeast [15, 16].  Clark et al. 

[17] have recently designed a DNA microarray for analysis of splicing in yeast. To discriminate 

between spliced and unspliced transcripts, oligonucleotide probes on these arrays were designed 

to detect the splice junctions, introns and second exons of intron containing genes (Figure 1A). 

Splice junctions are found only in spliced transcripts whereas introns exist only in unspliced 

transcripts and splicing intermediates. Second exons are present in both spliced and unspliced 

transcripts and are good indicators of total transcript level.  To detect these different classes of 

transcripts, the arrays were competitively hybridized with probes derived from control and 

experimental yeast strains. 

 

Here we have extended our observations of splicing defects in spt4 and spt5 mutants to the entire 

collection of intron-containing genes, using these splicing-sensitive DNA microarrays [17]. As 

the goal of this study is to identify genes whose normal splicing depends on Spt4 or Spt5, the 

primary statistical task for this study is to select a set of genes that have altered expression as 

reported by the splice junction and intron probes. There is no lack of methodologies to tackle this 

so-called differential expression (DE) problem and we next give a brief summary of such 

methods. Fold change has been applied extensively to yield lists of genes that have altered 

expression under a certain threshold. Despite its methodological simplicity and intuitive appeal, 

the fold change method lacks a statistical framework (there is no accommodation of expression 

variation) and is biased toward selecting genes at low expression levels. Another class of 

frequently used methods treats the task of comparing expression levels in different biological 

states as a univariate testing problem, employing various corrections for test multiplicity [18]. 

Kerr et al. [19] propose using traditional analysis of variance (ANOVA) since these readily 

handle known sources of variation due to, for example, dye labeling, and sample or array 

replicates. By removing these effects from the estimation of the random error term, we achieve a 

reduction in this term and correspondingly sharper inferences. Wolfinger et al. [20] extends the 

ANOVA framework by treating some factors, for example, dyes and arrays, as random 

representatives of a large population (i.e. as random effects) resulting in a mixed model. There are 

several Bayesian alternatives to the above approaches [21-24] as well as some intermediary 

approaches that yield regularized t statistics [25, 26].  

 

Our study employs a complex experiment design, featuring 22 dye-swap array hybridizations 

comprised of both biological and technical replications; see details in the next section. As 

elaborated in the next section, we initially analyzed these data with four ANOVA mixed models 
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and the semiparametric hierarchical mixture model (SHMM) of Newton et al. [27].  Instead of 

arbitrating between these models and picking a single model on which to base differential 

expression declarations, we exploit the fact the all five models attempt to estimate differential 

expression and employ a novel synthesizing scheme [28], Differential Expression via Distance 

Synthesis (DEDS), to derive a list of differentially expressed genes in spt mutants. This method 

compares favorably with the best individual statistics, while enjoying robustness properties 

lacked by the individual statistics[28]. Further analysis of such genes, whose splicing is altered in 

spt mutants, reveals common biochemical characteristics and attributes, which may provide new 

insights into the mechanisms of RNA processing and its connections to transcription.  

 

Results 

Experimental design and data preprocessing 
In yeast, SPT4 is a nonessential gene encoding a 102 amino-acid protein and spt4∆ (null) mutants 

display mutant phenotypes and genetic interactions consistent with an elongation defect [8]. SPT5 

encodes a large protein, and spt5 mutations typically display mutant phenotypes and genetic 

interactions similar to those observed for spt4 mutations, although they are often phenotypically 

more severe, consistent with the fact that SPT5 is essential for life [8]. In this work, we have 

analyzed an spt4 null mutation, and three partial loss-of-function mutations in SPT5. Two of 

these, spt5-4 and spt5-194, encode versions of Spt5 that are defective for binding Spt4 (G.A.H., 

Jena Yamada and Thea Egelhofer, unpublished).  The third allele, spt5-242, causes a cold-

sensitive growth defect [29], and displays splicing and other defects at all temperatures (G.A.H 

and T.B., unpublished; [9]).  The Spt5-242 protein still binds Spt4, even at the non-permissive 

temperature (G.A.H., Jena Yamada and Thea Egelhofer, unpublished data).  In addition, we 

include analysis of ceg1-250, a temperature-sensitive mutation that causes rapid inactivation of 

the capping enzyme at the non-permissive temperature [5]. 

 

Two independent mRNA samples were prepared from each mutant, fluorescently labeled and 

then hybridized to the splicing arrays competitively with a probe derived from wild-type cells. 

Experiments were performed using a replicated dye-swap study design (Figure 2a) [30]. Briefly, 

there were four arrays (A1-A4) for each mutant vs. wild-type experiment. The first mRNA 

sample was  hybridized to arrays A1 and A2  (Figure 2b) and the second was  hybridized to A3 

and A4. In A1 and A3,  the mutant mRNA sample was labeled with Cy5 dye, and the wild-type 

sample was labeled with Cy3. The dye assignment was reversed for arrays A2 and A4.  In 
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addition to these twenty mutant arrays (4 arrays X 5 mutants), there were two separate wild-type 

self-hybridization experiments, in which the wild-type was labeled with both Cy5 and Cy3.  

These self-hybridizations serve as technical replicates, i.e. as controls for variation in labeling and 

hybridization. 

 

To provide a global view of splicing defects in the ceg and spt mutants, we plotted unnormalized 

log intensity values for signals from the two channels, mutant against wild-type, in Figure 3. 

Points represent individual array features are color coded so that exon, splice junction, intron and 

intronless gene features can be visually differentiated. Genes lying on the diagonal have a ratio 

close to 1, and their expression in the mutants is therefore largely unaffected. For ceg1-250, 

shown in the lower right panel, introns (light blue points) deviate noticeably from the diagonal 

toward the ceg1-250 axis. This is a clear indication of intron accumulation in the ceg1 mutant. 

Splice junctions (dark blue points) in ceg1-250, on the other hand, largely display ratios < 1, 

indicating a decrease in splice junction formation.  Taken together, an accumulation of introns 

and loss of splice junctions in ceg1-250 is indicative of a splicing defect.  Compared with ceg1-

250, the four spt mutants exhibit fewer alterations in splicing, with spt5-194 most severely 

affected, in agreement with its phenotypic characteristics. A control plot from the wild-type self-

hybridization is depicted in the upper left panel. As expected, no separation is observed in introns 

and splice junctions, and all points conform closely to the diagonal.  

 

Boxplots of normalized ratios of splicing related probes stratified by mutants are shown in Figure 

4. The general trend of the splice junction probe ratios shows a shift from the horizontal zero line 

in the negative direction signaling a decreased expression of splice junction in the mutants. The 

ceg1-250 mutant showed the largest decrease and spt5-194 was the most severely affected of the 

spt mutants. The boxplots of the exon probe ratios display a similar pattern of change—the 

expression of exon probes was also decreased in the mutants. This is consistent with the idea that 

the majority of the exon 2 probe signal for a transcript is derived from mRNA, which is stable 

and long-lived in comparison to pre-mRNA. It is of interest to investigate if the decrease of the 

splice junction probe and exon probe ratios is correlated. Figure 5 displays the scatter plots 

between ratios of these probes. The upper panel shows evident correlation between splice 

junction and exon ratios.  In contrast to the exons and splice junctions, ratios of the intron probes 

do not show any shift from the horizontal zero line but spread for the mutants is nonetheless 

increased. Furthermore, there is no obvious correlation between the intron and exon ratios. In 

both plots, however, the spread of the cloud of points is mutant dependent and related to the 
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severity of splicing defects.  From Figure 4, it is clear that several of the mutants tested, ceg1-

250, spt5-194 and spt5-242, cause strong decreases in exon and splice junction signals and more 

idiosyncratic, gene specific changes in intron signals. Do these changes reflect altered 

transcription, splicing, RNA decay, or a mixture of potential defects?  To focus on alterations of 

splicing efficiency independent of changes in transcription, we used the Intron Accumulation and 

Splice Junction indices of Clark et al. [17], which normalize ratios of intron and splice junction 

signals to the ratios measured for the second exon. The splice junction (SJ) index is the change of 

the splice junction probe signal normalized by the change of overall gene expression level as 

measured by the related exon probe signal: 
wtmut

wtmut
ExonExon

tionSpliceJunctionSpliceJunc
SJ log= . Similarly, 

the intron accumulation (IA) index is obtained as the normalized change of the intron probe 

signals: 
wtmut

wtmut
ExonExon
IntronIntron

IA log= .  Relating changes in the splice junction and intron signals to 

changes in the second exon takes into account changes in overall expression level that may occur 

as a result of alterations in other steps of gene expression. 

 

Differential Expression Models 
The experimental design of the splice mutant study motivated the use of four different mixed 

ANOVA models in addition to the SHMM (Table 1). These were separately applied to the two 

splicing indices. We briefly discuss the models below and the reader is referred to Appendix I for 

details in model specifics. 

 

ANOVA mixed models 

The experimental design for ceg1-250 and the four spt mutants is identical; we illustrate the set-

up using spt4∆ as an example. Two independent RNA samples were prepared from an spt4∆ and 

wild-type strain.  The spt4∆ and wild-type RNA samples were fluorescently labeled and 

competitively hybridized to two arrays with reversed order of labeling for the second 

hybridization to avoid labeling bias.  This yielded four indices (for each of SJ and IA—which we 

treat identically and separately) for the detection of splicing defects in spt4∆ for each gene.  A 

test, such as the one-sample t test, can be used to examine if the mean of the indices is equal to 

zero.  For each gene, acceptance of this hypothesis signals lack of evidence for DE, while 

rejection provides evidence for DE. Alternatively, if the two indices of wild-type vs. wild-type 

resulting from the two wild-type self hybridization slides are included, DE can be tested by 
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comparing the four spt4∆ indices to the two wild-type indices, using a two-sample test. We 

applied both the one-sample and two-sample approaches in the analysis of the splicing 

experiment. 

 

In addition to the above two approaches, distinguished by including wild-type self-hybridizations 

or not, we also considered another two approaches distinguished by allowing gene-specific 

variance heterogeneity or not. This latter case imposes the assumption that all genes exhibit a 

similar degree of variability and so can be jointly analyzed using a common estimate of error 

variance. As illustrated subsequently (see Table 2), this pooling dramatically increases error 

degrees of freedom (df). The former approach, on the other hand, does not impose the common 

variance assumption, allowing different variances for different genes. The resulting model is then 

fitted gene by gene.  

 

The above approaches, four in all—see Table 1 -- can be fitted by appropriately specified 

ANOVAs. Due to the nature of the experimental design (Figure 2b) -- array effect A is nested in 

sample effect S ( AS / ), and sample effect S is in turn nested in mutant effect V ( SV / ), we 

consider model terms involving S and A to be random. The remaining effects, including gene (G), 

mutant (V), and gene-mutant interactions (GV), are fixed effects. Therefore, the four models are 

mixed-effect ANOVA models; see Appendix I for model fitting details.  

 

SHMM model 

To complement the ANOVA approaches described above we also employed the SHMM 

advanced by Newton et al. [27]. This methodology was selected for several reasons. Firstly, the 

SHMM is nonparametric where there is sufficient information (lots of genes) and parametric 

where there is limited information (observations per gene), and this synthesis makes for an 

appropriately balanced strategy. Secondly, as is standard, our ANOVA approaches treat gene (G), 

mutant (V), and gene-mutant interactions (GV) as fixed effects. Thus, there is no information 

sharing between genes. The SHMM achieves such sharing and does so in a more principled and 

flexible manner than some of the ad hoc approaches proposed that yield regularized t-statistics 

[25, 31, 32].  Thirdly, the output posterior probabilities for (directional) DE have dual utilities: (i) 

ranking (genes), and (ii) calibration (providing false discovery rates (FDRs)).  Our interest is 

primarily in the former since, in the next section, we describe a method for combining several 

measures of DE and computing associated FDRs. The SHMM also has limitations, the foremost 

of which perhaps is the adequacy of the parametric assumptions.  The extent of such assumptions 
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has been appreciably relaxed compared to the preceding fully parametric treatment of 

Kendziorski et al. [24]. Importantly, diagnostic tools are provided for assumption checking.  

Other limitations are implementation related.  Estimation is very computationally intensive—

while this was not an issue for the splice data due to the small number of (intron containing) 

genes, we have encountered lengthy run times for more typically dimensioned array studies[28]. 

Additionally, the present implementation (available from 

ftp://ftp.biostat.wisc.edu/pub/newton/Arrays/tr1074/Rcode/ ) only supports two group 

comparisons.  Thus, there is some potential efficiency loss for the nested design employed in the 

splice study (Figure 2b). Details on the estimation methodology as well as extensive illustration 

of calibration, diagnostic, and performance aspects are provided in Newton et al. [27]. 

 

Comparisons of differential expression models 

Models with heteroscedastic errors accommodate gene-specific variances but typically, as here, 

replication is very limited and so the precision of the estimates is compromised. Models imposing 

homoscedastic errors yield precise estimates of the common error variance, and tests based on 

many df, since they permit combination over the large number of genes.  However, the 

homoscedasticity assumption is both strong and difficult to evaluate. Differences in error df for 

the different models are presented in Table 2. Note that there are more than 5000 df for error for 

the homoscedastic models and only about 20 df for the heteroscedastic models. 

 

We used results pertaining to SJ indices of the ceg1 mutant to illustrate relationships between the 

five models. Figure 6 displays a scatter plot matrix of -log10(p), where p either corresponds to the 

Model I through IV p-value for tests of DE or to the Model V posterior probability for non-DE. 

Note that by relating Model I through IV results to Model V results we may seemingly be 

perpetuating the “severe pedagogical problem of misinterpreting p-values as posterior 

probabilities” [33]. However, this is not the case. At no stage do we make probabilistic statements 

in terms of these quantities. Rather, they simply constitute a quantification of DE. The high 

correlations between Model I and Model III, and between Model II and Model IV, with 

correlation coefficients 0.97 and 0.95 respectively, are as anticipated. This attests to the fact that 

the gene expression log ratio measurements in the two self-hybridization experiments of wild-

type are tightly centered around zero. The fact that Model V conforms more closely to the 

homoscedastic models (I and III) than to the heteroscedastic models (II and IV) is not surprising, 

since the SHMM utilizes information sharing between genes, which is absent for the gene 

specific heteroscedastic models. 
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Model synthesis and selection of DE genes 

Differential Expression via Distance Synthesis (DEDS) is a novel method combining statistics or 

summaries that measure the same phenomenon [28]. We applied it here so as to refine selection 

of DE genes as furnished by the above five individual models. The simple underlying principle of 

DEDS is that genes that are highly ranked (as being differentially expressed) by all five models 

are more likely to be truly differentially expressed than genes that are high only for a single 

model. Capturing this requires devising a ranking that reflects the joint (across model) 

distribution of the individual (within model) gene ranks. This is achieved as follows. The 

individual measures of DE are concatenated into gene specific vectors that in turn are represented 

by points in the correspondingly dimensioned space (here 5).  Note that the DE summaries so 

combined need to be commensurate e.g., all statistics or all p values. A fixed “extreme” point (E), 

corresponding to the coordinate-wise maxima or minima (whichever indicates DE), is included. 

The distances (e.g., Euclidean, Mahalanobis) of all genes to E are computed, and those genes for 

which this distance is “significantly small” (calibrated by an appropriate null referent distribution) 

are considered as DE. The null referents are obtained analogously to those used in calibrating gap 

statistics [34]. Further details concerning DEDS are provided in [28], while an algorithm outline 

is sketched in Appendix II. 

 

We have applied five models for the analysis of the splicing arrays; there are no clear advantages 

of one model over the others. Therefore, rather than trying to arbitrate between models and pick a 

single model on which to base DE declarations, or informally distilling sets of genes that are DE 

under two or more models, we employed DEDS as a robust means for synthesizing results. A 

comparison of ranking of DE genes by DEDS and individual measures is provided in [28]. The 

numbers of genes identified as differentially expressed by DEDS under FDR 0.01 and 0.05 for SJ 

as well as IA indices are listed in Table 3. The observation of greater numbers of genes identified 

as DE based on the intron accumulation index data than on the splice junction data reinforced the 

finding in Clark et al. [17] that IA indices are a more sensitive indicator for splicing defects. The 

splicing defect in the yeast capping enzyme mutant, ceg1-250, is catastrophic, whereas in the spt4 

and spt5 mutants, fewer genes exhibit a splicing defect. Overall, spt5-194 is the most severe 

splicing mutant among all spt mutants, with spt4∆ being the least impaired. The complete list of 

DE genes is provided in Table S1. 
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Validation of DE genes 

The identification of genes affected by spt4 and spt5 mutations using statistically robust 

methodology offers insight into the function of the Spt4-Spt5 complex, as well as the opportunity 

to better equate changes in Intron Accumulation with bona fide splicing defects. To validate our 

findings, we have used quantitative RT-PCR (QPCR) analysis to quantitatively examine 5 intron-

containing genes, as well as two 2 unspliced genes, in all 5 mutants. We previously performed a 

qualitative analysis of three of these genes, U3B, RPS25A and RPL26A, and found that they were 

inefficiently spliced in spt4 and spt5 mutants [9].  By choosing primers that flank the intron-

exon2 junction, we can specifically detect unspliced pre-mRNA (Fig. 1B).  We also picked 

primers to detect either the second exon, or spliced mRNA (Fig. 1B).  As with the microarrays, 

we can normalize changes in pre-mRNA levels to changes in spliced mRNA or total mRNA (i.e. 

exon 2).   

 

As shown in Table 7, the results of the RT-PCR analysis generally agreed with the microarray 

analysis.  Strikingly, in the four spt mutants, genes identified by DEDS showed an absolute 

increase in pre-mRNA levels, while in the ceg1 mutant none of the pre-mRNAs showed an 

absolute increase as compared to wildtype.  After normalizing the pre-mRNA signals to the 

spliced mRNA or second exon signals to account for potential changes in transcription or 

transcript stability, ceg1 also showed a splicing defect as predicted by DEDS.  Furthermore, the 

performance of DEDS was superior to the four ANOVA models and equivalent to the SHMM in 

terms of numbers of false positives/negatives over all 5 mutants (data not shown).  

Description and analysis of DE genes 

There are likely multiple molecular mechanisms by which different genes were differentially 

expressed in the mutants discussed here.  To account for some of these mechanisms, we 

subdivided the lists of DE genes with a q≤0.05 (controlling FDR) before further analysis.  First, 

we reasoned that positive and negative changes in IA likely occurred via different molecular 

mechanisms.  Therefore, for each of the 5 mutants examined, the DE genes were divided into lists 

of genes with either positive or negative fold change.  Second, because ribosomal protein genes 

represent a large fraction of all spliced genes in yeast [35], and because they are subject to a 

common mode of regulation [36], we further subdivided our lists of DE genes into sublists of 

ribosomal (RP) and non-ribosomal (non-RP) genes (Table 4).  Finally, we focused upon the 

intron accumulation index as it is more sensitive to alterations in splicing [17]. 
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For the spt5 and ceg1 mutants, a large majority of the DE genes encoded ribosomal proteins, 

whereas only ~40% of all intron containing genes encode ribosomal proteins (Table 4 and [35]).  

Furthermore, a number of translation and rRNA processing factors are among the non-RP genes 

found in our analysis, and it is possible that these genes are regulated by the same strategies as the 

RPs.  Interestingly, for those DE genes with a negative fold change, i.e. those that were 

apparently spliced more efficiently, we found no RP genes.  This suggests that the genes with a 

negative or positive fold change in the intron accumulation index have distinct dependencies 

upon Spt4-Spt5 and Ceg1.   

 
We next asked if the genes identified in this analysis shared any particular attributes.  It has 

previously been noted that introns in yeast display a bimodal distribution of sizes and positions 

within genes [35].  Ribosomal protein genes have large introns that occur relatively early in a pre-

mRNA, whereas non-RP genes typically have smaller introns that occur somewhat later in the 

mRNA.  Furthermore, RP genes are highly transcribed whereas non-RP genes tend to be less 

highly transcribed [16].  We therefore compared the transcription rates and size and positions of 

introns within the DE genes that displayed a positive fold change (Table 5).  In the ceg1 mutant, 

the set of DE genes had no unusual properties other than the non-RP DE genes being transcribed 

somewhat more frequently than the average non-RP gene. In the spt mutants, intron position of 

the DE genes was not significantly different from the average for RP and non-RP genes (Table 5). 

In contrast, in the spt5-4 and spt5-194 mutants, the non-RP DE genes shared attributes of RP 

genes: they tended to have longer introns and be more highly expressed than the typical non-RP 

gene.  The non-RP DE genes in the spt4∆ and spt5-242 mutants represent an intermediate case; 

their introns are not significantly longer than those of the typical non-RP intron-containing genes, 

but they are more highly transcribed.  

 

The DE genes with a negative fold change appear to represent a distinct class of genes.  First, 

they only encoded non-RPs.  Second, they resembled the typical non-RP intron containing genes 

in that they had short introns, however, they were expressed at even lower levels than the typical 

non-RPs (Table 6), contrary to the DE genes with positive fold changes.  Again, this is consistent 

with the idea that these genes were DE for reasons distinct from those leading to DE of genes 

with a positive fold change. 
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Discussion 
In this paper, we showcased splicing array technology and developed methodologies for its 

analysis in the context of a real, complex experimental design. We applied four ANOVA mixed 

models and a semiparametric hierarchical mixture model and used DEDS [28] to derive a list of 

DE genes. The DEDS algorithm synthesizes statistics or methods that estimate the same quantity 

of interest.  The underlying principle behind DEDS is that genes that are highly ranked by 

different methods are more likely to be truly differentially expressed than genes that rank highly 

on a single measure. In this and previous work, we have evaluated DEDS on diverse datasets, 

featuring both one-channel Affymetrix oligonucleotide arrays and two-channel spotted 

arrays[28]. Using a set of spike-in (Affymetrix) datasets, where differentially expressed genes are 

known, we demonstrated that DEDS compares favorably with the best individual statistics, while 

enjoying robustness properties lacked by the individual statistics [28]. 

 

Previous to this study only four genes had molecularly analyzed for splicing defects in spt4 and 

spt5 mutants.  Recently, we have used splicing-sensitive DNA microarrays to compare patterns of 

splicing defects across a diverse set mutations affecting gene expression [37]; but this and the 

previous study lacked a statistical or quantitative framework for rigorous determination of 

specific genes that were differentially expressed. Here we have used splicing-sensitive DNA 

microarrays combined with DEDS to analyze all known intron-containing gene in the yeast 

genome and to specifically identify those genes whose proper splicing is dependent upon SPT4, 

SPT5 or CEG1.  Comparison of the lists of DE genes for the five mutants examined here revealed 

that most of the genes that were DE in the spt mutants were also DE in the ceg1 mutant (see 

Figure 7 and Table S1). The spt5-242 mutant differed from the other spt5 mutants in that it did 

not preferentially affect the splicing of non-RP genes with long introns.  We do not understand 

the mechanistic basis for this observation, although it is consistent with our previous observations 

that this spt5 mutation is phenotypically distinct from other spt5 alleles and therefore may cause a 

distinct biochemical defect [29, 38].  Our data further suggest that Spt4’s contribution to splicing 

is modest, as only a handful of genes were DE in the spt4 mutant.  This is consistent with the 

observation that, in contrast to SPT5, SPT4 is not essential for life.  Since there is currently no 

evidence that Spt4 functions independently of Spt5 [39], this suggests that Spt4 assists in, but is 

not essential for the functions of Spt4-Spt5 in splicing. 

 

The fewer number of DE genes in the spt mutants compared to ceg1-250 may indicate a lesser 

effect on splicing rather than an effect on a distinct subset of intron-containing genes.  It is 
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interesting to note however that highly transcribed genes with long introns, i.e. RP genes and a 

subset of non-RP genes with long introns, were most sensitive to the spt mutations.  These data 

suggest that the Spt4-Spt5 complex may play a particular role in coordinating splicing with 

transcription under conditions that present kinetic challenges to the spliceosome or its assembly, 

i.e. when splice sites are widely separated, increasing the separation in time and space between 

the synthesis of the 5' and 3' splice sites, or when a gene is highly transcribed, creating the need 

for rapid and repeated assembly of spliceosomes over one site on a gene. In addition, these data 

are consistent with recent evidence demonstrating an effect of RNA polymerase II elongation 

rates on alternative splicing in higher eukaryotes [40]. In contrast, the non-RP genes spliced more 

efficiently in the spt mutants tend to be transcribed less frequently than the average non-RP gene 

(Table 6).  Thus, as is the case for transcription, the Spt4-Spt5 complex may have both positive 

and negative effects on splicing [8].  Furthermore, this is consistent with previous observations 

that altered transcription elongation may lead to increased splicing, presumably due to increased 

opportunities for recognition of suboptimal splice sites [6, 7]. Whether the effects we have 

measured here are due to altered elongation rates or indicate a more direct role of Spt4-Spt5 in 

splicing is currently under investigation.  

 

Materials and Methods 

Sample preparation and array hybridization 
All yeast strains (Table 7) used were isogenic to S288C and Gal+ [41].  Yeast were grown 

overnight in rich medium (YPD) at 30ºC to early log phase (>1x107 cells/ml), spun down and 

resuspended in pre-warmed 39ºC media, and allowed to grow at 39ºC for 45 minutes after shift to 

restrictive temperature. Cells were collected by centrifugation at room temperature for 4 minutes, 

washed once with sterile water, flash frozen in liquid nitrogen and stored at -80ºC.  Total RNA 

was isolated by a hot phenol method [42] and quantitated by UV absorbance.  Fluorescently 

labeled probe preparation, hybridization and data acquisition were performed as previously 

described [17] using 15 ug of total RNA/sample.  For each mutant, RNA was prepared from two 

independently grown cultures.  Each RNA sample was used to probe two arrays, and was labeled 

with Cy3 for the first array and Cy5 for the second. 

Data normalization and preprocessing 
To effectively and properly normalize the data, we used nonlinear loess normalization [43] based 

on the subset of intronless genes.  After normalization, for each array, the four replicates of each 
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splice junction, intron and exon probes are summarized using averages. This is followed by the 

calculation of SJ and IA indices.   

ANOVA Mixed Models 
1. Model specificities 
 
Model I – one-sample / homoscedastic errors 

Let gvsaY  be the splicing related index, SJ or IA, from gene g (g = 1, 2,…, 254 for SJ and 1, 2,…, 

263 for IA), mutant v (v = 1, 2,…, 5), sample s (s = 1,2) and array a (a = 1,2;  corresponding to 

the dye swap pair). The first model can be represented as 

 gvsagvsvsavsgvvggvsa SGVASVSVGVVGY εµ +++++++= )/()//()/()(  

Effects sSV )/( , aASV )//( , gvsSGV )/(  and gvsaε  are assumed to be normally distributed 

normal variables with zero means and variance components 2
/ SVσ , 2

// ASVσ  , 2
/ SGVσ  and 

2σ respectively. The remaining effects in the model are fixed effects. The parameter of interest in 

this model is gvvggv GVVG +++= µµ , which measures the mean of the SJ/IA indices of gene g 

in mutant v. The following null hypothesis therefore defines the absence of differential expression 

in mutant v and gene g: 

0:0 =gvH µ  

The variance of the treatment mean gvµ̂ can be computed by the following equation: 

22
//

2
/

2
/ ˆ1ˆ1ˆ1ˆ1)ˆ( σσσσµ

AS
ASV

SA
SGV

S
SV

S nnnnnn
Var gv +++=

∧
,  

where nS = 2 and nA = 2.  

 

Models II – one-sample / heteroscedastic errors 

Model II (one sample / homoscedastic errors) is different from Model I by assuming that each 

gene has its own error distribution, so the model is fitted gene by gene. It can be represented by 

the following equation: 

gvsavsvggvsa SVVY εµ +++= )/(  

The parameter of interest in this model is vggv V+= µµ which measures the mean of the SJ/IA 

indices of gene g in mutant v. The following null hypothesis defines the absence of differential 

expression in mutant v and gene g: 
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0:0 =gvH µ  

The variance of the treatment mean gvµ̂ can be computed by the following equation: 

22
/

22
/ ˆ

4
1ˆ

2
1ˆ1ˆ1)ˆ( σσσσµ +=+=

∧

SV
AS

SV
S

gv nnn
Var  

 

Models III – two-sample / homoscedastic errors 

Models III differs from Model I by including the indices derived from the two wild-type self-

hybridizations. Because of this inclusion, the study design is rendered unbalanced. To be more 

specific, the arrays in the two wild-type self-hybridizations came from the same sample, whereas 

the samples of four slides related to a mutant were from two distinct samples (see Figure 2b). The 

model can be represented by the following equation: 

gvsagvsvsavsgvvggvsa SGVASVSVGVVGY εµ +++++++= )/()//()/()(  

The parameter of interest in this model is gvvggv GVVG +++= µµ , which measures the mean of 

the SJ/IA indices of gene g in mutant v. The following null hypothesis defines the absence of 

differential expression in mutant vm and gene g compared to the wild-type: 

0:0 =−=
wmm gvgvgvDH µµ  

The variance of the treatment mean gvµ̂ can be computed by the following equation: 

22
//

2
/

2
/ ˆ1ˆ1ˆ1ˆ1)ˆ( σσσσµ

AS
ASV

SA
SGV

S
SV

S
gv nnnnnn

Var +++=
∧

, where nS = 2 for mutants and nS = 1 

for the wild-type. 

 

Models IV – two-sample / heteroscedastic errors 

Models IV differs from Model II by including the indices derived from the two wild-type self-

hybridizations.  The model can be represented by the following equation: 

gvsasvggvsa SVVY εµ +++= )/(  

The parameter of interest in this model is vggv V+= µµ , which measures the mean of the SJ/IA 

indices of gene g in mutant v. The following null hypothesis defines the absence of differential 

expression in mutant vm and gene g compared to the wild-type: 
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0:0 =−=
wmm gvgvgvDH µµ  

The variance of the treatment mean gvµ̂ can be computed by the following equation: 

22
/

22
/ ˆ

4
1ˆ

2
1ˆ1ˆ1)ˆ( σσσσµ +=+=

∧

SV
AS

SV
S

gv nnn
Var , where nS = 2 for mutants and nS = 1 for the 

wild-type. 

 

2. Derivation of variance components 
Results Component Estimate 

SJ IA 

2σ  EMS  0.186 0.28 

2
/ SGVσ  ASGV nMS /)ˆ( 2

/ σ−      (nA = 2) 0 0.036 

2
// ASVσ  GASV nMS /)ˆ( 2

// σ−   (nG = 254 for SJ and 263 for IA) 0.056 0.054 

2
/ SVσ  AGASVGSV nnnMS /)ˆˆ( 2

//
2

/ σσ −−  0.013 0.042 

 

3. Application of DEDS 
The procures of the application of DEDS are as follows: 

1. Fit the five DE models, and assume the resulting p values for gene i and model j are pij (i = 1, 

2, …, n, j = 1, 2, …, 5) in data matrix P;  

2. Locate the most extreme point Ε as a vector of zeros of length five; 

3. Calculate distance di of all genes to E and order )()2()1( ... nddd ≤≤≤ ; 

2
55

2
22

2
11 )(...)()( EpEpEpd iiii −++−+−=  

4. Generate B sets of reference distribution by: 

1) Center the columns of P at mean 0; 

2) Compute the singular value decomposition P=UDVT; 

3) Calculate P*=PV; 

4) Create Z* by drawing uniform distribution over the range of the columns of P*, 

5) Back transform Z* by Z=Z*VT to obtain the reference data Z. 

6) For each reference dataset b, id values are calculated and ordered in the way of 

)(
)(

)(
)2(

)(
)1( ... b

n
bb ddd ≤≤≤ ; 



18 

5. For a typical gene i, compute the median number of falsely called genes by computing the 

median number of values among each of the B sets of 
)(

)(
b
id  that are smaller than )(id ; and 

the q-value (controlling False Discovery Rate) of gene i is computed as the median of the 

number of falsely called genes divided by the number of genes called significant. 

 

Analysis of DE genes 
Gene annotations were obtained from the Ares lab intron database 

(http://www.cse.ucsc.edu/research/compbio/yeast_introns.html), and transcription frequency data 

was obtained from the Young lab (http://web.wi.mit.edu/young/expression/transcriptome.html).   

The collection of all intron-containing genes was divided into sets of RP and non-RP genes and 

averages and standard deviations were calculated for their transcription frequencies, intron 

lengths and intron start sites.  Several genes were omitted from these analyses because there is no 

good data concerning their transcription frequency or intron position or size.  In addition, Mtr2, 

which has multiple, overlapping introns, was considered to have a single intron for this analysis 

(see Table S1).  To determine if the properties of DE genes in a mutant were significantly 

different from those of all RP or non-RP intron containing genes, we used a nonparametric  

resampling method.  Briefly, a referent null distribution was generated by first taking 10,000 

random samples of size N from the sets of all intron containing RP or non-RP genes (N is the 

number of DE RP or non-RP genes for a particular mutant), and then calculating the averages of 

each sample. The p value was derived as the percentage within the referent distribution that is 

more extreme than the observed property. 

 

Quantitative PCR analysis 
cDNA synthesis for quantitative PCR (QPCR) was performed as described for fluorescently 

labeled target synthesis except that equal concentrations of all four deoxyribonucleotides and no 

Cy dyes were used. Reactions lacking reverse transcriptase were performed to control for 

genomic DNA contamination.  Amplifications were conducted in a Bio-Rad iCycler using iQ 

SYBR Green Supermix(Bio-Rad, Hercules CA) and 200uM primer according to the 

manufacturer’s instructions, using the oligonucleotide primers found in Table S2.  Representative 

transcripts were assayed in triplicate.  To compare the QPCR with array values we normalized 

QPCR values to the OSH3 mRNA.  OSH3 was chosen as a suitable reference gene, since the 

array data indicated that its expression was unchanged in the five mutants used in the comparison. 
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Figure legends 

Figure 1: Splicing array probe and RT-PCR primer design.  
a) Probe design of the splicing array. There are three oligonucleotide probes for each intron-

containing gene: intron (red), splice-junction (blue) and exon (green). In addition, there are also 

about 800 probes for intronless genes (yellow). This figure is modified from Clark et al.[17]. b) 

Primer design of RT-PCR. Primers are chosen to flank the intron-exon2 junction and the second 

exon or spliced mRNA .   

Figure 2: Graphical representation of designs.   
a) In this representation, vertices correspond to target mRNA samples and edges to   

hybridizations between two samples. By convention, we place the green-labeled sample at the tail 

and the red-labeled sample at the head of the arrow. b) Nested design of the experiment. The 

effect A is nested in S and S is in turn nested in V. Note that there are two samples (S) for each 

mutant, but only one sample for the wild-type. 

Figure 3: Scatter plots of the logarithm intensities of splicing-related probes.  
Points are colored coded as indicated. 
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Figure 4: Boxplots of normalized ratios of splicing related probes stratified by 
mutants.  
Splice-junction and exon probe ratios show a shift from the horizontal zero line in the negative 

direction, whereas intron probe ratios are centered at zero. 

Figure 5: Scatter plots of normalized ratios of splicing related probes.  
Points are colored coded by their mutant identity. Gray horizontal and vertical reference lines 

indicate zero expression ratios. 

Figure 6:  Scatter plot matrix of DE models for SJ indices of the ceg mutant.  
Plotted are the -log10(p) of the corresponding models, where p either corresponds to the Model I 

through IV p-value for tests of DE or to the Model V posterior probability for non-DE. 

Correlation coefficients between corresponding models are shown in the lower triangle of the 

matrix. 

Figure 7:  Venn diagram of DE genes from different mutants  
Panel a) compares DE genes among the three spt5 mutants (spt5-194, spt5-4 and spt5-242). 

Statistical test shows that the common 43 genes are highly significant with a p value < 0.001. In 

panel b), spt5 refers to the 43 common genes among all spt5 mutants. The overlaps between spt5 

and ceg1-250 (40, p <0.001), spt5 and spt4 (8, p<0.001), spt4, spt5 and ceg1-250 (7, p<0.001) 

are all significant.  

 

Tables 

Table 1: A summary of the five competing DE models. 
Model No Model Description 

I Mixed ANOVA: one-sample / homoscedastic 
II Mixed ANOVA: one-sample / heteroscedastic 
III Mixed ANOVA: two-sample / homoscedastic 
IV Mixed ANOVA: two-sample / heteroscedastic 
V Semiparametric hierarchical mixture model 

 

Table 2: Degrees of freedom table for the ANOVA mixed models. 
Source Models 
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 One-sample 

Homoscedastic  

One-sample 

Heteroscedastic

two-sample 

Homoscedastic 

two-sample 

Heteroscedastic 

Intercept 1 1 1 1 

G 253  253  

V 4 4 5 5 

GV 1012  1265  

V/S 5 5 5 5 

V/S/A 10  11  

GV/S 1265  1265  

Residuals 2530 10 2783 11 

Total 5080 20 5588 22 

Table 3: Number of DE in SJ and IA indices. 
 

 

 

 

 

 

 

 

Table 4: Distribution of DE genes. 
Mutant Gene 

class 
# DE genes with positive fold 

change in IA 
# DE genes with negative fold 

change in IA 
RP 6 0 spt4∆ non-RP 5 3 
RP 44 0 spt5-242 non-RP 17 5 
RP 52 0 spt5-4 non-RP 10 8 
RP 72 0 spt5-194 non-RP 13 24 
RP 89 0 ceg1-250 non-RP 52 17 

 

SJ IA 
Mutant 

FDR 0.01 FDR0.05 FDR0.01 FDR0.05 

spt4∆ 2 2 14 14 

spt5-242 3 3 48 69 

spt5-4 1 1 52 72 

spt5-194 12 12 88 113 

ceg1-250 134 160 151 163 
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Table 5: Properties of DE genes with a positive fold change (Average). 
Start is the nucleotide position in ORF where intron begins; mRNA/hr is the number of times a 
gene is transcribed per hour. Numbers in bold, italic text are significantly different from the 
corresponding value for all introns at the p<0.05 level. 
 

RP non-RP 
mutant intron 

length start mRNA/hr intron 
length start mRNA/hr 

All 
introns 405 48 94.52 156 128 8.27 

spt4∆ 342 19 70.52 253 160 48.20 
spt5-242 410 31 102.04 196 154 22.92 

spt5-4 400 52 92.48 396 281 42.51 
spt5-194 412 35 94.11 324 226 30.68 
ceg1-250 408 51 96.24 164 134 12.02 

Table 6: Properties of DE genes with a negative fold change (Average). 
Numbers in bold, italic text are significantly different from the corresponding value for all nonRP 
introns at the p<0.05 level. 
 

mutant # DE 
genes 

intron 
length start mRNA/hr 

spt4∆ 3 105 615 0.80 
spt5-4 8 107 44 1.55 

spt5-242 5 106 327 1.10 
spt5-194 24 133 170 1.75 
ceg1-250 17 161 169 4.77 

Table 7:  QPCR validation DE microarray data. 
     Fold change 

GENE QPCR target spt4∆ spt5-4 spt5-242 spt5-194 ceg1-250 
pre-mRNA 1.3 2.33 -0.77 2.17 -0.7 

spliced mRNA -1.07 -1.07 -2.23 -1.17 -4.17 

  
YGR027C 
(RPS25A) 

  pre-/spliced mRNA 2.37* 3.40* 1.47 3. 33* 3.47* 
pre-mRNA -0.63 1.47 -1.07 2.57 -0.37 

spliced mRNA -0.53 -0.63 -3.37 -3.60 -4.53 

  
YLR344W 
(RPL26A) 

  pre-/spliced mRNA -0.10# 2.10* 2.30 6.17* 4.17* 
pre-mRNA -0.73 0.73 1.37 0.5 -2.47 

exon2 -0.53 -0.63 -2.1 -2 -4.93 

  
YOL127W 
 (RPL25) 

  pre-mRNA/exon2 -0.20# 1.37* 3.47* 2.50* 2.47* 
pre-mRNA -2.13 -1.53 -0.93 -1.7 -1.43   

YDR064W 
exon2 -0.97 -0.93 -2.3 -1.23 -3.83 
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(RPS13) 
  pre-mRNA/exon2 -1.17 -0.60# 1.37 -0.47# 2.40* 

pre-mRNA -0.23 1.00 4.00 0.30 -0.23 
exon2 1.60 1.97 -0.03 1.93 0.83 

  
SNR17B  
(U3B) 

  pre-mRNA/exon2 -1.83 -0.97# 4.03* -1.63 -1.07 
Numbers in bold text highlight concordance between the QPRC and Microarray (DEDS) analysis: 
1) numbers with asterisks indicate genes identified as DE using DEDS; 2) numbers in bold with 
pound symbols indicate genes identified as non-DE using DEDS and whose QPCR fold changes 
are within the (-1, 1) thresholds. 

Table 8:  Yeast Strains. 
Strain Genotype Source 

FY120 Mat a his4-912δ lys2-128δ leu2∆1 ura3-52   Fred Winston 

GHY92 Mat α his4-912δ lys2-128δ leu2∆1 ura3-52 spt5-242  Hartzog lab 

GHY379 Mat α his4-912δ lys2-128δ leu2∆1 spt5-194 Hartzog lab 

GHY524 Mat a his4-912δ lys2-128δ leu2∆1 spt4∆2::HIS3   Hartzog lab 

FY1668 Mat a his4-912δ lys2-128δ spt5-4   Fred Winston 

OY163 Mat a his3 lys2-128δ ura3 ceg1-250 Hartzog lab 

 

Supporting Information 
Table S1: A complete list of differentially_expressed_genes for the five mutants in both SJ and 

IA indices.  

Tabel S2: Oligo_sequences used in the QPCR validation of the microarray analysis.  
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